Improved Semi-Online Makespan Scheduling with a Reordering Buffer

Hongyang Sun (Speaker)

Joint work with Rui Fan

Nanyang Technological University, Singapore

Background

Classical online scheduling

- Schedule a sequence of jobs arriving one by one on m identical machines to minimize makespan
- List scheduling algorithm (Graham 1966)
 - Assign arriving job on a machine with least load
 - (2-1/m)-competitive
- Best known competitive ratio of deterministic algorithm [1.88, 1.9201] for large m

Background

Semi-online scheduling with reordering buffer

- A buffer of limited size k (independent of input size) can be used to store and reorder jobs
 - Store: If buffer is not full, we can admit a new job into the buffer without assigning any job to any machine
 - Reorder: If buffer is full, we can select any job from the buffer or the arriving job and assign it to a machine

Semi-online scheduling with reordering buffer

For m = 2, optimal comp. ratio = 4/3 (Kellerer et al. 1997 & Zhang 1997) using k = 1, the smallest possible buffer size

Semi-online scheduling with reordering buffer

- For m = 2, optimal comp. ratio = 4/3 (Kellerer et al. 1997 & Zhang 1997) using k = 1, the smallest possible buffer size
- For general *m*, optimal comp. ratio (lower bound) = r_m (Englert, Ozmen and Westermann 2008)
 - r_m is the solution to the following equation $\lceil (r_m - 1)m/r_m \rceil \cdot r_m/m + (r_m - 1) \cdot \sum_{i=\lceil (r_m - 1)m/r_m \rceil}^{m-1} 1/i = 1$

Semi-online scheduling with reordering buffer

- For m = 2, optimal comp. ratio = 4/3 (Kellerer et al. 1997 & Zhang 1997) using k = 1, the smallest possible buffer size
- For general *m*, optimal comp. ratio (lower bound) = r_m (Englert, Ozmen and Westermann 2008)
 - r_m is the solution to the following equation $\lceil (r_m - 1)m/r_m \rceil \cdot r_m/m + (r_m - 1) \cdot \sum_{i=\lceil (r_m - 1)m/r_m \rceil}^{m-1} 1/i = 1$
 - *r_m* is a monotonically increasing function of *m*
 - r₂ = 4/3, and

 $\lim_{m\to\infty} r_m \approx 1.4659$

Semi-online scheduling with reordering buffer

- For general *m*, optimal comp. ratio (lower bound) = r_m (Englert, Ozmen and Westermann 2008)
 - k = Θ(m) is necessary and sufficient to achieve r_m
 - A r_m -comp. algorithm was proposed with a reordering buffer of size $k = (1+2/r_m)m \approx 2.364m$ for large m
 - A lower bound of k = m/2 on the buffer size

Semi-online scheduling with reordering buffer

- For general *m*, optimal comp. ratio (lower bound) = r_m (Englert, Ozmen and Westermann 2008)
 - k = Θ(m) is necessary and sufficient to achieve r_m
 - A r_m -comp. algorithm was proposed with a reordering buffer of size $k = (1+2/r_m)m \approx 2.364m$ for large m
 - A lower bound of *k* = *m/2* on the buffer size
- What is the exact buffer size required to achieve r_m?

Semi-online scheduling with reordering buffer

- For general *m*, optimal comp. ratio (lower bound) = r_m (Englert, Ozmen and Westermann 2008)
 - k = Θ(m) is necessary and sufficient to achieve r_m
 - A r_m-comp. algorithm was proposed with a reordering buffer of size k = (1+2/r_m)m ≈ 2.364m for large m
 - A lower bound of *k* = *m/2* on the buffer size
- What is the exact buffer size required to achieve r_m?

Our result improves the required buffer size

A r_m-comp. algo. with a buffer size k = (5-2r_m)m ≈ 2.068m for large m, improving the previous result by ≈ 0.296m

Outline

- Lower bound r_m
- A scheduling framework to get optimal comp. ratio
 - Buffer size $k = (1+2/r_m)m \approx 2.364m$ (Englert et al.)
 - Buffer size $k = (5-2r_m)m \approx 2.068m$ (Our result)
- Tradeoff between comp. ratio and buffer size
- Remarks

Consider the following load profile (weight w_i)

Consider the following load profile (weight w_i)

- Arbitrarily small jobs of total size 1+ɛ arrive
 - Buffer contains size = ε , and total assigned job size = 1

Consider the following load profile (weight w_i)

- Arbitrarily small jobs of total size 1+ε arrive
 - Buffer contains size = ε , and total assigned job size = 1
- For the must be a machine j with load $\geq w_i$, otherwise $\sum w_i < 1$

Consider the following load profile (weight w_i)

- Arbitrarily small jobs of total size 1+ε arrive
 - Buffer contains size = ε, and total assigned job size = 1
- There must be a machine j with load $\ge w_i$, otherwise $\sum w_i < 1$
 - □ If $w_j = r_m/m$, no more job arrives → OPT = 1/m, ALG ≥ r_m/m

Consider the following load profile (weight w_i)

□ $w_i = \min\{r_m/m, (r_m-1)/i\}$, where $\sum w_i = 1$

- Arbitrarily small jobs of total size 1+e arrive
 - Buffer contains size = ε, and total assigned job size = 1
- There must be a machine j with load $\ge w_i$, otherwise $\sum w_i < 1$

□ If
$$w_j = r_m/m$$
, no more job arrives
→ OPT = $1/m$, ALG ≥ r_m/m

If w_j = (r_m-1)/j, m-j large jobs of size 1/j arrive

$$\rightarrow$$
 OPT = 1/j, ALG $\geq (r_m - 1)/j + 1/j = r_m/j$

Consider the following load profile (weight w_i)

□ $w_i = \min\{r_m/m, (r_m-1)/i\}$, where $\sum w_i = 1$

- Arbitrarily small jobs of total size 1+ε arrive
 - Buffer contains size = ε, and total assigned job size = 1
- For the must be a machine j with load $\geq w_i$, otherwise $\sum w_i < 1$
 - □ If $w_j = r_m/m$, no more job arrives → OPT = 1/m, ALG ≥ r_m/m
 - If w_j = (r_m-1)/j, m-j large jobs of size 1/j arrive

$$\rightarrow$$
 OPT = 1/j, ALG $\geq (r_m - 1)/j + 1/j = r_m/j$

In both cases, competitive ratio $\geq r_m$

Three phases:

(1) Initial phase: Admit *k* jobs into buffer w/o assignment

Three phases:

- □ (1) Initial phase: Admit *k* jobs into buffer w/o assignment
- (2) Iterative phase: Admit a new job, and pick a smallest job and assign it to some machine j

Three phases:

- □ (1) Initial phase: Admit *k* jobs into buffer w/o assignment
- (2) Iterative phase: Admit a new job, and pick a smallest job and assign it to some machine j
 - Choice of the machine depends on the algorithm
 - Maintain a profile of machine loads related to w_i = min{r_m/m, (r_m-1)/i}, where normalized total area = 1, i.e., ∑w_i = 1

- **1**st **Step**: Large jobs (size > 1/3.OPT)
 - Make an optimal schedule (LPT)
 - Sort in ascending order of size
 - Place them on current schedule

- **1**st **Step**: Large jobs (size > 1/3.OPT)
 - Make an optimal schedule (LPT)
 - Sort in ascending order of size
 - Place them on current schedule
 - → Mathematics can ensure the optimal comp. ratio r_m

- **1**st **Step**: Large jobs (size > 1/3.OPT)
 - Make an optimal schedule (LPT)
 - Sort in ascending order of size
 - Place them on current schedule
 - → Mathematics can ensure the optimal comp. ratio r_m
- 2nd Step: Small jobs (size ≤ 1/3.OPT)
 - Place one by one greedily
 - $\Box \leq \mathsf{OPT} + 1/3 \cdot \mathsf{OPT} \leq r_m \cdot \mathsf{OPT}$
 - \rightarrow Still optimal comp. ratio

Iterative phase: Assign smallest job of size p to a machine jwith load $L_j \le w_j \cdot (T+m \cdot p) - p$

Iterative phase: Assign smallest job of size p to a machine j
with load L_j ≤ w_j • (T+m•p) - p

- □ This is feasible with at least *m* buffer space (proof by contradiction)
- After Iterative phase: no machine exceeds the profile defined on $T_{\text{final}}+m\cdot p$

Iterative phase: Assign smallest job of size p to a machine j
with load L_j ≤ w_j • (T+m•p) - p

- □ This is feasible with at least *m* buffer space (proof by contradiction)
- After Iterative phase: no machine exceeds the profile defined on $T_{\text{final}}+m \cdot p$
- □ Final phase: at most 2m large job form an optimal schedule $L'_1 \le L'_2 \le ... \le L'_m$

Iterative phase: Assign smallest job of size p to a machine j
with load L_j ≤ w_j • (T+m•p) - p

- □ This is feasible with at least *m* buffer space (proof by contradiction)
- After Iterative phase: no machine exceeds the profile defined on $T_{\text{final}}+m\cdot p$
- □ Final phase: at most 2m large job form an optimal schedule $L'_1 \le L'_2 \le ... \le L'_m$

Mathematics to prove the 1st step of the final phase:

For all $0 \le j \le m-1$

$$OPT \ge (T_{\text{final}} + m \cdot p + \sum L'_i)/m$$

$$L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j \qquad \longrightarrow \qquad L_j \le r_m \cdot OPT$$

■ For
$$(r_m-1)m/r_m \le j \le m-1$$
, $w_j = (r_m-1)/j$
 $L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$
 $= (r_m-1)/j \cdot (m \ OPT - \sum L'_i) + L'_j$
 $\le (r_m-1)/j \cdot (m \ OPT - (m-j) \ L'_j) + L'_j$
 $= (r_m-1)/j \cdot (m \ OPT - m \ L'_j + j \ L'_j) + L'_j$
 $= (r_m-1)/j \cdot (m \ OPT - m \ L'_j) + r_m \ L'_j$
 $= (r_m-1)/j \cdot (m \ OPT - m \ L'_j) + r_m \ L'_j$
 $= r_m \cdot (m \ OPT - m \ L'_j) + r_m \ L'_j$
 $= r_m \cdot OPT$
For $0 \le j \le (r_m-1)m/r_m$, $w_j = r_m/m$
 $L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$
 $\le r_m/m \cdot (m \ OPT - \sum L'_i) + L'_j$
 $= r_m/m \cdot (m \ OPT - m \ L'_j) + r_m \ L'_j$
 $= r_m \cdot OPT$

Mathematics to prove the 1st step of the final phase:

For all $0 \le j \le m-1$

$$OPT \ge (T_{\text{final}} + m \cdot p + \sum L'_i)/m$$

$$L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j \qquad \longrightarrow \qquad L_j \le r_m \cdot OPT$$

■ For
$$(r_m-1)m/r_m \le j \le m-1$$
, $w_j = (r_m-1)/j$
 $L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$
 $= (r_m-1)/j \cdot (m \ OPT - \sum L'_i) + L'_j$
 $\le (r_m-1)/j \cdot (m \ OPT - (m-j) \ L'_j) + L'_j$
 $= (r_m-1)/j \cdot (m \ OPT - m \ L'_j + j \ L'_j) + L'_j$
 $= (r_m-1)/j \cdot (m \ OPT - m \ L'_j) + r_m \ L'_j$
 $= (r_m-1)/j \cdot (m \ OPT - m \ L'_j) + r_m \ L'_j$
 $= r_m \cdot OPT$
For $0 \le j \le (r_m-1)m/r_m$, $w_j = r_m/m$
 $L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$
 $\le r_m/m \cdot (m \ OPT - \sum L'_i) + L'_j$
 $\le r_m/m \cdot (m \ OPT - (m-j) \ L'_j) + L'_j$
 $= r_m \cdot OPT$

Similar derivations carry over to the other algorithms

Buffer size $k = (1+2/r_m)m$ (Englert et al.)

Same algorithm: Requires a buffer size ≈ 2.364m for large m

Buffer size $k = (1+2/r_m)m$ (Englert et al.)

Same algorithm: Requires a buffer size ≈ 2.364m for large m

• **Observation**: The following needs only hold for the m/r_m processors on the right, since **the profile on the left is flat**

Buffer size $k = (1+2/r_m)m$ (Englert et al.)

Same algorithm: Requires a buffer size ≈ 2.364m for large m

• **Observation**: The following needs only hold for the m/r_m processors on the right, since **the profile on the left is flat**

For
$$(r_m-1)m/r_m \le j \le m-1$$

 $L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$
 \longrightarrow
 $L_j \le r_m \cdot OPT$

These processors get at most 2 jobs each according to the optimal LPT rule, so total extra buffer space required is $2m/r_m$

 Observation: In the *iterative phase*, it is not necessary to maintain a uniform load profile for all processors, or more precisely for the m/r_m processors on the right, in order to satisfy the following in the final phase

For
$$(r_m-1)m/r_m \le j \le m-1$$

 $L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$
 \longrightarrow
 $L_j \le r_m \cdot OPT$

Observation: In the *iterative phase*, it is not necessary to maintain a uniform load profile for all processors, or more precisely for the *m*/*r_m* processors on the right, in order to satisfy the following in the final phase

For
$$(r_m-1)m/r_m \le j \le m-1$$

 $L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$
 \longrightarrow $L_j \le r_m \cdot OPT$

Design a non-uniform profile: Observe from the proof of the final phase For $(r_m-1)m/r_m \le j \le m-1$, $w_j = (r_m-1)/j$ $L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$ $= (r_m-1)/j \cdot (m \ OPT - \Sigma L'_j) + L'_j$ $\le (r_m-1)/j \cdot (m \ OPT - m \ L'_j + j \ L'_j) + L'_j$ $= (r_m-1)/j \cdot (m \ OPT - m \ L'_j) + r_m \ L'_j$ $\le r_m/m \cdot (m \ OPT - m \ L'_j) + r_m \ L'_j$ $= r_m \cdot OPT$

 m/r_m processors

Buffer size $k = (5-2r_m)m$ (Our Result)

Observation: In the *iterative phase*, it is **not** necessary to maintain a **uniform** load profile for all processors, or more precisely for the m/r_m processors on the right, in order to satisfy the following in the **final phase**

For
$$(r_m-1)m/r_m \le j \le m-1$$

 $L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$
 \longrightarrow $L_j \le r_m \cdot OPT$

Design a non-uniform profile: Observe from the proof of the final phase

For
$$(r_m-1)m/r_m \le j \le m-1$$
, $w_j = (r_m-1)/j$
 $L_j \le w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$
 $= (r_m-1)/j \cdot (m \ OPT - \sum L'_j) + L'_j$
 $\le (r_m-1)/j \cdot (m \ OPT - m \ L'_j + j \ L'_j) + L'_j$
 $= (r_m-1)/j \cdot (m \ OPT - m \ L'_j) + r_m \ L'_j$
 $\le r_m/m \cdot (m \ OPT - m \ L'_j) + r_m \ L'_j$
 $= r_m \cdot OPT$
MAPSP 2013
 $\sum L'_i \ge (m-j)L'_j, \text{ giving up } L'_1 \text{ to } L'_{j-1}$

Buffer size $k = (5-2r_m)m$ (Our Result)

Iterative phase: Assign smallest job of size p to a machine j with load $\leq w_j \cdot (T+k-2(m-j')p) - p$, where $j' = \max\{j, (r_m-1)m/r_m\}$

Iterative phase: Assign smallest job of size p to a machine j with load $\leq w_j \cdot (T+k-2(m-j')p) - p$, where $j' = \max\{j, (r_m-1)m/r_m\}$

Determine total buffer size k: Apply the feasibility condition in the iterative phase

■ At any time, there exists a machine j with load $\leq w_j \cdot (T+k-2(m-j')p) - p$, where $j' = \max\{j, (r_m-1)m/r_m\}$

Determine total buffer size k: Apply the feasibility condition in the iterative phase

- □ At any time, there exists a machine j with load $\leq w_j \cdot (T+k-2(m-j')p) p$, where $j' = \max\{j, (r_m-1)m/r_m\}$
- As shown previously, at least *m•p* space between the current load *T* and the designed profile will suffice

 $\sum w_{j} \cdot (T+k-2(m-j')p) \ge T + m \cdot p$ $\leftarrow T + k - 2m \cdot p + 2\sum w_{j} \cdot j' \ge T + m \cdot p \qquad (\sum w_{j} = 1)$ $\leftarrow T + k - 2m \cdot p + 2(r_{m} - 1)m \ge T + m \cdot p \qquad (\sum w_{j} \cdot j' \ge (r_{m} - 1)m)$ $\leftarrow k \ge (5 - 2r_{m})m$

Determine total buffer size k: Apply the feasibility condition in the iterative phase

- □ At any time, there exists a machine j with load $\leq w_j \cdot (T+k-2(m-j')p) p$, where $j' = \max\{j, (r_m-1)m/r_m\}$
- As shown previously, at least *m•p* space between the current load *T* and the designed profile will suffice

 $\sum w_{j} \cdot (T+k-2(m-j')p) \ge T + m \cdot p$ $\leftarrow T + k - 2m \cdot p + 2\sum w_{j} \cdot j' \ge T + m \cdot p \qquad (\sum w_{j} = 1)$ $\leftarrow T + k - 2m \cdot p + 2(r_{m}-1)m \ge T + m \cdot p \qquad (\sum w_{j} \cdot j' \ge (r_{m}-1)m)$ $\leftarrow k \ge (5-2r_{m})m$

m	2	3	4	 10	20	30	 m→∞
Old k	6	9	11	 2.5m	2.455m	2. 406m	 2.364m
New k	6	8	10	 2.25m	2.182m	2.125m	 2.068m

Determine total buffer size k: Apply the feasibility condition in the iterative phase

- □ At any time, there exists a machine j with load $\leq w_j \cdot (T+k-2(m-j')p) p$, where $j' = \max\{j, (r_m-1)m/r_m\}$
- As shown previously, at least *m•p* space between the current load *T* and the designed profile will suffice

 $\sum w_{j} \cdot (T+k-2(m-j')p) \ge T + m \cdot p$ $\leftarrow T + k - 2m \cdot p + 2\sum w_{j} \cdot j' \ge T + m \cdot p \qquad (\sum w_{j} = 1)$ $\leftarrow T + k - 2m \cdot p + 2(r_{m} - 1)m \ge T + m \cdot p \qquad (\sum w_{j} \cdot j' \ge (r_{m} - 1)m)$ $\leftarrow k \ge (5 - 2r_{m})m$

m	2	2	3	4		10	20	30		m→∞	
Old /	c 6	5	9	11		2.5m	2.455m	2. 406m		2.364m	
New	k 6	5	8	10		2.25m	2.182m	2.125m		2.068m	
MAPSP 2013	1		6 🗲	Lan et al. 2012							

Tradeoff: Comp. ratio vs Buffer size

Combining and extending our results with the ones from Englert et al. 2008

Tradeoff: Comp. ratio vs Buffer size

Combining and extending our results with the ones from Englert et al. 2008

Remarks

Classical online makespan scheduling

Comp. ratio for large *m*

- (Graham 1966)
- (Bartal et al. 1995) 1.986
- 1.945 (Karger et al. 1996)
- (Albers 1999) 1.923
- 1.9201 (Fleischer et al. 2000)

- (Rudin III 2001) 1.88
- (Gormley et al. 2000) Lower 1.854 Bound
 - (Albers 1999) 1.852
 - (Bartal et al. 1994) 1.837

Semi-online scheduling with reordering buffer

- Buffer size needed to get opt. comp. ratio for large *m*
 - 2.364m (Englert et al. 2008)
 - 2.068m (Our result)

0.5m

- (Our work in progress) *m*?
 - (Englert et al. 2008)

Upper

Bound

Remarks

Classical online makespan scheduling

Comp. ratio for large m

- *2* (Graham 1966)
- *1.986* (Bartal et al. 1995)
- *1.945* (Karger et al. 1996)
- *1.923* (Albers 1999)
- 1.9201 (Fleischer et al. 2000)

....

- *[1.88* (Rudin III 2001)
- Lower Bound 1.854 (Gormley et al. 2000) 1.852 (Albors 1999)

1.852 (Albers 1999)

1.837 (Bartal et al. 1994)

Semi-online scheduling with reordering buffer

- Buffer size needed to get opt.
 comp. ratio for large *m*
 - *2.364m* (Englert et al. 2008)
 - *2.068m* (Our result)

Upper

Bound

A similar problem

Semi-online scheduling with job migrations

Problem

- Online algorithm is allowed to perform a limited number (independent of input size) of job migrations
- Results (Albers and Hellwig 2012)
 - For general *m*, optimal comp. ratio (lower bound) = r_m (Identical to the case with reordering buffer)
 - An algorithm that achieves r_m -comp. with $[(2-r_m)/(r_m-1)^2+4]m \approx 7m$ migrations for large m
- Results with migration can be transformed into results with reordering buffer, but not vise versa

A similar problem

Semi-online scheduling with job migrations

Problem

- Online algorithm is allowed to perform a limited number (independent of input size) of job migrations
- Results (Albers and Hellwig 2012)
 - For general *m*, optimal comp. ratio (lower bound) = r_m (Identical to the case with reordering buffer)
 - An algorithm that achieves r_m -comp. with $[(2-r_m)/(r_m-1)^2+4]m \approx 7m$ migrations for large m
- Results with migration can be transformed into results with reordering buffer, but not vise versa
- What is min. no. of migrations required? Can the existing result be improved to maintain the optimal comp. ratio?

Thanks for your attention!