Improved Semi-Online Makespan Scheduling with a Reordering Buffer

Hongyang Sun (Speaker)

Joint work with *Rui Fan*

Nanyang Technological University, Singapore
Background

- **Classical online scheduling**
 - Schedule a sequence of jobs arriving one by one on m identical machines to minimize makespan
 - List scheduling algorithm (Graham 1966)
 - Assign arriving job on a machine with least load
 - $(2-1/m)$-competitive
 - Best known competitive ratio of deterministic algorithm $[1.88, 1.9201]$ for large m
Background

- Semi-online scheduling with reordering buffer
 - A buffer of limited size k (independent of input size) can be used to store and reorder jobs
 - Store: If buffer is not full, we can admit a new job into the buffer without assigning any job to any machine
 - Reorder: If buffer is full, we can select any job from the buffer or the arriving job and assign it to a machine

Input jobs → Buffer of size k → m identical machines
Results

- Semi-online scheduling with reordering buffer
 - For $m = 2$, optimal comp. ratio = $4/3$ (Kellerer et al. 1997 & Zhang 1997) using $k = 1$, the smallest possible buffer size
Results

- **Semi-online scheduling with reordering buffer**
 - For $m = 2$, optimal comp. ratio = $4/3$ (Kellerer et al. 1997 & Zhang 1997) using $k = 1$, the smallest possible buffer size
 - For general m, optimal comp. ratio (lower bound) = r_m (Englert, Ozmen and Westermann 2008)
 - r_m is the solution to the following equation
 $\left\lfloor (r_m - 1)m/r_m \right\rfloor \cdot r_m/m + (r_m - 1) \cdot \sum_{i=\left\lfloor (r_m-1)m/r_m \right\rfloor}^{m-1} 1/i = 1$
Results

- Semi-online scheduling with reordering buffer
 - For $m = 2$, optimal comp. ratio = $4/3$ (Kellerer et al. 1997 & Zhang 1997) using $k = 1$, the smallest possible buffer size
 - For general m, optimal comp. ratio (lower bound) = r_m (Englert, Ozmen and Westermann 2008)
 - r_m is the solution to the following equation
 $$\left\lfloor (r_m - 1)m/r_m \right\rfloor \cdot r_m/m + (r_m - 1) \cdot \sum_{i=\left\lfloor (r_m - 1)m/r_m \right\rfloor}^{m-1} 1/i = 1$$
 - r_m is a monotonically increasing function of m
 - $r_2 = 4/3$, and
 - $\lim_{m \to \infty} r_m \approx 1.4659$
Results

- Semi-online scheduling with reordering buffer
 - For general m, optimal comp. ratio (lower bound) = r_m (Englert, Ozmen and Westermann 2008)
 - $k = \Theta(m)$ is necessary and sufficient to achieve r_m
 - A r_m-comp. algorithm was proposed with a reordering buffer of size $k = (1+2/r_m)m \approx 2.364m$ for large m
 - A lower bound of $k = m/2$ on the buffer size
Results

- Semi-online scheduling with reordering buffer
 - For general m, optimal comp. ratio (lower bound) = r_m (Englert, Ozmen and Westermann 2008)
 - $k = \Theta(m)$ is necessary and sufficient to achieve r_m
 - A r_m-comp. algorithm was proposed with a reordering buffer of size $k = (1+2/r_m)m \approx 2.364m$ for large m
 - A lower bound of $k = m/2$ on the buffer size
 - What is the exact buffer size required to achieve r_m?
Results

- Semi-online scheduling with reordering buffer
 - For general m, optimal comp. ratio (lower bound) = r_m (Englert, Ozmen and Westermann 2008)
 - $k = \Theta(m)$ is necessary and sufficient to achieve r_m
 - A r_m-comp. algorithm was proposed with a reordering buffer of size $k = (1+2/r_m)m \approx 2.364m$ for large m
 - A lower bound of $k = m/2$ on the buffer size
 - What is the exact buffer size required to achieve r_m?

- Our result improves the required buffer size
 - A r_m-comp. algo. with a buffer size $k = (5-2r_m)m \approx 2.068m$ for large m, improving the previous result by $\approx 0.296m$
Outline

- Lower bound r_m
- A scheduling framework to get optimal comp. ratio
 - Buffer size $k = (1 + 2/r_m)m \approx 2.364m$ (Englert et al.)
 - Buffer size $k = (5 - 2r_m)m \approx 2.068m$ (Our result)
- Tradeoff between comp. ratio and buffer size
- Remarks
Lower bound r_m

- Consider the following load profile (weight w_i)
 - $w_i = \min\{r_m/m, (r_m-1)/i\}$, where $\sum w_i = 1$
Consider the following load profile (weight w_i)

- $w_i = \min\{r_m/m, (r_m-1)/i\}$, where $\sum w_i = 1$

Arbitrarily small jobs of total size $1+\varepsilon$ arrive

- Buffer contains size $= \varepsilon$, and total assigned job size $= 1$
Lower bound r_m

- Consider the following load profile (weight w_i)
 - $w_i = \min\{r_m/m, (r_m-1)/i\}$, where $\sum w_i = 1$

- Arbitrarily small jobs of total size $1+\varepsilon$ arrive
 - Buffer contains size = ε, and total assigned job size = 1

- There must be a machine j with load $\geq w_j$, otherwise $\sum w_i < 1$
Lower bound r_m

- Consider the following load profile (weight w_i)
 \[w_i = \min\{r_m/m, (r_m-1)/i\}, \text{ where } \sum w_i = 1 \]

- Arbitrarily small jobs of total size $1+\varepsilon$ arrive
 - Buffer contains size $= \varepsilon$, and total assigned job size $= 1$

- There must be a machine j with load $\geq w_j$, otherwise $\sum w_i < 1$
 - If $w_j = r_m/m$, no more job arrives
 \[\Rightarrow \text{OPT} = 1/m, \text{ ALG} \geq r_m/m \]
Lower bound r_m

- Consider the following load profile (weight w_i)
 - $w_i = \min\{r_m/m, (r_m-1)/i\}$, where $\sum w_i = 1$
- Arbitrarily small jobs of total size $1+\varepsilon$ arrive
 - Buffer contains size $= \varepsilon$, and total assigned job size $= 1$
- There must be a machine j with load $\geq w_j$, otherwise $\sum w_i < 1$
 - If $w_j = r_m/m$, no more job arrives
 - \rightarrow OPT $= 1/m$, ALG $\geq r_m/m$
 - If $w_j = (r_m-1)/j$, $m-j$ large jobs of size $1/j$ arrive
 - \rightarrow OPT $= 1/j$, ALG $\geq (r_m-1)/j + 1/j = r_m/j$
Lower bound r_m

- Consider the following load profile (weight w_i)
 - $w_i = \min\{r_m/m, (r_m-1)/i\}$, where $\sum w_i = 1$

- Arbitrarily small jobs of total size $1+\varepsilon$ arrive
 - Buffer contains size $= \varepsilon$, and total assigned job size $= 1$

- There must be a machine j with load $\geq w_j$, otherwise $\sum w_i < 1$
 - If $w_j = r_m/m$, no more job arrives
 \rightarrow OPT $= 1/m$, ALG $\geq r_m/m$
 - If $w_j = (r_m-1)/j$, $m-j$ large jobs of size $1/j$ arrive
 \rightarrow OPT $= 1/j$, ALG $\geq (r_m-1)/j + 1/j = r_m/j$

- In both cases, competitive ratio $\geq r_m$
A scheduling framework to get optimal comp. ratio

- Three phases:
 - (1) Initial phase: Admit k jobs into buffer w/o assignment
A scheduling framework to get optimal comp. ratio

- **Three phases:**
 - **(1) Initial phase:** Admit k jobs into buffer w/o assignment
 - **(2) Iterative phase:** Admit a new job, and pick a smallest job and assign it to some machine j
A scheduling framework to get optimal comp. ratio

- **Three phases:**
 - **(1) Initial phase:** Admit k jobs into buffer w/o assignment
 - **(2) Iterative phase:** Admit a new job, and pick a smallest job and assign it to some machine j
 - Choice of the machine depends on the algorithm
 - Maintain a profile of machine loads related to $w_i = \min\{r_m/m, (r_m-1)/i\}$, where normalized total area = 1, i.e., $\sum w_i = 1$
A scheduling framework to get optimal comp. ratio

- (3) Final phase
A scheduling framework to get optimal comp. ratio

- **(3) Final phase**
 - **1st Step:** Large jobs (size > $1/3 \cdot \text{OPT}$)
 - Make an optimal schedule (LPT)
 - Sort in ascending order of size
 - Place them on current schedule
A scheduling framework to get optimal comp. ratio

- **(3) Final phase**
 - 1st Step: Large jobs (size > 1/3·OPT)
 - Make an optimal schedule (LPT)
 - Sort in ascending order of size
 - Place them on current schedule
 → Mathematics can ensure the optimal comp. ratio r_m
A scheduling framework to get optimal comp. ratio

- **(3) Final phase**
 - **1st Step**: Large jobs (size > \(\frac{1}{3} \cdot \text{OPT} \))
 - Make an optimal schedule (LPT)
 - Sort in ascending order of size
 - Place them on current schedule
 → Mathematics can ensure the optimal comp. ratio \(r_m \)
 - **2nd Step**: Small jobs (size ≤ \(\frac{1}{3} \cdot \text{OPT} \))
 - Place one by one greedily
 - \(\leq \text{OPT} + \frac{1}{3} \cdot \text{OPT} \leq r_m \cdot \text{OPT} \)
 → Still optimal comp. ratio
Buffer size $k = 3m$ (Englert et al.)

- **Iterative phase**: Assign smallest job of size p to a machine j with load $L_j \leq w_j \cdot (T+m \cdot p) - p$.

![Diagram showing buffer space and profile defined on $T+m \cdot p$](image-url)
Buffer size $k = 3m$ (Englert et al.)

Iterative phase: Assign smallest job of size p to a machine j with load $L_j \leq w_j \cdot (T+m \cdot p) - p$

- This is feasible with at least m buffer space (*proof by contradiction*)
- **After Iterative phase**: no machine exceeds the profile defined on $T_{\text{final}}+m \cdot p$

![Diagram with buffer spaces and load profiles](image)
Buffer size $k = 3m$ (Englert et al.)

Iterative phase: Assign smallest job of size p to a machine j with load $L_j \leq w_j \cdot (T + m \cdot p) - p$

- This is feasible with at least m buffer space (*proof by contradiction*)
- **After Iterative phase:** no machine exceeds the profile defined on $T_{\text{final}} + m \cdot p$
- **Final phase:** at most $2m$ large job form an optimal schedule $L'_1 \leq L'_2 \leq \ldots \leq L'_m$

![Diagram showing the iterative and final phases with buffer sizes and total sizes](image)

MAPSP 2013
Buffer size $k = 3m$ (Englert et al.)

Iterative phase: Assign smallest job of size p to a machine j with load $L_j \leq w_j \cdot (T + m \cdot p) - p$

- This is feasible with at least m buffer space (*proof by contradiction*)
- After Iterative phase: no machine exceeds the profile defined on $T_{\text{final}} + m \cdot p$
- Final phase: at most $2m$ large job form an optimal schedule $L'_1 \leq L'_2 \leq \ldots \leq L'_m$

For all $0 \leq j \leq m-1$

$$\begin{align*}
\text{OPT} & \geq \frac{(T_{\text{final}} + m \cdot p + \sum L'_i)}{m} \\
L_j & \leq w_j \cdot (T_{\text{final}} + m \cdot p) + L' \\
L_j & \leq r_m \cdot \text{OPT}
\end{align*}$$

Profile defined on $T + m \cdot p$ (i.e., total area under the curve)
Mathematics to prove the 1st step of the final phase:

For all $0 \leq j \leq m-1$

$$OPT \geq \frac{(T_{\text{final}} + m \cdot p + \sum L'_i)}{m}$$

$$L_j \leq w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$$

$$L_j \leq \frac{r_m \cdot OPT}{m}$$

For $(r_m-1)m/r_m \leq j \leq m-1$, $w_j = (r_m-1)/j$

$$L_j \leq \frac{(r_m-1)}{j} \cdot \left(m \cdot OPT - \sum L'_i \right) + L'_j$$

$$\leq \frac{(r_m-1)}{j} \cdot \left(m \cdot OPT - (m-j) L'_j \right) + L'_j$$

$$= \frac{(r_m-1)}{j} \cdot \left(m \cdot OPT - m L'_j + j L'_j \right) + L'_j$$

$$= \frac{(r_m-1)}{j} \cdot \left(m \cdot OPT - m L'_j \right) + r_m L'_j$$

$$\leq \frac{r_m}{m} \cdot \left(m \cdot OPT - m L'_j \right) + r_m L'_j$$

$$= r_m \cdot OPT$$

For $0 \leq j \leq (r_m-1)m/r_m$, $w_j = r_m/m$

$$L_j \leq \frac{r_m}{m} \cdot \left(m \cdot OPT - \sum L'_i \right) + L'_j$$

$$\leq \frac{r_m}{m} \cdot \left(m \cdot OPT - (m-j) L'_j \right) + L'_j$$

$$= \frac{r_m}{m} \cdot \left(m \cdot OPT - m/r_m L'_j \right) + L'_j$$

$$= r_m \cdot OPT$$

Buffer size $k = 3m$ (Englert et al.)
Buffer size $k = 3m$ (Englert et al.)

Mathematics to prove the 1st step of the final phase:

\[\begin{align*}
OPT & \geq \left(T_{\text{final}} + m \cdot p + \sum L'_i \right) / m \\
L_j & \leq w_j \cdot \left(T_{\text{final}} + m \cdot p \right) + L'_j
\end{align*} \]

For all $0 \leq j \leq m-1$

\[L_j \leq r_m \cdot OPT \]

- For $(r_m-1)m/r_m \leq j \leq m-1$, $w_j = (r_m-1)/j$

\[L_j \leq w_j \cdot \left(T_{\text{final}} + m \cdot p \right) + L'_j \]

\[= \frac{(r_m-1)}{j} \cdot (m \cdot OPT - \sum L'_i) + L'_j \]

\[\leq \frac{(r_m-1)}{j} \cdot (m \cdot OPT - (m-j) \cdot L'_j) + L'_j \]

\[= \frac{(r_m-1)}{j} \cdot (m \cdot OPT - m \cdot L'_j + j \cdot L'_j) + L'_j \]

\[= \frac{(r_m-1)}{j} \cdot (m \cdot OPT - m \cdot L'_j) + r_m \cdot L'_j \]

\[\leq \frac{r_m}{m} \cdot (m \cdot OPT - m \cdot L'_j) + r_m \cdot L'_j \]

\[= r_m \cdot OPT \]

- For $0 \leq j \leq (r_m-1)m/r_m$, $w_j = r_m/m$

\[L_j \leq w_j \cdot \left(T_{\text{final}} + m \cdot p \right) + L'_j \]

\[\leq \frac{r_m}{m} \cdot (m \cdot OPT - \sum L'_i) + L'_j \]

\[\leq \frac{r_m}{m} \cdot (m \cdot OPT - (m-j) \cdot L'_j) + L'_j \]

\[= \frac{r_m}{m} \cdot (m \cdot OPT - m/r_m \cdot L'_j) + L'_j \]

\[= r_m \cdot OPT \]

Similar derivations carry over to the other algorithms
Buffer size \(k = (1+2/r_m)m \) (Englert et al.)

- **Same algorithm:** Requires a buffer size \(\approx 2.364m \) for large \(m \)

Diagram:
- **2m/r_m buffer space**
- **m buffer space**
- **Total size = \(\sum L'_i \)**
- **Total size \(\geq m \cdot p \)**
- **Total size = \(T \)**

Graph:
- **\(L_i \)**
- **\(0 \) to \((r_m-1)m/r_m \) to \(m \)**

Equation:
\[\text{Total size} = \sum L'_i \geq m \cdot p \]

Equation (Englert et al.):
\[k = (1+2/r_m)m \]
Buffer size $k = (1+2/r_m)m$ (Englert et al.)

Same algorithm: Requires a buffer size $\approx 2.364m$ for large m

- **Observation:** The following needs only hold for the m/r_m processors on the right, since the profile on the left is flat

For $(r_m-1)m/r_m \leq j \leq m-1$

$$OPT \geq \frac{(T_{\text{final}} + m \cdot p + \sum L'_i)/m}{L_j \leq w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j} \Rightarrow L_j \leq r_m \cdot OPT$$
Buffer size \(k = (1+2/r_m)m \) (Englert et al.)

- **Same algorithm:** Requires a buffer size \(\approx 2.364m \) for large \(m \)

- **Observation:** The following needs only hold for the \(m/r_m \) processors on the right, since the profile on the left is flat

\[
\text{For } (r_m-1)m/r_m \leq j \leq m-1 \quad \begin{array}{c}
OPT \geq \frac{T_{\text{final}} + m \cdot p + \sum L'}{m} \\
L_j \leq w_j \cdot \left(T_{\text{final}} + m \cdot p\right) + L' j \\
\end{array} \rightarrow \quad L_j \leq r_m \cdot OPT
\]

These processors get at most 2 jobs each according to the optimal LPT rule, so total extra buffer space required is \(2m/r_m \).
Buffer size $k = (5-2r_m)m$ (Our Result)

- **Observation:** In the *iterative phase*, it is **not** necessary to maintain a uniform load profile for all processors, or more precisely for the m/r_m processors on the right, in order to satisfy the following in the *final phase*

 For $(r_m-1)m/r_m \leq j \leq m-1$

 $$OPT \geq \frac{T_{\text{final}} + m \cdot p + \sum L_i'}{m}$$

 $$L_j \leq w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j$$

 $\rightarrow \quad L_j \leq r_m \cdot OPT$

\[\text{MAPSP 2013}\]
Buffer size \(k = (5-2r_m)m \) (Our Result)

- **Observation**: In the *iterative phase*, it is **not** necessary to maintain a uniform load profile for all processors, or more precisely for the \(m/r_m \) processors on the right, in order to satisfy the following in the *final phase*

\[
\begin{align*}
\text{OPT} &\geq (T_{\text{final}} + m \cdot p + \sum L'_i)/m \\
L_j &\leq w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j
\end{align*}
\]

\(\rightarrow L_j \leq r_m \cdot \text{OPT} \)

- **Design a non-uniform profile**: Observe from the proof of the final phase

For \((r_m-1)m/r_m \leq j \leq m-1 \), \(w_j = (r_m-1)/j \)

\[
L_j \leq w_j \cdot (T_{\text{final}} + m \cdot p) + L'_j
\]

\[
= (r_m-1)/j \cdot (m \cdot \text{OPT} - \sum L'_i) + L'_j
\]

\[
\leq (r_m-1)/j \cdot (m \cdot \text{OPT} - (m-j) L'_j) + L'_j
\]

\[
= (r_m-1)/j \cdot (m \cdot \text{OPT} - m L'_j + j L'_j) + L'_j
\]

\[
= (r_m-1)/j \cdot (m \cdot \text{OPT} - m L'_j) + r_m L'_j
\]

\[
\leq r_m/m \cdot (m \cdot \text{OPT} - m L'_j) + r_m L'_j
\]

\[
= r_m \cdot \text{OPT}
\]
Buffer size $k = (5-2r_m)m$ (Our Result)

- **Observation**: In the *iterative phase*, it is **not** necessary to maintain a **uniform** load profile for all processors, or more precisely for the m/r_m processors on the right, in order to satisfy the following in the **final phase**

$$OPT \geq \frac{(T_{\text{final}} + m \cdot p + \Sigma L'_i)/m}{L_j \leq w_j \cdot (T_{\text{final}} + m \cdot p) + L'} \quad \Rightarrow \quad L_j \leq r_m \cdot OPT$$

For $(r_m-1)m/r_m \leq j \leq m-1$

- **Design a non-uniform profile**: Observe from the proof of the final phase

For $(r_m-1)m/r_m \leq j \leq m-1$, $w_j = (r_m-1)/j$

$$L_j \leq w_j \cdot (T_{\text{final}} + m \cdot p) + L'$$

$$= (r_m-1)/j \cdot (m \cdot OPT - \Sigma L'_i) + L'$$

$$\leq (r_m-1)/j \cdot (m \cdot OPT - (m-j) L'_j) + L'$$

$$= (r_m-1)/j \cdot (m \cdot OPT - m L'_j + j L'_j) + L'$$

$$= (r_m-1)/j \cdot (m \cdot OPT - m L'_j) + r_m L'_j$$

$$\leq r_m/m \cdot (m \cdot OPT - m L'_j) + r_m L'_j$$

$$= r_m \cdot OPT$$

$\Sigma L'_i \geq (m-j)L'_j$, giving up L'_1 to L'_{j-1}
Buffer size $k = (5-2r_m)m$ (Our Result)
Buffer size $k = (5-2r_m)m$ (Our Result)

Iterative phase: Assign smallest job of size p to a machine j with load $\leq w_j \cdot (T+k-2(m-j')p) - p$, where $j' = \max\{j, (r_m-1)m/r_m\}$.
Buffer size \(k = (5-2r_m)m \) (Our Result)

Iterative phase: Assign smallest job of size \(p \) to a machine \(j \) with load \(\leq w_j \cdot (T+k-2(m-j')p) - p \), where \(j' = \max\{j, (r_m-1)m/r_m\} \)
Buffer size $k = (5-2r_m)m$ (Our Result)

- **Determine total buffer size k:** Apply the *feasibility condition* in the *iterative phase*
 - At any time, there exists a machine j with load $\leq w_j \cdot (T+k-2(m-j')p) - p$, where $j' = \max\{j, (r_m-1)m/r_m\}$
Buffer size $k = (5-2r_m)m$ (Our Result)

- **Determine total buffer size k:** Apply the feasibility condition in the iterative phase
 - At any time, there exists a machine j with load $\leq w_j \cdot (T+k-2(m-j')p) - p$, where $j' = \max\{j, (r_m-1)m/r_m\}$
 - As shown previously, at least $m \cdot p$ space between the current load T and the designed profile will suffice

$$\sum w_j \cdot (T+k-2(m-j')p) \geq T + m \cdot p$$

$$\iff T + k - 2m \cdot p + 2 \sum w_j \cdot j' \geq T + m \cdot p \quad (\sum w_j = 1)$$

$$\iff T + k - 2m \cdot p + 2(r_m-1)m \geq T + m \cdot p \quad (\sum w_j \cdot j' \geq (r_m-1)m)$$

$$\iff k \geq (5-2r_m)m$$
Buffer size $k = (5-2r_m)m$ (Our Result)

- **Determine total buffer size k:** Apply the **feasibility condition** in the **iterative phase**
 - At any time, there exists a machine j with load $\leq w_j \cdot (T+k-2(m-j')p) - p$, where $j' = \max\{j, (r_m-1)m/r_m\}$
 - As shown previously, at least $m \cdot p$ space between the current load T and the designed profile will suffice

\[\sum w_j \cdot (T+k-2(m-j')p) \geq T + m \cdot p \]
\[\leftarrow T + k - 2m \cdot p + 2\sum w_j \cdot j' \geq T + m \cdot p \quad (\sum w_j = 1) \]
\[\leftarrow T + k - 2m \cdot p + 2(r_m-1)m \geq T + m \cdot p \quad (\sum w_j \cdot j' \geq (r_m-1)m) \]
\[\leftarrow k \geq (5-2r_m)m \]

<table>
<thead>
<tr>
<th>m</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>...</th>
<th>$m \to \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old k</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>...</td>
<td>2.5m</td>
<td>2.455m</td>
<td>2.406m</td>
<td>...</td>
<td>2.364m</td>
</tr>
<tr>
<td>New k</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>...</td>
<td>2.25m</td>
<td>2.182m</td>
<td>2.125m</td>
<td>...</td>
<td>2.068m</td>
</tr>
</tbody>
</table>
Buffer size \(k = (5-2r_m)m \) (Our Result)

- **Determine total buffer size \(k \):** Apply the *feasibility condition* in the *iterative phase*
 - At any time, there exists a machine \(j \) with load \(\leq w_j \cdot (T+k-2(m-j')p) - p \), where \(j' = \max\{j, (r_m-1)m/r_m\} \)
 - As shown previously, at least \(m \cdot p \) space between the current load \(T \) and the designed profile will suffice

\[
\sum w_j \cdot (T+k-2(m-j')p) \geq T + m \cdot p
\]

\[
\iff T + k - 2m \cdot p + 2\sum w_j \cdot j' \geq T + m \cdot p \quad (\sum w_j = 1)
\]

\[
\iff T + k - 2m \cdot p + 2(r_m-1)m \geq T + m \cdot p \quad (\sum w_j \cdot j' \geq (r_m-1)m)
\]

\[
k \geq (5-2r_m)m
\]

<table>
<thead>
<tr>
<th>(m)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>...</th>
<th>(m \to \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old (k)</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>...</td>
<td>2.5m</td>
<td>2.455m</td>
<td>2.406m</td>
<td>...</td>
<td>2.364m</td>
</tr>
<tr>
<td>New (k)</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>...</td>
<td>2.25m</td>
<td>2.182m</td>
<td>2.125m</td>
<td>...</td>
<td>2.068m</td>
</tr>
</tbody>
</table>

1 | 6 \[\text{Lan et al. 2012}\]
Tradeoff: Comp. ratio vs Buffer size

Combining and extending our results with the ones from Englert et al. 2008
Combining and extending our results with the ones from Englert et al. 2008
Remarks

Classical online makespan scheduling

- **Comp. ratio for large m**
 - 2 (Graham 1966)
 - 1.986 (Bartal et al. 1995)
 - 1.945 (Karger et al. 1996)
 - 1.923 (Albers 1999)
 - 1.9201 (Fleischer et al. 2000)
 -
 - 1.88 (Rudin III 2001)
 - 1.854 (Gormley et al. 2000)
 - 1.852 (Albers 1999)
 - 1.837 (Bartal et al. 1994)

Semi-online scheduling with reordering buffer

- **Buffer size needed to get opt. comp. ratio for large m**
 - $2.364m$ (Englert et al. 2008)
 - $2.068m$ (Our result)
 -
 - m? (Our work in progress)
 - $0.5m$ (Englert et al. 2008)
Remarks

- Classical online makespan scheduling
 - Comp. ratio for large m
 - 2 (Graham 1966)
 - 1.986 (Bartal et al. 1995)
 - 1.945 (Karger et al. 1996)
 - 1.923 (Albers 1999)
 - 1.9201 (Fleischer et al. 2000)
 -
 - 1.88 (Rudin III 2001)
 - 1.854 (Gormley et al. 2000)
 - 1.852 (Albers 1999)
 - 1.837 (Bartal et al. 1994)

- Semi-online scheduling with reordering buffer
 - Buffer size needed to get opt. comp. ratio for large m
 - 2.364m (Englert et al. 2008)
 - 2.068m (Our result)
 -
 - m? (Our work in progress)
 - 0.5m (Englert et al. 2008)
A similar problem

- Semi-online scheduling with job migrations
 - **Problem**
 - Online algorithm is allowed to perform a limited number (independent of input size) of job migrations
 - **Results** (Albers and Hellwig 2012)
 - For general \(m \), optimal comp. ratio (lower bound) = \(r_m \) (Identical to the case with reordering buffer)
 - An algorithm that achieves \(r_m \)-comp. with \([(2-r_m)/(r_m-1)^2+4]m \approx 7m \) migrations for large \(m \)
 - Results with migration can be transformed into results with reordering buffer, but not vise versa
Semi-online scheduling with job migrations

- **Problem**
 - Online algorithm is allowed to perform a limited number (independent of input size) of job migrations

- **Results** (Albers and Hellwig 2012)
 - For general m, optimal comp. ratio (lower bound) = r_m (Identical to the case with reordering buffer)
 - An algorithm that achieves r_m-comp. with $[(2-r_m)/(r_m-1)^2+4]m \approx 7m$ migrations for large m

- Results with migration can be transformed into results with reordering buffer, but not vise versa

- **What is min. no. of migrations required? Can the existing result be improved to maintain the optimal comp. ratio?**
Thanks for your attention!