Improved Semi-Online Makespan Scheduling with a Reordering Buffer

Hongyang Sun (Speaker)

Joint work with Rui Fan
Nanyang Technological University, Singapore

Background

- Classical online scheduling
- Schedule a sequence of jobs arriving one by one on m identical machines to minimize makespan
- List scheduling algorithm (Graham 1966)
- Assign arriving job on a machine with least load
- (2-1/m)-competitive
- Best known competitive ratio of deterministic algorithm [1.88, 1.9201] for large m

Background

- Semi-online scheduling with reordering buffer
- A buffer of limited size k (independent of input size) can be used to store and reorder jobs
- Store: If buffer is not full, we can admit a new job into the buffer without assigning any job to any machine
- Reorder: If buffer is full, we can select any job from the buffer or the arriving job and assign it to a machine

Results

- Semi-online scheduling with reordering buffer
- For $m=2$, optimal comp. ratio $=4 / 3$ (Kellerer et al. $1997 \&$ Zhang 1997) using $k=1$, the smallest possible buffer size

Results

- Semi-online scheduling with reordering buffer
- For $m=2$, optimal comp. ratio $=4 / 3$ (Kellerer et al. 1997 \& Zhang 1997) using $k=1$, the smallest possible buffer size
- For general m, optimal comp. ratio (lower bound) $=r_{m}$ (Englert, Ozmen and Westermann 2008)
- r_{m} is the solution to the following equation

$$
\left\lceil\left(r_{m}-1\right) m / r_{m}\right\rceil \cdot r_{m} / m+\left(r_{m}-1\right) \cdot \sum_{i=\left\lceil\left(r_{m}-1\right) m / r_{m}\right\rceil}^{m-1} 1 / i=1
$$

Results

- Semi-online scheduling with reordering buffer
- For $m=2$, optimal comp. ratio $=4 / 3$ (Kellerer et al. 1997 \& Zhang 1997) using $k=1$, the smallest possible buffer size
- For general m, optimal comp. ratio (lower bound) $=r_{m}$ (Englert, Ozmen and Westermann 2008)
- r_{m} is the solution to the following equation

$$
\left\lceil\left(r_{m}-1\right) m / r_{m}\right\rceil \cdot r_{m} / m+\left(r_{m}-1\right) \cdot \sum_{i=\left\lceil\left(r_{m}-1\right) m / r_{m}\right\rceil}^{m-1} 1 / i=1
$$

- r_{m} is a monotonically increasing function of m
- $r_{2}=4 / 3$, and
$\lim _{m \rightarrow \infty} r_{m} \approx 1.4659$

Results

- Semi-online scheduling with reordering buffer
- For general m, optimal comp. ratio (lower bound) $=r_{m}$ (Englert, Ozmen and Westermann 2008)
- $\boldsymbol{k}=\boldsymbol{O}(\boldsymbol{m})$ is necessary and sufficient to achieve r_{m}
- A r_{m}-comp. algorithm was proposed with a reordering buffer of size $\boldsymbol{k}=\left(\mathbf{1 + 2} / r_{m}\right) \boldsymbol{m} \approx \mathbf{2 . 3 6 4 m}$ for large m
- A lower bound of $\boldsymbol{k}=\boldsymbol{m} / \mathbf{2}$ on the buffer size

Results

- Semi-online scheduling with reordering buffer
- For general m, optimal comp. ratio (lower bound) $=r_{m}$ (Englert, Ozmen and Westermann 2008)
- $\boldsymbol{k}=\boldsymbol{\Theta}(\boldsymbol{m})$ is necessary and sufficient to achieve r_{m}
- A r_{m}-comp. algorithm was proposed with a reordering buffer of size $\boldsymbol{k}=\left(\mathbf{1 + 2} / r_{m}\right) \boldsymbol{m} \approx \mathbf{2 . 3 6 4 m}$ for large m
- A lower bound of $\boldsymbol{k}=\boldsymbol{m} / \mathbf{2}$ on the buffer size
- What is the exact buffer size required to achieve r_{m} ?

Results

- Semi-online scheduling with reordering buffer
- For general m, optimal comp. ratio (lower bound) $=r_{m}$ (Englert, Ozmen and Westermann 2008)
- $\boldsymbol{k}=\boldsymbol{\Theta}(\boldsymbol{m})$ is necessary and sufficient to achieve r_{m}
- A r_{m}-comp. algorithm was proposed with a reordering buffer of size $\boldsymbol{k}=\left(\mathbf{1 + 2} / r_{m}\right) \boldsymbol{m} \approx \mathbf{2 . 3 6 4 m}$ for large m
- A lower bound of $\boldsymbol{k}=\boldsymbol{m} / \mathbf{2}$ on the buffer size
- What is the exact buffer size required to achieve r_{m} ?

Our result improves the required buffer size

- A r_{m}-comp. algo. with a buffer size $\boldsymbol{k}=\left(5-2 r_{m}\right) \boldsymbol{m} \approx 2.068 m$ for large m, improving the previous result by $\approx 0.296 m$

Outline

- Lower bound r_{m}
- A scheduling framework to get optimal comp. ratio
- Buffer size $\boldsymbol{k}=\left(\mathbf{1 + 2} / r_{m}\right) \boldsymbol{m} \approx \mathbf{2 . 3 6 4 m}$ (Englert et al.)
- Buffer size $\boldsymbol{k}=\left(5-2 r_{m}\right) \boldsymbol{m} \approx \mathbf{2 . 0 6 8 m}$ (Our result)
- Tradeoff between comp. ratio and buffer size
- Remarks

Lower bound r_{m}

- Consider the following load profile (weight w_{i})
- $w_{i}=\min \left\{r_{m} / m,\left(r_{m}-1\right) / i\right\}$, where $\sum w_{i}=1$

Lower bound r_{m}

- Consider the following load profile (weight w_{i})
- $w_{i}=\min \left\{r_{m} / m,\left(r_{m}-1\right) / i\right\}$, where $\sum w_{i}=1$
- Arbitrarily small jobs of total size $1+\varepsilon$ arrive
- Buffer contains size $=\varepsilon$, and total assigned job size $=1$

Lower bound $\boldsymbol{r}_{\boldsymbol{m}}$

- Consider the following load profile (weight w_{i})
- $w_{i}=\min \left\{r_{m} / m,\left(r_{m}-1\right) / i\right\}$, where $\sum w_{i}=1$
- Arbitrarily small jobs of total size $1+\varepsilon$ arrive
- Buffer contains size $=\varepsilon$, and total assigned job size $=1$
- There must be a machine j with load $\geq w_{j}$, otherwise $\sum w_{i}<1$

Lower bound $\boldsymbol{r}_{\boldsymbol{m}}$

- Consider the following load profile (weight w_{i})
- $w_{i}=\min \left\{r_{m} / m,\left(r_{m}-1\right) / i\right\}$, where $\sum w_{i}=1$
- Arbitrarily small jobs of total size $1+\varepsilon$ arrive
- Buffer contains size $=\varepsilon$, and total assigned job size $=1$
- There must be a machine j with load $\geq w_{j}$, otherwise $\sum w_{i}<1$
- If $w_{j}=r_{m} / m$, no more job arrives
\rightarrow OPT $=1 / m, \mathrm{ALG} \geq r_{m} / m$

Lower bound $\boldsymbol{r}_{\boldsymbol{m}}$

- Consider the following load profile (weight w_{i})
- $w_{i}=\min \left\{r_{m} / m,\left(r_{m}-1\right) / i\right\}$, where $\sum w_{i}=1$
- Arbitrarily small jobs of total size $1+\varepsilon$ arrive
- Buffer contains size $=\varepsilon$, and total assigned job size $=1$
- There must be a machine j with load $\geq w_{j}$, otherwise $\sum w_{i}<1$
- If $w_{j}=r_{m} / m$, no more job arrives
\rightarrow OPT $=1 / m, \mathrm{ALG} \geq r_{m} / m$
- If $w_{j}=\left(r_{m}-1\right) / j, m-j$ large jobs of size $1 / j$ arrive
$\rightarrow \mathrm{OPT}=1 / j, \mathrm{ALG} \geq\left(r_{m}-1\right) / j+1 / j=r_{m} / j$

Lower bound $\boldsymbol{r}_{\boldsymbol{m}}$

- Consider the following load profile (weight w_{i})
- $w_{i}=\min \left\{r_{m} / m,\left(r_{m}-1\right) / i\right\}$, where $\sum w_{i}=1$
- Arbitrarily small jobs of total size $1+\varepsilon$ arrive
- Buffer contains size $=\varepsilon$, and total assigned job size $=1$
- There must be a machine j with load $\geq w_{j}$, otherwise $\sum w_{i}<1$
- If $w_{j}=r_{m} / m$, no more job arrives \rightarrow OPT $=1 / m, \mathrm{ALG} \geq r_{m} / m$
- If $w_{j}=\left(r_{m}-1\right) / j, m-j$ large jobs of size $1 / \mathrm{j}$ arrive
\rightarrow OPT $=1 / j$, ALG $\geq\left(r_{m}-1\right) / j+1 / j=r_{m} / j$

- In both cases, competitive ratio $\geq r_{m}$

A scheduling framework to get optimal

 comp. ratio- Three phases:
- (1) Initial phase: Admit k jobs into buffer w/o assignment

A scheduling framework to get optimal

 comp. ratio- Three phases:
- (1) Initial phase: Admit k jobs into buffer w/o assignment
- (2) Iterative phase: Admit a new job, and pick a smallest job and assign it to some machine j

A scheduling framework to get optimal comp. ratio

- Three phases:
- (1) Initial phase: Admit k jobs into buffer w/o assignment
- (2) Iterative phase: Admit a new job, and pick a smallest job and assign it to some machine j
- Choice of the machine depends on the algorithm
- Maintain a profile of machine loads related to $\boldsymbol{w}_{i}=\min \left\{r_{m} / m,\left(r_{m}-1\right) / i\right\}$, where normalized total area $=1$, i.e., $\sum w_{i}=1$

A scheduling framework to get optimal

 comp. ratio(3) Final phase

A scheduling framework to get optimal comp. ratio

(3) Final phase

- $1^{\text {st }}$ Step: Large jobs (size > 1/3.OPT)
- Make an optimal schedule (LPT)
- Sort in ascending order of size
- Place them on current schedule

A scheduling framework to get optimal comp. ratio

- (3) Final phase
- $1^{\text {st }}$ Step: Large jobs (size > 1/3.OPT)
- Make an optimal schedule (LPT)
- Sort in ascending order of size
- Place them on current schedule
\rightarrow Mathematics can ensure the
 optimal comp. ratio r_{m}

A scheduling framework to get optimal comp. ratio

- (3) Final phase
- $1^{\text {st }}$ Step: Large jobs (size $>1 / 3.0 \mathrm{PT}$)
- Make an optimal schedule (LPT)
- Sort in ascending order of size
- Place them on current schedule
\rightarrow Mathematics can ensure the optimal comp. ratio r_{m}
- $\mathbf{2}^{\text {nd }}$ Step: Small jobs (size $\leq 1 / 3.0 P T$)
- Place one by one greedily
- \leq OPT $+1 / 3 \cdot$ OPT $\leq r_{m} \cdot$ OPT
\rightarrow Still optimal comp. ratio

Buffer size $\boldsymbol{k}=\mathbf{3 m}$ (Englert et al.)

Iterative phase: Assign smallest job of size p to a machine \boldsymbol{j} with load $L_{j} \leq \boldsymbol{w}_{j} \cdot(T+m \cdot p)-\boldsymbol{p}$

Buffer size $\boldsymbol{k}=\mathbf{3 m}$ (Englert et al.)

Iterative phase: Assign smallest job of size p to a machine \boldsymbol{j} with load $L_{j} \leq \boldsymbol{w}_{j} \cdot(T+m \cdot p)-p$

- This is feasible with at least m buffer space (proof by contradiction)
- After Iterative phase: no machine exceeds the profile defined on $T_{\text {final }}+m \cdot p$

Buffer size $\boldsymbol{k}=3 \boldsymbol{m}$ (Englert et al.)

Iterative phase: Assign smallest job of size p to a machine \boldsymbol{j} with load $L_{j} \leq \boldsymbol{w}_{j} \cdot(T+m \cdot p)-\boldsymbol{p}$

- This is feasible with at least m buffer space (proof by contradiction)
- After Iterative phase: no machine exceeds the profile defined on $T_{\text {final }}+m \cdot p$
- Final phase: at most $2 m$ large job form an optimal schedule $L^{\prime}{ }_{1} \leq L^{\prime}{ }_{2} \leq \ldots \leq L_{m}^{\prime}$

Buffer size $\boldsymbol{k}=3 \boldsymbol{m}$ (Englert et al.)

Iterative phase: Assign smallest job of size p to a machine \boldsymbol{j} with load $L_{j} \leq \boldsymbol{w}_{j} \cdot(T+m \cdot p)-\boldsymbol{p}$

- This is feasible with at least m buffer space (proof by contradiction)
- After Iterative phase: no machine exceeds the profile defined on $T_{\text {final }}+m \cdot p$
- Final phase: at most $2 m$ large job form an optimal schedule $L^{\prime}{ }_{1} \leq L^{\prime}{ }_{2} \leq \ldots \leq L^{\prime}{ }_{m}$

$$
\text { For all } 0 \leq j \leq m-1
$$

$$
\left.\begin{array}{rl}
O P T & \geq\left(T_{\text {final }}+m \cdot p+\sum L^{\prime}\right) / m \\
L_{j} & \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime}
\end{array}\right\} \longmapsto L_{j} \leq r_{m} \cdot O P T
$$

Buffer size $\boldsymbol{k}=3 \boldsymbol{m}$ (Englert et al.)

Mathematics to prove the $1^{\text {st }}$ step of the final phase:

For all $0 \leq j \leq m-1$

$$
\left.\begin{array}{rl}
O P T & \geq\left(T_{\text {final }}+m \cdot p+\sum L_{i}^{\prime}\right) / m \\
L_{j} & \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime}
\end{array}\right\} \Longrightarrow L_{j} \leq r_{m} \cdot O P T
$$

For $\left(r_{m}-1\right) m / r_{m} \leq j \leq m-1, w_{j}=\left(r_{m}-1\right) / j$. For $0 \leq j \leq\left(r_{m}-1\right) m / r_{m}, w_{j}=r_{m} / m$

$$
\begin{aligned}
L_{j} & \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-\sum L_{i}^{\prime}\right)+L_{j}^{\prime} \\
& \leq\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-(m-j) L_{j}^{\prime}\right)+L_{j}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-m L_{j}^{\prime}+j L_{j}^{\prime}\right)+L_{j}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-m L_{j}^{\prime}\right)+r_{m} L_{j}^{\prime}
\end{aligned}
$$

$$
L_{j} \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime}
$$

$$
\leq r_{m} / m \cdot\left(m O P T-\Sigma L_{i}^{\prime}\right)+L_{j}^{\prime}
$$

$$
\leq r_{m} / m \cdot\left(m \text { OPT }-(m-j) L_{j}^{\prime}\right)+L_{j}^{\prime}
$$

$$
=r_{m} / m \cdot\left(m \text { OPT }-m / r_{m} L_{j}^{\prime}\right)+L_{j}^{\prime}
$$

$$
=r_{m} \cdot O P T
$$

Buffer size $\boldsymbol{k}=3 \boldsymbol{m}$ (Englert et al.)

Mathematics to prove the $1^{\text {st }}$ step of the final phase:

For all $0 \leq j \leq m-1$

$$
\left.\begin{array}{rl}
O P T & \geq\left(T_{\text {final }}+m \cdot p+\sum L_{i}^{\prime}\right) / m \\
L_{j} & \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime}
\end{array}\right\} \Longrightarrow L_{j} \leq r_{m} \cdot O P T
$$

- For $\left(r_{m}-1\right) m / r_{m} \leq j \leq m-1, w_{j}=\left(r_{m}-1\right) / j$ For $0 \leq j \leq\left(r_{m}-1\right) m / r_{m}, w_{j}=r_{m} / m$

$$
\begin{aligned}
L_{j} & \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-\Sigma L_{i}^{\prime}\right)+L_{j}^{\prime} \\
& \leq\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-(m-j) L_{j}^{\prime}\right)+L_{j}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-m L_{j}^{\prime}+j L_{j}^{\prime}\right)+L_{j}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-m L_{j}^{\prime}\right)+r_{m} L_{j}^{\prime} \\
& \leq r_{m} / m \cdot\left(m \text { OPT }-m L_{j}^{\prime}\right)+r_{m} L_{j}^{\prime} \\
& =r_{m} \cdot O P T
\end{aligned}
$$

Similar derivations carry over to the other algorithms

Buffer size $\boldsymbol{k}=\left(\mathbf{1}+\mathbf{2} / r_{m}\right) \boldsymbol{m}$ (Englert et al.)

- Same algorithm: Requires a buffer size $\approx 2.364 m$ for large m

Buffer size $\boldsymbol{k}=\left(\mathbf{1 + 2} / r_{m}\right) \boldsymbol{m}$ (Englert et al.)

- Same algorithm: Requires a buffer size $\approx 2.364 \mathrm{~m}$ for large m
- Observation: The following needs only hold for the m / r_{m} processors on the right, since the profile on the left is flat

$$
\left.\begin{array}{|l|l}
\text { For }\left(r_{m}-1\right) m / r_{m} \leq j \leq m-1 & O P T \\
\geq\left(T_{\text {final }}+m \cdot p+\sum L_{i}^{\prime}\right) / m \\
L_{j} \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime}
\end{array}\right\} \quad \Rightarrow \quad L_{j} \leq r_{m} \cdot O P T
$$

Buffer size $\boldsymbol{k}=\left(\mathbf{1 + 2} / r_{m}\right) \boldsymbol{m}$ (Englert et al.)

Same algorithm: Requires a buffer size $\approx 2.364 \mathrm{~m}$ for large m

- Observation: The following needs only hold for the m / r_{m} processors on the right, since the profile on the left is flat

$$
\begin{array}{|l|l}
\text { For }\left(r_{m}-1\right) m / r_{m} \leq j \leq m-1 & \left.\begin{array}{rl}
O P T & \geq\left(T_{\text {final }}+m \cdot p+\sum L^{\prime}\right) / m \\
L_{j} & \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime}
\end{array}\right\}
\end{array} \Rightarrow L_{j} \leq r_{m} \cdot O P T
$$

These processors get at most 2 jobs each according to the optimal LPT rule, so total extra buffer space required is $2 \mathrm{~m} / r_{m}$

Buffer size $\boldsymbol{k}=\left(5-2 r_{m}\right) \boldsymbol{m}$ (Our Result)

- Observation: In the iterative phase, it is not necessary to maintain a uniform load profile for all processors, or more precisely for the m / r_{m} processors on the right, in order to satisfy the following in the final phase

$$
\left.\left.\left.\begin{array}{|cc}
\text { For }\left(r_{m}-1\right) m / r_{m} \leq j \leq m-1 & \left.\begin{array}{c}
\text { OPT } \geq \\
\\
L_{j} \leq T_{\text {final }}+m \cdot p+\sum L_{j} \cdot
\end{array}\right) / m \\
\text { final }
\end{array}\right)+m \cdot p\right)+L_{j}^{\prime}\right\} ~ \Longrightarrow L_{j} \leq r_{m} \cdot \text { OPT }
$$

Buffer size $\boldsymbol{k}=\left(5-2 r_{m}\right) \boldsymbol{m}$ (Our Result)

- Observation: In the iterative phase, it is not necessary to maintain a uniform load profile for all processors, or more precisely for the m / r_{m} processors on the right, in order to satisfy the following in the final phase

$$
\text { For } \left.\left(r_{m}-1\right) m / r_{m} \leq j \leq m-1 \quad \begin{array}{r}
O P T \geq\left(T_{\text {final }}+m \cdot p+\sum L_{i}^{\prime}\right) / m \\
L_{j} \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime}
\end{array}\right\} \Longrightarrow L_{j} \leq r_{m} \cdot O P T
$$

- Design a non-uniform profile: Observe from the proof of the final phase For $\left(r_{m}-1\right) m / r_{m} \leq j \leq m-1, w_{j}=\left(r_{m}-1\right) / j$

$$
\begin{aligned}
L_{j} & \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-\sum L_{i}^{\prime}\right)+L_{j}^{\prime} \\
& \leq\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-(m-j) L_{j}^{\prime}\right)+L_{j}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-m L_{j}^{\prime}+j L_{j}^{\prime}\right)+L_{j}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-m L_{j}^{\prime}\right)+r_{m} L_{j}^{\prime} \\
& \leq r_{m} / m \cdot\left(m \text { OPT }-m L_{j}^{\prime}\right)+r_{m} L_{j}^{\prime} \\
& =r_{m} \cdot O P T
\end{aligned}
$$

Buffer size $\boldsymbol{k}=\left(5-2 r_{m}\right) \boldsymbol{m}$ (Our Result)

- Observation: In the iterative phase, it is not necessary to maintain a uniform load profile for all processors, or more precisely for the m / r_{m} processors on the right, in order to satisfy the following in the final phase

$$
\begin{array}{lr}
\text { For }\left(r_{m}-1\right) m / r_{m} \leq j \leq m-1 & \left.\begin{array}{rl}
O P T & \left(T_{\text {final }}+m \cdot p+\sum L_{i}^{\prime}\right) / m \\
L_{j} \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime}
\end{array}\right\} \Longrightarrow L_{j} \leq r_{m} \cdot O P T
\end{array}
$$

- Design a non-uniform profile: Observe from the proof of the final phase

$$
\begin{aligned}
& \begin{aligned}
\text { For }\left(r_{m}-1\right) m / r_{m} \leq j \leq m-1, w_{j}=\left(r_{m}-1\right) / j \\
L_{j} \leq w_{j} \cdot\left(T_{\text {final }}+m \cdot p\right)+L_{j}^{\prime}
\end{aligned} \quad \rightarrow \sum L_{i}^{\prime} \geq(m-j) L_{j,}^{\prime} \text {, giving up } L_{1}^{\prime} \text { to } L_{j-1}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT } \Sigma \Sigma L_{i}^{\prime}\right)+L_{j}^{\prime} \\
& \leq\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-(m-j) L_{i}^{\prime}\right)-L_{j}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-m L_{j}^{\prime}+j L_{j}^{\prime}\right)+L_{j}^{\prime} \\
& =\left(r_{m}-1\right) / j \cdot\left(m \text { OPT }-m L_{j}^{\prime}\right)+r_{m} L_{j}^{\prime} \\
& \leq r_{m} / m \cdot\left(m \text { OPT }-m L_{j}^{\prime}\right)+r_{m} L_{j}^{\prime} \\
& =r_{m} \text {. OPT }
\end{aligned}
$$

Buffer size $\boldsymbol{k}=\left(5-2 r_{m}\right) \boldsymbol{m}$ (Our Result)

Iterative phase: Assign smallest job of size p to a machine j with load $\leq w_{j} \cdot\left(T+k-2\left(m-j^{\prime}\right) p\right)-p$, where $j^{\prime}=\max \left\{j,\left(r_{m}-1\right) m / r_{m}\right\}$

Buffer size $\boldsymbol{k}=\left(\mathbf{5 - 2 r _ { m }}\right) \boldsymbol{m}$ (Our Result)

Iterative phase: Assign smallest job of size p to a machine \boldsymbol{j} with load $\leq w_{j} \cdot\left(T+k-2\left(m-j^{\prime}\right) p\right)-p$, where $j^{\prime}=\max \left\{j,\left(r_{m}-1\right) m / r_{m}\right\}$

Buffer size $\boldsymbol{k}=\left(5-2 r_{m}\right) \boldsymbol{m}$ (Our Result)

- Determine total buffer size k : Apply the feasibility condition in the iterative phase
- At any time, there exists a machine j with load $\leq \boldsymbol{w}_{j} \cdot\left(\boldsymbol{T}+\boldsymbol{k}-\mathbf{2}\left(\boldsymbol{m}-j^{\prime}\right) \boldsymbol{p}\right)-\boldsymbol{p}$, where $j^{\prime}=\max \left\{j,\left(r_{m}-1\right) m / r_{m}\right\}$

Buffer size $\boldsymbol{k}=\left(5-2 r_{m}\right) \boldsymbol{m}$ (Our Result)

- Determine total buffer size \boldsymbol{k} : Apply the feasibility condition in the iterative phase
- At any time, there exists a machine j with load $\leq \boldsymbol{w}_{j} \cdot\left(\boldsymbol{T}+\boldsymbol{k}-\mathbf{2}\left(\boldsymbol{m}-j^{\prime}\right) \boldsymbol{p}\right)-\boldsymbol{p}$, where $j^{\prime}=\max \left\{j,\left(r_{m}-1\right) m / r_{m}\right\}$
- As shown previously, at least $\boldsymbol{m} \cdot \boldsymbol{p}$ space between the current load \boldsymbol{T} and the designed profile will suffice

$$
\begin{array}{rlrl}
& \sum w_{j} \cdot\left(T+k-2\left(m-j^{\prime}\right) p\right) \geq T+m \cdot p & \\
\leftarrow & T+k-2 m \cdot p+2 \sum w_{j} \cdot j^{\prime} \geq T+m \cdot p & & \left(\sum w_{j}=1\right) \\
\leftarrow & T+k-2 m \cdot p+2\left(r_{m}-1\right) m \geq T+m \cdot p & & \left(\sum w_{j} \cdot j^{\prime} \geq\left(r_{m}-1\right) m\right) \\
\leftarrow & k \geq\left(5-2 r_{m}\right) m &
\end{array}
$$

Buffer size $\boldsymbol{k}=\left(5-2 r_{m}\right) \boldsymbol{m}$ (Our Result)

- Determine total buffer size k : Apply the feasibility condition in the iterative phase
- At any time, there exists a machine j with load $\leq \boldsymbol{w}_{j} \cdot\left(\boldsymbol{T}+\boldsymbol{k}-\mathbf{2}\left(\boldsymbol{m}-j^{\prime}\right) \boldsymbol{p}\right)-\boldsymbol{p}$, where $j^{\prime}=\max \left\{j,\left(r_{m}-1\right) m / r_{m}\right\}$
- As shown previously, at least $\boldsymbol{m} \cdot \boldsymbol{p}$ space between the current load \boldsymbol{T} and the designed profile will suffice

$$
\begin{array}{rlrl}
& \sum w_{j} \cdot\left(T+k-2\left(m-j^{\prime}\right) p\right) \geq T+m \cdot p & \\
\leftarrow & T+k-2 m \cdot p+2 \sum w_{j} \cdot j^{\prime} \geq T+m \cdot p & & \left(\sum w_{j}=1\right) \\
\leftarrow & T+k-2 m \cdot p+2\left(r_{m}-1\right) m \geq T+m \cdot p & & \left(\sum w_{j} \cdot j^{\prime} \geq\left(r_{m}-1\right) m\right) \\
\leftarrow & k \geq\left(5-2 r_{m}\right) m &
\end{array}
$$

\boldsymbol{m}	2	$\mathbf{3}$	$\mathbf{4}$	\ldots	10	20	30	\ldots	$\boldsymbol{m} \rightarrow \infty$
Old \boldsymbol{k}	6	9	11	\ldots	$2.5 m$	$2.455 m$	$2.406 m$	\ldots	$2.364 m$
New \boldsymbol{k}	6	8	10	\ldots	$2.25 m$	$2.182 m$	$2.125 m$	\ldots	$2.068 m$

Buffer size $\boldsymbol{k}=\left(5-2 r_{m}\right) \boldsymbol{m}$ (Our Result)

- Determine total buffer size k : Apply the feasibility condition in the iterative phase
- At any time, there exists a machine j with load $\leq \boldsymbol{w}_{j} \cdot\left(T+k-2\left(m-j^{\prime}\right) p\right)-p$, where $j^{\prime}=\max \left\{j,\left(r_{m}-1\right) m / r_{m}\right\}$
- As shown previously, at least $\boldsymbol{m} \cdot \boldsymbol{p}$ space between the current load \boldsymbol{T} and the designed profile will suffice

$$
\begin{array}{rlr}
& \sum w_{j} \cdot\left(T+k-2\left(m-j^{\prime}\right) p\right) \geq T+m \cdot p & \\
\leftarrow & T+k-2 m \cdot p+2 \sum w_{j} \cdot j^{\prime} \geq T+m \cdot p & \\
\leftarrow & \left(\sum w_{j}=1\right) \\
\leftarrow & T+k-2 m \cdot p+2\left(r_{m}-1\right) m \geq T+m \cdot p & \\
\leftarrow & k \geq\left(5-2 r_{m}\right) m &
\end{array}
$$

\boldsymbol{m}	2	3	4	\ldots	10	20	30	\ldots	$\boldsymbol{m} \rightarrow \infty$
Old \boldsymbol{k}	6	9	11	\ldots	$2.5 m$	$2.455 m$	$2.406 m$	\ldots	$2.364 m$
New \boldsymbol{k}	6	8	10	\ldots	$2.25 m$	$2.182 m$	$2.125 m$	\ldots	$2.068 m$

Tradeoff: Comp. ratio vs Buffer size

Combining and extending our results with the ones from Englert et al. 2008

Tradeoff: Comp. ratio vs Buffer size

Combining and extending our results with the ones from Englert et al. 2008

Remarks

- Classical online makespan scheduling
- Comp. ratio for large m

Upper Bound	-	2	(Graham 1966)
		1.986	(Bartal et al. 1995)
		1.945	(Karger et al. 1996)
		1.923	(Albers 1999)
	-	1.9201	(Fleischer et al. 2000)
Lower Bound	-	
	\bigcirc	1.88	(Rudin III 2001)
	-	1.854	(Gormley et al. 2000)
		1.852	(Albers 1999)
		1.837	(Bartal et al. 1994)

- Semi-online scheduling with reordering buffer
- Buffer size needed to get opt. comp. ratio for large m
- $2.364 m$ (Englert et al. 2008)
- 2.068m (Our result)
\qquad

- m ?
(Our work in progress)
- $0.5 m$ (Englert et al. 2008)

Remarks

- Classical online makespan scheduling
- Comp. ratio for large m

Upper Bound	¢	2	(Graham 1966)
	-	1.986	(Bartal et al. 1995)
		1.945	(Karger et al. 1996)
	-	1.923	(Albers 1999)
	-	1.9201	(Fleischer et al. 2000)
Lower Bound	■	
	\bigcirc	1.88	(Rudin III 2001)
		1.854	(Gormley et al. 2000)
		1.852	(Albers 1999)
	-	1.837	(Bartal et al. 1994)

Semi-online scheduling with reordering buffer

- Buffer size needed to get opt. comp. ratio for large m
- $2.364 m$ (Englert et al. 2008)
- 2.068m (Our result)
-

- m ?
- $0.5 m$
(Our work in progress)
(Englert et al. 2008)

A similar problem

- Semi-online scheduling with job migrations
- Problem
- Online algorithm is allowed to perform a limited number (independent of input size) of job migrations
- Results (Albers and Hellwig 2012)
- For general m, optimal comp. ratio (lower bound) $=r_{m}$ (Identical to the case with reordering buffer)
- An algorithm that achieves r_{m}-comp. with $\left[\left(2-r_{m}\right) /\left(r_{m}-1\right)^{2}+4\right] m \approx 7 m$ migrations for large m
- Results with migration can be transformed into results with reordering buffer, but not vise versa

A similar problem

- Semi-online scheduling with job migrations
- Problem
- Online algorithm is allowed to perform a limited number (independent of input size) of job migrations
- Results (Albers and Hellwig 2012)
- For general m, optimal comp. ratio (lower bound) $=r_{m}$ (Identical to the case with reordering buffer)
- An algorithm that achieves r_{m}-comp. with $\left[\left(2-r_{m}\right) /\left(r_{m}-1\right)^{2}+4\right] m \approx 7 m$ migrations for large m
- Results with migration can be transformed into results with reordering buffer, but not vise versa
\square What is min. no. of migrations required? Can the existing result be improved to maintain the optimal comp. ratio?

Thanks for your attention!

