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Scientific Computing at Large Scale

* Today’s large High-Performance Computing (HPC) platforms experience
multiple failures per day due to increased node/core count.

MTBF (individual node) 1 year | 10 years | 100 years
MTBF (platform of 10° nodes) | 30 secs | 5 mins | 50 mins

* MTBF: Mean Time Between Failure

* Besides hard failures (e.g., fail-stop errors), soft faults (e.g., silent errors or
silent data corruptions) also become a major threat.

Thus, protecting HPC applications from hard and soft faults plays a vital role in
the integrity and efficiency of scientific computing and simulations.



Sparse Iterative Solvers and PCG

* Solving a sparse linear system:

Ax = b

is central to PDE-based applications.

* We focus on the widely used PCG
(Preconditioned Conjugate Gradient)
algorithm to iteratively solve a sparse

linear system.

* We consider system-level resilience
techniques to protect PCG from soft

errors with low overhead.

Algorithm 1: Preconditioned Conjugate Gradient (PCG)

Input: A, M, b, xo, tol, maxit
begin

end

T — b — ACEU;
20 ﬂ4¥71T0;

// Initial residual
// Preconditioning

Po < Z0;
1 < 05
while ¢ < maxit and ||r;||/[|b|| > tol do

end

qi < Api;

Vi — ?"E-’FZ%';

o+ v;/(pT q;):
Tit1 < Tp + ap;;
Ti41 < Ty — gy,
Zig1 & M7 trigq;
Vi1 7";+1Zi+1;
B vit1/vi;

Pit1 < Zit+1 + Bpis
141+ 1;

// Improve approximation
// Update residual

// Preconditioning

// New search direction




Impact of Soft Errors on PCG

 Soft errors have different impacts on the convergence of PCG.
» SpMV (q « Ap) is the most expensive operation and most impacted by errors.*

» Errors injected in different elements of vector p cause very different slowdowns
in terms of convergence speed.

Selectively protecting those elements that are more prone to errors can
reduce the resilience overhead!
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* M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Characterizing the impact of soft errors on iterative methods in scientific computing, 2011.



Performance Characterization

* Q: How to identify those elements that are more prone to errors?

* A: Row 2-norm of matrix A (which can be computed offline) is strongly
correlated with slowdown.
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Performance Characterization

* Further, 2-norm of matrix A is strongly correlated two important convergence
indicators in PCG (i.e., relative residual norm and A-norm of errors).

relative residual norm = ||r;||/||b||

A-norm of errors = \/(:L“3 — )T A(x; — )
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Performance Characterization

* Further, 2-norm of matrix A is strongly correlated two important convergence
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indicators in PCG (i.e., relative residual norm and A-norm of errors).

A-norm of errors = \/(:L“3 — )T A(x; — )
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Selective Protection Scheme

* Only elements with corresponding high 2-norms in matrix A need to be
protected (at system level by duplicate computation), and in the event of soft
errors, the iteration can be re-computed.

D,(0)

* Q: How many elements to protect to
optimize the resilience overhead?

» Full protection: 100% overhead but no
slowdown (magenta area).

»Zero protection: 0% overhead but
large slowdown ( ).

» Optimal protection: x% overhead
with a factor of y slowdown (i.e.,
dashed rectangle with min area)?

Expected slowdown

C.(0) C.(kY) C.(N)
Normalized cost per iteration 8



Selective Protection Scheme

1. Performance Prediction
* Profile matrix A with a small number
m of sample runs (e.g., m = 20) by
injecting errors in random elements.
* Use polynomial regression to fit a

function F that maps row 2-norm of
matrix A to convergence slowdown.
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Analytical Modeling

Expected slowdown (by protecting k
elements with highest row 2-norms):

1 N
De(k) = ~; (k+ > F(ag(i)))

i=k+1

* Normalized cost per iteration:

k
Ce(k) = 1+N

* Expected overhead can be minimized
offline in O(N) time with the following
analytical model:

H.(k) = Do(k) - Cu(k) — D, - C,

1 N
— F (k+ Z F(CLJ(Z))) (1—|—

1=k—+1
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Experimental Setup

 Matrices:

1 20 sparse matrices selected from the
SuiteSparse Matrix Collection.

* PCG algorithm:

d Incomplete Cholesky factorization as
preconditioner with threshold
dropping (1073).

 Initial guess x, = 0 (all zeros).

J RHSvectorb = A - 1.

 Soft Errors:
* Injected in vector p of SpMV.
* Random magnitude in 15t iteration.

* Experiments conducted in Matlab

Table I. 20 matrices from the SuiteSparse Matrix Collection [1].

Id Matrix N nnz Density
1 t2dah_e 11445 176117 0.13%
2 besstk18 11948 149090 0.1%

3 cbuckle 13681 676515 0.36%
4 Pres_Poisson 14822 715804 0.33%
5 gyro_m 17361 340431 0.11%
6 nd6k 18000 6897316 2.1%

7 bodyy5 18589 128853 0.037%
8 raefsky4 19779 1316789 0.34%
9 Trefethen_20000 20000 554466 0.14%
10 msc23052 23052 1142686 0.22%
11 besstk36 23052 1143140 0.22%
12 wathen100 30401 471601 0.051%
13 vanbody 47072 2329056 0.11%
14 cvxbgpl 50000 349968 0.014%
15 ct20stif 52329 2600295 0.095%
16 thermall 82654 574458 0.0084%
17 m_tl 97578 9753570 0.1%
18 2cubes_sphere 101492 1647264 0.016%
19 G2_circuit 150102 726674 0.0032%
20 pwtk 217918 11524432 0.024%

and results averaged over 100 runs.



Experimental Results

1. Our performance prediction and analytical models accurately capture the
resilience overhead of various fractions of selective protection.
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Experimental Results

2. Our selective protection scheme is more effective and targeted than a
random selective protection strategy* in terms of reducing the average
slowdown (and variance) in the event of soft errors.
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Evaluation Results

3. Our selective protection scheme significantly reduces resilience overhead
(by 32.6% on average and up to 70.2%) for the set of matrices compared to
baseline schemes (i.e., full protection, zero protection, random protection).
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Evaluation Results

4. For some matrices (e.q., left-most three), zero-protection performs equally
well, due to the small impact of soft errors on all elements.

5. For some other matrices (e.qg., right-most three), full-protection performs
equally well, due to the large impact of soft errors on most elements.
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Summary

 Soft errors have very different impacts on the convergence of PCG.

* The slowdown caused by a soft errors strongly correlates with corresponding
row 2-norm of underlying sparse matrix A.

* Qur selective protection scheme (performance prediction + analytical
modeling) significantly reduces the resilience overhead.

Future Work

 Selective protection for other iterative solvers than PCG (e.g., GMRES).

* Application-level protection instead of system level (e.g., ABFT).
 Variable error rates and implication on selective protection.
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