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Scientific Computing at Large Scale

• Today’s large High-Performance Computing (HPC) platforms experience 
multiple failures per day due to increased node/core count.

• Besides hard failures (e.g., fail-stop errors), soft faults (e.g., silent errors or 
silent data corruptions) also become a major threat. 

Thus, protecting HPC applications from hard and soft faults plays a vital role in 
the integrity and efficiency of scientific computing and simulations. 
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* MTBF: Mean Time Between Failure



Sparse Iterative Solvers and PCG

• Solving a sparse linear system: 
𝑨𝒙 = 𝒃

is central to PDE-based applications.

• We focus on the widely used PCG 
(Preconditioned Conjugate Gradient) 
algorithm to iteratively solve a sparse 
linear system. 

• We consider system-level resilience 
techniques to protect PCG from soft 
errors with low overhead.  
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Impact of Soft Errors on PCG

• Soft errors have different impacts on the convergence of PCG.
 SpMV (𝑞 ← 𝐴𝑝) is the most expensive operation and most impacted by errors.*

 Errors injected in different elements of vector 𝑝 cause very different slowdowns
in terms of convergence speed. 

Selectively protecting those elements that are more prone to errors can 
reduce the resilience overhead! 
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Slowdown =
𝐼𝑒
𝐼𝑜

• 𝐼𝑒: # iter to converge w/ errors.
• 𝐼𝑜: # iter to converge w/o errors.

* M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Characterizing the impact of soft errors on iterative methods in scientific computing, 2011.



Performance Characterization

• Q: How to identify those elements that are more prone to errors?

• A: Row 2-norm of matrix A (which can be computed offline) is strongly 
correlated with slowdown.
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Performance Characterization

• Further, 2-norm of matrix A is strongly correlated two important convergence 
indicators in PCG (i.e., relative residual norm and A-norm of errors). 
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Performance Characterization
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• Further, 2-norm of matrix A is strongly correlated two important convergence 
indicators in PCG (i.e., relative residual norm and A-norm of errors). 



Selective Protection Scheme

• Only elements with corresponding high 2-norms in matrix A need to be 
protected (at system level by duplicate computation), and in the event of soft 
errors, the iteration can be re-computed.

8

• Q: How many elements to protect to 
optimize the resilience overhead?
Full protection: 100% overhead but no 

slowdown (magenta area).

Zero protection: 0% overhead but 
large slowdown (cyan area).

Optimal protection: 𝑥% overhead 
with a factor of 𝑦 slowdown (i.e., 
dashed rectangle with min area)? 



Selective Protection Scheme

1. Performance Prediction
• Profile matrix A with a small number 

m of sample runs (e.g., m = 20) by 
injecting errors in random elements.

• Use polynomial regression to fit a 
function F that maps row 2-norm of 
matrix A to convergence slowdown. 
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2. Analytical Modeling
• Expected slowdown (by protecting k 

elements with highest row 2-norms):

• Normalized cost per iteration:

• Expected overhead can be minimized 
offline in O(N) time with the following 
analytical model: 



Experimental Setup
• Matrices:

 20 sparse matrices selected from the 
SuiteSparse Matrix Collection. 

• PCG algorithm: 
 Incomplete Cholesky factorization as 

preconditioner with threshold 
dropping (10−3). 

 Initial guess 𝑥0 = 𝟎 (all zeros). 
 RHS vector 𝑏 = 𝐴 ⋅ 𝟏.

• Soft Errors:
• Injected in vector 𝑝 of SpMV.
• Random magnitude in 1st iteration.

• Experiments conducted in Matlab
and results averaged over 100 runs. 
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Experimental Results

1. Our performance prediction and analytical models accurately capture the 
resilience overhead of various fractions of selective protection. 
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• red --- line: predicted 
overhead using our 
analytical model. 

• Blue − line: average 
experimental overhead 
with 95% confidence 
interval. 



Experimental Results

2. Our selective protection scheme is more effective and targeted than a 
random selective protection strategy* in terms of reducing the average 
slowdown (and variance) in the event of soft errors.
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* J. Sloan, R. Kumar, and G. Bronevetsky. Algorithmic approaches to low overhead fault detection for sparse linear algebra, 2012.



Evaluation Results

3. Our selective protection scheme significantly reduces resilience overhead 
(by 32.6% on average and up to 70.2%) for the set of matrices compared to 
baseline schemes (i.e., full protection, zero protection, random protection). 
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Evaluation Results

4. For some matrices (e.g., left-most three), zero-protection performs equally 
well, due to the small impact of soft errors on all elements. 

5. For some other matrices (e.g., right-most three), full-protection performs 
equally well, due to the large impact of soft errors on most elements. 
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Summary
• Soft errors have very different impacts on the convergence of PCG.

• The slowdown caused by a soft errors strongly correlates with corresponding  
row 2-norm of underlying sparse matrix A.

• Our selective protection scheme (performance prediction + analytical 
modeling) significantly reduces the resilience overhead. 

Future Work
• Selective protection for other iterative solvers than PCG (e.g., GMRES).

• Application-level protection instead of system level (e.g., ABFT).

• Variable error rates and implication on selective protection.  
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