Energy- and Thermal-Aware Scheduling for Heterogeneous Datacenters

Hongyang SUN, Patricia STOLF, Jean-Marc PIERSON, Georges DA COSTA

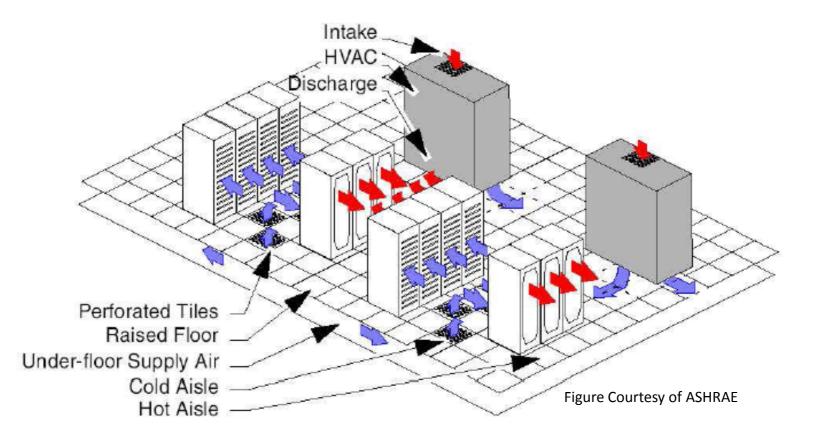
IRIT, Toulouse

9th Scheduling for Large-Scale Systems Workshop July 4th, 2014@Lyon, France

1

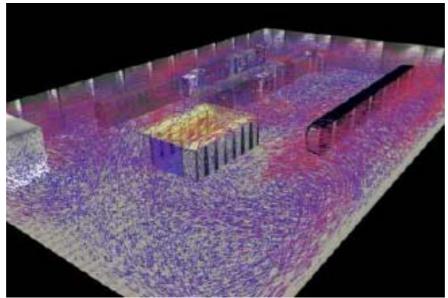
Background

- Energy consumption in datacenters has increased significantly over the years
 - Responsible for 1-2% of global energy
 - A large portion is spent on cooling related activities (up to 50%)
- Resource management in datacenters needs
 - Performance-, Energy-, and Thermal-Aware
- "CoolEmAll" (http://www.coolemall.eu/)
 - EU funded project (2011-2014) to design models, tools and algorithms to improve datacenter energy efficiency


Outline

- Cooling and Energy Model for Datacenters
- Hardware Placement
 - Static Server Placement for Minimizing Max. Temperature
- Software Placement
 - Dynamic Job Scheduling for Energy-Performance Tradeoff
- Performance Evaluation
- Conclusion and Future Work

Cooling and Energy Model for Datacenters


Typical Datacenter Layout

- Racks of servers are organized in rows, with alternating cold aisles and hot aisles
- Heat is removed by computer room air conditioning (CRAC) unit, or heating ventilation air conditioner (HVAC)

Heat Recirculation

- Some hot air from the server *outlets* recirculates in the room, raising the temperature of the server *inlets*
- Recirculation is characterized by *heat distribution matrix* D [Tang et al. 2008]
 - $d_{j,k}$: temperature increase for the inlet at position *j* per unit of power consumed by the server at position *k*

Picture from www.coolemall.eu

Cooling Model

- Redline temperature Tred for the inlet of any server
- CRAC adjusts supply temperature T^{sup} to satisfy the bound

 The cooling cost is related to total power consumption and the supply temp.

$$U^{cool}(t) = \frac{\sum_{j=1}^{m} U_j^{comp}(t)}{\operatorname{CoP}(T^{sup}(t))}$$

- CoP (Coefficient of performance) is defined as the ratio of heat to be removed to energy consumed for cooling
 - Increasing (super-linear) function of supply temp.

Energy Model

• The total energy consumption over interval $[t_1, t_2]$

• Due to computing
$$E_{comp} = \int_{t_1}^{t_2} \sum_{j=1}^m U_j^{comp}(t) dt$$

• Due to cooling
$$E_{cool} = \int_{t_1}^{t_2} U^{cool}(t) dt$$

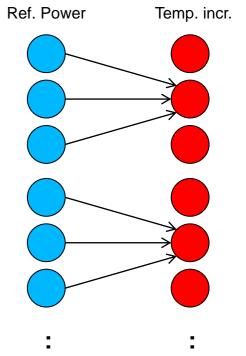
- To reduce the total energy consumption
 - Reduce the computing energy
 - Reduce the cooling energy
 - **C** Raise supply temperature *T*^{sup}

Static Server Placement

Problem Statement

- Input
 - A set of *m* heterogeneous servers, each characterized by a reference power U_i^{ref} , e.g., at average or full load
 - A set of *m* rack slots/positions, characterized by a heat distribution matrix **D**
- Output
 - One-to-one mapping σ between servers and slot positions so as to minimize the maximum temperature increase at any server inlet

minimize max $\mathbf{D} \cdot \mathbf{U}_{\sigma}^{ref}$


$$\mathbf{U}_{\sigma}^{ref} \;=\; [U_{\sigma(1)}^{ref}, U_{\sigma(2)}^{ref}, \cdots, U_{\sigma(m)}^{ref}]^T$$

NP-Hardness Proof

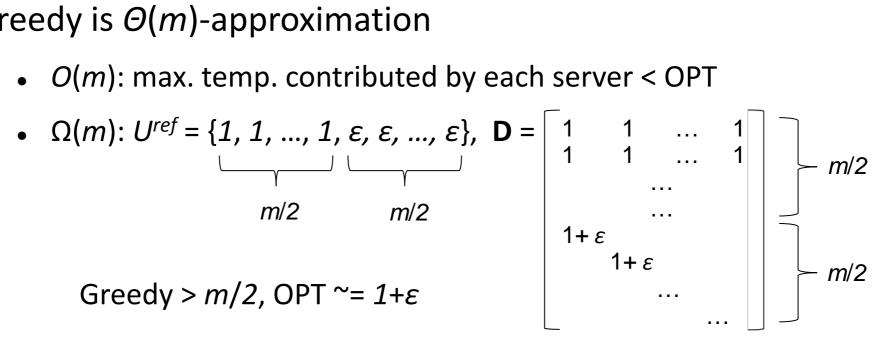
- 3-Partition Problem
 - For a set S={v₁, v₂,...,v_n} of n = 3k positive integers with a total value of kB, can S be partitioned into k subsets S₁, S₂, ..., S_k such that the sum of the numbers in each subset is equal (to B)?
 - Remains NP-complete even if each subset is restricted to contain exactly 3 numbers.
- Reduction

•
$$m = n = 3k, U_j^{ref} = v_j$$

- **D** matrix: every 3 positions contribute only and equally to the temperature increase at one of these positions.
- Can we achieve a maximum temperature increase of ∑U_j^{ref} /k = B?

11

A Heuristic


- Greedy
 - 1. Sort the servers by non-increasing reference power
 - 2. For each server
 - 3. Assign it to a remaining position that gives the lowest maximum inlet temperature
 - 4. Update the temperature increase of all inlets

5. EndFor

• Runtime complexity $O(m^3)$

A Heuristic

- Greedy is Θ(m)-approximation

• Any heuristic is $O(\Delta)$ -approximation, $\Delta = \max U_i^{ref} / \min$ U_i^{ref}

Dynamic Job Scheduling

Problem Statement

- Motivated by Online Scheduling for HPC Applications
 - A set of *m* heterogeneous servers (already placed) and heat distribution matrix. Each server has a number of available processors
 - A set of *n* (rigid) parallel jobs arrive over time. Each job has a processor requirement, server-dependent processing time and power consumption
 - Scheduler makes online assignment of jobs to servers, without knowledge of future job arrivals. Processor sharing and job migration are not allowed.
 - Optimize total energy (due to computing and cooling) and/or performance (e.g., average response time)

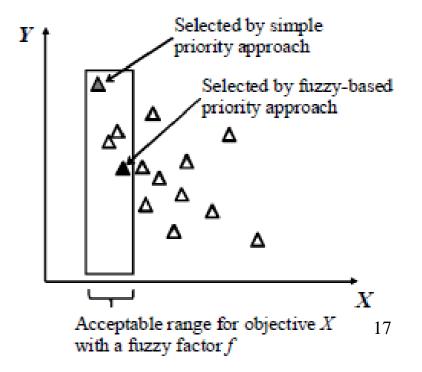
Scheduling Framework

<u>Greedy</u>

1. For each arriving job

- 2. Assign it to a server with minimum cost according to some <u>cost function</u> and sufficient remaining processors
- 3. If all servers are short of processors, queue the job and reschedule it later when some server becomes free

4. EndFor


- Different cost functions depending on the objective
 - **Performance-Aware**: cost = response time
 - **Energy-Aware**: cost = energy consumption
 - **Thermal-Aware**: cost = max. inlet temperature

Energy-Performance Tradeoff

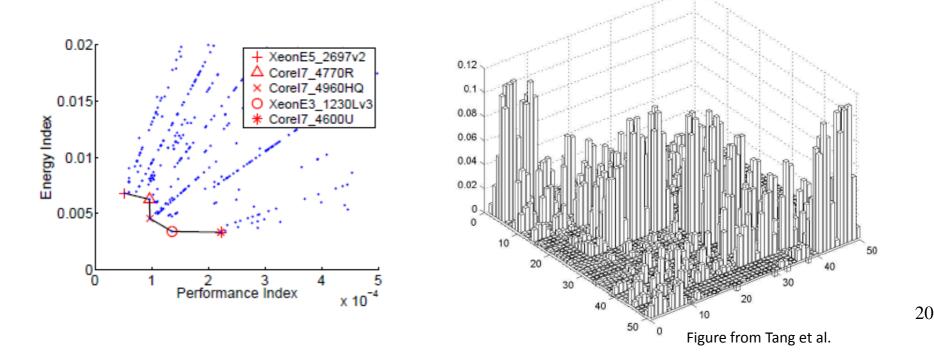
- Common Approaches for Two Objectives (e.g., X & Y)
 - Simple priority: optimize X first, followed by Y
 - **Constraint optimization**: optimize *X* subject to a bound on *Y*
 - Pareto front: gives all possible non-dominant solutions
 - Weighted sum: optimize $\alpha X + \beta Y$

Energy-Performance Tradeoff

- Common Approaches for Two Objectives (e.g., X & Y)
 - Simple priority: optimize X first, followed by Y
 - **Constraint optimization**: optimize *X* subject to a bound on *Y*
 - Pareto front: gives all possible non-dominant solutions
 - Weighted sum: optimize αX + βY
- Fuzzy (Relax) Priority Approach
 - Optimize X followed by Y
 - A (fuzzy) factor f specifies range for acceptable X; optimize Y as long as X is acceptable

Energy-Performance Tradeoff

• Fuzzy Priority Rule for Ordering Two Servers

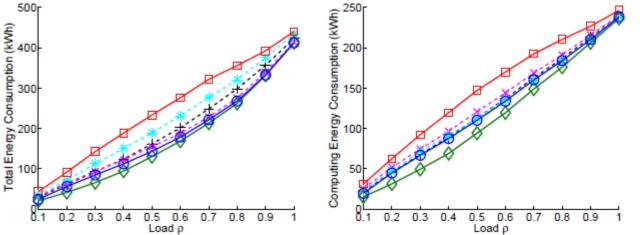

$$\begin{array}{c} \bullet \ \overline{H}_{i,j_1}^X \leq f < \overline{H}_{i,j_2}^X, \text{ or} \\ \bullet \ \overline{H}_{i,j_1}^X \leq f \text{ and } \overline{H}_{i,j_2}^X \leq f \text{ and } H_{i,j_1}^Y < H_{i,j_2}^Y, \text{ or} \\ \bullet \ \overline{H}_{i,j_1}^X < \overline{H}_{i,j_2}^X \leq f \text{ and } H_{i,j_1}^Y = H_{i,j_2}^Y, \text{ or} \\ \bullet \ \overline{H}_{i,j_1}^X < \overline{H}_{i,j_1}^X < \overline{H}_{i,j_2}^X, \text{ or} \\ \bullet \ f < \overline{H}_{i,j_1}^X = \overline{H}_{i,j_2}^X \text{ and } H_{i,j_1}^Y < H_{i,j_2}^Y. \end{array}$$

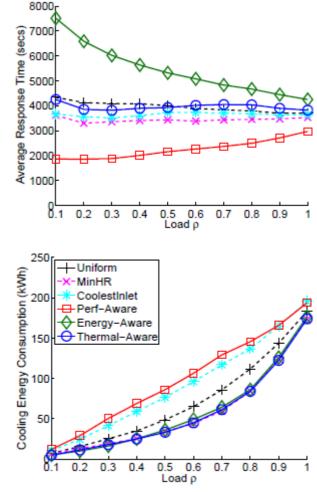
• Can be extended to include more objectives

Performance Evaluation

Simulation Setup

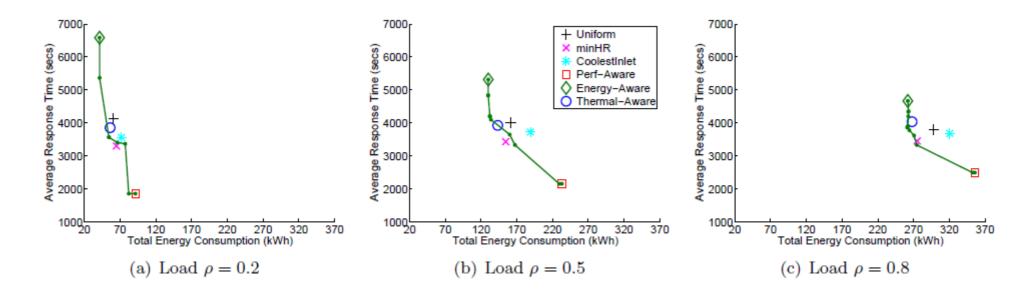
- Small datacenter with 50 servers, each with 18 processors.
- 5 types of processors from Intel, non-dominating in terms of performance and energy
- Heat recirculation matrix is from measurement of a datacenter at ASU [Tang et al. 2008]

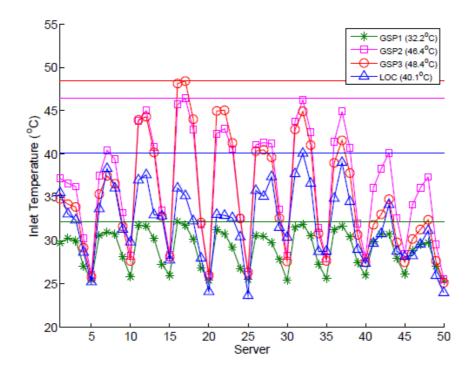

Simulation Setup

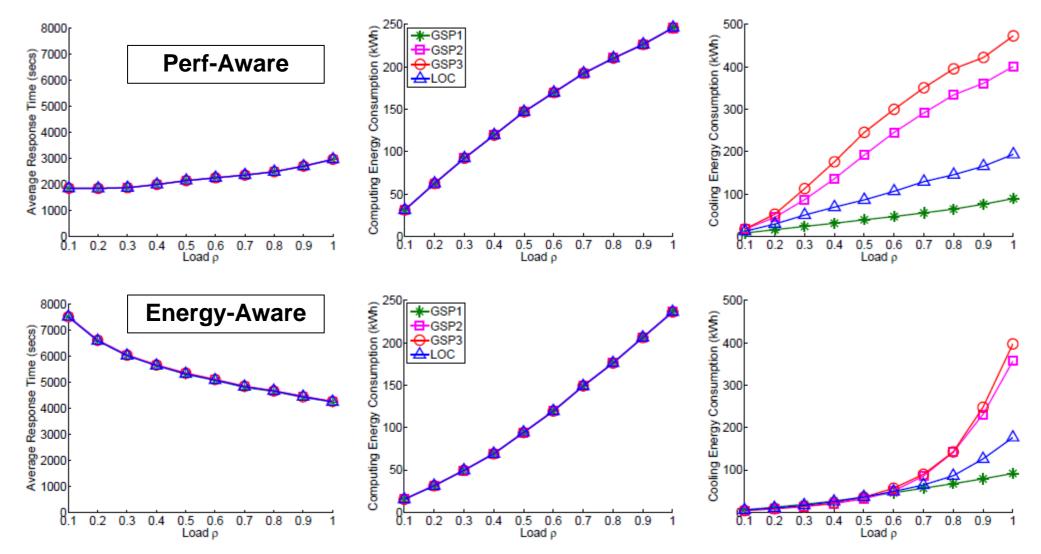

- CoP is from measurement of a water-chilled CRAC [Moore et al. 2005]
 - $CoP(T) = 0.0068T^2 + 0.0008T + 0.458$
 - Workload consists of some HPC apps, e.g., *FFT*, *C-Ray*, *Abinit*, *Linpack*, *Tar*, with profiled time and power info.
- Redline temperature $T^{red} = 25^{\circ}C / 77^{\circ}F$
- Simulation is conducted using Data Center Workload and Resource Management Simulator (DCWorms) [Kurowski et al. 2013]

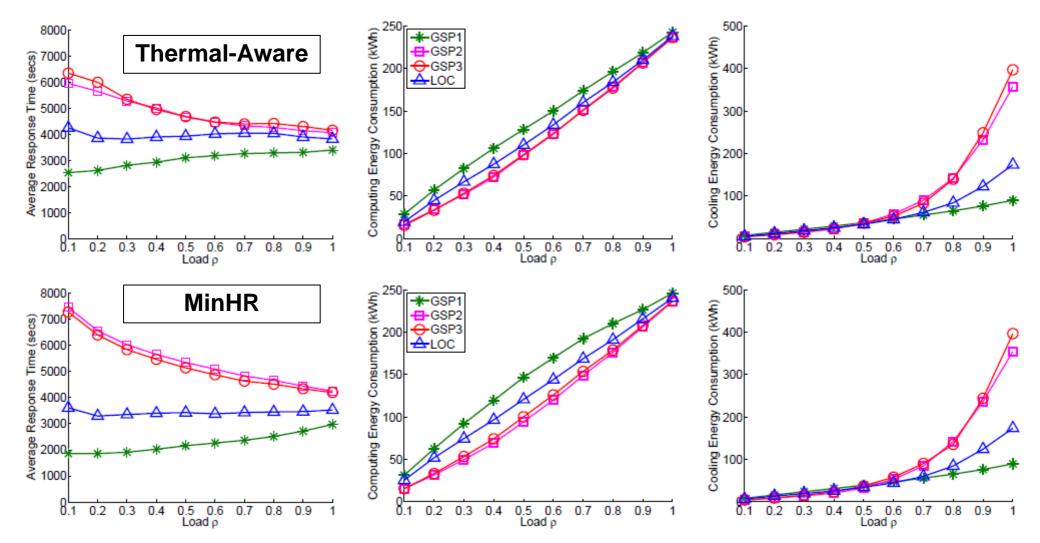
Simulation Results – Job Scheduling

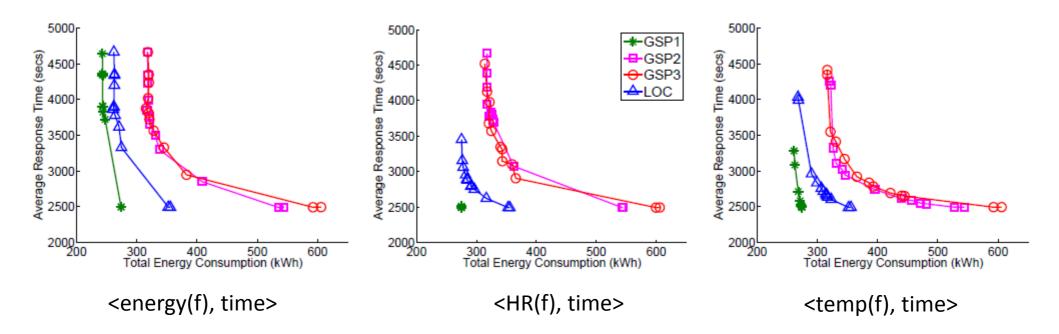
- Heuristics for Single Objective
 - Perf-, Energy-, and Thermal-Aware
 - **Uniform**: Assign jobs randomly/uniformly
 - CoolestInlet: Assign jobs to coolest node
 - MinHR: Assign jobs to node with least


heat recirculation contribution




Simulation Results – Job Scheduling


- Energy-performance tradeoff
 - Optimize <energy(f), time> and vary fuzzy factor f in [0, 1]
 - Significant performance gain with little loss in energy
 - ← fuzzy (relaxed) priority



- To illustrate that server placement makes a difference
 - GSP1: Greedy Server Placement as described
 - GSP2: Sort servers in *increasing* power instead of decreasing
 - GSP3: Place servers to *maximize* max. inlet temp. instead of minimize
 - LOC: Place same type of servers in contiguous locations

- Thermal-Aware Server Arrangement
 - (Always) reduces *cooling* energy
 - (Sometimes) introduces tradeoff between performance and computing energy
 - Improves overall energy-performance tradeoff

Conclusion and Future Work

- Conclusion
 - Static server placement: NP-hardness, Greedy heuristic
 - Dynamic job scheduling: Greedy framework, Fuzzy (relaxed) priority for energy-performance tradeoff
 - Simulations based on experimentally verified data
- Future Work
 - Static server placement: Better approximation algorithms (LP-based)
 - Dynamic job scheduling: power management techniques, e.g., DVFS, Switch Off