
1

Speed Scaling for Energy and Performance
with Instantaneous Parallelism

Hongyang Sun (Nanyang Technological University, Singapore)

Joint work with
Wen-Jing Hsu (Nanyang Technological University, Singapore)
Yuxiong He (Microsoft Research, USA)

TAPAS 2011

Background

 Performance has always been an important
consideration.

 Energy has recently become a major concern as well.
 Challenge: How to achieve a balance/tradeoff

between the two conflicting objectives.

Performance Energy

TAPAS 2011 2

 Schedule a set of n jobs with time-varying parallelism on a set
of P processors with dynamic speed scaling (DVFS) capability,
assuming n < P.
 Problem: Decide online how many processors to allocate to each

job at any time and at what speeds?

3

Scheduling Problem

Time

Parallelism

Jobs Processors

…
…

P

TAPAS 2011

Objectives

 Linear combination of performance and energy
 Performance: sum or max of the jobs’ execution time

 Total flow time: sum of duration between release and
completion of all jobs.

 Makespan: maximal completion time of all jobs.
 Energy: power of all processors integrated over time

 A processor consumes power sα when running at speed s,
where s ≥ 0 and α > 1.

 Competitive analysis
 An online algorithm is c-competitive if its cost is at

most c times that of the optimal offline algorithm.

TAPAS 2011 4

Different Degrees of Clairvoyance

 Non-clairvoyant
 Knows nothing about the jobs, even the completed portions.

 Past-clairvoyant
 Knows past characteristics of the jobs, i.e., the completed portions.

 IP-clairvoyant
 Knows instantaneous parallelism (IP) of the jobs at any time.

 Semi-clairvoyant
 Knows approximate future characteristics, but not exact ones.

 (Total)-Clairvoyant
 Knows everything about the jobs, even the future characteristics.

TAPAS 2011 5

6

Total Flow Time plus Energy

•Denoted by G = F + E.
•Flow time of a job is the duration between the job’s release and
completion.

TAPAS 2011

Total Flow Time plus Energy

 Flow time of all jobs + Total energy of all jobs
 First studied by [Albers&Fujiwara 2006].
 More than a dozen papers have focused on this objective.
 Most considered sequential jobs on uniprocessor or multiprocessors

 Challenge: when and where to execute a job at what speed.
 Single processor: clairvoyant: 2-comp. [Andrew et al. 2009]; non-

clairvoyant: O(α2/lnα)-comp. [Chan et al. 2009].
 Multiprocessor: O(1)-comp. algorithms for clairvoyant [Lam et al. 2009]

and non-clairvoyant [Greiner et al. 2009] settings.
 Fewer results considered parallel jobs on multiprocessors

 Challenge: How many processors for a job and at what speeds
 Non-clairvoyant: O(ln1/αP)-comp. for batched jobs [Sun et al. 2009];

O(lnP)-comp. for non-batched jobs; O(logP)-comp. for non-batched jobs
[Chan et al. 2009] under a different execution model

TAPAS 2011 7

Total Flow Time plus Energy

 Techniques and Approaches
 Balance energy and flow at any time

 Total power consumption ut = number of active jobs nt
 Amortized local competitiveness argument with the help of a

potential function Φ(t)
 Boundary condition: Φ(0) = Φ(∞) = 0
 Discrete-event condition: Φ(t) should not increase at any discrete

event, such as job arrival or completion.
 Running condition: dGALG(t)/dt + dΦ(t)/dt ≤ c · dGOPT(t)/dt
 GALG ≤ c · GOPT(t), so ALG is c-competitive.

 Non-uniform speed scaling (non-clairv. algorithms & parallel jobs)
 Processors dedicated to a job can run at different speeds.
 Uniform speed scaling was shown to be Ω(P(α-1)/α2)-comp.

TAPAS 2011 8

Two Non-clairvoyant Execution Models

 Our Model
 Processors of different

speeds are given to a job;
assume s1 ≥ s2 ≥ … ≥ sa

 Execution rate for the job at
any time follows maximum
utilization policy, i.e., utilize
faster processors first

 Model by Chan,Edmonds,Pruhs
 Multiple processor groups are

given to a job; processors in same
group share same speed, but can
be different for different groups

 Execution rate for the job at any
time follows maximum rate from
all groups
 si

h a

Execution rate
is high

Energy waste
is small

One group will
give a “right”

number of
processors

s

a h

TAPAS 2011 9

 Model by Chan,Edmonds,Pruhs
 Upper Bound

 MultiLAPS (Non-clairvoyant)
 LAPS: give a = P/(βnt) processors to

each of βnt jobs with latest arrival.
Multi: the allocated processors are
further divided into ≈log(a) groups
with geometrically decreasing size

 Speed of each group ≈1/size1/α
 MultiLAPS is O(logP)-comp.;

O(log1/αP)-comp. (batched jobs)
 Lower Bound

 Any non-clairvoyant algorithm is
Ω(log1/αP)-comp.

 Our Model
 Upper Bound

 N-EQUI (Non-clairvoyant)
 EQUI: give a = P/nt processors

to each active job

 Non-uniform: speed of i-th
allocated processor is set to
1/(i·HP)1/α, where HP is the P-th
Harmonic number.

 N-EQUI is O(lnP)-comp.;
O(ln1/αP)-comp. (batched jobs)

 Lower Bound
 Any non-clairvoyant algorithm

is Ω(ln1/αP)-comp.

Identical asymptotic upper bounds and lower bounds in two models

TAPAS 2011 10

Upper Bounds and Lower Bounds

An IP-clairvoyant Algorithm

 IP-clairvoyant
 Knowing a job’s instantaneous parallelism at any time
 No energy waste since no excessive processor allocation
 Uniform speed scaling should be sufficient

 U-CEQ (IP-clairvoyant)
 CEQ: gives a = min{ht , P/nt} processors to each job

 ht is the instantaneous parallelism of the job at time t
 P/nt is the equal processor share for the job at time t

 Uniform: set same speed for all a processors to s = 1/a1/α

11 TAPAS 2011

Upper Bound of U-CEQ

 Theorem. U-CEQ is O(1)-competitive for total flow
time plus energy.
Proof sketch. Use potential function by [Lam et al. 2008]

 Guarantees boundary and discrete-event conditions.
 For running condition, we can show

 Remarks. Competitive ratio is independent of P, but
depends on α. Maybe more future info can help.

TAPAS 2011 12

13

Makespan plus Energy

•Denoted by H = M + E.
•Makespan of a job set is the completion time of the last completed job.

TAPAS 2011 13

14

Makespan plus Energy

 Time last job completes + Total energy of all jobs
 Last job contributes to both makespan and energy.
 Other jobs contribute only to energy can be slowed

down to save energy w/o affecting makespan.
 Challenge: which jobs to slow down in non-clairvoyant,

or even IP-clairvoyant setting?
 Intuition: without knowing future info., treating all jobs

equally by running them at same rate.

TAPAS 2011

15

Constant Power Property

Lemma. To minimize makespan plus energy for batched
jobs, power at any time should be constant at 1/(α-1).

 Proof sketch. Balance power and makespan at any time. Suppose
that power at some time is not 1/(α-1), then either speeding up or
slowing down the execution of all jobs will lead to smaller overall
cost.

Remark 1. For nonbatched jobs, slowing down still works,
but speeding up doesn’t power should be ≤ 1/(α-1).

Remark 2. To minimize total flow time plus energy for
batched job, power should be constant at nt/(α-1).
 Scaling MultiLAPS achieves O(log1/αP)-comp. for batched jobs.

TAPAS 2011

16

An IP-clairvoyant Algorithm

 Parallel-First
 Applicable to batched (Par-Seq)* jobs, i.e., with fully-parallelizable

and sequential phases.
 Run any fully-parallel phase from any job whenever possible, using

all processors with same speed;
 Otherwise, run sequential phases of all jobs at the same rate, each

on one processor.

 Idea can be generalized to scheduling jobs with arbitrary
parallelism profile same asymptotic bound
 Run all processors whenever possible with the same speed;
 Otherwise, run all jobs at the same power.

TAPAS 2011 16

17

Performance of Parallel-First

Theorem. Parallel-First is Θ(ln1-1/αP)-competitive for
makespan plus energy of batched (Par-Seq)* jobs.
Proof. Consider difference between OPT and PF
 Fully-parallelizable phases: OPT and PF execute same way
 Sequential phases: w1 ≤ w2 ≤ … ≤ wP

 OPT: finish all jobs simultaneously H* = Θ(∑i=1..P wi
α)1/α

 PF: execute all jobs at same speed H = Θ(∑i=1..P wi /(P-i+1)1-1/α)
 Maximize with Lagrange multiplier H/H* = O(ln1-1/αP)
 Suppose that wi = 1/(P-i+1)1/α H/H* = Ω(ln1-1/αP)

TAPAS 2011

18

Lower Bound for IP-Clairvoyant Algo.

Theorem. Any IP-clairvoyant algorithm is Ω(ln1-1/αn)-
competitive for makespan plus energy.

 Proof sketch. Any IP-clairvoyant algorithm that does not
execute sequential phases using same speed will cost
more than PF in worst case, as adversary can always make
it assign “wrong” speeds to jobs, e.g., assign faster
processors to shorter jobs.

Question. What is competitiveness lower bound for
non-clairvoyant algorithms, which can also assign
a “wrong” number of processors to jobs?

TAPAS 2011

Comparing Makespan and Total Flow

Non-clairvoyant IP-clairvoyant

Total Flow + Energy

Ω(ln1/αP)-competitive

O(1)-competitive

Makespan + Energy

?

Ω(ln1-1/αP)-competitive

Minimizing “makespan + energy” seems more challenging than
minimizing “total flow time + energy”

TAPAS 2011 19

20

Final Remark

 Parallel job models
 Used here: parallelism profile model

 Each phase has a linear speedup function up to some parallelism

 More general: Edmonds’ model
 Each phase can have non-decreasing and sub-linear speedup
 Reduced to parallelism profile for non-clairvoyant algorithms
 Reduction for or design of IP-clairvoyant algorithms?

TAPAS 2011

21

Thank you!

TAPAS 2011

	Speed Scaling for Energy and Performance with Instantaneous Parallelism
	Background
	Scheduling Problem
	Objectives
	Different Degrees of Clairvoyance
	Total Flow Time plus Energy�
	Total Flow Time plus Energy
	Total Flow Time plus Energy
	Two Non-clairvoyant Execution Models
	Upper Bounds and Lower Bounds
	An IP-clairvoyant Algorithm
	Upper Bound of U-CEQ
	Makespan plus Energy
	Makespan plus Energy
	Constant Power Property
	An IP-clairvoyant Algorithm
	Performance of Parallel-First
	Lower Bound for IP-Clairvoyant Algo.
	Comparing Makespan and Total Flow
	Final Remark
	Thank you!

