1. Consider the timing diagram in Figure 1, assuming that the D and $Clock$ inputs shown are applied to the circuit in Figure 2, draw waveforms for the Q_a and Q_b.

Solution:
2. Draw the timing diagram of a four-bit counter.

Solution:

3. (1) Explain the difference between synchronous circuits and asynchronous circuits. (2) Draw the output waveform of both the synchronous circuits and asynchronous D Flip Flop.

Solution:
4. Write the VHDL code for 8-bit register with asynchronous reset

```
ARCHITECTURE behavioral OF reg8 IS
BEGIN
  PROCESS ( Reset, Clock )
  BEGIN
    IF Reset = '1' THEN
      Q <= "00000000" ;
    ELSIF rising_edge(Clock) THEN
      Q <= D ;
    END IF ;
  END PROCESS ;
END behavioral ;
```

5. We discussed the 4 bit up-counter with synchronous reset in our class. Please write the VHDL code for 4-bit up-counter with asynchronous reset.
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY upcount_ar IS
 PORT (Clock, Reset : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
END upcount_ar;

Solution:
ARCHITECTURE behavioral OF upcount_ar IS
 SIGNAL Count : STD_LOGIC_VECTOR (3 DOWNTO 0);
BEGIN
 PROCESS (Clock, Reset)
 BEGIN
 IF Reset = '1' THEN
 Count <= "0000";
 ELSIF rising_edge(Clock) THEN
 Count <= Count + 1;
 END IF;
 END PROCESS;
 Q <= Count;
END behavioral;