Quiz 5 (9/20/2018)

1. Which is not a basic electrical quantity?
 A) Charge B) Mass C) Voltage D) Current

2. Using Circuit 1, what is the value of current I_4?
 A) -12 mA B) -7.5 mA C) 7.5 mA D) 3 mA E) None of A-D

3. Using Circuit 2, what is the value of voltage V_0?
 A) -16 V B) 4 V C) 8 V D) 24 V E) None of A-D

4. Using Circuit 2, what is the value of current I_z?
 A) -4 mA B) 4 mA C) 2 mA D) 52 mA E) None of A-D

2. Define V in active sign with current source, as shown. Then I_4 is in passive sign with V, and we can use
 current div. formula: $I_4 = \frac{I_4}{V_4+I_4+I_4}/15mA = \frac{3mA}{I_4}$

 Check: $V = I_4 \cdot 4 \Omega = 12mV$ and other 2 resistor currents (up) are both $I_2 = 6mA$, KCL: $15mA = 6mA + 6mA + 3mA$

3. Define I_0 in passive sign w/ V_0. KVL: $-24 + I_0 \cdot (8 \Omega) + I_0 \cdot (9 \Omega) = 0$
 $I_0 = \frac{24}{12k} = 2mA$

 Ohm: $V_0 = I_0 (4k) = 8V = V_0$

 Or: Voltage div: $V_0 = \frac{4k}{4k+8k} (24) = 8V$

4. KVL (left side): $-26V + V_2 + 24V = 0 \Rightarrow V_2 = 2V$

 Ohm: $I_2 = \frac{2V}{500} = \frac{4mA}{I_2}$

 Check for 3 & 4: Ohm: $I_0 = \frac{V_0}{4k} = 2mA$ $I_x = \frac{24}{12k} = 2mA$

 KCL: $I_2 = I_0 + I_x = 2mA + 2mA = 4mA = I_2 $