1. Prove the Corollary to Proposition 1 on p. 185. FONC Theory.

2. Consider the linear predictor problem outlined in Section I of Lecture 2.
 a. Derive the first order necessary conditions for a linear predictor of arbitrary order \(p \), assuming that \(\{x_k\} \) is a stationary random process.
 b. What are the FONC for the special case of \(p = 1 \)?
 c. Using the results of part a, find the optimal predictor coefficients for a third order \((p = 3) \) predictor when the input sequence \(\{x_k\} \) is obtained as follows. Pass white noise through an RC lowpass filter with \(RC = 10^{-3} \), then sample the filter output at an 8 kHz sampling rate to get \(\{x_k\} \). Discuss your result.
 d. Defining the predictor gain as:

 \[
 G_p = \frac{E\left[x_k^2 \right]}{E\left[e_k^2 \right]}
 \]

 where \(e_k \) is the predictor error \(x_k - \hat{x}_k \), what is the predictor gain in part c?

3. For Example 2 on p. 187, verify that the summation form of \(f(a) \) is equivalent to the vector form at the bottom of the page. Example Application.

4. Luenberger/Ye, Problem 3, parts a and b only, p. 213. FONC, SOSC.

5. Let \(a \) be a given \(n \)-vector, and \(A \) be a given \(n \times n \) symmetric matrix. Compute the gradient and Hessian of \(f_1(x) = a^T x \) and of \(f_2(x) = x^T Ax \).

6. For the following function, find all points that meet the first order necessary conditions for local minima and determine which, if any, of these are in fact local minima.

 \[
 f(\mathbf{x}) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6
 \]

7. Are there any values of \(x, y \) and \(z \) that maximize:

 \[
 f(x, y, z) = \frac{6xyz}{x + 2y + 2z}
 \]

 subject to \(xyz = 16 \) and \(x \geq 0, y \geq 0, z \geq 0 \)? If so, give the values of the variables and the value of the objective function. If not, justify your answer. Hint: minimizing \(-f\) is not the only way to maximize \(f \).