OpenGIS Sensor Web Enablement

Tom McCarty
Science Applications International Corporation (SAIC)
Spatial Information Systems Division
August 13, 2003
What is OpenGIS?

- Founded in 1994, the OpenGIS Consortium (OGC) is an industry consortium aimed at growing interoperability for technologies involving spatial information.
- OGC members include over 250 public and private companies, universities, government agencies and other organizations from all over the world who are interested in building spatial interoperability.
- OGC originally focused on the use of Distributed Computing Platforms, or DCP’s (specifically CORBA, OLE(COM, and SQL).
- The emergence of HTTP and the WWW and the formation of the Web Mapping Testbed redirected OGC into distributed, web service geoprocessing model
Example Members

- **Integrators**
 - Raytheon, Lockheed Martin, Mitsubishi, SAIC, Harris, MITRE, BAE, General Dynamics, NGIT

- **Major Hardware and Software Companies**
 - Sun Microsystems, Oracle, Microsoft, Adobe, HP, SAS

- **Developers of GeoSpatial Technology products**
 - Intergraph, ESRI, SICAD, Autodesk, LaserScan, MapInfo, Smallworld, PCI

- **Government agencies that depend on geoprocessing**
 - NIMA, NASA, USGS, USA/TEC, USDA, NOAA, FEMA, Census, NSF, FGDC, DMSO, UK/OS, Au/SA,

- **Location Services/Telecoms**
 - Hutchison 3G, Webraska, SignalSoft, Vodafone

- **Others**
 - Content Providers, Power, Universities, Consultants, Startups
Interoperability Initiatives - Collaboration

Sustainable Collaborative Relationships

Candidate Specs Infrastructure

Interoperability Initiatives (Testbed, Pilot, etc.)

Ongoing Interoperability Initiatives - Collaboration

Sponsor Team

Requirements

Deliverables

Funding/In-kind

Management

Technical Support

OGC Management Team

OGC Architecture Team

OGC IP Team

Participant Team

Capabilities

Funding (?)

In-kind
OpenGIS Open Web Services 1.2 Common Source Processing
OGC Sensor Web Enablement (SWE) History

- OGC Open Web Services 1.1 (Sept 2001 – March 2002) focused significant effort on SWE design and implementation for in-situ sensors
- OGC Open Web Services 1.2 (May – Dec 2002) focused significant effort on SWE implementation for dynamic, remote sensors
- OGC issued Open Web Services 2 Request for Technology (May 2003). OWS 2 Project to begin in Fall 2003.
- Primary sponsors: NIMA, NASA, EPA, USGS
OGC Sensor Web Enablement (SWE) is a collection of open-standard schema and web service specifications that:

- Enable the discovery of sensors and sensor data
- Enable the description of sensor systems and sensor data
- Enable the request and retrieval of both archived and real-time sensor observations
- Enable the tasking of sensors and sensor processing systems
- Enable the tasking of simulations and retrieval of simulation results
- Enable the notification of tasking results and alerts of phenomena of interest
- Enable autonomous sensor webs through inter-communication, tasking, and self-description of sensor and sensor observations
SWE Definitions

- Observable – a phenomenon that can be observed and measured
- Sensor – a device that observes and/or measures a phenomenon
- Observed value (Observation/Measurement) – the value returned by or derived from a sensor observation (e.g. quantity, count, boolean, category, ordered category, position)
- Sensor Web – a loosely-connected collection of sensor that are accessible through common web services
SWE Components

- Sensor Model Language (SensorML) – an XML schema for providing sensor system descriptions to support sensor discovery, and geolocation and processing of sensor observations
- Observation & Measurements (O&M) – a framework and XML schema for measurements and observations
- Sensor Collection Service (SCS) – a service that provides real-time or archived observed values
- Sensor Planning Service (SPS) – a service that enables sensor tasking, acquisition requests, processing and simulation requests, and registration for alert notification
SWE Components (cont)

- Web Notification Service (WNS) – Provides a means for Sensor Planning Services to alert people, software, or other sensor systems of SPS results or alerts regarding phenomena of interest

- Web Registry Service (WRS) – provide discovery mechanism for sensors and observed values

- Observables Dictionary – provides definitions for observables that can be measured by sensors
Component Overview:

SensorML

Editor: Mike Botts, University of Alabama - Huntsville

an XML schema for providing sensor system descriptions to support sensor discovery, and geolocation and processing of sensor observations
Scope of SensorML Support

- Designed to support a wide range of sensors
 - Including both dynamic and stationary platforms
 - Including both in-situ and remote sensors

Examples:
- Stationary, in-situ – chemical “sniffer”, thermometer, gravity meter
- Stationary, remote – stream velocity profiler, atmospheric profiler, Doppler radar
- Dynamic, in-situ – aircraft mounted ozone “sniffer”, GPS unit, dropsonde
- Dynamic, remote – satellite radiometer, airborne camera, soldier-mounted video
Information Provided by SensorML

- Observation characteristics
 - Physical properties measured (e.g. radiometry, temperature, concentration, etc.)
 - Quality characteristics (e.g. accuracy, precision)
 - Response characteristics (e.g. spectral curve, temporal response, etc.)

- Geometry Characteristics
 - Size, shape, spatial weight function (e.g. point spread function) of individual samples
 - Geometric and temporal characteristics of sample collections (e.g. scans or arrays)

- Description and Documentation
 - Overall information about the sensor
 - History and reference information supporting the SensorML document
SensorML Schema: Sensor Identification

- Sensor
 - identifiedAs
 - documentConstrainedBy
 - attachedTo
 - hasCRS
 - locatedUsing
 - measures
 - operatedBy
 - describedBy
 - documentedBy
Response Example - YSI Wind Speed Sensor

```xml
<characterizedBy>
  <dynamicRange axis="http://www.opengis.net/observables#windSpeed">
    <low uom="http://www.opengis.net/units#mph">0.0</low>
    <high uom="http://www.opengis.net/units#mph">134.0</high>
  </dynamicRange>
  <threshold uom="http://www.opengis.net/units#mph">
    <axis="http://www.opengis.net/observables#windSpeed">2.2</axis>
  </threshold>
  <operationalRange axis="http://www.opengis.net/observables#temperature">
    <low uom="http://www.opengis.net/units#celsius">-40.0</low>
    <high uom="http://www.opengis.net/units#celsius">40.0</high>
  </operationalRange>
  <survivableRange axis="http://www.opengis.net/observables#windSpeed">
    <low uom="http://www.opengis.net/units#mph">0.0</low>
    <high uom="http://www.opengis.net/units#mph">220.0</high>
  </survivableRange>
</characterizedBy>
```
SensorML Status

- Initial core schema complete
- Geolocation sensor models complete for
 - Scanners and profilers (1D, 2D, and 3D)
 - Frame camera
 - Rapid Positioning Coordinates (RPC)
- Specification released for public comment (2/03)
- Will push for approval as Technical Specification in summer 2003
Component Overview:

Observations and Measurements

Editor: Simon Cox, CSIRO - Australia

a framework and XML schema for measurements and observations
An Observation is considered an event with a result which is a value describing some phenomenon

- modelled as a Feature within the context of the OGC Feature Model.
- binds the result to the (spatiotemporal) location where it was made.
- involves a procedure to determine the value, which may involve a sensor or observer, an analytical procedure, simulation or other numerical process.
- results in an estimate of the Value of a property or phenomenon related to the target of the observation.
Observation Model
Example of Simple Observation

<om:RichObservation gml:id="OD654">
 <gml:timeStamp>
 <gml:TimeInstant gml:timePosition="2001-12-12"></gml:TimeInstant>
 </gml:timeStamp>
 <gml:using xlink:href="sensors.xml#TDS"/>
 <gml:target xlink:href="stations.xml#s432"/>
 <gml:resultOf>
 <gml:Quantity uom="units.xml#gPL">72.1</gml:Quantity>
 </gml:resultOf>
 <om:observable xlink:href="phenomena.xml#DissolvedSolids"/>
 <om:quality method="quality.xml#confidence95percent">
 <om.Bounds uom="units.xml#gPL">65.2 75.2</om.Bounds>
 </om:quality>
 <om:relatedFeature xlink:role="previous observation" xlink:href="archive/observations.xml#OD321"/>
</om:RichObservation>
Component Overview:

Sensor Collection Services (SCS)
Editor: Tom McCarty, SAIC – McLean, VA

a service that provides real-time or archived observed values
SCS Overview

- Web Service Interface that supports query and retrieval of real-time and archived sensor information.
- Facilitates the registration and discovery of deployed, on-line sensor networks.
- Provides links to sensor descriptions (SensorML)
- Returns sensor data (Observations) and provides links to Observation Dictionaries
SCS Requests

- `getCapabilities` - implements the standard GetCapabilities operation defined by OWSCommon.getCapabilities
- `getObservation` - query sensor collections to retrieve observation data (returns GML Observations or Coverage data)
- `describeSensor` – request sensor description (returns SensorML)
- `describePlatform` – request platform information (returns SensorML)
Typical SCS Configuration

- Sensor Collection Service
- Service Registry
- Observations
- Observable Dictionary (Registry)
- Sensor/Platform Registry
- Client
- Observations Archive (e.g. IAS)

Activities:
- Discover SCS & Get Service Description
- Publishing SCS
- Get Sensor Description
- Get Observation Description
- Publishing Sensor Descriptions
- References

Notes:
- Observations
- Sensors
- References
- Publish Observable Descriptions
GetObservation request schema
<?xml version="1.0" encoding="UTF-8" ?>
<ows:ObservationArray
 xmlns:ows="http://www.opengis.net/ows"
 xmlns:gml="http://www.opengis.net/gml">
 <gml:boundedBy>
 <gml:Envelope>
 <gml:pos srsName="EPSG:4326">38.5098 - 77.1972</gml:pos>
 <gml:pos srsName="EPSG:4326">38.975 - 76.7606</gml:pos>
 </gml:Envelope>
 </gml:boundedBy>
 <ows:observationMembers>
 <ows:Observation>
 <gml:location>
 <gml:Point>
 <gml:pos srsName="EPSG:4326">38.8035 - 76.7606</gml:pos>
 </gml:Point>
 </gml:location>
 <gml:timeStamp>
 <gml:instant>
 <gml:tPosition>2002-10-01T19:00:00Z</gml:tPosition>
 </gml:instant>
 </gml:timeStamp>
 <ows:resultOf>
 <gml:Quantity uom="ppb">10.0</gml:Quantity>
 </ows:resultOf>
 <ows:qualityMethod="qualitative code">
 <gml:Category>G</gml:Category>
 </ows:qualityMethod>
 </ows:Observation>
 </ows:observationMembers>
</ows:ObservationArray>
OpenGIS Sensor Web Enablement Testbed 1.1
OpenGIS SWE Clients
Component Overview:

Sensor Planning Service (SPS)

Editor: Jeff Lansing, Polexis – San Diego, CA

a service that enables sensor tasking, acquisition requests, processing and simulation requests, and registration for alert notification
SPS Overview

- Provides capabilities for querying and tasking Sensor Assets
- Supports tasking of sensors, sensor observation processing, and simulation
- Based on needs for:
 - Collection Management
 - Requirements Management
 - Mission Management
 - Asset Management
- Supports both short-term and long-term transactions
SPS Operations

- GetCapabilities – SPS advertises tasking capabilities it can provide
- DescribeCollectionRequest – SPS provides XForm template for specifying required parameters for submitting a request (synchronous)
- GetFeasibility – check feasibility of successfully completing requested task (synchronous or notified later through WNS)
- SubmitRequest – actually request task
- UpdateRequest – change task
- CancelRequest – remove task
- GetStatus – check on task progress
DescribeCollection
XForm Example

Please complete or correct fields marked in red.

SensorID [AMSU-A]

StartTime (Enter value in the format yyyy-mm-ddThh:mm:ss.sssssssZ) 2002-01-01T00:00:00

Stop Time (Enter value in the format yyyy-mm-ddThh:mm:ss.sssssssZ) 2002-01-02T12:00:00

westLon (Enter value in degrees between -180 to +180) 45.7

eastLon (Enter value in degrees between -180 to +180) 40

southLat (Enter value in degrees between -90 to +90) 36.57

northLat (Enter value in degrees between -90 to +90) 37.12

Submit Form

Record - data user has entered as of last submission

<?xml version="1.0"?>

<xml

<form>
 <SensorID>AMSU-A</SensorID>
 <timeRange>
 <StartTime>2002-01-01T00:00:00</StartTime>
 <StopTime>2002-01-02T12:00:00</StopTime>
 </timeRange>
 <roi>
 <westLon>-45.7</westLon>
 <eastLon>-40</eastLon>
 <southLat>36.57</southLat>
 <northLat>37.12</northLat>
 </roi>
 <submit>Submit Form</submit>
</form>
GetFeasibility
SubmitRequest
Web Notification Service (WNS)

Editors: Ingo Simonis / Andreas Witzisk, University of Muenster – Muenster, GE

provides a means to alert people, software, or other sensor systems of SPS results or alerts regarding phenomena of interest
WNS Overview

- An asynchronous and stateful service.
- A web interface (e.g. operated by the SPS) that allows sending notifications to a client with well structured content.
- Mechanism for notification delivery can include:
 - email
 - URL / HTTP Post (e.g. CGI or servlet)
 - SMS
 - Instant Messenger
 - Phone / FAX
 - Mail
WNS Operations

- GetCapabilities – advertises WNS capabilities
- RegisterUser – allows user to register and set notification method (returns userID)
- DoNotification – called to initiate notification of a user (requires a userID and a message; optional corrID)
- DoCommunication – initiate a communication with a user. An asynchronous dialogue structure, means that the WNS will send a notification to the user. This notification indicates to the user that further action has to be taken (which can be done automatically).
- DoReply – allows the user to answer a dialogue notification; uses the http-post command
Example Message for DoNotification

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XML Spy v4.4 U (http://www.xmlspy.com)-->
<DoNctification xmlns="http://www.opengis.net/wns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wns ...\wns.xsd" Version="0.0.1" Service="WNS">
  <UserID>4294967295</UserID>
  <Message>
    <Type>Operation completed</Type>
    <MessageParameter>
      <CorrID>2147483647</CorrID>
      <Key>Requested data available at</Key>
      <URI>http://a.data.source/data.xyz</URI>
    </MessageParameter>
    <MessageParameter>
      <CorrID>2147483647</CorrID>
      <Key>Costs</Key>
      <String>USD 2000</String>
    </MessageParameter>
  </Message>
</DoNctification>
```
Example DoCommunication

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XML Spy v4.4 U (http://www.xmlspy.com)-->
<CommunicationRequestMessage xmlns="http://www.opengis.net/wns"
d:\Projekte\OGC_HLA\SWE\WNS\XML\wnsMessage.xsd">
    <Action>Information needed</Action>
    <MessageParameter>
        <CorrID>2147483647</CorrID>
        <Key>Lookangle has to be defined</Key>
        <Unit>degree</Unit>
        <Options>-10 -5 0 5 10</Options>
    </MessageParameter>
</CommunicationRequestMessage>
```
Final Points

- OpenGIS standards are voluntary, but leverage common commercial platforms and user bases
- Most SensorNet applications will be geospatially enabled
- SensorNet sponsorship or participation in Open Web Services 2
Contact Information

- OpenGIS Consortium
 - http://www.opengeos.org
- Tom McCarty
 - mccartyt@saic.com