Architectural Considerations for Real-Time CORBA ORBs and Applications

David L. Levine
Washington University, St. Louis
levine@cs.wustl.edu

19 May 1998

Motivation for Real-time Middleware

- Many applications require QoS guarantees
 - e.g., telecom, avionics, WWW
- Existing middleware doesn’t support QoS effectively
 - e.g., CORBA, DCOM, DCE
- Solutions must be integrated
 - Vertically and horizontally

Candidate Solution: CORBA

- Goals of CORBA
 - Simplify distribution by automating
 - Object location and activation
 - Parameter marshaling
 - Demultiplexing
 - Error handling
 - Provide foundation for higher-level services

Limitations of CORBA for Real-time Systems

- Limitations
 - Lack of QoS specifications
 - Lack of QoS enforcement
 - Lack of real-time programming features
 - Lack of performance optimizations

Sponsors: Sprint, Siemens MED and ZT, OTI, NSF grant NCR-9628218, GDS, DARPA contract 9701516, and Boeing
The ACE ORB (TAO)

- TAO Overview
 - A high-performance, real-time ORB
 - Telecom and avionics focus
 - Leverages the ACE framework
 - Runs on RTOSs, POSIX, and Win32

- Related work
 - U. RI/MITRE
 - QuO, BBN
Solution: TAO’s Real-time Static Scheduling Service

- Integrate RT dispatcher into ORB endsystem
- Support multiple request scheduling strategies
 - e.g., RMS, EDF, and MUF
- Requests ordered across thread priorities by OS dispatcher
- Requests ordered within priorities based on data dependencies and importance

Real-time ORB Endsystem Use-case

- Construct call chains of RT_operations
- Identify threads
- Populate RT_Info

TAO’s Real-time Dynamic Scheduling Service

- Construct call chains of RT_info
- Assess schedulability
- Assign static priority (queue#), static subpriority

www.cs.wustl.edu/~schmidt/TAO.ps.gz
COS Event Service

- **Features**
 - Decoupled consumers and suppliers
 - Transparent group communication
 - Asynchronous communication
 - Abstraction for distribution
 - Abstraction for concurrency

www.cs.wustl.edu/~schmidt/report-doc.html

TAO's Event Service

- **Features**
 - Stream-based architecture
 - Subscription/filtering
 - Source and type-based filtering
 - Event correlations
 - Conjunctions (A∧B∧C)
 - Disjunctions (A∨B∨C)
 - Real-time scheduling support
 - Priority-based dispatching
 - Priority-based preemption
 - Interval timeouts
 - Deadline timeouts

RT Event Channel Use-cases

- **CONSUMERS**
 - Air Frame
 - HUD
 - Nav

 3push (demarshaled data)

- **SUPPLIERS**
 - Avionics

 3push (events)

Priority Inversion Experiments

- **Clients**
 - One high-priority client
 - 1..n low-priority clients

- **Server**
 - Server factory implements thread-per-priority
 - Highest real-time priority for high-priority client
 - Lowest real-time priority for low-priority clients

www.cs.wustl.edu/~schmidt/RT-perf.ps.gz
ORB Latency and Priority Inversion Results

- **Synopsis of results**
 - COOL’s latency is lower for small # of clients
 - TAO’s latency is lowest for large # of clients
 - TAO avoids priority inversion
 * i.e., high priority client always has lowest latency

ORB Jitter Results

- **Definition**
 - Variance from average latency
- **Synopsis of results**
 - TAO’s jitter is lowest and most consistent
 - MT-Orbix’s jitter is highest and more variable

Concluding Remarks

- Developers of distributed applications confront recurring challenges that are largely application-independent
 - e.g., service initialization and distribution, error handling, flow control, scheduling, event demultiplexing, concurrency control, persistence, fault tolerance
- Successful developers resolve these challenges by applying appropriate design patterns to create communication frameworks and components
- ORBs are an effective way to achieve reuse of distributed software components
- The next generation of ORBs will provide much better support for real-time QoS

For Further Information

- **These slides**: http://www.cs.wustl.edu/~levine/research/spartan98.pdf
- **More detail on TAO**: http://www.cs.wustl.edu/~schmidt/RT-ORB.ps.gz
- **TAO Event Channel**: http://www.cs.wustl.edu/~levine/research/JSAC98.ps.gz
- **TAO static scheduling**: http://www.cs.wustl.edu/~schmidt/TAO.ps.gz
- **ORB Endsystem Architecture**: http://www.cs.wustl.edu/~schmidt/RT-middleware.ps.gz
For Further Information

- **Performance Measurements:**

- **More detail on CORBA:** http://www.cs.wustl.edu/~schmidt/corba.html

- **ADAPTIVE Communication Environment (ACE):**