10.3 RF Diode Characteristics

Reading Assignment: pp. 514-521
Another important microwave component is a microwave switch.

HO: MICROWAVE SWITCHES

Microwave switches are often constructed with PIN diodes.

HO: PIN DIODES

Q: Just how are PIN diodes used to construct switches?

A: HO: PIN DIODE MICROWAVE SWITCHES

Microwave Switches

Consider an ideal microwave SPDT switch.

The scattering matrix will have one of two forms:

$$
\mathcal{S}_{13}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \quad \mathcal{S}_{23}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

where \mathcal{S}_{13} describes the device when port 1 is connected to port 3:

and where \mathcal{S}_{23} describes the device when port 2 is connected to port 3:

These ideal switches are called matched, or absorptive switches, as ports 1 and 2 remain matched, even when not connected.

This is in contrast to a reflective switch, where the disconnected port will be perfectly reflective, i.e.,

$$
\mathcal{S}_{13}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & e^{j \phi} & 0 \\
1 & 0 & 0
\end{array}\right]
$$

$$
\mathcal{S}_{23}=\left[\begin{array}{ccc}
e^{j \phi} & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

where of course $\left|e^{j \phi}\right|=1$.

1

3

Of course, just as with all ideal components, the ideal switch does not exist!

Using the fact that switches are reciprocal devices, we can write for \mathcal{S}_{13} for a non-ideal switch:

$$
\mathcal{S}_{13}=\left[\begin{array}{lll}
S_{11} & S_{21} & S_{31} \\
S_{21} & S_{22} & S_{32} \\
S_{31} & S_{32} & S_{33}
\end{array}\right]
$$

We can therefore consider the following parameters for specifying switch performance.

Insertion Loss

$$
I L=-10 \log _{10}\left|S_{31}\right|^{2}
$$

Insertion Loss indicates the loss encountered as a signal propagates through the switch. Ideally, this value is 0 dB . Typically, this value is around 1 dB .

Isolation

$$
\text { Isolation }=-10 \log _{10}\left|S_{32}\right|^{2}
$$

Isolation is a measure of how much power "leaks" into the disconnected port. Ideally, this value would be very largetypical switch isolation is $30-50 \mathrm{~dB}$.

Return Loss

$$
\text { Return Loss }=-10 \log _{10}\left|S_{11}\right|^{2}
$$

Just as we have always defined it! We of course want this value to very high (typical values are 20 to 40 dB). However, we find for reflective switches, this value can be nearly 0 dB for the disconnected port!

PIN Diodes

Q: Just how do we make switches and voltage controlled attenuators?

A: Typically, they are constructed with PIN diodes.

A PIN diode is simply a $p-n$ junction diode that is designed to have a very small junction capacitance (0.01 to 0.1 pf).
\rightarrow Sort of the opposite of the varactor diode!

To see why this is important, recall diode small signal analysis from your first electronics course.

In small signal analysis, the total diode voltage consists of a D.C. bias voltage $\left(V_{D}\right)$ and a small, time-varying signal $\left(v_{d}\right)$:

$$
v_{D}(t)=V_{D}+v_{d}(t)
$$

For radio engineering applications, the small signal is a microwave signal !!! I.E.,:

$$
v_{D}(t)=V_{D}+v_{R F}(t)
$$

Thus, we know that the diode current io is:

$$
i_{D}=I_{s}\left(\exp \left[\frac{V_{D}+V_{R F}(t)}{n V_{T}}\right]-1\right)
$$

Since $v_{R F}$ is very small, we can approximate this diode current $i_{D}\left(v_{D}\right)$ using a Taylor Series expansion around $v_{D}=V_{D}$:

$$
\begin{aligned}
i_{D}\left(v_{D}\right) & \left.\approx i_{D}\left(v_{D}\right)\right|_{V_{0} V_{0}}+\left.\frac{\partial i_{D}\left(v_{D}\right)}{\partial v_{D}}\right|_{V_{0}=V_{0}} v_{R F}(t) \\
& =I_{S}\left(e^{v_{D} / n V_{T}}-1\right)+\frac{I_{S} e^{D / n V_{T}}}{n V_{T}} v_{R F}(t)
\end{aligned}
$$

We recognize that:

$$
I_{S}\left(e^{V_{0} / n V_{T}}-1\right)=\text { D.C. Bias Current } \doteq I_{D}
$$

and thus we can write our small-signal approximation as:

$$
\begin{aligned}
i_{D} & =I_{D}+\frac{\left(I_{D}+I_{s}\right)}{n V_{T}} v_{R F}(t) \\
& =I_{D}+\frac{v_{R F}(t)}{r_{d}}
\end{aligned}
$$

where we have defined the diode small-signal resistance r_{d} as:

$$
r_{d}=\frac{n V_{T}}{I_{D}+I_{s}}
$$

The diode small-signal resistance is also often referred to as the junction resistance R_{j} or the series resistance R_{s}.

We can further conclude that the total diode current is is the sum of the D.C. bias current I_{D}, and the small-signal current $i_{R F}(f)$, where:

$$
i_{R F}(t)=\frac{v_{R F}(t)}{r_{d}}
$$

\rightarrow Just like Ohm's Law !

To a small (i.e., low power) microwave signal, a diode "looks" like a resistor.

Moreover, we can control and modify the resistance of the diode by changing the D.C. bias.

\rightarrow Sort of a voltage-controlled resistor!

For example, if we put the diode into forward bias ($V_{D} \gg n V_{T}$), the bias current I_{D} will be positive and big, thus the junction resistance will be very small (e.g., $r_{d}=a$ few ohms).
\rightarrow A forward biased diode is very nearly a microwave short circuit!

Not so fast! The small-signal resistance of a reverse biased diode is in fact very large. BUT, we must also consider the junction capacitance C_{j} !

Recall that in reverse bias, the junction capacitance of a diode can be significant, and in fact generally increases as the bias voltage becomes more negative!

As a result, a good microwave circuit model of a diode includes both the series resistance and junction capacitance:

For forward bias, where r_{d} is very small, we find that diode impedance Z_{D} is approximately equal to this small series resistance ($Z_{0} \approx r_{d}$)-a short circuit (approximately):

For reverse bias, where r_{d} is very large, we find that diode impedance Z_{D} is approximately equal to that of the junction capacitance C_{j} :

$$
\frac{1}{T^{r b}} Z_{0}^{r b} \frac{1}{j \omega C_{j}} \gg Z_{0}
$$

For low-frequencies (e.g., kHz), this impedance will be typically be very large and thus the diode can be approximate as an open circuit.

However, at microwave frequencies (where ω is very large) the reverse bias impedance $Z_{D}^{\text {rb }}$ may not be particularly large, and thus the reverse biased diode cannot be considered an open circuit.

In order for the impedance $Z_{0}^{r b}=1 / j \omega C_{j}$ to be very large at microwave frequencies, the junction capacitance C_{j} must be very, very small.

PIN diodes! I bet that's
 why we use PIN diodes!

That's exactly why! A PIN diode is approximately a (bias) voltage controlled resistor at microwave frequencies. We can select any value of r_{d} from a short to an open.

As a result, we can make many interesting devices!

PIN Diode

Microwave Switches

We can use PIN diodes to build microwave switches. There are two basic design configurations for a single pole switch. We first consider the series configuration.

Here the inductors are microwave chokes and the capacitors are DC blocking capacitors.

If the DC control voltage V_{c} is set such that the PIN diode is forward biased, the equivalent microwave circuit becomes:

Note that $\left|S_{11}\right| \approx 0$ and $\left|S_{22}\right| \approx 1$ for this case, so that the switch has clearly connected the source to the load.

In contrast, consider the equivalent microwave circuit if the DC control voltage V_{c} is set such that the PIN diode is reverse biased:

Note that $\left|S_{11}\right| \approx 1$ and $\left|S_{21}\right| \approx 0$ for this case, so that the switch has clearly disconnected the source from the load. Likewise, the input impedance of this switch has a very large magnitude-effectively an open circuit.

We now consider the shunt configuration:

where the inductors are microwave chokes and the capacitors are DC blocking capacitors.

If the DC control voltage V_{c} is set such that the PIN diode is forward biased, the equivalent microwave circuit becomes:

Note that $\left|S_{11}\right| \approx 1$ and $\left|S_{21}\right| \approx 0$ for this case, so that the switch has clearly disconnected the source from the load. Likewise, the input impedance of this switch has a very small magnitude-effectively a short circuit.

In contrast, consider the equivalent microwave circuit if the DC control voltage V_{c} is set such that the PIN diode is reverse biased:

Note that $\left|S_{11}\right| \approx 0$ and $\left|S_{21}\right| \approx 1$ for this case, so that the switch has clearly connected the source to the load.

Q: But these are both SPST microwave switches. What about a (three-port) SPDT switch?

A: We can easily construct such a switch using the basic elements shown above. For example, a reflective switch would be (where DC bias elements have been ignored):

While an absorptive switch could be constructed as (where again the DC bias elements have been ignored):

In this case, the port (1 or 2) disconnected from port 3 is connected to a matched load.

