2.6-Generator and Load Mismatches

Reading Assignment: pp. 77-79
Q: How is the incident wave $V^{+}(z)$ generated on a transmission line?

A: With a power source (i.e., generator)!

HO: A TRANSMISSION LINE CONNECTING SOURCE AND LOAD

EXAMPLE: BOUNDARY CONDITIONS AND SOURCES

Q: So, how can we determine the power delivered by a source?

A: HO: DELIVERED Power

Q: So how do we insure that the delivered power is as large as possible?

A: HO: SPECIAL CASES OF SOURCE AND LOAD IMPEDANCE

Example: Conservation of Energy and you

A Transmission Line

Connecting Source \& Load

We can think of a transmission line as a conduit that allows power to flow from an output of one device/network to an input of another.

To simplify our analysis, we can model the input of the device receiving the power with it input impedance (e.g., Z_{L}), while we can model the device output delivering the power with its Thevenin's or Norton's equivalent circuit.

Typically, the power source is modeled with its Thevenin's equivalent; however, we will find that the Norton's equivalent circuit is useful if we express the remainder of the circuit in terms of its admittance values (e.g., $y_{0}, y_{L}, y(z)$).

Recall from the telegrapher's equations that the current and voltage along the transmission line are:

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \beta z}-\frac{V_{0}^{-}}{Z_{0}} e^{+j \beta z}
\end{aligned}
$$

At $z=0$, we enforced the boundary condition resulting from Ohm's Law:

$$
Z_{L}=\frac{V_{L}}{I_{L}}=\frac{V(z=0)}{I(z=0)}=\frac{\left(V_{0}^{+}+V_{0}^{-}\right)}{\left(\frac{V_{0}^{+}}{Z_{0}}-\frac{V_{0}^{-}}{Z_{0}}\right)}
$$

Which resulted in:

$$
\frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \doteq \Gamma_{L}
$$

So therefore:

$$
\begin{aligned}
& V(z)=V_{0}^{+}\left[e^{-j \beta z}+\Gamma_{L} e^{+j \beta z}\right] \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{-j \beta z}-\Gamma_{L} e^{+j \beta z}\right]
\end{aligned}
$$

We are left with the question: just what is the value of complex constant V_{0}^{+}?!?

This constant depends on the signal source! To determine its exact value, we must now apply boundary conditions at $z=-\ell$.

We know that at the beginning of the transmission line:

$$
\begin{aligned}
& V(\boldsymbol{z}=-\ell)=V_{0}^{+}\left[e^{+j \beta \ell}+\Gamma_{L} e^{-j \beta \ell}\right] \\
& I(\boldsymbol{z}=-\ell)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{+j \beta \ell}-\Gamma_{L} e^{-j \beta \ell}\right]
\end{aligned}
$$

Likewise, we know that the source must satisfy:

$$
V_{g}=V_{i}+Z_{g} I_{i}
$$

To relate these three expressions, we need to apply boundary conditions at $z=-\ell$:

From KVL we find:

$$
V_{i}=V(z=-\ell)
$$

And from KCL:

$$
I_{i}=I(z=-\ell)
$$

Combining these equations, we find:

$$
\begin{aligned}
& V_{g}=V_{i}+Z_{g} I_{i} \\
& V_{g}=V_{0}^{+}\left[e^{+j \beta l}+\Gamma_{L} e^{-j \beta l}\right]+Z_{g} \frac{V_{0}^{+}}{Z_{0}}\left[e^{+j \beta l}-\Gamma_{L} e^{-j \beta l}\right]
\end{aligned}
$$

One equation \rightarrow one unknown $\left(V_{0}^{+}\right)!!$
Solving, we find the value of V_{0}^{+}:

$$
V_{0}^{+}=V_{g} e^{-j \beta \ell} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{g}\left(1-\Gamma_{i n}\right)}
$$

where:

$$
\Gamma_{i n}=\Gamma(z=-\ell)=\Gamma_{L} e^{-j 2 \beta \ell}
$$

Note this result looks different than the equation in your textbook (eq. 2.71):

$$
V_{0}^{+}=V_{g} \frac{Z_{0}}{Z_{0}+Z_{g}} \frac{e^{-j \beta \ell}}{\left(1-\Gamma_{L} \Gamma_{g} e^{-j 2 \beta \ell}\right)}
$$

where:

$$
\Gamma_{g} \doteq \frac{Z_{g}-Z_{0}}{Z_{g}+Z_{0}}
$$

I like my expression better.
Although the two equations are equivalent, my expression is explicitly written in terms of $\Gamma_{\text {in }}=\Gamma(z=-\ell)$ (a very useful, precise, and unambiguous value), while the book's expression is written in terms of this so-called "source reflection coefficient" Γ_{g} (a misleading, confusing, ambiguous, and mostly useless value).

Specifically, we might be tempted to equate Γ_{g} with the value $\Gamma(z=-\ell)=\Gamma_{\text {in }}$, but it is not $\left(\Gamma_{g} \neq \Gamma(z=-\ell)\right)$!

There is one very important point that must be made about the result:

$$
V_{0}^{+}=V_{g} e^{-j \beta \ell} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{g}\left(1-\Gamma_{i n}\right)}
$$

And that is-the wave $V_{0}^{+}(z)$ incident on the load Z_{L} is actually dependent on the value of load $Z_{L}!!!!!$

Remember:

$$
\Gamma_{i n}=\Gamma(z=-\ell)=\Gamma_{L} e^{-j 2 \beta \ell}
$$

We tend to think of the incident wave $V_{0}^{+}(z)$ being "caused" by the source, and it is certainly true that $V_{0}^{+}(z)$ depends on the source-after all, $V_{0}^{+}(z)=0$ if $V_{g}=0$. However, we find from the equation above that it likewise depends on the value of the load!

Thus we cannot-in general-consider the incident wave to be the "cause" and the reflected wave the "effect". Instead, each wave must obtain the proper amplitude (e.g., V_{0}^{+}, V_{0}^{-}) so that the boundary conditions are satisfied at both the beginning and end of the transmission line.

Example: Boundary Conditions and Sources

Consider the circuit below:

It is known that the current along the transmission line is:

$$
I(z)=0.4 e^{-j \beta z}-B e^{+j \beta z} \quad A \text { for } z>0
$$

where B is some unknown complex value.

Determine the value of B.

Hint: $B \neq-0.6$

Solution

Since the line current is:

$$
I(z)=0.4 e^{-j \beta z}-B e^{+j \beta z}=I_{0}^{+} e^{-j \beta z}+I_{0}^{-} e^{+j \beta z}
$$

we conclude that:

$$
I_{0}^{+}=0.4 \text { and } I_{0}^{-}=-B
$$

and since:

$$
V_{0}^{+}=Z_{0} I_{0}^{+} \quad \text { and } \quad V_{0}^{-}=-Z_{0} I_{0}^{-}
$$

we conclude:
$V_{0}^{+}=Z_{0} I_{0}^{+}=50(0.4)=20.0$ and $V_{0}^{-}=-Z_{0} I_{0}^{-}=-50(-B)=50 B$

Therefore, the voltage along this transmission line is:

$$
\begin{aligned}
V(z) & =V^{+}(z)+V^{-}(z) \\
& =V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z} \\
& =20 e^{-j \beta z}+50 B e^{+j \beta z}
\end{aligned}
$$

Now, from KCL we find the boundary condition imposed by the source:
where:

$$
1.0-\frac{V(z=0)}{25}=I(z=0)
$$

$$
\begin{aligned}
I(z=0) & =0.4 e^{-j \beta(0)}-B e^{+j \beta(0)} \\
& =0.4-B
\end{aligned}
$$

and:

$$
\begin{aligned}
V(z=0) & =20 e^{-j \beta(0)}+50 B e^{+j \beta(0)} \\
& =20+50 B
\end{aligned}
$$

Thus combining the three previous equations:

$$
1.0-\frac{20+50 B}{25}=0.4-B
$$

One equation and one unknown! Solving for B :

$$
B=1.0-0.8-0.4=-0.2
$$

Delivered Power

Q: If the purpose of a transmission line is to transfer power from a source to a load, then exactly how much power is delivered to Z_{L} for the circuit shown below ??

A: We of course could determine V_{0}^{+}and V_{0}^{-}, and then determine the power absorbed by the load ($\rho_{a b s}$) as:

$$
P_{a b s}=\frac{1}{2} \operatorname{Re}\left\{V(z=0) I^{*}(z=0)\right\}
$$

However, if the transmission line is lossless, then we know that the power delivered to the load must be equal to the power "delivered" to the input ($P_{\text {in }}$) of the transmission line:

$$
P_{a b s}=P_{i n}=\frac{1}{2} \operatorname{Re}\left\{V(z=-\ell) I^{*}(z=-\ell)\right\}
$$

However, we can determine this power without having to solve for V_{0}^{+}and V_{0}^{-}(i.e., $V(z)$ and $I(z)$). We can simply use our knowledge of circuit theory!

We can transform load Z_{L} to the beginning of the transmission line, so that we can replace the transmission line with its input impedance $Z_{i n}$:

Note by voltage division we can determine:

$$
V(z=-\ell)=V_{g} \frac{Z_{i n}}{Z_{g}+Z_{i n}}
$$

And from Ohm's Law we conclude:

$$
I(z=-\ell)=\frac{V_{g}}{Z_{g}+Z_{i n}}
$$

And thus, the power $P_{\text {in }}$ delivered to $Z_{\text {in }}$ (and thus the power $P_{a b s}$ delivered to the load Z_{L}) is:

$$
\begin{aligned}
P_{a b s} & =P_{i n}=\frac{1}{2} \operatorname{Re}\left\{V(z=-\ell) I^{*}(z=-\ell)\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{V_{g} \frac{Z_{i n}}{Z_{g}+Z_{i n}} \frac{V_{g}^{*}}{\left(Z_{g}+Z_{i n}\right)^{*}}\right\} \\
& =\frac{1}{2} \frac{\left|V_{g}\right|^{2}}{\left|Z_{g}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Z_{i n}\right\} \\
& =\frac{1}{2}\left|V_{g}\right|^{2} \frac{\left|Z_{i n}\right|^{2}}{\left|Z_{g}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Y_{i n}\right\}
\end{aligned}
$$

Note that we could also determine $P_{a b s}$ from our earlier expression:

$$
P_{a b s}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right)
$$

But we would of course have to first determine $V_{0}^{+}(!)$:

$$
V_{0}^{+}=V_{g} e^{-j \beta \ell} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{g}\left(1-\Gamma_{i n}\right)}
$$

Special Cases of Source and Load Impedance

Let's look at specific cases of Z_{g} and Z_{L}, and determine how they affect V_{0}^{+}and $P_{a b s}$.

$$
Z_{g}=Z_{0}
$$

For this case, we find that V_{0}^{+}simplifies greatly:

$$
\begin{aligned}
V_{0}^{+} & =V_{g} e^{-j \beta \ell} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{g}\left(1-\Gamma_{i n}\right)} \\
& =V_{g} e^{-j \beta l} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{0}\left(1-\Gamma_{i n}\right)} \\
& =V_{g} e^{-j \beta l} \frac{1}{1+\Gamma_{i n}+1-\Gamma_{i n}} \\
& =\frac{1}{2} V_{g} e^{-j \beta l}
\end{aligned}
$$

Look at what this says!
It says that the incident wave in this case is independent of the load attached at the other end!

Thus, for the one case $Z_{g}=Z_{0}$, we in fact can consider $V^{+}(z)$ as being the source wave, and then the reflected wave $V^{-}(z)$ as being the result of this stimulus.

Remember, the complex value V_{0}^{+}is the value of the incident wave evaluated at the end of the transmission line $\left(V_{0}^{+}=V^{+}(z=0)\right)$. We can likewise determine the value of the incident wave at the beginning of the transmission line (i.e., $V^{+}(z=-\ell)$). For this case, where $Z_{g}=Z_{0}$, we find that this value can be very simply stated (!):

$$
\begin{aligned}
V^{+}(z=-\ell) & =V_{0}^{+} e^{-j \beta(z=-\ell)} \\
& =\left(\frac{1}{2} V_{g} e^{-j \beta \ell}\right) e^{+j \beta \ell} \\
& =\frac{V_{g}}{2}
\end{aligned}
$$

Likewise, we find that the delivered power for this case can be simply stated as:

$$
\begin{aligned}
P_{a b s} & =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right) \\
& =\frac{\left|V_{g}\right|^{2}}{8 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right)
\end{aligned}
$$

In this case, we find that $\Gamma_{L}=0$, and thus $\Gamma_{\text {in }}=0$. As a result:

$$
\begin{aligned}
V_{0}^{+} & =V_{g} e^{-j \beta \ell} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{g}\left(1-\Gamma_{i n}\right)} \\
& =V_{g} e^{-j \beta \ell} \frac{Z_{0}}{Z_{0}+Z_{g}}
\end{aligned}
$$

Likewise, we find that:

$$
P_{a b s}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right)=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}
$$

Here the delivered power $P_{a b s}$ is simply that of the incident wave (P^{+}), as the matched condition causes the reflected power to be zero ($P^{-}=0$)!

Inserting the value of V_{0}^{+}, we find:

$$
\begin{aligned}
P_{a b s} & =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}} \\
& =\frac{\left|V_{g}\right|^{2}}{2 Z_{0}} \frac{\left(Z_{0}\right)^{2}}{\left|Z_{0}+Z_{g}\right|^{2}} \\
& =\frac{\left|V_{g}\right|^{2}}{2} \frac{Z_{0}}{\left|Z_{0}+Z_{g}\right|^{2}}
\end{aligned}
$$

Note that this result can likewise be found by recognizing that $Z_{\text {in }}=Z_{0}$ when $Z_{L}=Z_{0}$:

$$
\begin{aligned}
P_{a b s} & =\frac{1}{2} \frac{\left|V_{g}\right|^{2}}{\left|Z_{g}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Z_{i n}\right\} \\
& =\frac{1}{2} \frac{\left|V_{g}\right|^{2}}{\left|Z_{g}+Z_{0}\right|^{2}} Z_{0} \\
& =\frac{\left|V_{g}\right|^{2}}{2} \frac{Z_{0}}{\left|Z_{g}+Z_{0}\right|^{2}}
\end{aligned}
$$

$$
Z_{i n}=Z_{g}^{*}
$$

For this case, we find Z_{L} takes on whatever value required to make $Z_{\text {in }}=Z_{g}^{*}$. This is a very important case!

First, using the fact that:

$$
\Gamma_{i n}=\frac{Z_{i n}-Z_{0}}{Z_{i n}+Z_{0}}=\frac{Z_{g}^{*}-Z_{0}}{Z_{g}^{*}+Z_{0}}
$$

We can show that (trust me!):

$$
V_{0}^{+}=V_{g} e^{-j \beta t} \frac{Z_{g}^{*}+Z_{0}}{4 \operatorname{Re}\left\{Z_{g}\right\}}
$$

Not a particularly interesting result, but let's look at the absorbed power.

$$
\begin{aligned}
P_{a b s} & =\frac{1}{2} \frac{\left|V_{g}\right|^{2}}{\left|Z_{g}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Z_{i n}\right\} \\
& =\frac{1}{2} \frac{\left|V_{g}\right|^{2}}{\left|Z_{g}+Z_{g}^{*}\right|^{2}} \operatorname{Re}\left\{Z_{g}^{*}\right\} \\
& =\frac{1}{2} \frac{\left|V_{g}\right|^{2}}{\mid 2 \operatorname{Re}\left\{\left.Z_{g}^{*}\right|^{2}\right.} \operatorname{Re}\left\{Z_{g}^{*}\right\} \\
& =\frac{1}{2}\left|V_{g}\right|^{2} \frac{1}{4 \operatorname{Re}\left\{Z_{g}^{*}\right\}} \doteq P_{a v 1}
\end{aligned}
$$

Although this result does not look particularly interesting either, we find the result is very important!

It can be shown that-for a given V_{g} and Z_{g}-the value of input impedance $Z_{\text {in }}$ that will absorb the largest possible amount of power is the value $Z_{i n}=Z_{g}^{*}$.

This case is known as the conjugate match, and is essentially the goal of every transmission line problem-to deliver the largest possible power to $Z_{\text {in }}$, and thus to Z_{L} as well!

This maximum delivered power is known as the available power ($P_{\text {avl }}$) of the source.

There are two very important things to understand about this result!

Very Important Thing \#1

Consider again the terminated transmission line:

Recall that if $Z_{L}=Z_{0}$, the reflected wave will be zero, and the absorbed power will be:

$$
P_{a b s}=\frac{\left|V_{g}\right|^{2}}{2} \frac{Z_{0}}{\left|Z_{0}+Z_{g}\right|^{2}} \leq P_{a v /}
$$

But note if $Z_{L}=Z_{0}$, the input impedance $Z_{\text {in }}=Z_{0}$-but then $Z_{\text {in }} \neq Z_{g}^{*}$ (generally)! In other words, $Z_{L}=Z_{0}$ does not (generally) result in a conjugate match, and thus setting $Z_{L}=Z_{0}$ does not result in maximum power absorption!

Q: Huh!? This makes no sense! A load value of $Z_{L}=Z_{0}$ will minimize the reflected wave ($P^{-}=0$)-all of the incident power will be absorbed.

Any other value of $Z_{L}=Z_{0}$ will result in some of the incident wave being reflected-how in the world could this increase absorbed power?

After all, just look at the expression for absorbed power:

$$
P_{a b s}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right)
$$

Clearly, this value is maximized when $\Gamma_{L}=0$ (i.e., when $Z_{L}=Z_{0}$)!!!

A: You are forgetting one very important fact! Although it is true that the load impedance Z_{L} affects the reflected wave power P^{-}, the value of Z_{L}-as we have shown in this handoutlikewise helps determine the value of the incident wave (i.e., the value of P^{+}) as well.

* Thus, the value of Z_{L} that minimizes P^{-}will not generally maximize P^{+}!
* Likewise the value of Z_{L} that maximizes P^{+}will not generally minimize P^{-}.
* Instead, the value of Z_{L} that maximizes the absorbed power $P_{a b s}$ is, by definition, the value that maximizes the difference $P^{+}-P^{-}$.

We find that this impedance Z_{L} is the value that results in the ideal case of $Z_{\text {in }}=Z_{g}^{*}$.

Q: Yes, but what about the case where $Z_{g}=Z_{0}$? For that case, we determined that the incident wave is independent of Z_{L}. Thus, it would seem that at least for that case, the delivered power would be maximized when the reflected power was minimized (i.e., $Z_{L}=Z_{0}$).

A: True! But think about what the input impedance would be in that case $-Z_{\text {in }}=Z_{0}$. Oh by the way, that provides a conjugate match $\left(Z_{\text {in }}=Z_{0}=Z_{g}^{*}\right)$!

Thus, in some ways, the case $Z_{g}=Z_{0}=Z_{L}$ (i.e., both source and load impedances are numerically equal to Z_{0}) is ideal. A conjugate match occurs, the incident wave is independent of Z_{L}, there is no reflected wave, and all the math simplifies quite nicely:

$$
V_{0}^{+}=\frac{1}{2} V_{g} e^{-j \beta l} \quad P_{a b s}=P_{a v l}=\frac{\left|V_{g}\right|^{2}}{8 Z_{0}}
$$

Very Important Thing \#2

Note the conjugate match criteria says:
Given source impedance Z_{g}, maximum power transfer occurs when the input impedance is set at value $Z_{\text {in }}=Z_{g}^{*}$.

It does NOT say:
Given input impedance $Z_{\text {in }}$, maximum power transfer occurs when the source impedance is set at value $Z_{g}=Z_{i n}^{*}$.

This last statement is in fact false!
A factual statement is this:
Given input impedance $Z_{\text {in }}$, maximum power transfer occurs when the source impedance is set at value $Z_{g}=0-j X_{i n}$ (i.e., $R_{g}=0$).

Q: Huh??

A: Remember, the value of source impedance Z_{g} affects the available power $P_{a v /}$ of the source. To maximize $P_{a v /}$, the real (resistive) component of the source impedance should be as small as possible (regardless of $Z_{\text {in }}$!), a fact that is evident when observing the expression for available power:

$$
P_{a v \prime}=\frac{1}{2}\left|V_{g}\right|^{2} \frac{1}{4 \operatorname{Re}\left\{Z_{g}^{*}\right\}}=\frac{\left|V_{g}\right|^{2}}{8 R_{g}}
$$

Thus, maximizing the power delivered to a load $\left(P_{a b s}\right)$, from a source, has two components:

1. Maximize the power available ($P_{a v /}$) from a source (e.g., minimize R_{g}).
2. Extract all of this available power by setting the input impedance $Z_{i n}$ to a value $Z_{i n}=Z_{g}^{*}$ (thus $P_{a b s}=P_{a v l}$).

Example: Conservation of Energy and You

Consider this circuit, where the transmission line is lossless and has length $\ell=\lambda / 4$:

The wave incident on the load Z_{L} has power of $P_{\text {inc }}=0.49 \mathrm{~W}$.
The wave reflected from the load Z_{L} has power of $P_{\text {ref }}=0.09 \mathrm{~W}$.

Determine the magnitude of source voltage V_{g} (i.e., determine $\left|V_{g}\right|$).

Hint: This is not a boundary condition problem. Do not attempt to find $K(z)$ and/or $I(z)$!

Solution

From conservation of energy, we find the power absorbed by the load must be:

$$
\begin{aligned}
P_{a b s} & =P_{i n c}-P_{r e f} \\
& =0.49-0.09 \\
& =0.4 \mathrm{~W}
\end{aligned}
$$

Since the transmission line is lossless, this absorbed power must likewise be the power delivered to the input of the transmission line (i.e., the power absorbed by input impedance $Z_{i n}$).

$$
P_{i n}=P_{a b s}=0.40 \mathrm{~W}
$$

Note the transmission line length has the special case $\ell=\lambda / 4$, therefore the input impedance is easily computed:

$$
Z_{i n}=\frac{Z_{0}^{2}}{Z_{L}}=\frac{50^{2}}{125}=20 \Omega
$$

A conjugate match $\left(Z_{\text {in }}=Z_{g}^{*}\right)$!

Thus, the power absorbed by $Z_{\text {in }}$ (i.e., $P_{i n}$) is:

$$
\begin{aligned}
P_{i n} & =\frac{1}{2} \operatorname{Re}\left\{V_{i n} I_{i n}^{*}\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{\left(\frac{V_{g}}{2}\right)\left(\frac{V_{g}^{*}}{20+20}\right)\right\} \\
& =\frac{1}{8} \operatorname{Re}\left\{\left|V_{g}\right|^{2}\right\} \frac{1}{20} \\
& =\frac{\left|V_{g}\right|^{2}}{160}
\end{aligned}
$$

And since we know that $P_{\text {in }}=0.4 \mathrm{~W}$, we can conclude:

$$
\rho_{\text {in }}=0.4=\frac{\left|V_{g}\right|^{2}}{160} \quad \Rightarrow \quad\left|V_{g}\right|=\sqrt{160(0.4)}=8.0 \quad \mathrm{~V}
$$

