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2.6 – Generator and Load Mismatches 
 

Reading Assignment: pp. 77-79 
 
Q:  How is the incident wave ( )V z+  generated on a 
transmission line? 
 
A:  With a power source (i.e., generator)! 
 
HO: A TRANSMISSION LINE CONNECTING SOURCE AND LOAD 
 
EXAMPLE: BOUNDARY CONDITIONS AND SOURCES 
 
Q: So, how can we determine the power delivered by a 
source? 
 
A:  HO: DELIVERED POWER 
 
Q: So how do we insure that the delivered power is as large as 
possible? 
 
A:  HO: SPECIAL CASES OF SOURCE AND LOAD IMPEDANCE 
 
EXAMPLE: CONSERVATION OF ENERGY AND YOU 
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A Transmission Line 
Connecting Source & Load 

 
 
We can think of a transmission line as a conduit that allows 
power to flow from an output of one device/network to an input 
of another. 
 
To simplify our analysis, we can model the input of the device 
receiving the power with it input impedance (e.g., ZL), while we 
can model the device output delivering the power with its 
Thevenin’s or Norton’s equivalent circuit. 
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Typically, the  power source is modeled with its Thevenin’s 
equivalent; however, we will find that the Norton’s equivalent 
circuit is useful if we express the remainder of the circuit in 
terms of its admittance values (e.g., 0, , ( )LY Y Y z ).                                     
 
 
 
 
 
 
 
 
 
 
Recall from the telegrapher’s equations that the current and 
voltage along the transmission line are: 
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At 0z = , we enforced the boundary condition resulting from 
Ohm’s Law: 
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Which resulted in: 
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So therefore: 
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We are left with the question: just what is the value of complex 
constant 0V + ?!? 
 
This constant depends on the signal source!  To determine its 
exact value, we must now apply boundary conditions at z = − . 
 
We know that at the beginning of the transmission line: 
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Likewise, we know that the source must satisfy: 
 

g i g iV V Z I= +  
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To relate these three expressions, we need to apply boundary 
conditions at z = − : 
 
 
 
 
 
 
 
 
 
 
From KVL we find: 

( )iV V z= = −  
 

And from KCL: 
( )iI I z= = −  

 
Combining these equations, we find: 
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One equation  one unknown ( 0V + )!! 

 
Solving, we find the value of 0V + : 
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where: 

( ) 2j
in Lz e β−Γ = Γ = − = Γ  

 
Note this result looks different than the equation in your 
textbook (eq. 2.71): 
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I like my expression better. 
 
Although the two equations are equivalent, my expression is 
explicitly written in terms of ( )in zΓ = Γ = −  (a very useful, 
precise, and unambiguous value), while the book’s expression is 
written in terms of this so-called “source reflection 
coefficient” gΓ  (a misleading, confusing, ambiguous, and mostly 
useless value). 
 
Specifically, we might be tempted to equate gΓ  with the value  
( ) inzΓ = − = Γ , but it is not  ( ( )g zΓ ≠ Γ = − )!  
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There is one very important point that must be made about the 
result: 
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0

0
0 1 1

j
g

in g in

ZV V e
Z Z

β−+ =
+ Γ + − Γ

 

 
And that is—the wave ( )0V z+  incident on the load ZL is actually 
dependent on the value of load ZL !!!!! 
 
Remember: 

( ) 2j
in Lz e β−Γ = Γ = − = Γ  

 
We tend to think of the incident wave ( )0V z+  being “caused” by 
the source, and it is certainly true that ( )0V z+  depends on the 
source—after all, ( )0 0V z+ =  if 0gV = .  However, we find from 
the equation above that it likewise depends on the value of the 
load! 
 
Thus we cannot—in general—consider the incident wave to be 
the “cause” and the reflected wave the “effect”.  Instead, each 
wave must obtain the proper amplitude (e.g., 0 0,V V+ − ) so that the 
boundary conditions are satisfied at both the beginning and end 
of the transmission line. 
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Example: Boundary 
Conditions and Sources 

 
Consider the circuit below: 
 
 
 
 
 
 
 
 
 
 
 
 
It is known that the current along the transmission line is: 
 

( ) 0.4 for  > 0j z j zI z e Be A z− += −β β  
 

where B is some unknown complex value. 
 

 
Determine the value of B. 

 
 
Hint:  0 6B .≠ −  
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Solution 
 
Since the line current is: 
 

( ) 0 00.4 j z j z j z j zI z e Be I e I eβ β β β− + − ++ −= − = +  
 

we conclude that: 
 

0 00.4 andI I B+ −= = −  
 

and since: 
 

0 0 0 0 0 0andV Z I V Z I+ + − −= = −  
 

we conclude: 
 

( ) ( )0 0 0 0 0 050 0.4 20.0 and 50 50V Z I V Z I B B+ + − −= = = = − = − − =
 
Therefore, the voltage along this transmission line is: 
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Now, from KCL we find the boundary condition imposed by the source: 
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and: 

( ) ( ) ( )0 00 20 50
20 50

j jV z e B e
B

β β− += = +

= +
 

 
Thus combining the three previous equations: 
 

20 501 0 0 4
25

B. . B+
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One equation and one unknown! Solving for B: 

 
1 0 0 8 0 4 0 2B . . . .= − − = −  
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Delivered Power 
 
Q:  If the purpose of a transmission line is to transfer power 
from a source to a load, then exactly how much power is 
delivered to ZL for the circuit shown below ?? 
 
 
 
 
 
 
 
 
 
A:  We of course could determine 0 0 and V V+ − , and then 
determine the power absorbed by the load (Pabs) as: 
 

( ) ( ){ }1 Re 0 0
2absP V z I z∗= = =  

 
However, if the transmission line is lossless, then we know that 
the power delivered to the load must be equal to the power 
“delivered” to the input (Pin)  of the transmission line: 
 

( ) ( ){ }1 Re
2inabsP P V z I z∗= = = − = −  

 

+ 
- 

Vg ( )V z
+

−
 

( )I z  

LZ  
 

z = −  0z =  

0Z  
gZ  

 Zin 



 

2/16/2009 Delivered Power 2/3 

Jim Stiles The Univ. of Kansas  Dept. of EECS  

However, we can determine this power without having to solve 
for 0 0 and V V+ −  (i.e., ( ) ( ) and  V z I z ).  We can simply use our 
knowledge of circuit theory! 
 
We can transform load ZL to  the beginning of the transmission 
line,  so that we can replace the transmission line with its input 
impedance Zin : 
 
 
 
 
 
 
 
 
 
Note by voltage division we can determine: 
 

( ) in
g

g in

ZV z V
Z Z

= − =
+

 

 
And from Ohm’s Law we conclude: 
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And thus, the power Pin  delivered to Zin  (and thus the power 
Pabs delivered to the load ZL) is: 
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Note that we could also determine Pabs from our earlier 
expression: 
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But we would of course have to first determine 0V + (! ): 
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Special Cases of Source 
and Load Impedance 

 
Let’s look at specific cases of Zg and ZL, and determine how 
they affect 0V +  and  Pabs. 
 
 
 

0gZ Z=  
 
 
For this case, we find that 0V +  simplifies greatly: 
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Look at what this says! 
 
It says that the incident wave in this case is independent of 
the load attached at the other end! 
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Thus, for the one case 0gZ Z= , we in fact can consider ( )V z+  
as being the source wave, and then the reflected wave ( )V z−  
as being the result of this stimulus. 
 
Remember, the complex value 0V +  is the value of the incident 
wave evaluated at the end of the transmission line 
( ( )0 0V V z+ += = ). We can likewise determine the value of the 
incident wave at the beginning of the transmission line (i.e., 

( )V z+ = − ).  For this case, where 0gZ Z= , we find that this 
value can be very simply stated (!): 
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Likewise, we find that the delivered power for this case can 
be simply stated as: 
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0LZ Z=  

 
 
In this case, we find that 0LΓ = ,  and thus 0inΓ = .  As a 
result: 
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Likewise, we find that: 
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Here the delivered power absP  is simply that of the incident 
wave (P + ), as the matched condition causes the reflected 
power to be zero ( 0P − = )! 
 
Inserting the value of 0V + , we find: 
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Note that this result can likewise be found by recognizing 
that 0inZ Z=  when 0LZ Z= : 
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 in gZ Z ∗=  
 
 
For this case, we find ZL takes on whatever value required to 
make in gZ Z ∗= .  This is a very important case! 
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First, using the fact that: 
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We can show that (trust me!): 
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Not a particularly interesting result, but let’s look at the 
absorbed power. 

{ }

{ }

{ }
{ }

{ }

2

2

2

2

2

2

2

1 1
2

1 Re
2

1 Re
2

1 R
2 2 e

4R

e
R

e

g
inabs

g in

g
g

g

g av

g

g

g

g

l

g

V
P Z

Z Z

V
Z

Z

V P

Z
Z

Z

Z

V

∗

∗

∗

∗

∗

=
+

=

=

=

+  

 
Although this result does not look particularly interesting 
either, we find the result is very important! 
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It can be shown that—for a given gV  and gZ  —the value of 
input impedance Zin  that will absorb the largest possible 
amount of power is the value in gZ Z ∗= . 
 
This case is known as the conjugate match, and is essentially  
the goal of every transmission line problem—to deliver the 
largest possible power to Zin

 , and thus to ZL as well!  
 
This maximum delivered power is known as the available 
power (Pavl) of the source. 
 
There are two very important things to understand about this 
result! 
 
       Very Important Thing #1 
 
            Consider again the terminated transmission line: 
 
 
 
 
 
 
 
 
 
Recall that if 0LZ Z= , the reflected wave will be zero, and 
the absorbed power will be: 
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But note if 0LZ Z= , the input impedance 0inZ Z= —but then 

*
in gZ Z≠  (generally)!  In other words, 0LZ Z=  does not 

(generally) result in a conjugate match, and thus setting 
0LZ Z=  does not result in maximum power absorption! 

 
Q:  Huh!? This makes no sense! A load value of  0LZ Z=  will 
minimize the reflected wave ( 0P − = )—all of the incident 
power will be absorbed.   
 
Any other value of 0LZ Z=  will result in some of the incident 
wave being reflected—how in the world could this increase 
absorbed power?   
 
After all, just look at the expression for absorbed power: 
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Clearly, this value is maximized when 0LΓ =  (i.e., when 

0LZ Z= )!!! 
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A:  You are forgetting one very important fact!  Although it is 
true that the load impedance LZ  affects the reflected wave 
power P − , the value of LZ —as we have shown in this handout—
likewise helps determine the value of the incident wave (i.e., 
the value of  P + ) as well. 
 

* Thus, the value of LZ  that minimizes P −  will not generally 
maximize P + !  

 
* Likewise the value of LZ  that maximizes P +  will not 

generally minimize P − . 
 

* Instead, the value of LZ  that maximizes the absorbed 
power absP  is, by definition, the value that maximizes the 
difference P P+ −− . 

 
We find that this impedance LZ  is the value that results in 
the ideal case of in gZ Z ∗= . 
 
Q:  Yes, but what about the case where 0gZ Z= ?  For that 
case, we determined that the incident wave is independent of 

LZ .  Thus, it would seem that at least for that case, the 
delivered power would be maximized when the reflected 
power was minimized (i.e., 0LZ Z= ). 
 
A:  True!  But think about what the input impedance would be 
in that case— 0inZ Z= .  Oh by the way, that provides a 
conjugate match ( 0in gZ Z Z ∗= = )! 
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Thus, in some ways, the case 0g LZ Z Z= =  (i.e., both source 
and load impedances are numerically equal to Z0) is ideal.  A 
conjugate match occurs, the incident wave is independent of 

LZ , there is no reflected wave, and all the math simplifies 
quite nicely: 

0
1
2

j
gV V e β−+ =                       

2

08
g

abs avl

V
P P

Z
= =  

 
        Very Important Thing #2 
 
             Note the conjugate match criteria says:  
 
Given source impedance gZ , maximum power transfer occurs 
when the input impedance is set at value in gZ Z ∗= .  
 
It does NOT say: 
 
Given input impedance inZ , maximum power transfer occurs 
when the source impedance is set at value g inZ Z ∗= . 
 
This last statement is in fact false! 
 
A factual statement is this: 
 
Given input impedance inZ , maximum power transfer occurs 
when the source impedance is set at value 0g inZ jX= −  (i.e., 

0gR = ). 
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Q:  Huh?? 
 
A:  Remember, the value of source impedance gZ  affects the 
available power avlP  of the source.  To maximize avlP , the real 
(resistive) component of the source impedance should be as 
small as possible (regardless of inZ !), a fact that is evident 
when observing the expression for available power: 
 

{ }

2
21 1

2 84Re
g

gavl
gg

V
P V

RZ ∗
= =  

 
Thus, maximizing the power delivered to a load ( absP ), from a 
source, has two components: 
 

1.  Maximize the power available ( avlP ) from a source 
(e.g., minimize gR ). 
 
2.  Extract all of this available power by setting the 
input impedance inZ  to a value in gZ Z ∗=  (thus abs avlP P= ). 
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Example: Conservation 
of Energy and You 

 
Consider this circuit, where the transmission line is lossless and has 
length 4= λ : 
 
 
 
 
 
 
 
 
 
 
The wave incident on the load ZL has power of Pinc =0.49 W. 
 
The wave reflected from the load ZL has  power of Pref = 0.09 W. 
 
 
      Determine the magnitude of source voltage Vg (i.e., determine gV ). 

 
 
Hint:  This is not a boundary condition problem. Do not attempt to find 
V(z) and/or I(z)! 
 
 
 
 
 

0 50Z = Ω  

4= λ

Vg 

20gZ = Ω  

125LZ = Ω

Pinc=0.49W Pref =0.09 W 
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Solution 
 
From conservation of energy, we find the power absorbed by the load 
must be: 

0 49 0 09
0 4

incabs refP P P
. .
. W

= −

= −

=

 

 
Since the transmission line is lossless, this absorbed power must 
likewise be the power delivered to the input of the transmission line 
(i.e., the power absorbed by input impedance Zin). 
 

0 40in absP P . W= =  
 

 
 
 
 
 
 
 
 
Note the transmission line length has the special case 4λ= , 
therefore the input impedance is easily computed: 
 

2 2
0 50 20

125in
L

ZZ
Z

= = = Ω  

 
A conjugate match ( in gZ Z ∗= )! 
 
 
 

0 50Z = Ω  

4= λ

inZ  125LZ = Ω
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Thus, the power absorbed by Zin 
(i.e., Pin) is: 
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And since we know that Pin = 0.4 W, we can conclude: 
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160

160 0 4 8 0g
g
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V
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