4.4 - The Transmission Matrix

Reading Assignment: pp. 183-189

Let's now consider the transmission matrix-a matrix that can only be used to characterize a two-port device.

Q: Only for 2-port devices?!? That doesn't seem particularly useful. Why bother learning about this?

A: There are a lot of very important two-port devices (e.g., amplifiers, filters, attenuators).

HO: THE TRANSMISSION MATRIX

The Transmission Matrix

If a network has two ports, then we can alternatively define the voltages and currents at each port as:

A: Yes we can! We can relate them with four parameters A, B, C, D:

$$
\begin{aligned}
& V_{1}=A V_{2}+B I_{2} \\
& I_{1}=C V_{2}+D I_{2}
\end{aligned}
$$

Or, using linear algebra:

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

The matrix is defined as the transmission matrix \mathcal{T}, otherwise known as the ABCD matrix :

Q: Great. But what exactly are the values A, B, C, D, and how do we determine them?

A: Similar to the impedance and admittance matrices, we determine the elements of the transmission matrix using shorts and opens.

A

Note when $I_{2}=0$ then:

$$
V_{1}=A V_{2}
$$

Therefore, to find value A, place an open on port 2, and then determine voltage V_{1} in terms of V_{2}. We find that:

$$
\left.A=\frac{V_{1}}{V_{2}} \quad \text { (port } 2 \text { open }\right)
$$

Note the parameter A is unites (i.e., it is a coefficient).

B

Note when $V_{2}=0$ then:

$$
V_{1}=B I_{2}
$$

Therefore, to find value B, place a short on port 2, and then determine voltage V_{1} in terms of I_{2}. We find that:

Note parameter Bhas units of impedance (i.e., Ohms).

C

Note when $I_{2}=0$ then:

$$
I_{1}=C V_{2}
$$

Therefore, to find value C, place an open on port 2, and then determine current I_{1} in terms of voltage V_{2}. We find that:

Note parameter Chas units of admittance (i.e., mhos).

D

Note when $V_{2}=0$ then:

$$
I_{1}=D I_{2}
$$

Therefore, to find value D, place a short on port 2 , and then determine current I_{1} in terms of current I_{2}. We find that:

$$
\left.D=\frac{I_{1}}{I_{2}} \quad \text { (port } 2 \text { short }\right)
$$

Note parameter D is unitless (another coefficient!).

Q: For cryin' out loud! We already have the impedance matrix, the scattering matrix, and the admittance matrix. Why do we need the transmission matrix also? Is it somehow uniquely useful?

A: Consider the case where a 2-port network is created by connecting (i.e., cascading) two networks:

Note

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\mathcal{T}_{A}\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]=\mathcal{T}_{B}\left[\begin{array}{l}
V_{3} \\
I_{3}
\end{array}\right]
$$

also

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\mathcal{T}\left[\begin{array}{l}
V_{3} \\
I_{3}
\end{array}\right]
$$

Combining the first two equations:

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\mathcal{T}_{A}\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]=\mathcal{T}_{A} \mathcal{T}_{B}\left[\begin{array}{l}
V_{3} \\
I_{3}
\end{array}\right]
$$

and comparing to the third:

$$
\begin{aligned}
{\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right] } & =\mathcal{T}_{A} \mathcal{T}_{B}\left[\begin{array}{l}
V_{3} \\
I_{3}
\end{array}\right] \\
& =\boldsymbol{T}\left[\begin{array}{l}
V_{3} \\
I_{3}
\end{array}\right]
\end{aligned}
$$

we conclude that:

$$
\mathcal{T}=\mathcal{T}_{A} \mathcal{T}_{B}
$$

Likewise, for N cascaded networks, the total transmission matrix \mathcal{T} can be determined as the product of all N networks!

$$
\mathcal{T}=\mathcal{T}_{1} \mathcal{T}_{2} \mathcal{T}_{3} \mathcal{T}_{4} \cdots \mathcal{T}_{4}=\prod_{n=1}^{N} \mathcal{T}_{n}
$$

Note this result is only true for the transmission matrix \mathcal{T}. No equivalent result exists for $\mathcal{S}, \mathcal{Z}, \mathcal{Y}$!

Thus, the transmission matrix can greatly simplify the analysis of complex networks constructed from two-port devices. We find that the \mathcal{T} matrix is particularly useful when creating design software for CAD applications.

