5.2 - Single-Stub Tuning

Reading Assignment: pp. 228-235

Q: If we cannot use "lumped" elements like inductors or capacitors to build lossless matching networks, what can we use?

A: Recall that a section of lossless transmission line is purely reactive, thus we can build lossless matching networks using specific lengths of transmission lines.

> We call these lengths of transmission line "distributed" elements.

The distributed element analogue of the lumped element Lnetwork is the single-stub tuner.

Just like the L-network, there are two versions of this design:

HO: THE SHUNT-STUB TUNER

HO: THE SERIES-STUB TUNER

Shunt Stub Tuning

Consider the follow transmission line structure, with a shunt stub:

The two design parameters of this matching network are lengths ℓ and d.

An equivalent circuit is:

$$
y_{i n}^{\prime \prime}=y_{0}\left(\frac{y_{L}+j y_{0} \tan \beta d}{y_{0}+j y_{L} \tan \beta d}\right)
$$

and the reactance $j B_{\text {stub }}$ of transmission line stub of length ℓ is either:

$$
j B_{s t u b}=\left\{\begin{array}{cc}
j y_{0} \tan \beta \ell & \text { for an open-circuit stub } \\
-j y_{0} \cot \beta \ell & \text { for an short-circuit stub }
\end{array}\right.
$$

Therefore, for a matched circuit, we require:

$$
j B_{s t u b}+Y_{i n}^{\prime \prime}=Y_{0}
$$

Note this complex equation is actually two real equations!
i.e.,

$$
\operatorname{Re}\left\{Y_{i n}^{\prime \prime}\right\}=Y_{0}
$$

and

$$
B_{i n}^{\prime \prime} \doteq \operatorname{Im}\left\{Y_{i n}^{\prime \prime}\right\}
$$

Since $y_{i n}^{\prime \prime}$ is dependent on d only, our design procedure is:

1) Set d such that $\operatorname{Re}\left\{Y_{i n}^{\prime \prime}\right\}=Y_{0}$.
2) Then set ℓ such that $B_{s t u b}=-B_{i n}^{\prime \prime}$.

We have two choices for determining the lengths d and ℓ. We can use the design equations ($5.9,5.10,5.11$) on p. 232,

OR

we can use the Smith Chart to determine the lengths!

1) Rotate clockwise around the Smith Chart from y_{L} until you intersect the $g=1$ circle. The "length" of this rotation determines the value d. Recall there are two possible solutions!
2) Rotate clockwise from the short/open circuit point around the $g=0$ circle, until $b_{s t u b}$ equals $-b_{i n}^{\prime \prime}$. The "length" of this rotation determines the stub length ℓ.

For example, your book describes the case where we want to match a load of $Z_{L}=60-j 80$ (at 2 GHz) to a transmission line of $Z_{0}=50 \Omega$.

Using shorted stubs, we find two solutions to this problem:

Whose length values d and ℓ where determined from a Smith Chart:

Q: Two solutions! Which one do we use?

A: The one with the shortest lengths of transmission line!

Q: Oh, I see! Shorter transmission lines provide smaller and (slightly) cheaper matching networks.

A: True! But there is a more fundamental reason why we select the solution with the shortest lines-the matching bandwidth is larger!

For example, consider the frequency response of the two examples:

Clearly, solution 1 provides a wider bandwidth!

Series Stub Tuning

Consider the following transmission line structure, with a series stub:

Therefore an equivalent circuit is:

where of course:

$$
Z_{i n}^{\prime \prime}=Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan \beta d}{Z_{0}+j Z_{L} \tan \beta d}\right)
$$

and the reactance $j X_{\text {stub }}$ is either:

$$
j X_{\text {stub }}= \begin{cases}-j Z_{0} \cot \beta \ell & \text { for an open-circuit stub } \\ j Z_{0} \tan \beta \ell & \text { for an short-circuit stub }\end{cases}
$$

Therefore, for a matched circuit, we require:

$$
\begin{gathered}
j X_{\text {stub }}+Z_{i n}^{\prime \prime}=Z_{0} \\
\operatorname{Re}\left\{Z_{i n}^{\prime \prime}\right\}=Z_{0}
\end{gathered}
$$

i.e.,
and

$$
\operatorname{Im}\left\{j X_{\text {stub }}+Z_{i n}^{\prime \prime}\right\}=0 \Rightarrow X_{\text {stub }}=-X_{i n}^{\prime \prime}
$$

where

$$
X_{i n}^{\prime \prime} \doteq \operatorname{Im}\left\{Z_{i n}^{\prime \prime}\right\}
$$

Note the design parameters for this stub tuner are transmission line lengths d and ℓ. More specifically we:

1) Set d such that $\operatorname{Re}\left\{Z_{i n}^{\prime \prime}\right\}=Z_{0}$.
2) Then set ℓ such that $X_{\text {stub }}=-X_{i n}^{\prime \prime}$.

We have two choices for determining the lengths d and ℓ. We can use the design equations ($5.14,5.15,5.16$) on pp. 235.

OR

we can use the Smith Chart to determine the lengths!

1) Rotate clockwise around the Smith Chart from z_{L} until you intersect the $r=1$ circle. The "length" of this rotation determines the value d. Recall there are two possible solutions!
2) Rotate clockwise from the short/open circuit point around the $r=0$ circle until $x_{\text {stub }}$ equals $-x_{\text {in }}$. The "length" of this rotation determines the stub length ℓ.

For example, your book describes the case where we want to match a load of $Z_{L}=100+j 80$ (at 2 GHz) to a transmission line of $Z_{0}=50 \Omega$.

Using open stubs, we find two solutions to this problem:

Solution 1

Solution 2

Whose values where determined from a Smith Chart:

Again, we should use the solution with the shortest transmission lines, although in this case that distinction is a bit ambiguous. As a result, the bandwidth of each design is about the same (depending on how you define bandwidth!).

