5.4 - The Quarter-Wave Transformer

Reading Assignment: pp. 73-76, 240-243

By now you've noticed that a quarter-wave length of transmission line ($\ell=\lambda / 4,2 \beta \ell=\pi$) appears often in microwave engineering problems.

Another application of the $\ell=\lambda / 4$ transmission line is as an impedance matching network.

HO: THE Quarter-Wave Transformer

HO: THE SIGNAL-FLOW GRAPH OF A QUARTER-WAVE

TRANSFORMER

Q: Why does the quarter-wave matching network workafter all, the quarter-wave line is mismatched at both ends?

A: HO: MULTIPLE REFLECTION VIEWPOINT

The Quarter-Wave

Transformer

Say the end of a transmission line with characteristic impedance Z_{0} is terminated with a resistive (i.e., real) load.

Unless $R_{L}=Z_{0}$, the resistor is mismatched to the line, and thus some of the incident power will be reflected.

We can of course correct this situation by placing a matching network between the line and the load:

In addition to the designs we have just studied (e.g., Lnetworks, stub tuners), one of the simplest matching network designs is the quarter-wave transformer.

The quarter-wave transformer is simply a transmission line with characteristic impedance Z_{1} and length $\ell=\lambda / 4$ (i.e., a quarterwave line).

Z_{0}

Z_{1}

$$
\ell=\lambda / 4
$$

The $\lambda / 4$ line is the matching network!

Q: But what about the characteristic impedance Z_{1}; what should its value be??

A: Remember, the quarter wavelength case is one of the special cases that we studied. We know that the input impedance of the quarter wavelength line is:

$$
Z_{\text {in }}=\frac{\left(Z_{1}\right)^{2}}{Z_{L}}=\frac{\left(Z_{1}\right)^{2}}{R_{L}}
$$

Thus, if we wish for $Z_{\text {in }}$ to be numerically equal to Z_{0}, we find:

$$
Z_{\text {in }}=\frac{\left(Z_{1}\right)^{2}}{R_{L}}=Z_{0}
$$

Solving for Z_{1}, we find its required value to be:

$$
\begin{aligned}
\left(Z_{1}\right)^{2} / R_{L} & =Z_{0} \\
\left(Z_{1}\right)^{2} & =Z_{0} R_{L} \\
Z_{1} & =\sqrt{Z_{0} R_{L}}
\end{aligned}
$$

In other words, the characteristic impedance of the quarter wave line is the geometric average of Z_{0} and R_{L} !

Therefore, a $\lambda / 4$ line with characteristic impedance $Z_{1}=\sqrt{Z_{0} R_{L}}$ will match a transmission line with characteristic impedance Z_{0} to a resistive load R_{L}.

Thus, all power is delivered to load R_{L} !
Alas, the quarter-wave transformer (like all our designs) has a few problems!

Problem \#1

The matching bandwidth is narrow !

In other words, we obtain a perfect match at precisely the frequency where the length of the matching transmission line is a quarter-wavelength.
\rightarrow But remember, this length can be a quarter-wavelength at just one frequency!

Remember, wavelength is related to frequency as:

$$
\lambda=\frac{v_{p}}{f}=\frac{1}{f \sqrt{L C}}
$$

where v_{p} is the propagation velocity of the wave.

For example, assuming that $v_{p}=c(c=$ the speed of light in a vacuum), one wavelength at 1 GHz is $30 \mathrm{~cm}(\lambda=0.3 \mathrm{~m})$, while one wavelength at 3 GHz is $10 \mathrm{~cm}(\lambda=0.1 \mathrm{~m})$. As a result, a transmission line length $\ell=7.5 \mathrm{~cm}$ is a quarter wavelength for a signal at 1 GHz only.

Thus, a quarter-wave transformer provides a perfect match ($\Gamma_{\text {in }}=0$) at one and only one signal frequency!

As the signal frequency (i.e., wavelength) changes, the electrical length of the matching transmission line changes. It will no longer be a quarter wavelength, and thus we no longer will have a perfect match.

We find that the closer $R_{L}\left(R_{i n}\right)$ is to characteristic impedance Z_{0}, the wider the bandwidth of the quarter wavelength transformer.

Figure 5.12 (p. 243) Reflection coefficient magnitude versus frequency for a single-section quarter-wave matching transformer with various load mismatches.

We will find that the bandwidth can be increased by adding multiple $\lambda / 4$ sections!

Problem \#2

Recall the matching solution was limited to loads that were purely real! I.E.:

$$
Z_{L}=R_{L}+j 0
$$

Of course, this is a BIG problem, as most loads will have a reactive component!

Fortunately, we have a relatively easy solution to this problem, as we can always add some length ℓ of transmission line to the load to make the impedance completely real:

However, remember that the input impedance will be purely real at only one frequency!

We can then build a quarter-wave transformer to match the line Z_{0} to resistance $R_{i n}$:

Again, since the transmission lines are lossless, all of the incident power is delivered to the load Z_{L}.

The Signal Flow Graph of

a Quarter-Wave

Transformer

A quarter wave transformer can be thought of as a cascaded series of two two-port devices, terminated with a load R_{L} :

Recall that we earlier determined the scattering matrix of this two-port device:

$$
\mathcal{S}_{x}=\left[\begin{array}{ll}
\frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}} & \frac{2 \sqrt{Z_{0} Z_{1}}}{Z_{0}+Z_{1}} \\
\frac{2 \sqrt{Z_{0} Z_{1}}}{Z_{0}+Z_{1}} & \frac{Z_{0}-Z_{1}}{Z_{0}+Z_{1}}
\end{array}\right]
$$

This result can be more compactly stated as:

$$
\mathcal{S}=\left[\begin{array}{cc}
\Gamma & \mathrm{T} \\
\mathrm{~T} & -\Gamma
\end{array}\right]
$$

where

$$
\Gamma \doteq \frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}} \quad \text { and } \quad \mathrm{T} \doteq \frac{2 \sqrt{Z_{0} Z_{1}}}{Z_{0}+Z_{1}}
$$

The signal flow graph of this device is therefore:

Now, the second two-port device is a quarter wavelength of transmission line.

We know that it has the scattering matrix:

$$
\mathcal{S}_{y}=\left[\begin{array}{cc}
0 & e^{-j \beta \ell} \\
e^{-j \beta \ell} & 0
\end{array}\right]
$$

Finally, a load has a "scattering matrix" of:

$$
\mathcal{S}=\left[\frac{R_{L}-Z_{1}}{R_{L}+Z_{1}}\right]=\Gamma_{L} \quad Z_{1} \quad \Gamma_{L}
$$

Of course, if we connect the ideal connector to a quarter wavelength of transmission line, and terminate the whole thing with load R_{L}, we have formed a quarter wave matching network!
Z_{0}
Z_{1}
$\longleftarrow \ell=\lambda / 4 \longrightarrow$
The boundary conditions associated with these connections are likewise:

$$
a_{1 y}=b_{2 x} \quad a_{2 x}=b_{1 y} \quad a_{1 L}=b_{2 y} \quad a_{2 y}=b_{1 L}
$$

We can thus put the signal-flow graph pieces together to form the signal-flow graph of the quarter wave network:

And simplifying:

Now, let's see if we can reduce this graph to determine:

$$
\Gamma_{i n} \doteq \frac{b_{x x}}{a_{1 x}}
$$

From the series rule:

From the splitting rule:

From the self-loop rule:

Again with the series rule:

And finally with the parallel rule:

$$
\psi_{a_{1}}^{a_{1 \times}} \underbrace{\Gamma+\frac{T^{2} \Gamma_{L} e^{-j 2 \beta \ell}}{1-\Gamma \Gamma_{L}}}
$$

So that:

$$
\Gamma_{i n} \doteq \frac{\underline{a}_{x}}{a_{1 x}}=\Gamma+\frac{\mathrm{T}^{2} \Gamma_{L} e^{-j 2 \beta \ell}}{1-\Gamma \Gamma_{L}}
$$

Q: Hey wait! If the quarter-wave transformer is a matching network, shouldn't $\Gamma_{\text {in }}=0$??

A: Who says it isn't! Consider now three important facts.
For a quarter wave transformer, we set Z_{1} such that:

$$
Z_{1}^{2}=Z_{0} R_{L} \quad \Rightarrow \quad Z_{0}=Z_{1}^{2} / R_{L}
$$

Inserting this into the scattering parameter S_{11} of the connector, we find:

$$
\Gamma=\frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}}=\frac{Z_{1}-Z_{1}^{2} / R_{L}}{Z_{1}+Z_{1}^{2} / R_{L}}=\frac{R_{L}-Z_{1}}{R_{L}+Z_{1}}
$$

Look at this result! For the quarter-wave transformer, the connector S_{11} value (i.e., Γ) is the same as the load reflection coefficient Γ_{L} :

$$
\Gamma=\frac{R_{L}-Z_{1}}{R_{L}+Z_{1}}=\Gamma_{L} \quad \leftarrow \text { Fact } 1
$$

Since the connector is lossless (unitary scattering matrix!), we can conclude (and likewise show) that:

$$
1=\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}=|\Gamma|^{2}+|T|^{2}
$$

Since Z_{0}, Z_{1}, and R_{L} are all real, the values Γ and T are also real valued. As a result, $|\Gamma|^{2}=\Gamma^{2}$ and $|T|^{2}=\mathrm{T}^{2}$, and we can likewise conclude:

$$
\Gamma^{2}+\mathrm{T}^{2}=1 \leftarrow \text { Fact } 2
$$

Likewise, the $Z 1$ transmission line has $\ell=1 / 4$, so that:

$$
2 \beta \ell=2\left(\frac{2 \pi}{\lambda}\right) \frac{\lambda}{4}=\pi
$$

where you of course recall that $\beta=2 \pi / 2$! Thus:

$$
e^{-j 2 \beta \ell}=e^{-j \pi}=-1 \quad \leftarrow \text { Fact } 3
$$

As a result:

$$
\Gamma_{i n}=\Gamma+\frac{\mathrm{T}^{2} \Gamma_{L} e^{-j 2 \beta \ell}}{1-\Gamma \Gamma_{L}}=\Gamma-\frac{\mathrm{T}^{2} \Gamma_{L}}{1-\Gamma \Gamma_{L}}
$$

And using the newly discovered fact that (for a correctly designed transformer) $\Gamma_{L}=\Gamma$:

$$
\Gamma_{\text {in }}=\Gamma-\frac{\mathrm{T}^{2} \Gamma_{L}}{1-\Gamma \Gamma_{L}}=\Gamma-\frac{\mathrm{T}^{2} \Gamma}{1-\Gamma^{2}}
$$

And also are recent discovery that $\mathrm{T}^{2}=1-\Gamma^{2}$:

$$
\Gamma_{i n}=\Gamma-\frac{\mathrm{T}^{2} \Gamma}{1-\Gamma^{2}}=\Gamma-\frac{\mathrm{T}^{2} \Gamma}{\mathrm{~T}^{2}}=0
$$

A perfect match! The quarter-wave transformer does indeed work!

Multiple Reflection

Viewpoint

The quarter-wave transformer brings up an interesting question in μ-wave engineering.

Q: Why is there no reflection at $z=-\ell$? It appears that the line is mismatched at both $z=0$ and $z=-\ell$.

A: In fact there are reflections at these mismatched interfaces-an infinite number of them!

We can use our signal flow graph to determine the propagation series, once we determine all the propagation paths through the quarter-wave transformer.

Now let's try to interpret what physically happens when the incident voltage wave:

$$
\begin{array}{ll}
\xrightarrow{V^{+}(z)=a \sqrt{Z_{0}} e^{-j \beta(z+\theta)}} \\
Z_{0} & \sqrt{Z_{0} R_{L}}
\end{array}
$$

reaches the interface at $z=-\ell$. We find that there are two forward paths through the quarter-wave transformer signal flow graph.

Path 1. At $z=-\ell$, the characteristic impedance of the transmission line changes from Z_{0} to Z_{1}. This mismatch creates a reflected wave, with complex amplitude $p_{1} a_{1}$:

So, $p_{1}=\Gamma$.

Path 2. However, a portion of the incident wave is transmitted (T) across the interface at $z=-\ell$, this wave travels a distance of $\beta \ell=90^{\circ}$ to the load at $z=0$, where a portion of it is reflected $\left(\Gamma_{L}\right)$. This wave travels back $\beta \ell=90^{\circ}$ to the interface at $z=-\ell$, where a portion is again transmitted (T) across into the Z_{0} transmission line-another reflected wave!

So the second direct path is

$$
p_{2}=\mathrm{T} e^{-j 90^{\circ}} \Gamma_{L} e^{-j 90^{\circ}} \mathrm{T}=-\mathrm{T}^{2} \Gamma_{L}
$$

note that traveling $2 \beta \ell=180^{\circ}$ has produced a minus sign in the result.

Path 3. However, a portion of this second wave is also reflected (Γ) back into the Z_{1} transmission line at $z=-\ell$, where it again travels to $\beta \ell=90^{\circ}$ the load, is partially reflected (Γ_{L}), travels $\beta \ell=90^{\circ}$ back to $z=-\ell$, and is partially transmitted into $Z_{0}(T)$-our third reflected wave!

where:

$$
\begin{aligned}
p_{3} & =T e^{-j 90^{\circ}} \Gamma_{L} e^{-j 90^{\circ}}(-\Gamma) e^{-j 90} \Gamma_{L} e^{-j 90^{\circ}} \mathrm{T} \\
& =-\mathrm{T}^{2}\left(\Gamma_{L}\right)^{2} \Gamma
\end{aligned}
$$

Note that path 3 is not a direct path!
Path n. We can see that this "bouncing" back and forth can go on forever, with each trip launching a new reflected wave into the Z_{0} transmission line.

Note however, that the power associated with each successive reflected wave is smaller than the previous, and so eventually, the power associated with the reflected waves will diminish to insignificance!

Q: But, why then is $\Gamma=0$?

A: Each reflected wave is a coherent wave. That is, they all oscillate at same frequency ω; the reflected waves differ only in terms of their magnitude and phase.

Therefore, to determine the total reflected wave, we must perform a coherent summation of each reflected wave-this summation of course results in our propagation series, a series that must converge for passive devices.

$$
b=a \sum_{n=1}^{\infty} p_{n}
$$

It can be shown that the infinite propagation series for this quarter-wavelength structure converges to the closed-form expression:

$$
\frac{b}{a}=\sum_{n=1}^{\infty} p_{n}=\frac{\Gamma-\Gamma^{2} \Gamma_{L}-\mathrm{T}^{2} \Gamma_{L}}{1-\Gamma^{2}}
$$

Thus, the input reflection coefficient is:

$$
\Gamma_{i n}=\frac{b}{a}=\frac{\Gamma-\Gamma^{2} \Gamma_{L}-\mathrm{T}^{2} \Gamma_{L}}{1-\Gamma^{2}}
$$

Using our definitions, it can likewise be shown that the numerator of the above expression is:

$$
\Gamma-\Gamma^{2} \Gamma_{L}-\mathrm{T}^{2} \Gamma_{L}=\frac{2\left(Z_{1}^{2}-Z_{0} R_{L}\right)}{\left(Z_{1}+Z_{0}\right)\left(R_{L}+Z_{1}\right)}
$$

It is evident that the numerator (and therefore Γ) will be zero if:

$$
Z_{1}^{2}-Z_{0} R_{L}=0 \quad \Rightarrow \quad Z_{1}=\sqrt{Z_{0} R_{L}}
$$

Just as we expected!
Physically, this results insures that all the reflected waves add coherently together to produce a zero value!

Note all of our transmission line analysis has been steady-state analysis. We assume our signals are sinusoidal, of the form $\exp (j \omega t)$. Note this signal exists for all time t-the signal is
assumed to have been "on" forever, and assumed to continue on forever.

In other words, in steady-state analysis, all the multiple reflections have long since occurred, and thus have reached a steady state-the reflected wave is zero!

