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5.5 – The Theory of Small Reflections 
 

Reading Assignment: pp. 244-246 
 
An important and useful approximation when considering 
multi-section matching networks is the Theory of Small 
Reflections. 
 
HO:  THE THEORY OF SMALL REFLECTIONS 
 
EXAMPLE: THE THEORY OF SMALL REFLECTIONS 
 
The Theory of Small Reflections provides a simpler 
mathematical form for analyzing the frequency response of 
many microwave devices. 
 
HO:  THE FREQUENCY RESPONSE OF THE QUARTER-WAVE 
MATCHING NETWORK 
 
We can also use the Theory of Small Reflections to provide an 
approximate analysis of a multi-section impedance 
transformer (i.e., multi-section matching network). 
 
HO:  THE MULTI-SECTION TRANSFORMER 
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The Theory of 
Small Reflections 

 
Recall that we analyzed a quarter-wave transformer using the 
multiple reflection view point.  
 
 
 
 
 
 
 
 
We found that the solution could thus be written as an infinite 
summation of terms (the propagation series): 
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where each term had a specific  physical interpretation, in 
terms of reflections, transmissions, and propagations.  
 
For example, the third term was path: 
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Now let’s consider the magnitude of this path: 
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Recall that LΓ = Γ  for a properly designed quarter-wave 
transformer : 
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and so: 
2 2 32

3 L Lp = Τ Γ Γ = Τ Γ  
 

For the case where values LR  and 1Z  are numerically “close” in 
—i.e., when: 

1 1L LR Z R Z− +  
 

we find that the magnitude of the reflection coefficient will be 
very small: 
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As a result, the value 3

LΓ  will be very, very, very small. 
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Moreover, we know (since the connector is lossless) that: 
 

22 2 21 L= Γ + Τ = Γ + Τ  
and so: 

22 1 1LΤ = − Γ ≈  
 
We can thus conclude that the magnitude of path 3p  is likewise 
very, very, very small: 
 

3 32
3 1L Lp = Τ Γ ≈ Γ  

 
This is a classic case where we can approximate the propagation 
series using only the forward paths!! 
 
Recall there are two forward paths: 
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Therefore IF Z0 and RL are very close in value, we find that we 
can approximate the reflected wave using only the direct paths 
of the infinite series:  
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Now, if we likewise apply the approximation that 1 0.Τ , we 
conclude for this quarter wave transformer (at the design 
frequency): 
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This approximation, where we: 
 

1. use only the direct paths to calculate the 
propagation series, 
 
2. approximate the transmission coefficients as 
one (i.e., 1Τ = ).  

 
is known as the Theory of Small Reflections, and allows 
us to use the propagation series as an analysis tool (we 
don’t have to consider an infinite number of terms!). 

 
 
 
Consider again the quarter-wave matching network SFG.  Note 
there is one branch ( 22S−Γ =  of the connector), that is not 
included in either direct path.   
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With respect to the theory of small reflections (where only 
direct paths are considered), this branch can be removed from 
the SFG without affect. 
 
 
 
 
 
 
 
 
Moreover, the theory of small reflections implements the 
approximation 1Τ = , so that the SFG becomes: 
 
 
 
 
 
 
 
 
 
Reducing this SFG by combining the 1.0 branch and the je β−  
branch via the series rule, we get the following approximate 
SFG: 
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The approximate 
SFG when applying 
the theory of 
small reflections! 
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Note this approximate SFG provides precisely the results of 
the theory of small reflections! 
 
Q:  Why is that? 
 
A:  The approximate “theory of small reflections SFG”  
Contains all of the significant physical propagation mechanisms 
of the two forward paths, and only the two significant 
propagation mechanisms of the two forward paths. 
 
Namely: 
 

1. The reflection at the connector (i.e., Γ ). 
 

2. The propagation down the quarter-wave transmission 
line ( je β− ), the reflection off the load ( LΓ ), and the 
propagation back up the quarter-wave transmission line 
( je β− ). 
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The approximate 
SFG when applying 
the theory of 
small reflections! 
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From 
parallel 
rule 

 
 
 
 
 
 
 
Q:  But wait! The quarter-wave transformer is a matching 
network, therefore 0inΓ = .  The theory of small reflections, 
however, provides the approximate result: 
 

2j
in L e β−Γ ≈ Γ + Γ  

 
Is this approximation very accurate? How close is this 
approximate value to the correct answer of 0inΓ =  ? 
 
A:  Let’s find out! 
 
Recall that LΓ = Γ  for a properly designed quarter-wave 
matching network, and so: 
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Likewise, 4

λ=  (but only at the design frequency!) so that: 
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Thus: 
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Q: Wow! The theory of small reflections appears to be a 
perfect approximation—no error at all!?! 
 
A: Not so fast.   
 
The theory of small reflections most definitely provides an 
approximate solution (e.g., it ignores most of the terms of the 
propagation series, and it approximates connector transmission 
as 1Τ = , when in fact 1Τ ≠ ). 
 
As a result, the solutions derived using the theory of small 
reflections will—generally speaking—exhibit some (hopefully 
small) error. 
 

We just got a bit “lucky” for the quarter-wave 
matching network; the “approximate” result 0inΓ =  
was exact for this one case! 
 

 
 

  The theory of small reflections is an approximate 
analysis tool! 
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Example: The Theory of 
Small Reflections 

 
Use the theory of small reflections to determine a numeric value for 
the input reflection coefficient inΓ , at the design frequency 0ω . 
 
 
 
 
 
 
 
 
 
 
Note that the transmission line sections have different lengths! 
 
Solution 
 
Applying the theory of small reflections, the approximate signal flow 
graph of the structure becomes: 
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Note there are three direct propagation paths: 
 
Path 1 
 
 
 
 
 
 
 
 

1 0 0 1p .∴ = Γ =  
 
 
 
 
Path 2 
 
This path includes propagation down and back a transmission line 
length 1  ! 
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Path 3 
 
This path includes propagation down and back transmission line lengths 
of 1 2+  ! 
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Thus, using the theory of small reflections  we can determine 
approximately the input reflection coefficient: 
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The Frequency Response 
of a Quarter-Wave 
Matching Network 

 
Q:  You have once again provided us with confusing and 
perhaps useless information.  The quarter-wave matching 
network has an exact  SFG of: 
 
 
 
 
 
 
 
 
Using our reduction rules, we can quickly conclude that: 
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You could have left this simple and precise analysis alone—
BUT NOOO!!   
 
You had to foist upon us a long, rambling discussion of “the 
propagation series” and “direct paths” and “the theory of 
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small reflections”, culminating with the approximate (i.e., less 
accurate!) SFG: 
  
 
 
 
 
 
 
From which we were able to conclude the approximate (i.e., 
less accurate!) result: 
 

2j
in L

b e
a

β−Γ = Γ+ Γ  

 
The exact result was simple—and exact!  Why did you make 
us determine this approximate result? 
 
A:  In a word:  frequency response*. 
 
Although the exact analysis is about as simple to determine as 
the approximation provided by the theory of small reflections, 
the mathematical form of the result is much simpler to 
analyze and/or evaluate (e.g., no fractional terms!). 
 
Q:  What exactly would we be analyzing and/or evaluating? 
 
A:  The frequency response of the matching network, for one 
thing. 
 
*  OK, two words. 
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Remember, all matching networks must be lossless, and so 
must be made of reactive elements (e.g., lossless transmission 
lines).  The impedance of every reactive element is a function 
of frequency, and so too then is inΓ . 
 
Say we wish to determine this function ( )in ωΓ . 
 
Q:  Isn’t  ( ) 0in ωΓ =  for a quarter wave matching network? 
 
A: Oh my gosh no! A properly designed matching network will 
typically result in a perfect match (i.e., 0inΓ = ) at one 
frequency (i.e., the design frequency).  However, if the signal 
frequency is different from this design frequency, then no 
match will occur (i.e., 0inΓ ≠ ). 
 
Recall we discussed this behavior before: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.12  (p. 243) 
Reflection coefficient magnitude 
versus frequency for a single-
section quarter-wave matching 
transformer with various load 
mismatches. 
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Q:  But why is the result:  
 

2j
L

in
L

e β−

Γ
2Τ Γ

= Γ+
1−ΓΓ

 

 
or its approximate form: 
 

2j
in L e β−Γ = Γ+ Γ  

 
dependent on frequency? I don’t see frequency variable ω  
anywhere in these results! 
 
A: Look closer! 
 
Remember that the value of spatial frequency β  (in 
radians/meter) is dependent on the frequency ω  of our eigen 
function (aka “the signal”): 
 

1
pv

β ω
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
where you will recall that pv  is the propagation velocity of a 
wave moving along a transmission line.  This velocity is a 
constant (i.e., 1pv LC= ), and so the spatial frequency β  is 
directly proportional to the temporal frequency ω . 
 
Thus, we can rewrite: 
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p
T

v
ω

β ω= =  

 
Where pT v=  is the time required for the wave to 
propagate a distance  down a transmission line. 
 
As a result, we can write the input reflection coefficient as a 
function of spatial frequency β : 
 

( ) 2j
in L e ββ −Γ = Γ+ Γ  

 
Or equivalently as a function of temporal frequency ω : 
 

( ) 2j T
in L e ωω −Γ = Γ+ Γ  

 
Frequently, the reflection coefficient is simply written in 
terms of the electrical length θ  of the transmission line,  
which is simply the difference in relative phase between the 
wave at the beginning and end of the length  of the 
transmission line. 

Tβ θ ω= =  
So that: 

( ) 2j
in L e θθ −Γ = Γ+ Γ  

 
Note we can simply insert the value θ β=  into the expression 
above to get ( )in βΓ , or insert Tθ ω=  into the expression to 
get ( )in ωΓ . 
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Now, we know that LΓ = Γ  for a properly designed quarter-
wave matching network, so the reflection coefficient function 
can be written as: 

( ) ( )21 j
in L e θθ −Γ += Γ  

 
Note that:             ( )01 j j j je e e eθ θ θ θ− − − += = =  

 
And that:               ( )2j j j je e e eθ θ θ θ θ− − + − −= =  

 
And so: 
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Where we have used Euler’s equation to determine that: 
 

2 cosj je eθ θ θ+ −+ =  
 
Now, let’s determine the magnitude of our result: 
 

( ) 2 cos 2 cosj
in L Le θθ θ θ−Γ = =Γ Γ  

 
Note that ( )in θΓ  is zero-valued only when cos 0θ = .  This of 
course occurs when 2

πθ = : 
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2
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π

θ
θ

=
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In other words, a perfect match occurs when 2
πθ =  !! 

 
Q:  What the heck does this mean? 
 
A:  Remember, θ β= .  Thus if 2

πθ = : 
 

2
2 4

= = =
π

π
λ

θ λ
β

  !! 

 
As we (should have) suspected, the match occurs at the 
frequency whose wavelength is equal to four times the 
matching ( 1Z ) transmission line length, i.e. 4=λ .   
 
In other words, a perfect match occurs at the frequency 
where 4= λ .   
 
Note the physical length  of the transmission line does not 
change with frequency, but the signal wavelength does:  
 

pv
f

=λ  

 
Q: So, at precisely what frequency does a quarter-wave 
transformer with length  provide a perfect match? 
 
A:  Recall also that Tθ ω= , where pT v= .  Thus, for 2

πθ = : 
 

1
2 2 2
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T
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π π πθ ω ω  
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This frequency is called the design frequency of the matching 
network—it’s the frequency where a perfect match occurs.  
We denote this as frequency 0ω , which has wavelength 0λ , i.e.: 
 

0 2 2
pv

T
= =

πω π          0
0

1
2 4 4

pv
f

T
= = =
ω
π

        0
0

4 4p
p

v
v T
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Given this, yet another way of expressing θ β=  is: 
 

0 0 02 2 2
p

p

v f
v f

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠

ω ωθ β π π π
ω ω

 

 
Thus, we conclude: 
 

( ) ( )022 cos f
in L ffΓ = πΓ  

 
From this result we can determine (approximately) the 
bandwidth of the quarter-wave transformer! 
 
First, we must define what we mean by bandwidth.  Say the 
maximum acceptable level of the reflection coefficient is 
value Γm .  This is an arbitrary value, set by you the microwave 
engineer (typical values of Γm  range from 0.05 to 0.2). 
 
We will denote the frequencies where this maximum value Γm  
occurs mf . In other words:  
 

( ) ( )02Γ 2 cos mf
in m m L ff fΓ = = = πΓ  
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There are two solutions to this equation, the first is: 
 

10
1

Γ2
2

m
m

L

ff cos − ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠π Γ
 

 
And the second: 

10
2

Γ2
2

m
m

L

ff cos − ⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠π Γ
 

 
Important note! Make sure -1cos x  is expressed in radians! 
 
You will find that  1 0 2m mf f f< <  so, the values 1mf  and 2mf  define 
the lower and upper limits on matching network bandwidth. 
 
 
 
 
 
 
 
 
 
 
 
All this analysis was brought to you by the “simple” 
mathematical form of ( )in fΓ  that resulted from the theory 
of small reflections! 
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The Multi-section 
Transformer 

 
Consider a sequence of N transmission line sections; each 
section has equal length , but dissimilar characteristic 
impedances: 
 
 
 
 
 
 
 
 
 
 
Where the marginal reflection coefficients are: 
 

1 0 1
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1 0 1

L Nn n
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If the load resistance LR  is less than 0Z , then we should design 
the transformer such that: 
 

0 1 2 3 N LZ Z Z Z Z R> > > > >  
 
 

 
RL 
 

 

0Z   1Z  2Z  NZ  
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Conversely, if LR  is greater than 0Z , then we will design the 
transformer such that: 
 

0 1 2 3 N LZ Z Z Z Z R< < < < <  
 
In other words, we gradually transition from Z0 to RL ! 
 
Note that since RL is real, and since we assume lossless 
transmission lines, all nΓ  will be real (this is important!). 
 
Likewise, since we gradually transition from one section to 
another, each value: 
 

1 nnZ Z+ −  
will be small. 
 
As a result, each marginal reflection coefficient nΓ  will be real 
and have a small magnitude. 
 
This is also important, as it means that we can apply the “theory 
of small reflections” to analyze this multi-section transformer! 
 
The theory of small reflections allows us to approximate the 
input reflection coefficient of the transformer as: 
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We can alternatively express the input reflection coefficient as 
a function of frequency ( T=β ω ): 
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The approximate 
SFG when 
applying the 
theory of small 
reflections! 
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propagation time through 1 section
p

T
v

=  

 
We see that the function ( )in ωΓ  is expressed as a weighted set 
of N  basis functions! I.E., 
 

( ) ( )
0

N

in n
n

cω ω
=

Γ = Ψ∑  

where: 
 

( ) ( )2j nT
n nc and e ωω −= Γ Ψ =  

 
We find, therefore, that by selecting the proper values of basis 
weights nc  (i.e., the proper values of reflection coefficients nΓ ), 
we can synthesize any function ( )in ωΓ  of frequency ω , provided 
that: 
 

1.  ( )in ωΓ  is periodic in 1 2Tω =  
 
2.  we have sufficient number of sections N. 

 
Q:  What function should we synthesize? 
 
A:  Ideally, we would want to make ( ) 0in ωΓ =  (i.e., the 
reflection coefficient is zero for all frequencies). 
 
Bad news:  this ideal function ( ) 0in ωΓ =  would require an 
infinite number of sections (i.e., N = ∞ )! 
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Instead, we seek to find an “optimal” function for ( )in ωΓ , given 
a finite number of N  elements. 
 
Once we determine these optimal functions, we can find the 
values of coefficients nΓ  (or equivalently, nZ ) that will result in 
a matching transformer that exhibits this optimal frequency 
response. 
  
To simplify this process, we can make the transformer 
symmetrical, such that: 
 

0 1 1 2 2,   ,   ,   N N N− −Γ = Γ Γ = Γ Γ = Γ  
 

Note that this does NOT mean that: 
 

0 1 1 2 2,   Z ,   Z ,   N N NZ Z Z Z− −= = =  
 
We find then that: 
 

( ) ( ) ( ) ( )( )
( ) ( )( )

2 2
0 1

4 4
2

j N T j N TjN T jN T jN T

j N T j N T

e e e e e

e e

ω ωω ω ω

ω ω

ω − − −− −

− − −

⎡Γ = Γ + + Γ +⎣
⎤+ Γ + + ⎦

 

 
and since: 

( )2 cosj x j xe e x−+ =  
 
we can write for N even: 
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( ) ( )

( )

0 1

2

2 cos cos 2
1cos 2
2

j N T

n N

e N T N T

N n T

ωω ω ω

ω

−Γ = Γ + Γ −⎡⎣
⎤+ + Γ − + + Γ ⎥⎦

 

 
whereas for N odd: 
 

( ) ( )
( ) ( )

0 1

1 2

2 cos cos 2

cos 2 cos

j N T

n N

e N T N T

N n T T

ωω ω ω

ω ω

−

−

Γ = Γ + Γ −⎡⎣
⎤+ + Γ − + + Γ ⎦
 

 
The remaining question then is this: given an optimal and 
realizable function ( )in ωΓ , how do we determine the necessary 
number of sections N, and how do we determine the values of all 
reflection coefficients nΓ ?? 
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