5.6-Binomial Multi-section Matching Transformer

Reading Assignment: pp. 246-250

One way to maximize bandwidth is to construct a multisection matching network with a function $\Gamma(f)$ that is maximally flat.

Q: Maximally flat? What kind of function is maximally flat?
This function maximizes bandwidth by providing a solution that is maximally flat.

A: HO: MAXIMALly FLAT FUNCtions

1. We can build a multisection matching network such that the function $\Gamma(f)$ is a binomial function.
2. The binomial function is maximally flat.

Q: Meaning?

A: Meaning the function $\Gamma(f)$ is maximally flat \rightarrow a wideband solution!

HO: THE Binomial Multi-section Matching Transformer

Maximally Flat Functions

Consider some function $f(x)$. Say that we know the value of the function at $x=1$ is 5 :

$$
f(x=1)=5
$$

This of course says something about the function $f(x)$, but it doesn't tell us much!

We can additionally determine the first derivative of this function, and likewise evaluate this derivative at $x=1$. Say that this value turns out to be zero:

$$
\left.\frac{d f(x)}{d x}\right|_{x=1}=0
$$

Note that this does not mean that the derivative of $f(x)$ is equal to zero, it merely means that the derivative of $f(x)$ is zero at the value $x=1$. Presumably, $d f(x) / d x$ is non-zero at other values of x.

So, we now have two pieces of information about the function $f(x)$. We can add to this list by continuing to take higherorder derivatives and evaluating them at the single point $x=1$.

Let's say that the values of all the derivatives (at $x=1$) turn out to have a zero value:

$$
\left.\frac{d f^{n}(x)}{d x^{n}}\right|_{x=1}=0 \text { for } n=1,2,3, \cdots, \infty
$$

We say that this function is completely flat at the point $x=1$. Because all the derivatives are zero at $x=1$, it means that the function cannot change in value from that at $x=1$.

In other words, if the function has a value of 5 at $x=1$, (i.e., $f(x=1)=5)$, then the function must have a value of 5 at all x !

The function $f(x)$ thus must be the constant function:

$$
f(x)=5
$$

Now let's consider the following problem-say some function $f(x)$ has the following form:

$$
f(x)=a x^{3}+b x^{2}+c x
$$

We wish to determine the values a, b, and c so that:

$$
f(x=1)=5
$$

and that the value of the function $f(x)$ is as close to a value of 5 as possible in the region where $x=1$.
In other words, we want the function to have the value of 5 at $x=1$, and to change from that value as slowly as possible as we
"move" from $x=1$.

Q: Don't we simply want the completely flat function
$f(x)=5 ?$

A: That would be the ideal function for this case, but notice that solution is not an option. Note there are no values of a, b, and c that will make:

$$
a x^{3}+b x^{2}+c x=5
$$

for all values x.

Q: So what do we do?

A: Instead of the completely flat solution, we can find the maximally flat solution!

The maximally flat solution comes from determining the values a, b, and c so that as many derivatives as possible are zero at the point $x=1$.

For example, we wish to make the first derivate equal to zero at $x=1$:

$$
\begin{aligned}
0 & =\left.\frac{d f(x)}{d x}\right|_{x=1} \\
& =\left.\left(3 a x^{2}+2 b x+c\right)\right|_{x=1} \\
& =3 a+2 b+c
\end{aligned}
$$

Likewise, we wish to make the second derivative equal to zero at $x=1$:

$$
\begin{aligned}
0 & =\left.\frac{d^{2} f(x)}{d x^{2}}\right|_{x=1} \\
& =\left.(6 a x+2 b)\right|_{x=1} \\
& =6 a+2 b
\end{aligned}
$$

Here we must stop taking derivatives, as our solution only has three degrees of design freedom (i.e., 3 unknowns a, b, c).

Q: But we only have taken two derivatives, can't we take one more?

A: No! We already have a third "design" equation: the value of the function must be 5 at $x=1$:

$$
\begin{aligned}
5 & =f(x=1) \\
& =a(1)^{3}+b(1)^{2}+c(1) \\
& =a+b+c
\end{aligned}
$$

So, we have used the maximally flat criterion at $x=1$ to generate three equations and three unknowns:

$$
\begin{gathered}
5=a+b+c \\
0=3 a+2 b+c \\
0=6 a+2 b
\end{gathered}
$$

Solving, we find:

$$
\begin{aligned}
& a=5 \\
& b=-15 \\
& c=15
\end{aligned}
$$

Therefore, the maximally flat function (at $x=1$) is:

$$
f(x)=5 x^{3}-15 x^{2}+15 x
$$

The Binomial Multi-
 Section Transformer

Recall that a multi-section matching network can be described using the theory of small reflections as:

$$
\begin{aligned}
\Gamma_{i n}(\omega) & =\Gamma_{0}+\Gamma_{1} e^{-j 2 \omega T}+\Gamma_{2} e^{-j 4 \omega T}+\cdots+\Gamma_{N} e^{-j 2 N \omega T} \\
& =\sum_{n=0}^{N} \Gamma_{n} e^{-j 2 n \omega T}
\end{aligned}
$$

where:

$$
T \doteq \frac{\ell}{v_{p}}=\text { propagation time through } 1 \text { section }
$$

Note that for a multi-section transformer, we have N degrees of design freedom, corresponding to the N characteristic impedance values Z_{n}.

Q: What should the values of Γ_{n} (i.e., Z_{n}) be?

A: We need to define N independent design equations, which we can then use to solve for the N values of characteristic impedance Z_{n}.

First, we start with a single design frequency ω_{0}, where we wish to achieve a perfect match:

$$
\Gamma_{i n}\left(\omega=\omega_{0}\right)=0
$$

That's just one design equation: we need $\mathbf{N - 1}$ more!
These addition equations can be selected using many criteria-one such criterion is to make the function $\Gamma_{\text {in }}(\omega)$ maximally flat at the point $\omega=\omega_{0}$.

To accomplish this, we first consider the Binomial Function:

$$
\Gamma(\theta)=A\left(1+e^{-j 2 \theta}\right)^{N}
$$

This function has the desirable properties that:

$$
\begin{aligned}
\Gamma(\theta=\pi / 2) & =A\left(1+e^{-j \pi}\right)^{N} \\
& =A(1-1)^{N} \\
& =0
\end{aligned}
$$

and that:

$$
\left.\frac{d^{n} \Gamma(\theta)}{d \theta^{n}}\right|_{\theta=\pi / 2}=0 \text { for } n=1,2,3, \cdots, N-1
$$

In other words, this Binomial Function is maximally flat at the point $\theta=\pi / 2$, where it has a value of $\Gamma(\theta=\pi / 2)=0$.

Q: So? What does this have to do with our multi-section matching network?

A: Let's expand (multiply out the Nidentical product terms) of the Binomial Function:

$$
\begin{aligned}
\Gamma(\theta) & =A\left(1+e^{-j 2 \theta}\right)^{N} \\
& =A\left(C_{0}^{N}+C_{1}^{N} e^{-j 2 \theta}+C_{2}^{N} e^{-j 4 \theta}+C_{3}^{N} e^{-j 6 \theta}+\cdots+C_{N}^{N} e^{-j 2 N \theta}\right)
\end{aligned}
$$

where:

$$
C_{n}^{N} \doteq \frac{N!}{(N-n)!n!}
$$

Compare this to an \mathbf{N}-section transformer function:

$$
\Gamma_{i n}(\omega)=\Gamma_{0}+\Gamma_{1} e^{-j 2 \omega T}+\Gamma_{2} e^{-j 4 \omega T}+\cdots+\Gamma_{N} e^{-j 2 N \omega T}
$$

and it is obvious the two functions have identical forms, provided that:

$$
\Gamma_{n}=A C_{n}^{N} \quad \text { and } \quad \omega T=\theta
$$

Moreover, we find that this function is very desirable from the standpoint of the a matching network. Recall that $\Gamma(\theta)=0$ at $\theta=\pi / 2$--a perfect match!

Additionally, the function is maximally flat at $\theta=\pi / 2$, therefore $\Gamma(\theta) \approx 0$ over a wide range around $\theta=\pi / 2$--a wide bandwidth!

Q: But how does $\theta=\pi / 2$ relate to frequency ω ?

A: Remember that $\omega T=\theta$, so the value $\theta=\pi / 2$ corresponds to the frequency:

$$
\omega_{0}=\frac{1}{T} \frac{\pi}{2}=\frac{v_{p}}{\ell} \frac{\pi}{2}
$$

This frequency (ω_{0}) is therefore our design frequency-the frequency where we have a perfect match.

Note that the length ℓ has an interesting relationship with this frequency:

$$
\ell=\frac{v_{p}}{\omega_{0}} \frac{\pi}{2}=\frac{1}{\beta_{0}} \frac{\pi}{2}=\frac{\lambda_{0}}{2 \pi} \frac{\pi}{2}=\frac{\lambda_{0}}{4}
$$

In other words, a Binomial Multi-section matching network will have a perfect match at the frequency where the section lengths ℓ are a quarter wavelength!

Thus, we have our first design rule:

Set section lengths ℓ so that they are a quarterwavelength ($\lambda_{0} / 4$) at the design frequency ω_{0}.

Q: I see! And then we select all the values Z_{n} such that $\Gamma_{n}=A C_{n}^{N}$. But wait! What is the value of A ??

A: We can determine this value by evaluating a boundary condition!

Specifically, we can easily determine the value of $\Gamma(\omega)$ at $\omega=0$.

Note as ω approaches zero, the electrical length $\beta \ell$ of each section will likewise approach zero. Thus, the input impedance $Z_{\text {in }}$ will simply be equal to R_{L} as $\omega \rightarrow 0$.

As a result, the input reflection coefficient $\Gamma(\omega=0)$ must be:

$$
\begin{aligned}
\Gamma(\omega=0) & =\frac{Z_{\text {in }}(\omega=0)-Z_{0}}{Z_{\text {in }}(\omega=0)+Z_{0}} \\
& =\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}
\end{aligned}
$$

However, we likewise know that:

$$
\begin{aligned}
\Gamma(0) & =A\left(1+e^{-j 2(0)}\right)^{N} \\
& =A(1+1)^{N} \\
& =A 2^{N}
\end{aligned}
$$

Equating the two expressions:

$$
\Gamma(0)=A 2^{N}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}
$$

And therefore:

$$
A=2^{-N} \frac{R_{L}-Z_{0}}{R_{L}+Z_{0}} \quad \text { (A can be negative!) }
$$

We now have a form to calculate the required marginal reflection coefficients Γ_{n} :

$$
\Gamma_{n}=A C_{n}^{N}=\frac{A N!}{(N-n)!n!}
$$

Of course, we also know that these marginal reflection coefficients are physically related to the characteristic impedances of each section as:

$$
\Gamma_{n}=\frac{Z_{n+1}-Z_{n}}{Z_{n+1}+Z_{n}}
$$

Equating the two and solving, we find that that the section characteristic impedances must satisfy:

$$
Z_{n+1}=Z_{n} \frac{1+\Gamma_{n}}{1-\Gamma_{n}}=Z_{n} \frac{1+A C_{n}^{N}}{1-A C_{n}^{N}}
$$

Note this is an iterative result-we determine Z_{1} from Z_{0}, Z_{2} from Z_{1}, and so forth.

Q: This result appears to be our second design equation. Is there some reason why you didn't draw a big blue box around it?

A: Alas, there is a big problem with this result.
Note that there are $N+1$ coefficients Γ_{n} (i.e., $n \in\{0,1, \cdots, N\}$) in the Binomial series, yet there are only N design degrees of freedom (i.e., there are only N transmission line sections!).

Thus, our design is a bit over constrained, a result that manifests itself the finally marginal reflection coefficient Γ_{N}.

Note from the iterative solution above, the last transmission line impedance Z_{N} is selected to satisfy the mathematical requirement of the penultimate reflection coefficient Γ_{N-1} :

$$
\Gamma_{N-1}=\frac{Z_{N}-Z_{N-1}}{Z_{N}+Z_{N-1}}=A C_{N-1}^{N}
$$

Thus the last impedance must be:

$$
Z_{N}=Z_{N-1} \frac{1+A C_{N-1}^{N}}{1-A C_{N-1}^{N}}
$$

But there is one more mathematical requirement! The last marginal reflection coefficient must likewise satisfy:

$$
\Gamma_{N}=A C_{N}^{N}=2^{-N} \frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}
$$

where we have used the fact that $C_{N}^{N}=1$.
But, we just selected Z_{N} to satisfy the requirement for Γ_{N-1}, -we have no physical design parameter to satisfy this last mathematical requirement!

As a result, we find to our great consternation that the last requirement is not satisfied:

$$
\Gamma_{N}=\frac{R_{L}-Z_{N}}{R_{L}+Z_{N}} \neq A C_{N}^{N}!!!!!!
$$

Q: Yikes! Does this mean that the resulting matching network will not have the desired Binomial frequency response?

A: That's exactly what it means!
Q: You big \#\%@\#\$\%\&!!!! Why did you waste all my time by discussing an over-constrained design problem that can't be built?

A: Relax; there is a solution to our dilemma-albeit an approximate one.

You undoubtedly have previously used the approximation:

$$
\frac{y-x}{y+x} \approx \frac{1}{2} \ln \left(\frac{y}{x}\right)
$$

An approximation that is especially accurate when $|y-x|$ is small (i.e., when $y / x \simeq 1$).

Now, we know that the values of Z_{n+1} and Z_{n} in a multi-section matching network are typically very close, such that $\left|Z_{n+1}-Z_{n}\right|$ is small. Thus, we use the approximation:

$$
\Gamma_{n}=\frac{Z_{n+1}-Z_{n}}{Z_{n+1}+Z_{n}} \approx \frac{1}{2} \ln \left(\frac{Z_{n+1}}{Z_{n}}\right)
$$

Likewise, we can also apply this approximation (although not as accurately) to the value of A :

$$
A=2^{-N} \frac{R_{L}-Z_{0}}{R_{L}+Z_{0}} \approx 2^{-(N+1)} \ln \left(\frac{R_{L}}{Z_{0}}\right)
$$

So, let's start over, only this time we'll use these approximations. First, determine A :

$$
A \approx 2^{-(N+1)} \ln \left(\frac{R_{L}}{Z_{0}}\right) \quad(A \text { can be negative! })
$$

Now use this result to calculate the mathematically required marginal reflection coefficients Γ_{n} :

$$
\Gamma_{n}=A C_{n}^{N}=\frac{A N!}{(N-n)!n!}
$$

Of course, we also know that these marginal reflection coefficients are physically related to the characteristic impedances of each section as:

$$
\Gamma_{n} \approx \frac{1}{2} \ln \left(\frac{Z_{n+1}}{Z_{n}}\right)
$$

Equating the two and solving, we find that that the section characteristic impedances must satisfy:

$$
Z_{n+1}=Z_{n} \exp \left[2 \Gamma_{n}\right]
$$

Now this is our second design rule. Note it is an iterative rule-we determine Z_{1} from Z_{0}, Z_{2} from Z_{1}, and so forth.

Q: Huh? How is this any better? How does applying approximate math lead to a better design result??

A: Applying these approximations help resolve our overconstrained problem. Recall that the over-constraint resulted in:

$$
\Gamma_{N}=\frac{R_{L}-Z_{N}}{R_{L}+Z_{N}} \neq A C_{N}^{N}
$$

But, as it turns out, these approximations leads to the happy situation where:

$$
\Gamma_{N} \approx \frac{1}{2} \ln \left(\frac{R_{L}}{Z_{N}}\right)=A C_{N}^{N} \quad \leftarrow \text { Sanity check!! }
$$

provided that the value A is likewise the approximation given above.

Effectively, these approximations couple the results, such that each value of characteristic impedance Z_{n} approximately satisfies both Γ_{n} and Γ_{n+1}. Summarizing:

* If you use the "exact" design equations to determine the characteristic impedances Z_{n}, the last value Γ_{N} will exhibit a significant numeric error, and your design will not appear to be maximally flat.
* If you instead use the "approximate" design equations to determine the characteristic impedances Z_{n}, all values Γ_{n} will exhibit a slight error, but the resulting design will appear to be maximally flat, Binomial reflection coefficient function $\Gamma(\omega)$!

Figure 5.15 (p. 250)
Reflection coefficient magnitude versus frequency for multisection binomial matching transformers of Example $5.6 Z_{L}=50 \Omega$ and $Z_{0}=100 \Omega$.

Note that as we increase the number of sections, the matching bandwidth increases.

Q: Can we determine the value of this bandwidth?

A: Sure! But we first must define what we mean by bandwidth.

As we move from the design (perfect match) frequency f_{0} the value $|\Gamma(f)|$ will increase. At some frequency (f_{m}, say) the magnitude of the reflection coefficient will increase to some unacceptably high value (Γ_{m}, say). At that point, we no longer consider the device to be matched.

Note there are two values of frequency f_{m}-one value less than design frequency f_{0}, and one value greater than design frequency f_{0}. These two values define the bandwidth Δf of the matching network:

$$
\Delta f=f_{m 2}-f_{m 1}=2\left(f_{0}-f_{m 1}\right)=2\left(f_{m 2}-f_{0}\right)
$$

Q: So what is the numerical value of Γ_{m} ?

A: I don't know-it's up to you to decide!
Every engineer must determine what they consider to be an acceptable match (i.e., decide Γ_{m}). This decision depends on the application involved, and the specifications of the overall microwave system being designed.

However, we typically set Γ_{m} to be 0.2 or less.

Q: OK, after we have selected Γ_{m}, can we determine the two frequencies f_{m} ?

A: Sure! We just have to do a little algebra.
We start by rewriting the Binomial function:

$$
\begin{aligned}
\Gamma(\theta) & =A\left(1+e^{-j 2 \theta}\right)^{N} \\
& =A e^{-j N \theta}\left(e^{+j \theta}+e^{-j \theta}\right)^{N} \\
& =A e^{-j N \theta}\left(e^{+j \theta}+e^{-j \theta}\right)^{N} \\
& =A e^{-j N \theta}(2 \cos \theta)^{N}
\end{aligned}
$$

Now, we take the magnitude of this function:

$$
\begin{aligned}
|\Gamma(\theta)| & =2^{N}|A|\left|e^{-j N \theta}\right||\cos \theta|^{N} \\
& =2^{N}|\boldsymbol{A}||\cos \theta|^{N}
\end{aligned}
$$

Now, we define the values θ where $|\Gamma(\theta)|=\Gamma_{m}$ as θ_{m}. I.E., :

$$
\begin{aligned}
\Gamma_{m} & =\left|\Gamma\left(\theta=\theta_{m}\right)\right| \\
& =2^{N}|A|\left|\cos \theta_{m}\right|^{N}
\end{aligned}
$$

We can now solve for θ_{m} (in radians!) in terms of Γ_{m} :

$$
\theta_{m 1}=\cos ^{-1}\left[\frac{1}{2}\left(\frac{\Gamma_{m}}{|A|}\right)^{1 / N}\right] \quad \theta_{m 2}=\cos ^{-1}\left[-\frac{1}{2}\left(\frac{\Gamma_{m}}{|A|}\right)^{1 / N}\right]
$$

Note that there are two solutions to the above equation (one less that $\pi / 2$ and one greater than $\pi / 2$)!

Now, we can convert the values of θ_{m} into specific frequencies.

Recall that $\omega T=\theta$, therefore:

$$
\omega_{m}=\frac{1}{T} \theta_{m}=\frac{v_{p}}{\ell} \theta_{m}
$$

But recall also that $\ell=\lambda_{0} / 4$, where λ_{0} is the wavelength at the design frequency f_{0} (not $f_{m}!$), and where $\lambda_{0}=v_{p} / f_{0}$.

Thus we can conclude:

$$
\omega_{m}=\frac{v_{p}}{\ell} \theta_{m}=\frac{4 v_{p}}{\lambda_{0}} \theta_{m}=\left(4 f_{0}\right) \theta_{m}
$$

or:

$$
f_{m}=\frac{1}{2 \pi} \frac{v_{p}}{\ell} \theta_{m}=\frac{\left(4 f_{0}\right) \theta_{m}}{2 \pi}=\frac{\left(2 f_{0}\right) \theta_{m}}{\pi}
$$

where θ_{m} is expressed in radians. Therefore:

$$
f_{m 1}=\frac{2 f_{0}}{\pi} \cos ^{-1}\left[+\frac{1}{2}\left(\frac{\Gamma_{m}}{|A|}\right)^{1 / N}\right]
$$

$$
f_{m 2}=\frac{2 f_{0}}{\pi} \cos ^{-1}\left[-\frac{1}{2}\left(\frac{\Gamma_{m}}{|A|}\right)^{1 / N}\right]
$$

Thus, the bandwidth of the binomial matching network can be determined as:

$$
\begin{aligned}
\Delta f & =2\left(f_{0}-f_{m 1}\right) \\
& =2 f_{0}-\frac{4 f_{0}}{\pi} \cos ^{-1}\left[+\frac{1}{2}\left(\frac{\Gamma_{m}}{|A|}\right)^{1 / N}\right]
\end{aligned}
$$

Note that this equation can be used to determine the bandwidth of a binomial matching network, given Γ_{m} and number of sections N.

However, it can likewise be used to determine the number of sections Nrequired to meet a specific bandwidth requirement!

Finally, we can list the design steps for a binomial matching network:

1. Determine the value Nrequired to meet the bandwidth (Δf and Γ_{m}) requirements.
2. Determine the approximate value A from Z_{0}, R_{L} and N.
3. Determine the marginal reflection coefficients
$\Gamma_{n}=A C_{n}^{N}$ required by the binomial function.
4. Determine the characteristic impedance of each section using the iterative approximation:

$$
Z_{n+1}=Z_{n} \exp \left[2 \Gamma_{n}\right]
$$

5. Perform the sanity check:

$$
\Gamma_{N} \approx \frac{1}{2} \ln \left(\frac{R_{L}}{Z_{N}}\right)=A C_{N}^{N}
$$

6. Determine section length $\ell=\lambda_{0} / 4$ for design frequency f_{0}.
