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5.7 – Chebyshev Multi-section 
Matching Transformer 

 
Reading Assignment: pp. 250-255 
 
We can also build a multisection matching network such that 
the function ( )fΓ  is a Chebyshev function. 
 
Chebyshev functions maximize bandwidth, albeit at the cost 
of pass-band ripple.  
 
HO:  The Chebyshev Multi-section Matching Transformer 
 
 



 

4/19/2010 The Chebyshev Matching Transformer 1/15 

Jim Stiles The Univ. of Kansas Dept. of EECS 

 The Chebyshev 
Matching Transformer 

 
An alternative to Binomial (Maximally Flat) functions (and 
there are many such alternatives!) are Chebyshev polynomials. 
 
 
 
 
 
 
 
 
Chebyshev solutions can provide functions ( )ωΓ  with wider 
bandwidth than the Binomial case—albeit at the “expense” of 
passband ripple.  
 
It is evident from the plot below that the Chebychev 
response is far from maximally flat!  Instead, a Chebyshev 
matching network exhibits a “ripple” in its passband.  Note the 
magnitude of this ripple never exceeds some maximum value 

mΓ  (within the pass-band). 
 
The two frequencies at which the value ( )ωΓ  does increase 
beyond mΓ  define the bandwidth of the matching network.  
We denote these frequencies 2m mfω π=  (the plot above shows 
the locations of the frequencies for N =4).  

  

Pafnuty 
Chebyshev 

1821 -1894 
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 Note that the bandwidth defined by mf  increases as the 
number of sections N is increased. 
 

 Note also that the reflection coefficient in not necessarily 
zero at the design frequency 0f  !!! 
 
Instead, we find: 
 

( )0

0 for odd-valued 

 for even-valued m

N
f f

N

⎧⎪⎪⎪⎪Γ = = ⎨⎪⎪Γ⎪⎪⎩

 

 

 

Figure 5.17  (p. 255) 
Reflection coefficient magnitude versus frequency for the Chebyshev 
multisection matching transformers of Example 5.7. 

 

mΓ  
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Now, Chebyshev transformers are symmetric, i.e.: 
 

0 NΓ = Γ ,  1 1N −Γ = Γ , etc. 
 

Recall we can express the multi-section function ( )θΓ  (where 
Tθ ω β= = ) in a simpler form when the transformer is 

symmetric: 
 

( ) ( )
( ) ( )

0 12 cos cos 2

cos 2

j N

n

e N N
N n G

θθ θ θ

θ θ

−Γ = Γ + Γ −⎡⎣
+ + Γ − + + ⎤⎦

 

where: 
 

( )

( )

2

1 2

1 for  even
2

for  odd

N

N

N

G
cos N

θ
θ−

⎧ Γ⎪
⎪= ⎨
⎪Γ⎪
⎩

 

 
Now, the reflection coefficient of a Chebyshev matching 
network has the form: 
 

( )

( )

jN
N

m
jN

N m

cosA e T
cos

A e T cos sec

θ

θ

θθ
θ

θ θ

−

−

⎛ ⎞
Γ = ⎜ ⎟⎜ ⎟

⎝ ⎠
=

 

 
where m mTθ ω=  
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The function ( )N mT cos secθ θ  is a Chebyshev polynomial of 
order N. 
 

( )

( )

( )

( )

1

2
2

3
3

4 2
4

2 1

4 3

8 8 1

T x x

T x x

T x x x

T x x x

=

= −

= −

= − +

 

 
We can determine higher-order Chebyshev polynomials using 
the recursive formula: 
 

( ) ( ) ( )1 22n n nT x x T x T x− −= −  
 

Inserting the substitution: 
 

 mx cos secθ θ=  
 

into the Chebyshev polynomials above (and then applying a few 
trig identities) gives the results shown in equations 5.60 on 
page 252 of your book: 
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Note that these polynomials have a cos Nθ  term, a 

( )2cos N θ−  term, ( )4cos N θ−  term, etc.—just like the 
symmetric multi-section transformer function!  
 
For example, a 4-section Chebyshev matching network will 
have the form: 
 

( ) ( )

( )
( )

4
4
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While the general form of a 4-section matching transformer 
is a polynomial with these same terms:  
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( ) ( ) ]
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Thus, we can determine the values of marginal reflection 
coefficients 0 1 2, ,Γ Γ Γ  by simply equating the 3 terms of the 
two previous expressions: 
 

4 4 4
0

4
0

cos 4 42
1
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( )
( )

4 4 4 2
2

4 2
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3 4 1

j j
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e Ae sec sec

A sec sec

θ θ θ θ
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− −Γ = − +

Γ =⇒ − +
 

  
And because it’s symmetric, we also know that 3 1Γ = Γ  and 

04Γ = Γ .   
 
Now, we can again (i.e., as we did in the binomial matching 
network) determine the values of characteristic impedance 
Zn, using the iterative (approximate) relationship: 
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1 2n n nZ Z exp+

⎡ ⎤= Γ⎣ ⎦  
 
 

Q:  But what about the value of A ? 
 
A: Also using the same boundary condition analysis that we 
used for the binomial function, we find from our transmission 
line knowledge that for any multi-section matching network, 
at 0θ = : 

( ) 0

0

0 L

L

R Z
R Z

θ
−

Γ = =
+

 

 
Likewise, a Chebyshev matching network will have the specific 
value at 0θ =  of: 
 

( ) ( ) ( )( )
( )

00 0jN
N m

N m

A e T sec cos
AT sec

θ θ

θ

−Γ = =

=
 

 
These two results must of course be equal, and equating them 
allows us to solve for A : 
 

( )
0

0

1L

L N m

R ZA
R Z T sec θ

−
=

+
           

 
Here again (just like the binomial case) we will find it 
advantageous to use the approximation: 
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0

0 0

1
2

L L

L

R Z Rln
R Z Z

⎛ ⎞−
≈ ⎜ ⎟

+ ⎝ ⎠
 

 
So that the value A is approximately: 
 
 

                 
( )
( )

01
2

L

N m

ln R Z
A

T sec θ
≈        (A can be negative!)   

 
 
Q: Gosh, both the values of marginal reflection coefficients 

nΓ  and value A  depend explicitly on msec θ .  Just what is this 
value, and how do we determine it? 
 
A:  Recall that m mTθ ω= , where T  is the propagation time 
through one section (i.e., 

pvT = ) and 2m mfω π=  defines the 

bandwidth associated with ripple value mΓ .  Thus, for a given 
ripple mΓ  and value N , we can find msec θ  by solving this 
equations 
 

( )
( )
( )

( )1

m

m

m m

jN
N m m

jN
N m m

N

A e T sec cos

A e T sec cos

A T

θ

θ

θ θ

θ θ

θ θ

−

−

Γ = Γ =

=

=

=

 

 

 



 

4/19/2010 The Chebyshev Matching Transformer 9/15 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Q:  Yikes! The value msec θ  disappeared from this equation; 
how can we use this to determine msec θ ? 
 
A:  Don’t forget the value A !!  Inserting this into the 
expression: 
 

( )
( )

( )
( ) ( )0

1

1 1
2

m m

N

L
N

N m

A T

ln R Z
T

T sec

θ θ

θ

Γ = Γ =

=

=

 

 
One property of Chebyshev polynomials is that: 
 

( )1 1NT =    for all values N 
 

Therefore, we conclude: 

( ) ( )
( )

01
2

L
m m

N m

ln R Z
T sec

θ θ
θ

Γ = Γ = =  

 
And so rearranging: 
 

( ) ( )0
1

2N m L
m

T sec ln R Zθ =
Γ

 

 
Note that 0,LR Z  and mΓ  are design parameters, thus we can 
use the above to determine ( )N mT sec θ , and thus msec θ  !!! 
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Q: Um, I’m not at all clear about how one determines msec θ  
from the value ( )N mT sec θ .  Can you be more specific?? 
 
A:  Perhaps I should. 
 
Recall that the Chebyshev polynomials we use in the design of 
this matching transformer were of the form ( )N mT cos secθ θ , 
i.e.: 

( ) ( )jN
N mA e T cos secθθ θ θ−Γ =  
 

Note the value ( )N mT sec θ  is just the magnitude of the 
Chebyshev ( )N mT cos secθ θ  when evaluated at cos 1θ = ,  which 
is the case when 0θ= !! 
 

( ) ( ) ( )
0

0 N mN m N m T secT cos sec T cos sec
θ

θθ θ θ
=
= =  

 
Now, it can be shown that (  a phrase professors 
use while in hand-waving mode!) for all values θ  
outside the passband of the matching network, the 
general form of the Chebyshev polynomial can also be 
written as: 
 
( ) ( )1

N m mT sec cos cosh N cosh sec cosθ θ θ θ−⎡ ⎤= ⎣ ⎦  

 
Note the value 0 Tθ ω= =   means that the frequency 0ω= .  
This frequency is most definitely outside the passband, and 
thus according to the above expression: 
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( )( ) ( )
( )1

0N m N m

m

T sec cos T sec
cosh N cosh sec

θ θ θ

θ−

= =

⎡ ⎤= ⎣ ⎦
 

 Likewise,  
 
 

Q:  I know I should remember exactly what function cosh  is, 
but I don’t.  Can you help refresh my memory? 
 
A:  The function cosh is the hyperbolic cosine.  Recall that 
cosine (the “regular” kind) can be expressed as: 
 

cos
2

j je eθ θ
θ

−+
=  

 
Similarly, the hyperbolic cosine is: 
 

cosh
2

x xe ex
−+

=  

 
Plotting coshx  from 2x=−  to  2x=+ : 
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Hopefully it is apparent to you, from the above expression for 
coshx , that it results in a real value that is always greater 
than or equal to one (provided x is real): 
 

cosh 1x for x≥ −∞ < < ∞  
 

Thus cosh coshx x= . 
 

Q:  What about 1cosh y−  ? 
 
A: The function 1cosh y−  is the inverse hyperbolic cosine, aka 
the hyperbolic arccosine (arcosh y).  Note that this value is 
defined only for 1y ≥ , and is specifically: 
 

( )1 2cosh ln 1 1y y y for y− = + −± ≥  

 
Note that there is always two solutions (positive and 
negative) for the inverse hyperbolic cosine! 
 
You will find that most scientific calculators support the cosh 
and  cosh-1  functions as well. 
 
Anyway, combining the previous results, we find: 
 

( ) ( )1

0

1
2

L
N m m

m

RT sec ln cosh N cosh sec
Z

θ θ−⎡ ⎤= = ⎣ ⎦Γ
 

 
Therefore: 
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( )1

0

1
2

L
m

m

Rln cosh N cosh sec
Z

θ−⎡ ⎤= ⎣ ⎦Γ
 

 
Now (finally!) we have a form that can be manipulated 
algebraically.  Solving the above equation for msec θ : 
 
 

1

0

1 1
2

L
m

m

Rsec cosh cosh ln
N Z

θ −
⎡ ⎤⎛ ⎞

= ± ⎢ ⎥⎜ ⎟⎜ ⎟Γ⎢ ⎥⎝ ⎠⎣ ⎦
 

 
 
Of course, the specific values of mθ  can be determined with 
the 1sec−  (i.e., arcsecant) function. 
 
Note there are two solutions  for  1sec−  (one for the plus sign 
and one for the minus);  The two solutions are related as:  
 

1 2θ π θ= −  
 

Now, we can convert the values of mθ  into specific bandwidth 
frequencies 1mf  and 2mf . 
 
Since Tθ ω= , we find: 

1 1
1 p

m m

v
T

ω θ θ= =  

And similarly: 

2 2
1 p

m m

v
T

ω θ θ= =  
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Note that there are two solutions mθ  for this equation—one 
value of mθ  ( 1θ )will be less than 2π  (defining the lower 
passband frequency), while the other ( 2θ ) will be greater than 

2π  (defining the upper passband frequency). 
 
Moreover, we find that the two values of mθ  will be symmetric 
about the value 2π !  For example, if the lower value 1θ  is  

2 10π π− , then the upper value 2θ  will be 2 10π π+ . 
 
Q:  So?? 
 
A: This means that the center of the passband will be defined 
by the value 2θ π= —and the center of the passband is our 
design frequency 0ω !  In other words, since 0 2Tω π= : 
 

0
1

2 2
pv

T
π πω = =  

 
Thus, we set the center (i.e., design) frequency by selecting 
the proper value of section length .  Note the above 
expression is precisely the same result obtained for the 
Binomial matching network, and thus we have precisely the 
same design rule! 
 
That design rule is, set the section lengths  such that they 
are a quarter wavelength at the design frequency 0ω : 
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0

4
λ

=  

 
 

where 0 0pvλ ω= . 
 
Summarizing, the Chebyshev matching network design 
procedure is: 
 
 

1.  Determine the value N  required to meet the 
bandwidth and ripple mΓ  requirements. 
 
2.  Determine the Chebychev function 
( ) ( )jN

N mA e T cos secθθ θ θ−Γ = . 
 
3.  Determine all nΓ  by equating terms with the 
symmetric multisection transformer expression: 
 

( ) ( )
( ) ( )

0 12 cos cos 2

cos 2

j N

n

e N N
N n G

θθ θ θ

θ θ

−Γ = Γ + Γ −⎡⎣
+ + Γ − + + ⎤⎦

 

 
4. Calculate all Zn using the approximation: 
 

11
2

n
n

n

Zln
Z

+Γ =  

 
5.  Determine section length 0 4λ= . 
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