<u>8.3 Filter Design by the</u> Insertion Loss Method

Reading Assignment: pp. 389-398

Chapter 8 cover microwave filters.

A microwave filter \rightarrow A two-port microwave network that allows source power to be transferred to a load as an explicit function of frequency.

HO: Filters

HO: The Filter Phase Function

Q: Why do we give a darn about **phase** function $\angle S_{21}(\omega)$? After all, phase **doesn't** matter.

A: Phase doesn't matter!?! A typical rookie mistake!

HO: Filter Dispersion

HO: The Linear Phase Filter

Q: So how do we **specify** a microwave filter? How close to an **ideal** filter can we build?

A: HO: The Insertion Loss Method

Q: So exactly how do construct a microwave filter that exhibits the polynomial function that we choose? How do we "realize" a filter polynomial function? A: HO: Filter Realizations using Lumped Elements

Filters

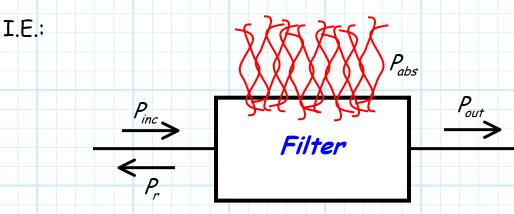
A RF/microwave **filter** is (typically) a passive, reciprocal, 2port linear device.

If port 2 of this device is terminated in a matched load, then we can relate the incident and output power as:

$$P_{out} = \left| S_{21} \right|^2 P_{inc}$$

We define this power transmission through a filter in terms of the **power transmission** coefficient T:

$$\mathbf{T} \doteq \frac{P_{out}}{P_{inc}} = \left| \mathcal{S}_{21} \right|^2$$


Since microwave filters are typically **passive**, we find that:

 $0 \leq T \leq 1$

in other words,
$$P_{out} \leq P_{inc}$$
.

Q: What happens to the "missing" power $P_{inc} - P_{out}$?

A: Two possibilities: the power is either absorbed (P_{abs}) by the filter (converted to heat), or is **reflected** (P_r) at the input port.

Thus, by conservation of energy:

$$P_{inc} = P_r + P_{abs} + P_{out}$$

Now ideally, a microwave filter is lossless, therefore $P_{abs} = 0$ and:

$$P_{inc} = P_r + P_{out}$$

which alternatively can be written as:

$$\frac{P_{inc}}{P_{inc}} = \frac{P_r + P_{out}}{P_{inc}}$$
$$\frac{1}{1} = \frac{P_r}{P_{inc}} + \frac{P_{out}}{P_{inc}}$$

Recall that $P_{out}/P_{inc} = T$, and we can likewise **define** P_r/P_{inc} as the **power reflection coefficient**:

$$\boldsymbol{\Gamma} \doteq \frac{\boldsymbol{P}_r}{\boldsymbol{P}_{inc}} = \left|\boldsymbol{\mathcal{S}}_{11}\right|^2$$

We again emphasize that the filter output port is terminated in a **matched** load.

Thus, we can conclude that for a lossless filter:

$$1 = \Gamma + T$$

Which is simply **another** way of saying for a lossless device that $1 = |S_{11}|^2 + |S_{21}|^2$.

Now, here's the important part!

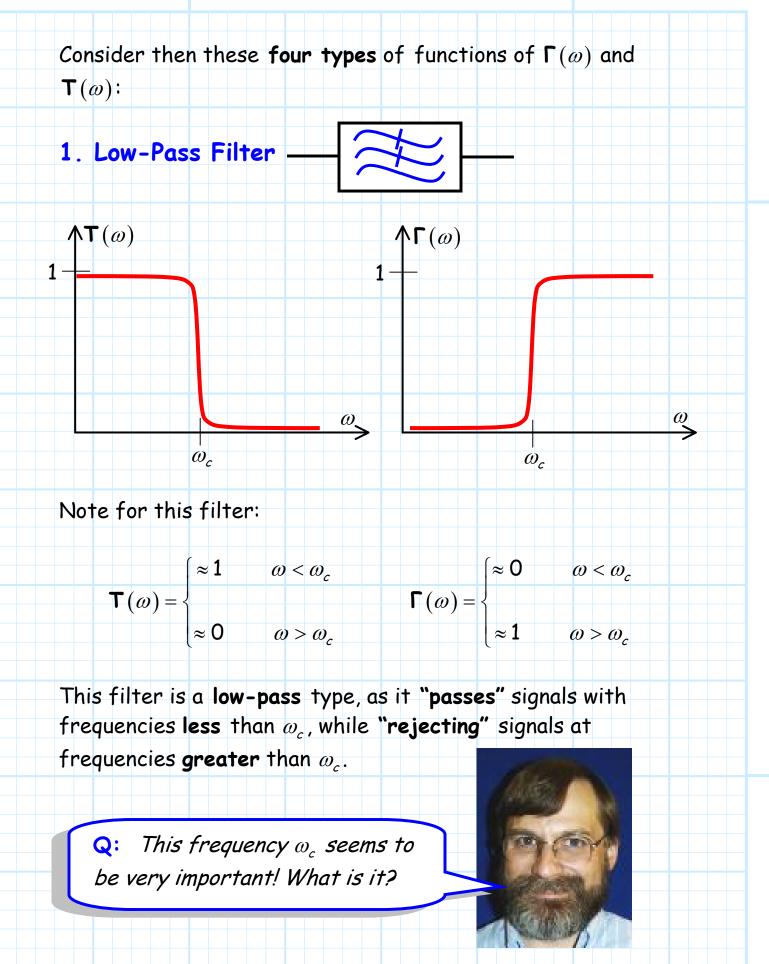
For a microwave filter, the coefficients Γ and T are functions of frequency! I.E.,:

 $\Gamma(\omega)$ and $T(\omega)$

The **behavior** of a microwave filter is described by these **functions**!

We find that for most signal frequencies ω_s , these functions will have a value equal to one of **two** different **approximate** values.

Either:

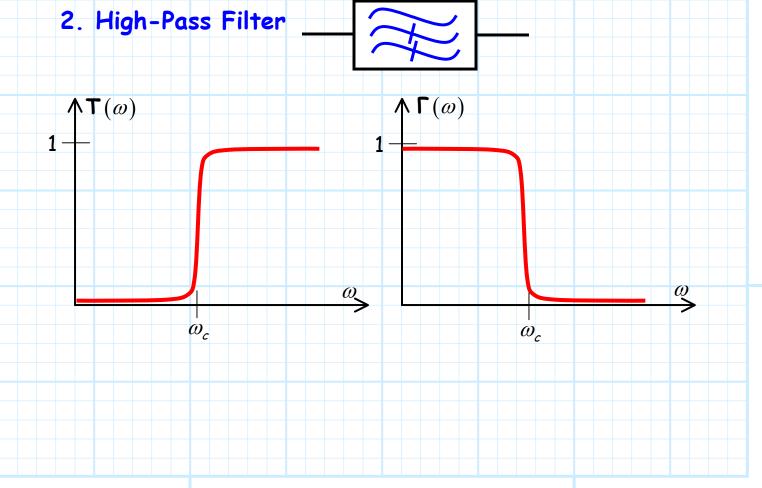

$$\Gamma(\omega = \omega_s) \approx 0$$
 and $\Gamma(\omega = \omega_s) \approx 1$

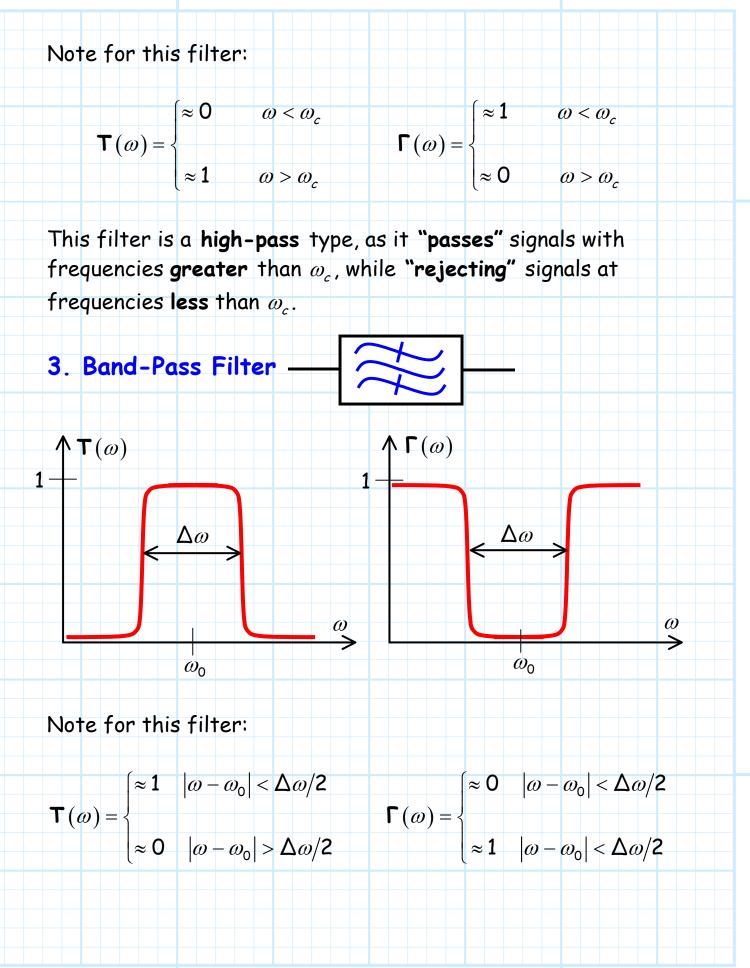
or

$$\Gamma(\omega = \omega_s) \approx 1$$
 and $\Gamma(\omega = \omega_s) \approx 0$

In the **first** case, the signal frequency ω_s is said to lie in the **pass-band** of the filter. Almost all of the incident signal power will **pass through** the filter.

In the **second** case, the signal frequency ω_s is said to lie in the **stop-band** of the filter. Almost all of the incident signal power will be **reflected** at the input—almost no power will appear at the filter output.

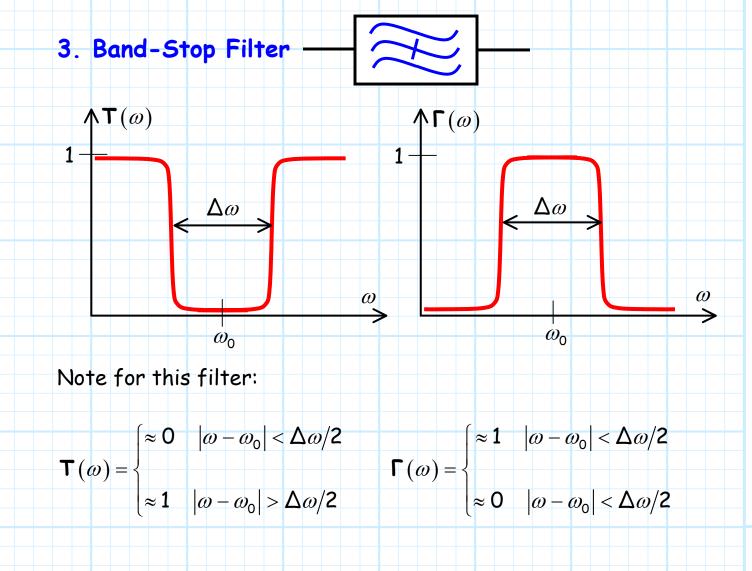

A: Frequency ω_c is a filter parameter known as the **cutoff frequency**; a value that **approximately** defines the frequency region where the filter pass-band **transitions** into the filter stop band.


According, this frequency is defined as the frequency where the power transmission coefficient is equal to $\frac{1}{2}$:

$$\Gamma(\omega = \omega_c) = 0.5$$

Note for a lossless filter, the cutoff frequency is **likewise** the value where the power **reflection** coefficient is $\frac{1}{2}$:

$$\Gamma(\omega = \omega_c) = 0.5$$



8/8

This filter is a **band-pass** type, as it **"passes"** signals within a frequency bandwidth $\Delta \omega$, while **"rejecting"** signals at all frequencies **outside this bandwidth**.

In addition to filter bandwidth $\Delta \omega$, a fundamental parameter of bandpass filters is ω_0 , which defines the **center frequency** of the filter bandwidth.

This filter is a **band-stop** type, as it "**rejects**" signals within a frequency bandwidth $\Delta \omega$, while "**passing**" signals at all frequencies **outside this bandwidth**.

<u>The Filter</u> <u>Phase Function</u>

Recall that the power transmission coefficient $T(\omega)$ can be determined from the scattering parameter $S_{21}(\omega)$:

$$\mathbf{T}(\omega) = \left| \mathcal{S}_{21}(\omega) \right|^2$$

Q: I see, we only care about the **magnitude** of complex function $S_{21}(\omega)$ when using microwave filters !?

A: Hardly! Since $S_{21}(\omega)$ is complex, it can be expressed in terms of its magnitude and **phase**:

$$S_{21}(\omega) = \operatorname{\mathsf{Re}}\left\{S_{21}(\omega)\right\} + j\operatorname{\mathsf{Im}}\left\{S_{21}(\omega)\right\}$$
$$= \left|S_{21}(\omega)\right|e^{j\angle S_{21}(\omega)}$$

where the phase is denoted as $\angle S_{21}(\omega)$:

$$\angle S_{21}(\omega) = \tan^{-1} \left[\frac{\operatorname{Im} \{S_{21}(\omega)\}}{\operatorname{Re} \{S_{21}(\omega)\}} \right]$$

We likewise care very much about this phase function!

Q: Just what does this phase tell us?

Jim Stiles

A: It describes the relative phase **between** the wave incident on the input to the filter, and the wave exiting the output of the filter (given the output port is matched).

In other words, if the **incident** wave is:

$$V_1^+(\boldsymbol{Z}_1) = V_{01}^+ \boldsymbol{e}^{-j\beta z}$$

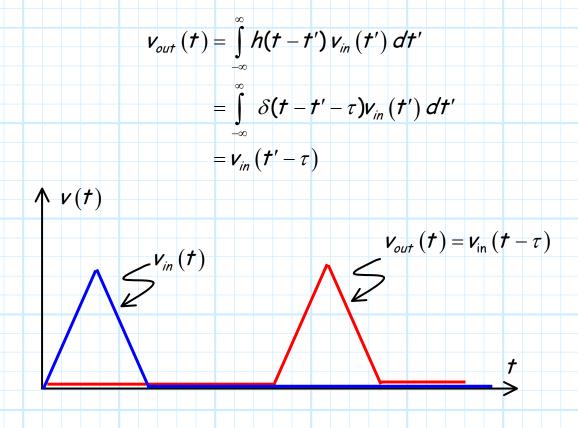
Then the exiting (output) wave will be:

$$V_{2}^{-}(z_{2}) = V_{02}^{-} e^{+j\beta z_{2}}$$
$$= S_{21} V_{01}^{-} e^{+j\beta z_{2}}$$
$$= |S_{21}| V_{01}^{-} e^{+j(\beta z + \angle S_{21})}$$

We say that there has been a "phase shift" of $\angle S_{21}$ between the input and output waves.

Q: What causes this phase shift?

A: Propagation delay. It takes some non-zero amount of time for signal energy to propagate from the input of the filter to the output.


Q: Can we tell from $\angle S_{21}(\omega)$ how **long** this delay is?

A: Yes!

To see how, consider an **example** two-port network with the impulse response:

 $h(t) = \delta(t-\tau)$

We determined earlier that this device would merely **delay** and input signal by some amount τ :

Taking the Fourier transform of this impulse response, we find the frequency response of this two-port network is:

$$\mathcal{H}(\omega) = \int_{-\infty}^{\infty} h(t) e^{-j\omega t} dt$$
$$= \int_{-\infty}^{\infty} \delta(t-\tau) e^{-j\omega t} dt$$
$$= e^{-j\omega \tau}$$

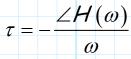
In other words:

$$|\mathcal{H}(\omega)| = 1$$
 and $\angle \mathcal{H}(\omega) = -\omega \tau$

The interesting result here is the **phase** $\angle H(\omega)$. The result means that a delay of τ seconds results in an output "phase shift" of $-\omega \tau$ radians!

Note that although the **delay** of device is a **constant** τ , the **phase shift** is a **function** of ω --in fact, it is directly proportional to frequency ω .

Note if the **input** signal for this device was of the form:


$$V_{in}(t) = \cos \omega t$$

Then the output would be:

$$\begin{aligned} \mathbf{v}_{out}\left(t\right) &= \cos \omega \left(t - \tau\right) \\ &= \cos \left(\omega t - \omega \tau\right) \\ &= \left|\mathcal{H}\left(\omega\right)\right| \cos \left(\omega t + \angle \mathcal{H}\left(\omega\right)\right) \end{aligned}$$

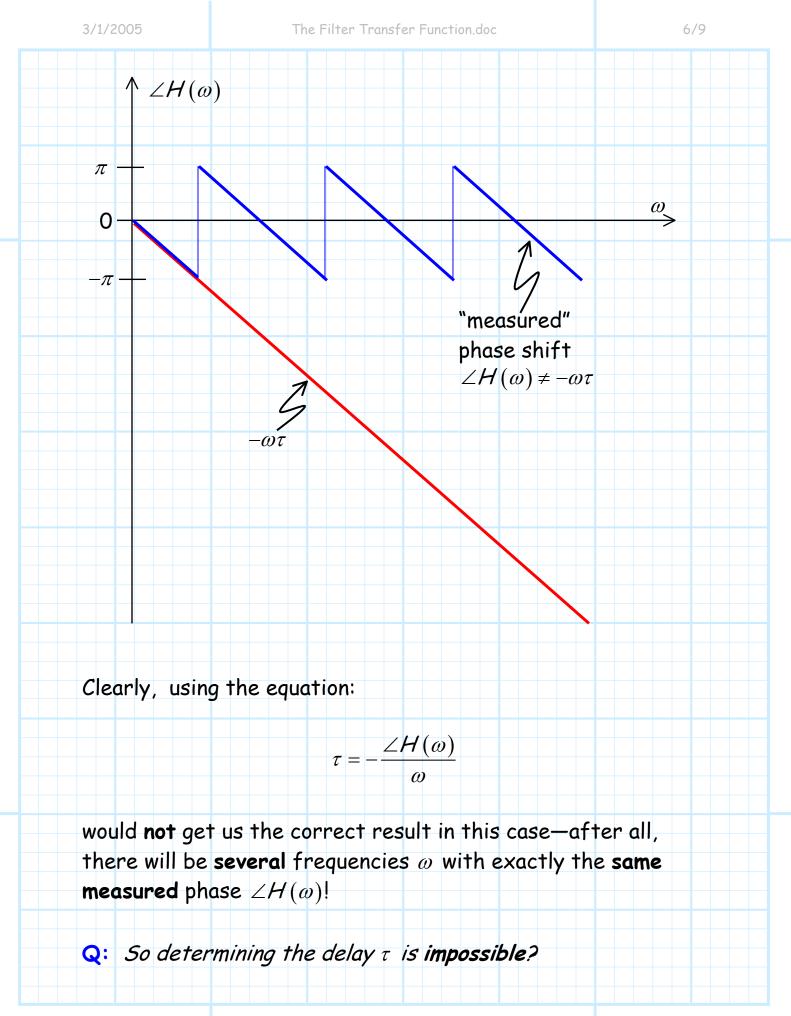
Thus, we could **either** view the signal $v_{in}(t) = \cos \omega t$ as being delayed by an amount τ seconds, **or** phase shifted by an amount $-\omega \tau$ radians.

Q: So, by **measuring** the output signal phase shift $\angle H(\omega)$, we could determine the delay τ through the device with the equation:

right?

A: Not exactly. The problem is that we cannot unambiguously determine the phase shift $\angle H(\omega) = -\omega \tau$ by looking at the output signal!

The reason is that $\cos(\omega t + \angle H(\omega)) = \cos(\omega t + \angle H(\omega) + 2\pi)$ = $\cos(\omega t + \angle H(\omega) - 4\pi)$, etc. More specifically:

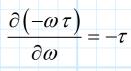

$$\cos(\omega t + \angle H(\omega)) = \cos(\omega t + \angle H(\omega) + n2\pi)$$

where *n* is **any integer**—positive or negative. We can't tell **which** of these output signal we are looking at!

Thus, any phase shift **measurement** has an inherent **ambiguity**. Typically, we interpret a phase measurement (in radians) such that:

$$-\pi < \angle \mathcal{H}(\omega) \le \pi$$
 or $0 \le \angle \mathcal{H}(\omega) < 2\pi$

But almost certainly the actual value of $\angle H(\omega) = -\omega \tau$ is **nowhere** near these interpretations!



A: NO! It is entirely possible—we simply must find the correct method.

Looking at the plot on the previous page, this method should become **apparent**. Not that although the measured phase (blue curve) is definitely **not** equal to the phase function $-\omega \tau$ (red curve), the **slope** of the two are **identical** at every point!

Q: What good is knowing the slope of these functions?

A: Just look! Recall that we can determine the slope by taking the first **derivative**:

The slope directly tells us the **propagation delay**!

Thus, we can determine the propagation delay of this device by:

 $\tau = -\frac{\partial \angle \mathcal{H}(\omega)}{\partial \omega}$

where $\angle H(\omega)$ can be the **measured** phase. Of course, the method requires us to **measure** $\angle H(\omega)$ as a **function** of frequency (i.e., to make measurements at **many** signal frequencies).

Q: Now I see! If we wish to determine the propagation delay τ through some filter, we simply need to take the derivative of $\angle S_{21}(\omega)$ with respect to frequency. **Right**?

A: Well, sort of.

Recall for the **example** case that $h(t) = \delta(t - \tau)$ and $\angle H(\omega) = -\omega \tau$, where τ is a **constant**. For a microwave filter, **neither** of these conditions are true.

Specifically, the phase function $\angle S_{21}(\omega)$ will typically be some arbitrary function of frequency ($\angle S_{21}(\omega) \neq -\omega\tau$).

Q: How could this be true? I thought you said that phase shift was **due** to filter delay τ !

A: Phase shift is due to device delay, it's just that the propagation delay of most devices (such as filters) is not a constant, but instead depends on the frequency of the signal propagating through it!

In other words, the propagation delay of a filter is typically some arbitrary **function** of frequency (i.e., $\tau(\omega)$). That's why the phase $\angle S_{21}(\omega)$ is **likewise** an arbitrary function of frequency.

Q: Yikes! Is there **any** way to determine the relationship between these two arbitrary functions?

A: Yes there is! Just as before, the two can be related by a first derivative:

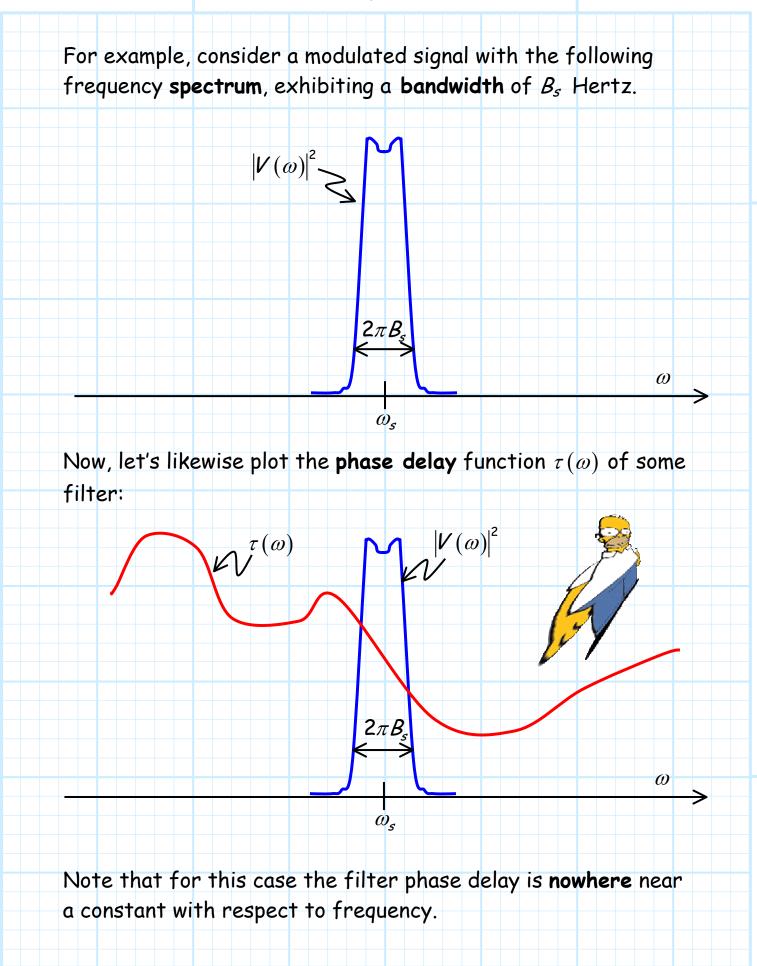
$$\tau(\omega) = -\frac{\partial \angle S_{21}(\omega)}{\partial \omega}$$

This result $\tau(\omega)$ is also know as **phase delay**, and is a **very** important function to consider when designing/specifying/selecting a microwave **filter**.

Q: Why; what might happen?

A: If you get a filter with the wrong $\tau(\omega)$, your **output** signal could be horribly **distorted**—distorted by the evil effects of signal dispersion!

Filter Dispersion


Any signal that carries significant **information** must has some non-zero **bandwidth**. In other words, the signal energy (as well as the information it carries) is **spread** across many frequencies.

If the different frequencies that comprise a signal propagate at different velocities through a microwave filter (i.e., each signal frequency has a different delay τ), the output signal will be **distorted**. We call this phenomenon signal **dispersion**.

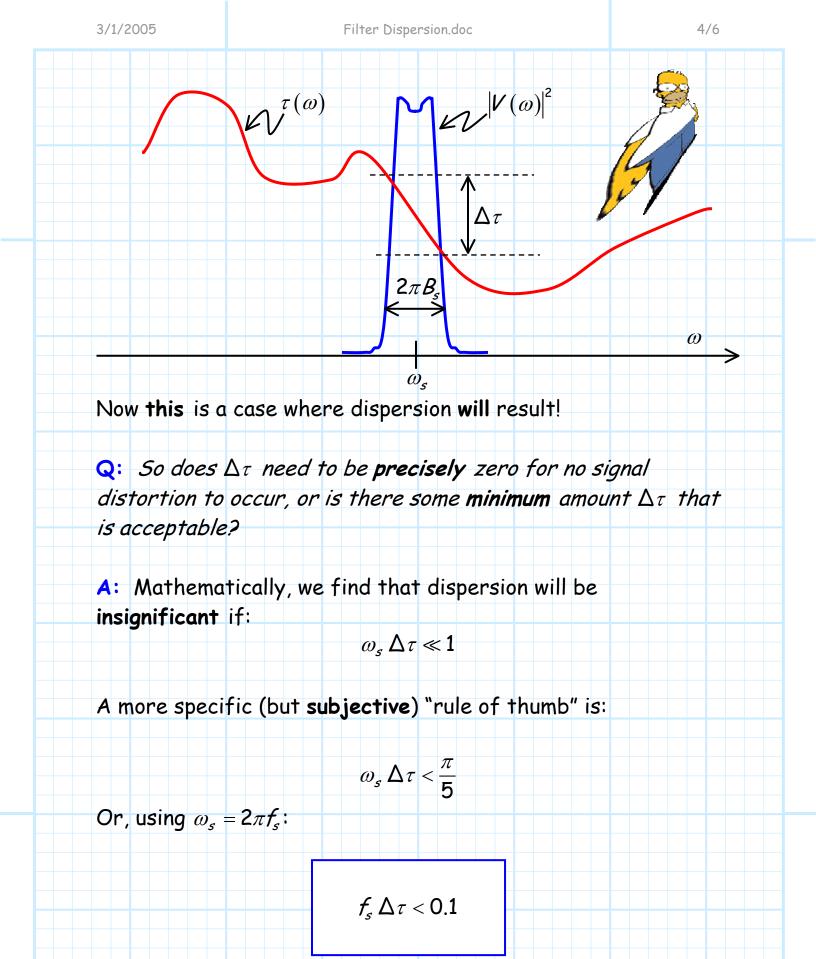
Q: I see! The phase delay $\tau(\omega)$ of a filter **must** be a constant with respect to frequency—otherwise signal dispersion (and thus signal distortion) will result. Right?

A: Not necessarily! Although a constant phase delay will insure that the output signal is not distorted, it is not strictly a requirement for that happy event to occur.

This is a **good** thing, for as we shall latter see, building a good filter with a constant phase delay is **very** difficult!

However, this fact alone does **not** necessarily mean that our signal would suffer from **dispersion** if it passed through this filter. Indeed, the signal in this case **would** be distorted, but **only** because the phase delay $\tau(\omega)$ changes significantly across the **bandwidth** B_s of the signal.

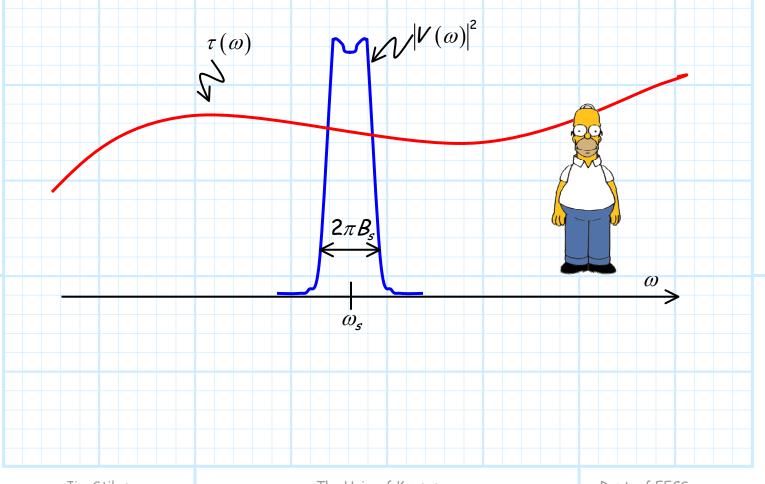
Conversely, consider this phase delay:

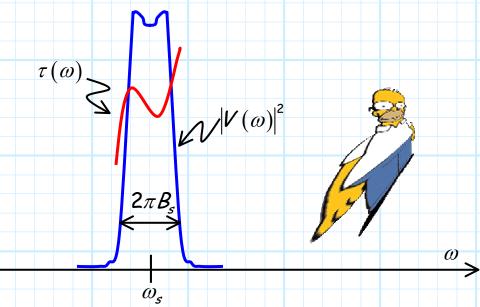

 $\mathcal{W}^{|\mathcal{V}(\omega)|^2}$ $\tau(\omega)$ $2\pi B_c$ ω_{s}

As with the previous case, the phase delay of the filter is **not** a constant. Yet, if this signal were to pass through this filter, it would **not** be distorted!

The reason for this is that the phase delay across the **signal bandwidth** is approximately constant—each frequency component of the **signal** will be delayed by the **same** amount.

Compare this to the **previous** case, where the phase delay changes by a precipitous value $\Delta \tau$ across signal bandwidth B_s :


ω


Generally speaking, we find for **wideband** filters—where filter bandwidth *B* is much greater than the signal bandwidth (i.e., $B \gg B_s$)—the above criteria is **easily** satisfied. In other words, signal dispersion is **not** typically a problem for wide band filters (e.g., preselector filters).

This is **not** to say that $\tau(\omega)$ is a constant for wide band filters. Instead, the phase delay can change **significantly** across the wide **filter** bandwith.

What we typically find however, is that the function $\tau(\omega)$ does not change very **rapidly** across the wide filter bandwidth. As a result, the phase delay will be **approximately** constant across the relatively narrow signal bandwidth B_s .

Conversely, a **narrowband** filter—where filter bandwidth *B* is approximately **equal** to the signal bandwidth (i.e., $B_s \approx B$)—can (if we're not careful!) exhibit a phase delay which likewise changes **significantly** over **filter** bandwidth *B*. This means of course that it **also** changes significantly over the **signal** bandwidth B_s !

Thus, a narrowband filter (e.g., IF filter) must exhibit a near constant phase delay $\tau(\omega)$ in order to avoid distortion due to signal dispersion!

<u>The Linear Phase Filter</u>

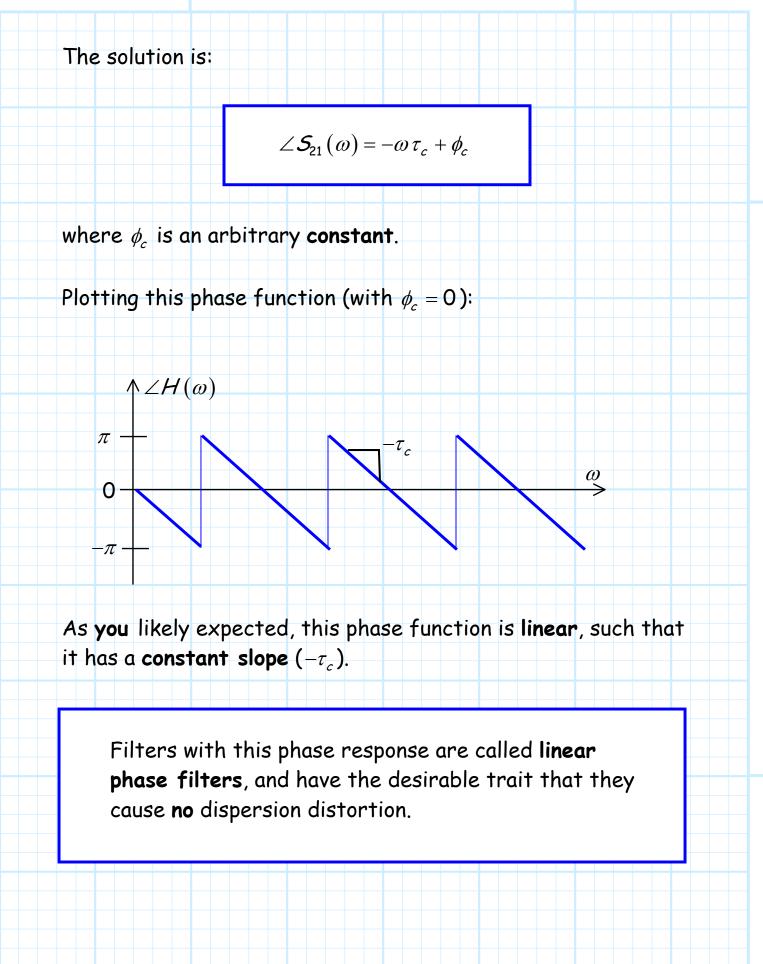
Q: So, narrowband filters should exhibit a **constant** phase delay $\tau(\omega)$. What should the phase function $\angle S_{21}(\omega)$ be for this **dispersionless** case?

A: We can express this problem mathematically as requiring:

$$\tau(\omega) = \tau_c$$

where τ_c is some constant.

Recall that the definition of phase delay is:


$$T(\omega) = -\frac{\partial \angle S_{21}(\omega)}{\partial \omega}$$

and thus **combining** these two equations, we find ourselves with a **differential equation**:

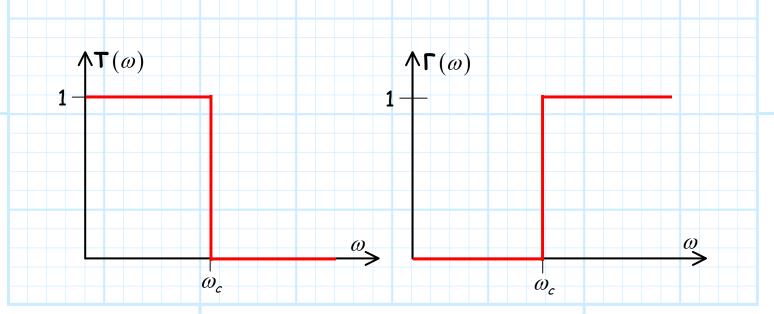
$$\frac{\partial \angle S_{21}(\omega)}{\partial \omega} = \tau_c$$

The **solution** to this differential equation provides us with the necessary phase function $\angle S_{21}(\omega)$ for a **constant** phase delay τ_c .

Fortunately, this differential equation is **easily** solved!

<u>The Insertion</u> <u>Loss Method</u>

Recall that a **lossless** filter can be described in terms of either its power transmission coefficient $T(\omega)$ or its power reflection coefficient $\Gamma(\omega)$, as the two values are completely **dependent**:


$$\mathbf{T}(\omega) = \mathbf{1} - \mathbf{T}(\omega)$$

Ideally, these functions would be quite simple:

1. $T(\omega) = 1$ and $\Gamma(\omega) = 0$ for all frequencies within the passband.

2. $T(\omega) = 0$ and $\Gamma(\omega) = 1$ for all frequencies within the stopband.

For example, the ideal low-pass filter would be:

Add to this a **linear phase** response, and you have the **perfect** microwave filter!

There's just one small problem with this **perfect** filter \rightarrow It's **impossible** to build!

Now, if we consider only possible (i.e., **realizable**) filters, we must limit ourselves to filter functions that can be expressed as **finite polynomials** of the form:

$$\mathbf{T}(\omega) = \frac{a_0 + a_1 \omega + a_2 \omega^2 + \cdots}{b_0 + b_1 \omega + b_2 \omega^2 + \cdots + b_N \omega^{2N}}$$

The order Nof the (denominator) polynomial is likewise the order of the filter.

Instead of the power transmission coefficient, we often use an equivalent function (assuming lossless) called the **power loss ratio** P_{LR} :

$$P_{LR} = \frac{P_{1}^{+}}{P_{2}^{-}} = \frac{1}{1 - \Gamma(\omega)}$$

Note with this definition, $P_{LR} = \infty$ when $\Gamma(\omega) = 1$, and $P_{LR} = 0$ when $\Gamma(\omega) = 0$.

We likewise note that, for a lossless filter:

$$P_{LR} = \frac{1}{1 - \Gamma(\omega)} = \frac{1}{\Gamma(\omega)}$$

Therefore
$$P_{LR}(dB)$$
 is :

$$P_{LR}(dB) = 10 \log_{10} P_{LR} = -10 \log_{10} T(\omega) \doteq \text{Insertion Loss}$$

The power loss ratio in dB is simply the insertion loss of a lossless filter, and thus filter design using the power loss ratio is also called the Insertion Loss Method.

We find that realizable filters will have a power loss ratio of the form:

$$P_{LR}(\omega) = 1 + \frac{\mathcal{M}(\omega^2)}{\mathcal{N}(\omega^2)}$$

where $\mathcal{M}(\omega^2)$ and $\mathcal{N}(\omega^2)$ are polynomials with terms $\omega^2, \omega^4, \omega^6, etc.$

By specifying these polynomials, we specify the frequency behavior of a realizable filter. Our job is to first choose a desirable polynomial!

There are many different **types** of polynomials that result in good filter responses, and each type has its own set of **characteristics**.

The type of **polynomial** likewise describes the type of microwave **filter**. Let's consider **three** of the most popular types:

1. Elliptical

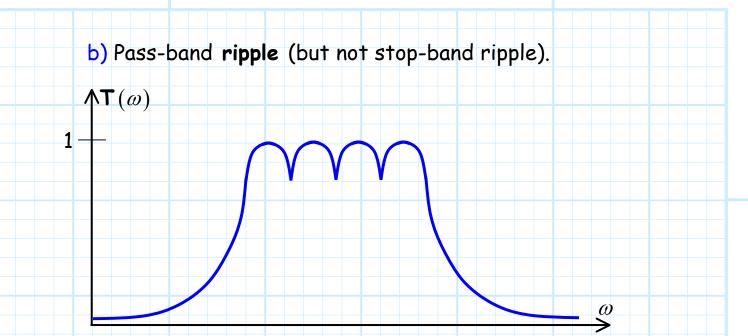
Elliptical filters have three primary characteristics:

a) They exhibit very steep "roll-off", meaning that the transition from pass-band to stop-band is very rapid.
b) They exhibit ripple in the pass-band, meaning that the value of T will vary slightly within the pass-band.

c) They exhibit ripple in the **stop**-band, meaning that the value of **T** will vary slightly within the stop-band.

 $\mathbf{\Lambda T}(\omega)$

1


We find that we can make the roll-off **steeper** by accepting more **ripple**.

2. Chebychev

Chebychev filters are also known as **equal-ripple** filters, and have two primary characteristics

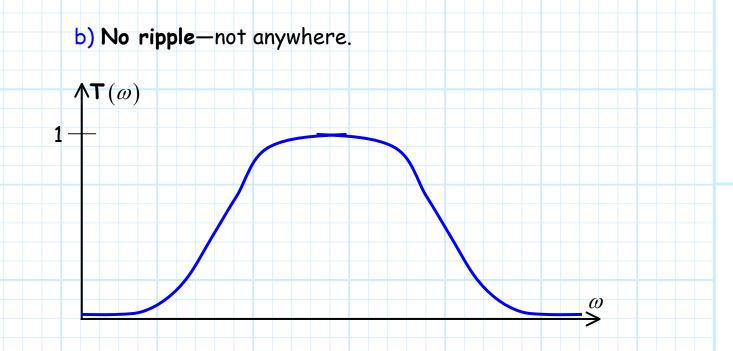
a) **Steep** roll-off (but not as steep as Elliptical).

 ω

We likewise find that the roll-off can be made steeper by **accepting** more ripple.

We find that Chebychev **low-pass** filters have a power loss ratio equal to:

$$P_{LR}(\omega) = 1 + k^2 T_N^2 \left(\frac{\omega}{\omega_c}\right)$$


where k specifies the passband **ripple**, $T_N(x)$ is a Chebychev polynomial of **order** N, and ω_c is the low-pass **cutoff frequency**.

3. Butterworth

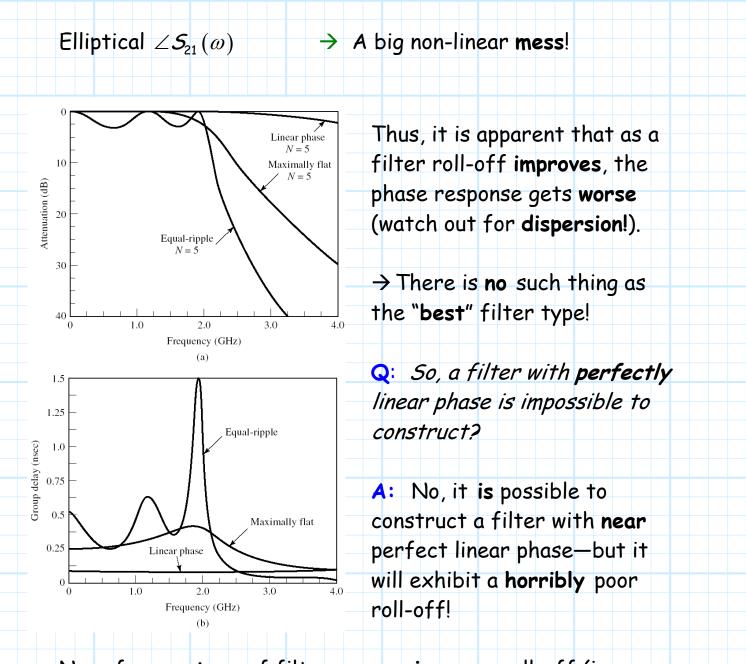
Also known as **maximally flat** filters, they have two primary characteristics

a) Gradual roll-off.

Jim Stiles

We find that Butterworth **low-pass** filters have a power loss ratio equal to:

$$\mathcal{P}_{LR}(\omega) = 1 + \left(\frac{\omega}{\omega_c}\right)$$


where ω_c is the low-pass cutoff frequency, and N specifies the order of the filter.

Q: So we always chose **elliptical** filters; since they have the steepest roll-off, they are **closest** to ideal—**right**?

A: Ooops! I forgot to talk about the **phase response** $\angle S_{21}(\omega)$ of these filters. Let's examine $\angle S_{21}(\omega)$ for each filter type **before** we pass judgment.

Butterworth $\angle S_{21}(\omega) \rightarrow Close$ to linear phase.

Chebychev $\angle S_{21}(\omega) \rightarrow Not$ very linear.

Now, for any **type** of filter, we can **improve** roll-off (i.e., increase stop-band attenuation) by **increasing the filter order** N. However, be aware that increasing the filter order likewise has these **deleterious** effects:

- **1**. It makes **phase response** $\angle S_{21}(\omega)$ worse (i.e., more nonlinear).
- 2. It increases filter cost, weight, and size.

3. It increases filter **insertion loss** (this is bad).

4. It makes filter performance more **sensitive** to temperature, aging, etc.

From a **practical** viewpoint, the **order** of a filter should typically be kept to N < 10.

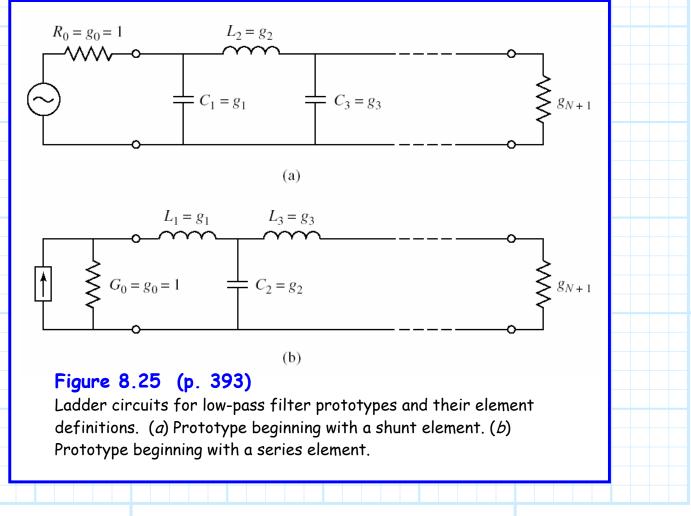
Q: So how do we take these polynomials and make real filters?

A: Similar to matching networks and couplers, we:

1. Form a general circuit structure with **several** degrees of design freedom.

2. Determine the **general form** of the power loss ratio for these circuits.

3. Use our degrees of design freedom to **equate terms** in the general form to the terms of the **desired** power loss ratio polynomial.


Filter Realizations Using Lumped Elements

Our first filter circuit will be "realized" with lumped elements.

Lumped elements—we mean inductors L and capacitors C!

Since each of these elements are (ideally) perfectly **reactive**, the resulting filter will be **lossless** (ideally).

We will first consider two configurations of a ladder circuit:

The Univ. of Kansas

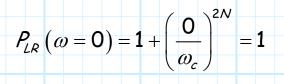
Note that these two structures provide a **low-pass** filter response (evaluate the circuits at $\omega = 0$ and $\omega = \infty$!).

Moreover, these structures have N different **reactive** elements (i.e., N degrees of design freedom) and thus can be used to realize an **N-order** power loss ratio.

For example, consider the **Butterworth** power loss ratio function:

$$P_{LR}(\omega) = 1 + \left(\frac{\omega}{\omega_c}\right)^2$$

Recall this is a **low-pass** function, as $P_{LR} = 1$ at $\omega = 0$, and $P_{LR} = \infty$ at $\omega = \infty$. Note also that at $\omega = \omega_c$:


$$P_{LR}\left(\omega=\omega_{c}\right)=1+\left(\frac{\omega_{c}}{\omega_{c}}\right)^{2N}=1+1^{2N}=2$$

Meaning that:

$$\Gamma(\omega = \omega_c) = T(\omega = \omega_c) = \frac{1}{2}$$

In other words, ω_c defines the 3dB bandwidth of the low-pass filter.

Likewise, we find that this Butterworth function is **maximally** flat at $\omega = 0$:

and:

$$\frac{d^n P_{LR}(\omega)}{d\omega^n} \bigg|_{\omega=0} = 0 \quad \text{for all } n$$

Now, we can determine the function $P_{LR}(\omega)$ for a lumped element ladder circuit of Nelements using our knowledge of **complex circuit theory**.

Then, we can **equate** the resulting polynomial to the **maximally flat** function above. In this manner, we can determine the appropriate **values** of all inductors L and capacitors C!

An **example** of this method is given on pages 392 and 393 of your book. In this case, the filter is very **simple**—just **one** inductor and **one** capacitor. However, as the book shows, finding the solution requires quite a bit **complex algebra**!

Fortunately, your book likewise provides **tables** of complete Butterworth and Chebychev Low-Pass **solutions** (up to order 10) for the ladder circuits of figure 8.25—**no** complex algebra required!

			The second second	1000		2010					
Ν	g 1	<i>g</i> ₂	<i>g</i> ₃	g_4	g 5	g 6	g 7	g_8	g 9	g 10	<i>g</i> ₁₁
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						also get a
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					200.000
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000		inter în		
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000
		Networks,	and Coupli	ng Structure	es (Dedham	, Mass.: Art	ech House,	, 1980) with	permission	1.	
		1000		1	0.5.3	D Dimela	2			100	
Ν	g_1	<i>g</i> ₂	<i>g</i> ₃	g 4	0.5 d g ₅	B Ripple	<i>g</i> 7	g_8	<i>8</i> 9	g 10	g 11
N 1	<i>g</i> 1 0.6986	g ₂ 1.0000	<i>g</i> ₃	g 4			<i>g</i> 7	g 8	89	B 10	<i>g</i> ₁₁
	0.6986 1.4029	1.0000 0.7071	1.9841	Take .			87	g 8	89	g 10	<u>g11</u>
1	0.6986 1.4029 1.5963	1.0000 0.7071 1.0967	1.9841 1.5963	1.0000	<i>g</i> 5		<i>g</i> 7	g 8	89	g 10	<u>g11</u>
1 2 3 4	0.6986 1.4029 1.5963 1.6703	1.0000 0.7071 1.0967 1.1926	1.9841 1.5963 2.3661	1.0000 0.8419	<i>g</i> ₅ 1.9841	<i>g</i> ₆	<i>8</i> 7	g ₈	89	<i>8</i> 10	<u>g11</u>
1 2 3 4 5	0.6986 1.4029 1.5963 1.6703 1.7058	1.0000 0.7071 1.0967 1.1926 1.2296	1.9841 1.5963 2.3661 2.5408	1.0000 0.8419 1.2296	<i>g</i> ₅ 1.9841 1.7058	g ₆ 1.0000	Junea Maga	<i>g</i> 8	89	810	<u>g11</u>
1 2 3 4 5 6	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479	1.9841 1.5963 2.3661 2.5408 2.6064	1.0000 0.8419 1.2296 1.3137	<i>g</i> ₅ 1.9841 1.7058 2.4758	g ₆ 1.0000 0.8696	1.9841	1,000	<i>8</i> 9	<i>8</i> 10	<u>g11</u>
1 2 3 4 5 6 7	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7372	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381	1.0000 0.8419 1.2296 1.3137 1.3444	<i>g</i> ₅ 1.9841 1.7058 2.4758 2.6381	<i>g</i> ₆ 1.0000 0.8696 1.2583	1.9841 1.7372	1.0000	2.000 1.0000 1.2011	<i>g</i> 10	<u>g11</u>
1 2 3 4 5 6 7 8	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7372 1.7451	1.0000 0.7071 1.0967 1.1926 1.2296 1.2296 1.2479 1.2583 1.2647	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590	<i>g</i> ₅ 1.9841 1.7058 2.4758 2.6381 2.6964	<i>g</i> ₆ 1.0000 0.8696 1.2583 1.3389	1.9841 1.7372 2.5093	1.0000 0.8796	1.9841		<u>g11</u>
1 2 3 4 5 6 7 8 9	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7254 1.7372 1.7451 1.7504	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6564 2.6678	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673	<i>g</i> ₅ 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239	<i>g</i> ₆ 1.0000 0.8696 1.2583 1.3389 1.3673	1.9841 1.7372 2.5093 2.6678	1.0000 0.8796 1.2690	1.9841 1.7504	1.0000	
1 2 3 4 5 6 7 8 9	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7372 1.7451	1.0000 0.7071 1.0967 1.1926 1.2296 1.2296 1.2479 1.2583 1.2647	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590	<i>g</i> ₅ 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392	86 1.0000 0.8696 1.2583 1.3389 1.3673 1.3806	1.9841 1.7372 2.5093	1.0000 0.8796	1.9841		<u>g11</u> 1.9841
1 2 3 4 5 6 7 8 9 10	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7254 1.7372 1.7451 1.7504 1.7543	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690 1.2721	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6564 2.6678 2.6754	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673 1.3725	<i>g</i> 5 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392 3.0 d	 g6 1.0000 0.8696 1.2583 1.3389 1.3673 1.3806 B Ripple 	1.9841 1.7372 2.5093 2.6678 2.7231	1.0000 0.8796 1.2690 1.3485	1.9841 1.7504 2.5239	1.0000 0.8842	1.9841
1 2 3 4 5 6 7 8 9	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7372 1.7451 1.7504 1.7543 <i>8</i> 1	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690 1.2721	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6564 2.6678	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673	<i>g</i> ₅ 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392	86 1.0000 0.8696 1.2583 1.3389 1.3673 1.3806	1.9841 1.7372 2.5093 2.6678	1.0000 0.8796 1.2690	1.9841 1.7504	1.0000	
1 2 3 4 5 6 7 8 9 10 <i>N</i> 1	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7254 1.7372 1.7451 1.7504 1.7543 <i>g</i> 1 1.9953	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690 1.2721 <i>g</i> ₂ 1.0000	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6564 2.6678 2.6754 <i>8</i> 3	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673 1.3725	<i>g</i> 5 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392 3.0 d	 g6 1.0000 0.8696 1.2583 1.3389 1.3673 1.3806 B Ripple 	1.9841 1.7372 2.5093 2.6678 2.7231	1.0000 0.8796 1.2690 1.3485	1.9841 1.7504 2.5239	1.0000 0.8842	1.9841
1 2 3 4 5 6 7 8 9 10 <i>N</i> 1 2	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7254 1.7372 1.7451 1.7504 1.7543 <i>g</i> 1 1.9953 3.1013	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690 1.2721 <u>82</u> 1.0000 0.5339	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6678 2.6754 <i>g</i> ₃ 5.8095	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673 1.3725 <i>8</i> 4	<i>g</i> 5 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392 3.0 d	 g6 1.0000 0.8696 1.2583 1.3389 1.3673 1.3806 B Ripple 	1.9841 1.7372 2.5093 2.6678 2.7231	1.0000 0.8796 1.2690 1.3485	1.9841 1.7504 2.5239	1.0000 0.8842	1.9841
1 2 3 4 5 6 7 8 9 10 <i>N</i> 1 2 3	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7372 1.7451 1.7504 1.7543 <i>g</i> 1 1.9953 3.1013 3.3487	$\begin{array}{c} 1.0000\\ 0.7071\\ 1.0967\\ 1.1926\\ 1.2296\\ 1.2479\\ 1.2583\\ 1.2647\\ 1.2690\\ 1.2721\\ \hline g_2\\ \hline g_2\\ 1.0000\\ 0.5339\\ 0.7117\\ \end{array}$	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6678 2.6754 <i>g</i> ₃ 5.8095 3.3487	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673 1.3725 <i>8</i> 4 1.0000	85 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392 3.0 d 85	 g6 1.0000 0.8696 1.2583 1.3389 1.3673 1.3806 B Ripple 	1.9841 1.7372 2.5093 2.6678 2.7231	1.0000 0.8796 1.2690 1.3485	1.9841 1.7504 2.5239 <i>8</i> 9	1.0000 0.8842 g10	1.9841
1 2 3 4 5 6 7 8 9 10 <i>N</i> 1 2 3 4	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7372 1.7451 1.7504 1.7543 <i>g</i> 1 1.9953 3.1013 3.3487 3.4389	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690 1.2721 <i>g</i> ₂ 1.0000 0.5339 0.7117 0.7483	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6678 2.6754 <i>8</i> 3 5.8095 3.3487 4.3471	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673 1.3725 <i>8</i> 4 1.0000 0.5920	85 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392 3.0 d 85 5.8095	86 1.0000 0.8696 1.2583 1.3389 1.3673 1.3806 B Ripple 86	1.9841 1.7372 2.5093 2.6678 2.7231	1.0000 0.8796 1.2690 1.3485	1.9841 1.7504 2.5239	1.0000 0.8842 g10	1.9841
1 2 3 4 5 6 7 8 9 10 <i>N</i> 1 2 3 4 5	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7372 1.7451 1.7504 1.7543 <i>g</i> ₁ 1.9953 3.1013 3.3487 3.4389 3.4817	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690 1.2721 <i>g</i> ₂ 1.0000 0.5339 0.7117 0.7483 0.7618	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6678 2.6754 <i>g</i> ₃ 5.8095 3.3487 4.3471 4.5381	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673 1.3725 <i>g</i> 4 1.0000 0.5920 0.7618	85 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392 3.0 d 85 5.8095 3.4817	86 1.0000 0.8696 1.2583 1.3899 1.3673 1.3806 B Ripple 86 1.0000	1.9841 1.7372 2.5093 2.6678 2.7231 <i>g</i> 7	1.0000 0.8796 1.2690 1.3485	1.9841 1.7504 2.5239 <i>8</i> 9	1.0000 0.8842 g10	1.9841
1 2 3 4 5 6 7 8 9 10 <i>N</i> 1 2 3 4 5 6	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7254 1.7451 1.7504 1.7543 <i>g</i> 1 1.9953 3.1013 3.3487 3.4389 3.4817 3.5045	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690 1.2721 g ₂ 1.0000 0.5339 0.7117 0.7483 0.7618 0.7685	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6678 2.6754 <i>g</i> ₃ 5.8095 3.3487 4.3471 4.5381 4.6061	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673 1.3725 <i>g</i> 4 1.0000 0.5920 0.7618 0.7929	85 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392 3.0 d 85 5.8095 3.4817 4.4641	<i>g</i> ₆ 1.0000 0.8696 1.2583 1.3389 1.3673 1.3806 B Ripple <i>g</i> ₆ 1.0000 0.6033	1.9841 1.7372 2.5093 2.6678 2.7231 <i>g</i> 7 5.8095	1.0000 0.8796 1.2690 1.3485 g ₈	1.9841 1.7504 2.5239 <i>8</i> 9	1.0000 0.8842 g10	1.9841
1 2 3 4 5 6 7 8 9 10 <i>N</i> 1 2 3 4 5 6 7	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7254 1.7451 1.7504 1.7543 <i>g</i> ₁ 1.9953 3.1013 3.3487 3.4389 3.4817 3.5045 3.5182	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690 1.2721 <i>g</i> ₂ 1.0000 0.5339 0.7117 0.7483 0.7618 0.7685 0.7723	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6564 2.6678 2.6754 <i>g</i> ₃ 5.8095 3.3487 4.3471 4.5381 4.6061 4.6386	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673 1.3725 <i>8</i> 4 1.0000 0.5920 0.7618 0.7929 0.8039	85 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392 3.0 d 85 5.8095 3.4817 4.4641 4.6386	<i>g</i> ₆ 1.0000 0.8696 1.2583 1.3389 1.3673 1.3806 B Ripple <i>g</i> ₆ 1.0000 0.6033 0.7723	1.9841 1.7372 2.5093 2.6678 2.7231 <i>g</i> 7 5.8095 3.5182	1.0000 0.8796 1.2690 1.3485 g ₈ 1.0000	1.9841 1.7504 2.5239 <i>8</i> 9	1.0000 0.8842 g10	1.9841
1 2 3 4 5 6 7 8 9 10 <i>N</i> 1 2 3 4 5 6 7 8	$\begin{array}{c} 0.6986\\ 1.4029\\ 1.5963\\ 1.6703\\ 1.7058\\ 1.7254\\ 1.7372\\ 1.7451\\ 1.7504\\ 1.7504\\ 1.7543\\ \hline g_1\\ 1.9953\\ 3.1013\\ 3.3487\\ 3.4389\\ 3.4817\\ 3.5045\\ 3.5182\\ 3.5277\\ \end{array}$	$\begin{array}{c} 1.0000\\ 0.7071\\ 1.0967\\ 1.1926\\ 1.2296\\ 1.2479\\ 1.2583\\ 1.2647\\ 1.2690\\ 1.2721\\ \hline \\ g_2\\ \hline \\ 1.0000\\ 0.5339\\ 0.7117\\ 0.7483\\ 0.7618\\ 0.7685\\ 0.7723\\ 0.7745\\ \hline \end{array}$	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6678 2.6754 <i>g</i> ₃ 5.8095 3.3487 4.3471 4.5381 4.6061 4.6386 4.6575	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673 1.3725 <i>8</i> 4 1.0000 0.5920 0.7618 0.7929 0.8039 0.8089	85 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392 3.0 d 85 5.8095 3.4817 4.4641 4.6386 4.6990	86 1.0000 0.8696 1.2583 1.389 1.3673 1.3806 B Ripple 86 1.0000 0.6033 0.7723 0.8018	1.9841 1.7372 2.5093 2.6678 2.7231 <i>g</i> 7 5.8095 3.5182 4.4990	1.0000 0.8796 1.2690 1.3485 g ₈ 1.0000 0.6073	1.9841 1.7504 2.5239 <i>8</i> 9 5.8095	1.0000 0.8842 g10	1.9841
1 2 3 4 5 6 7 8 9 10 <i>N</i> 1 2 3 4 5 6 7	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7254 1.7451 1.7504 1.7543 <i>g</i> ₁ 1.9953 3.1013 3.3487 3.4389 3.4817 3.5045 3.5182	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690 1.2721 <i>g</i> ₂ 1.0000 0.5339 0.7117 0.7483 0.7618 0.7685 0.7723	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6564 2.6678 2.6754 <i>g</i> ₃ 5.8095 3.3487 4.3471 4.5381 4.6061 4.6386	1.0000 0.8419 1.2296 1.3137 1.3444 1.3590 1.3673 1.3725 <i>8</i> 4 1.0000 0.5920 0.7618 0.7929 0.8039	85 1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392 3.0 d 85 5.8095 3.4817 4.4641 4.6386	<i>g</i> ₆ 1.0000 0.8696 1.2583 1.3389 1.3673 1.3806 B Ripple <i>g</i> ₆ 1.0000 0.6033 0.7723	1.9841 1.7372 2.5093 2.6678 2.7231 <i>g</i> 7 5.8095 3.5182	1.0000 0.8796 1.2690 1.3485 g ₈ 1.0000	1.9841 1.7504 2.5239 <i>8</i> 9	1.0000 0.8842 g10	1.9841

Q: What?! What the heck do these values g_n mean?

A: We can use the values g_n to find the values of inductors and capacitors required for a given **cutoff frequency** ω_c and source resistance R_s (Z_0).

Specifically, we use the values of g_n to find ladder circuit inductor and capacitor values as:

$$\mathcal{L}_n = \mathcal{G}_n \left(\frac{\mathcal{R}_s}{\omega_c} \right) \qquad \qquad \mathcal{C}_n = \mathcal{G}_n \left(\frac{1}{\mathcal{R}_s \, \omega_c} \right)$$

where $n = 1, 2, \cdots, N$

Likewise, the value g_{N+1} describes the load impedance. Specifically, we find that if the last reactive element (i.e., g_N) of the ladder circuit is a shunt capacitor, then:

$$R_L = g_{N+1} R_s$$

Whereas, if the last reactive element (i.e., g_N) of the ladder circuit is a series inductor, then:

$$R_{L} = \frac{R_{s}}{q_{N+1}}$$

Note however for the **Butterworth** solutions (in Table 8.3) we find that $g_{N+1} = 1$ always, and therefore:

$$R_L = R_s$$

regardless of the last element.

Moreover, we note (in Table 8.4) that this (i.e., $g_{N+1} = 1$) is likewise true for the Chebychev solutions—provided that N is odd!

Thus, since we typically desire a filter where:

$$R_{L}=R_{s}=Z_{0}$$

We can use **any** order of **Butterworth** filter, or an **odd** order of **Chebychev**.

> In other words, avoid even order Chebychev filters!