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Abstract

The need to understand effects of cross-cutting concerns defines the
essence of systems-level design. Understanding the impacts of local design
decisions on global requirements such as power consumption or security
is mandatory for constructing correct systems. Unfortunately, domain
specific models may be defined using different semantics making analysis
difficulty. We define an algebra combinator that provide semantics for
model composition. Given two models defined over a common abstract
syntax, an algebra combinator defines a single model that embodies the
composition of those specifications. Such composite models can then be
used to understand the interaction of models from the original specifica-
tion domains.

1 Introduction

Systems-level design places additional burdens on designers to understand the
interaction of seemingly independent concerns in the realization of a final sys-
tem. Oftentimes, the vocabulary used to express a design differs across the
various (seemingly independent) requirements of the system. There are two in-
terrelated issues that are significant when performing analysis of system-level
requirements. First, the model of computation will vary, depending on the be-
havior being specified. For example, when specifying the functional behavior of
a synchronous circuit lends itself to a discrete state-based model of computa-
tion, while the specification of an analog circuit will more naturally be expressed
using a continuous-time model of computation. It is important to be able to
perform analysis of models expressed in these varied models of computation.

Secondly, the semantics of a requirement specification will largely depend on the
system properties being modeled. The “meaning” of an expression is different if
it is being used to specify functional behavior – where the concern is the value
being computed – than the meaning of the expression when used to analyze
power requirements of the system.

In this work, we describe a method for resolving these issues by systematic de-
velopment of language semantics. We formalize this techniques by structuring
the semantics using monads[1, 2] to model varied “notions of computation”. Ad-
ditionally, we use a technique for extending languages in modular fashion, which
allows the introduction of new specification “vocabulary” without a wholesale re-
formulation of language semantics. Finally, we introduce the notion of an algebra
combinator to facilitate the analysis of specifications across domain boundaries.

We apply our approach to the analysis of the Rosetta [3, 4] specification lan-
guage. Rosetta is a language for specifying heterogeneous systems structured
around domains, which resemble models of computation. Domains are struc-
tured in a hierarchy, with an extension relation between the domains. Figure 1
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Figure 1: Rosetta domain hierarchy

shows a portion of the basic Rosetta domain hierarchy. The static domain cor-
responds to pure computations without side effects. Traveling down the domain
hierarchy we encounter increasingly sophisticated models of computation.

In our analysis framework, a domain manifests itself in three ways:

1. A model of computation

2. A semantics, mapping expressions to computations of the chosen model

3. A set of syntactic elements, used for accessing the features of the compu-
tational model

To implement a domain analysis tool, we utilize techniques for defining language
semantics known as modular monadic semantics[5, 6]. The above characteri-
zation of a domain fits well into this work. Monads provide the realization of
computational models. Language semantics are manifested as semantic alge-
bras over syntactic elements present in the domain. The inheritance hierarchy
present in the domain hierarchy is manifested as syntactic and associated se-
mantic extension. By providing a structured language extension mechanism,
modular monadic semantics allows the reuse of language semantics: semantics
for a parent domain can be used as the basis for the semantics of an extended
domain by adding basic computational features (monads) and vocabulary (syn-
tax).

2 Modular Monadic Semantics

Denotational semantics is a semantic specification technique that maps terms
from a syntactic domain into a particular semantic domain. Constructs with
effects require additional parameters to the denotation function. This results
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in a significant limitation of denotational semantics, in that semantics are non-
compositional. Adding a new language construct requires a complete rewriting
of the denotational specification. Traditional denotational semantics is unattrac-
tive for modeling analysis semantics for Rosetta because of the above limitations.
Various Rosetta domains model computation using different effects, as well as
introduce new syntax for accessing these effects.

We can use modular monadic semantics to resolve these limitations. First, we
add computational effects to the semantic domain, rather than embedding it in
the denotation function, by making the semantic domain monadic. We structure
the abstract syntax data type as the least fixpoint of a collection of indepen-
dent language constructs, expressed as functors. This provides the ability to
extend the syntax of the language. Denotations are expressed as algebras over
the abstract syntax, mapping from syntax to the monadic semantic domain.
These algebras are composed in a systematic fashion to create a semantics for
a complete language, within a particular domain. Finally, we will use alge-
bra combinators to compose varied semantics for different domains to facilitate
heterogeneous analysis.

2.1 Monads

A monad [2, 1] is a construction from category theory that can be used to model
a wide variety of computational effects. A monad is a triple 〈 T ,unit ,bind〉 where
T is a type constructor for computations, parameterized over the type of the
value the computation will result in. The unit morphism lifts values, of type a,
to computations of type T a. This can be understood as a trivial computation,
that has no effect. Finally, bind lifts functions from values to computations into
functions from computations to computations. The bind morphism serves to
sequence computations, yielding the effectful behavior of monadic computations.
In addition to the above signature, a monad must satsify a collection of algebraic
laws, which we elide.

Using this simple formulation, we can construct a monad which models the
lambda calculus. The type constructor T is a identity functor, unit is the
identity function, and bind is function application. More complex monads,
modeling various compuational effects, can be defined by adding a collection
of non-proper morphisms to the signature. It is these morphisms that provide
access to the features of the computational model.

Consider the state monad, which models imperative computations. The type
constructor T is modeled as function mapping a state parameter to a pair of
state and value. The unit morphism maps values to functions of this type, where
the state is not utilized. The bind morphism allows the “threading” of state
through computations. Figure 2 gives an example of this monad, implemented
in the Haskell [7] programming language. In addition to the bind and unit
functions, we introduce the non-proper get and put morphisms, which allows
the manipulation of the state.
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type StateMonad s a = s → (s, a)
unit val = λs → (s, val)
m ‘bind ‘ f = λs → let (s ′, a) = m s in f a s ′

get :: StateMonad s s
get = λs → (s, s)
put :: s → StateMonad s ()
put s ′ = λ → (s ′, ())

Figure 2: The State Monad in Haskell

In addition to the state monad, a wide range of monads, capturing a wide range
of effects, have been identified. These include input/output, non-determinism,
read- and write-only state, exception handling, continuations, and concurrent
features. One difficulty when constructing monadic computations is that mon-
ads, in general, do not compose. However, monad transformers [6] can be used
to independently capture features from specific computational effects, and then
combine to create a monad that has all of the desired effects.

To illustrate the use of our approach, we take a small subset of the complete
Rosetta expression language. This subset is described in Figure 3. It includes
arithmetic operations, named values introduced with let bindings, and an if
construct.

expr := letexpr | ifexpr | arithexpr
letexpr := let v = expr in expr

v
arithexpr := expr op expr | N
ifexpr := if expr then expr else expr

true
false

v := a | b | c | . . .
op := + | - | * | /

Figure 3: Rosetta Language Subset

2.2 Composing Syntax

While the grammar in figure 3 can be directly translated into a recursive data
type, we separate the expression elements into three different data types, reflect-
ing the orthogonal nature of the different language constructs. These three types
constructs are let bindings (with variables), if expressions, and arithmetic op-
erations. The intuition behind the partitioning is that let expressions require a
read-only state monadic effect. The arithmetic and boolean expressions, while
exhibiting no particular computational effect, have separate semantic domains,
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with arithmetic expressions yielding numerical values and if expressions result-
ing in boolean values.

The Haskell encoding of the independent abstract syntax tree (AST) constructs
is shown in Figure 4. Each construct family is specified as a type, with AST
elements corresponding to constructors for that particular type. The AST types
are written non-recursively, with a type parameter x . This allows the addition
of additional syntax without necessitating the redefinition of the term data type.
The Sum type allows the independent AST types to be “glued” together. The
Fix type calculates the fixed point of a non-recursively defined term. This
fixed point, defined using the Expr type synonym, is isomorphic to a recursively
defined AST containing all of the component constructs.

data Arith x = Add x x | Sub x x | Mul x x | Div x x | Num Int
data If x = If x x x | Tru | Fls
data Let x = Let String x x | Var String

data Sum f g x = InjL (f x ) | InjR (g x )
data Fix f = Mu (f (Fix f ))

type Expr = Fix (Sum Arith (Sum If Let))

Figure 4: Independent Abstract Syntax

2.3 Composing Semantics

Having defined a mechanism for independently representing syntactic constructs,
we can now assign a meaning to the constructs by defining algebras. Each al-
gebra has the form F a → a, where F is the (non-recursive) term type, and a
is the semantic domain of the algebra. To simplify the definitions, we use the
Haskell do notation, which is a syntactic sugar around the monadic bind and
unit constructs. For brevity, we omit all arithmetic operations except for addi-
tion. The others are defined in the same way, with the appropriate syntax and
operator substitution. The Let form uses the Reader monad, which provides
read-only state, appropriate for modeling an environment for let bindings. The
two non-proper morphisms lookupEnv and extendEnv allow access to the effects
of the Reader monad. The φsum algebra allows the composition of indvidual
algebras, as shown in the φ binding.

The particular semantics defined in Figure 5 targets booleans and integers as a
semantic domain. However, φarith only requires that integers be in the domain,
φif only requires booleans, and φlet is purely for compuational effect and places
no constraint on the semantic domain.

These are not the only possible denotations for these language constructs. For
example, rather than embedding the semantics as an interpreter in the Haskell
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φarith (Add x y) = do xv ← x
yv ← y
return (xv + yv)

φarith (Num x ) = return x

φif (If pred th els) = do pv ← pred
if pv then th else els

φif Tru = return True
φif Fls = return False

φlet (Let n binding body) = do bv ← binding
extendEnv n bv body

φlet (Var x ) = lookupEnv x

φ = φsum φarith (φsum φif φlet)

φsum φl φr (InjL x ) = φl x
φsum φl φr (InjR x ) = φr x

Figure 5: Semantic Algebras

metalanguage, we could have easily defined a different semantics (with a different
semantic domain) to define a compiler for the same language constructs[8].

In this section we’ve describe the background for implementing analysis seman-
tics using modular monadic semantics. Monads allow us to model computational
effects. We can extend a language by adding new constructs, without disturb-
ing the existing syntactic and semantic definitions. Finally, we can retarget
the semantics for a particular construct for various semantic domains. In the
next section, we will demonstrate how to use algebra combinators to perform
heterogeneous analysis of models written using these constructs.

3 Combining Semantics

We can use the above approach to define compilation semantic to generate
netlists for implementing these high-level constructs in hardware [9, 10, 11,
12]. This application gives motivation for cross-domain analysis of models.
When implementing systems in hardware, we are often concerned with the power
consumption of the system, in addition to the functional behavior.

To illustrate this technique, we utilize a simplistic power model, with circuit
components modeled as black boxes which consume a given amount of power
for each time they generate a value. Using this model we demonstrate the
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impact the implementation strategy, expressed as a compilation algebra to a
circuit configuration, has on power consumption.

In our examples, we assume that the circuit model for let expressions and
arithmetic remain constant, while our model for if expressions varies. When
generating circuits for let expressions, we assume that we generate a single
circuit for the binding, then reuse the calculated value throughout the body of
the let expression. The power consumed by a variable reference is negligible,
as the value has been pre-computed. In circuit terms, a variable reference is
simply a wire from the binding circuit. Furthermore, arithmetic expressions
generate a circuit by inlining the appropriate circuit for the given arithmetic
operator. Integer constants consume a predefined amount of power. These
power semantics are shown in Figure 6.

φletpower (Let n b body) =
do bpower ← b

extendEnv n 0 body
φletpower (Var x ) = lookupEnv x

φarithpower (Add x y) =
do xpower ← x

ypower ← y
return (xpower + ypower)

φarithpower (Num n) = return constantPower

Figure 6: Let and Arithmetic Power Semantics

3.1 Static Power Semantics

The first analysis we construct is simplified greatly because the functional sim-
ulation and the power analysis are dynamically independent. In Figure 7, we
see that the predicate and both branches are to be evaluated in parallel. A
multiplexer is used to determine which of the branch outputs is output from the
complete circuit. With this configuration, the power consumed by the circuit
is independent of the value calculated by the predicate. This design decision
yields an potential increase in circuit speed, since there is no data dependency
between the predicate circuit and the circuits of each branch.

Figure 8 shows the power semantics for the parallel if expression. Note that the
power consumed by this circuit is the sum of the component circuit, along with
the additional power overhead of the multiplexer.

This simple power model allows us to generate a rough estimation of power
consumption independently of values generated by the circuit. It is trivial to
combine these power semantics with the value semantics, but this is not a par-
ticularly compelling use of cross-domain analysis. We shall see that with a
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pred then else

MUX

Figure 7: A parallel if statement.

φparallelifpower (If pred thn els) =
do ppower ← pred

tpower ← thn
epower ← els
return (ppower + tpower + epower + muxpower)

φparallelifpower Tru = truPower
φparallelifpower Fls = flsPower

Figure 8: Parallel if power semantics

more sophisticated power model and different circuit compilation semantics, the
analysis of power semantics cannot be carried out independently of the value
analysis.

3.2 A Dynamic Power Model

The compilation scheme for if expressions shown in Figure 8 is not the only
possible circuit configuration. An alternative is demonstrated in Figure 9. In
this model, the output of the predicate is used as a control circuit for the two
if branches. This introduces a control dependency between predicate and each
branch, potentially causing a performance decrease for the circuit. Given our
general power semantics, where circuits are black boxes which only consume
power when activated, this configuration will result in a power savings since
only one of the two branches is activated.

We can construct a power model for this circuit by using a non-determinism
monad. This monad allows a computation to return a list of values, representing
each value the computation could potentially result in. Figure 10 shows how
the power semantics would use this computational model. The amb morphism
exposes the multiple return values behavior of this monad.
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pred

then else

Inv

MUX

Figure 9: A sequential if statement

φnondetifpower (If pred thn els) =
do ppower ← pred

tpower ← thn
epower ← els
amb (ppower + tpower + invpower)

(ppower + epower + invpower)
φnondetifpower Tru = return truPower
φnondetifpower Tru = return flsPower

Figure 10: Nondeterministic Power

3.3 Composing Functional and Dynamic Power Semantics

The nondeterministic power semantics for the if circuit captures the power con-
sumption along every possible execution trace of the circuit. While this gives
a complete model of the power consumption, it is not possible to generate the
power profile for a single execution trace.

The difficulty with combining the evaluation semantics and power consumption
semantics is that they are expressed as separate computation, in separate mon-
ads. Assuming the value semantics are expressed in m, and the power semantics
in monad n, we would like to generate a single monad m+n, which has both the
effects of m and n. Furthermore, we need to the combined semantics to generate
not only power consumption estimations, but we also must return the results of
the value semantics, because it is part of an input to the power semantics.

A first attempt at accomplishing this results in the pairAlg function. However,
this has two large problems. First, we need the results of applying the value
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semantics to the predicate as an input to the power semantics. Secondly, it is not
possible to escape from a monadic computation, so it is not possible to extract a
result from the value computation and “insert” it into the power computation.

pairAlg phi1 phi2 term = do x ← phi1 term
y ← phi2 term
return (x , y)

To resolve this issue, we add an extra monadic computation around the two
analysis monads. This gives us a final computation type i (m value,n power),
where i is the “interaction monad”. Because the analysis for value and power
semantics proceed in lock-step, we maintain in the interaction monad a labeling
for each dynamic application of the semantic algebra. The two semantic algebras
communicate using this labeling, through a channel in the interaction monad.

With this scheme, we can generate the interacting algebra behavior we desire.
The functions writeDynamicValue and readDynamicValue are used to commu-
nicate between the two algebras.

interact if value (If pred thn els) =
do pvalue ← pred

writeDynamicValue pvalue
return (φif (If (return pvalue) thn els))

interact if power (If pred thn els) =
do pvalue ← readDynamicValue

if pvalue
then
(φparallelifpower (If pred then (return 0)))

else
(φparallelifpower (If pred (return 0) els))

interact s1 s2 term =
do m ← s1 term

n ← s2 term
return (m,n)

interact if semantics = interact interact if value interact if power

With this construction we can perform cross-domain analysis of interacting mod-
els in a systematic manner. The interaction monad is essentially a state monad,
with writeDynamicValue and readDynamicValue as convenience functions for
accessing the state. The interaction semantics defined above are ad-hoc, be-
cause heterogeneous interaction is in general an ad-hoc construction. However,
our systematic approach to generating these interactions is useful for guiding
the definition of the ad-hoc interactions.
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4 Related Work

Monads were first identified by Moggi[1, 2] as a mechanism for modeling com-
putation in a mathematical setting. Later work [13, 14, 15] demonstrated the
applicability of monads as a programming tool to obtain non-pure computation
in a pure language. It is this early work on monads that forms the basis for our
representation of models of computation.

The specific application of monads to structuring language semantics was in-
troduced by Espinosa[16], and was later extended to monad transformers to
solve the problem of non-composing monads[5, 6]. Defining a denotation as an
algebra[17, 18] extended the earlier work to allow compositional and extensible
syntax. Using this technique, a large range of common language constructs can
be modeled independently, then combined into a complete language[19, 20, 21].
Exposing the algebras as first-class data objects[22] allows the language seman-
tics to be manipulated directly [23].

Goodman describes the use of monads for the purpose of animating Z specifi-
cations [24]. This work differs from ours in that it provides a translation from
Z into an executable Haskell program, written in monadic style, manually. In
contrast, we use monads to structure the analysis semantics of Rosetta itself.
Abdallah et. al[25] demonstrated the systematic refinement of Z specifications
to an executable prototype in functional language in a non-monadic fashion.
While the focus in both these works is on modeling state-transition systems,
our approach using monads allows us to analyze specifications written using
other computational models.

Implementing systems by factoring cross-cutting concerns and introducing them
in a regular manner is the motivation behind aspect-oriented programming
(AOP). Aspect languages can be characterized as a meta-programming lan-
guage. Cross-cutting concerns are implemented in the aspect language, and
“woven in” the system using augmented semantics of the object language. The
semantics of aspect languages[26] are manifested as manipulation of the under-
lying language, in much the same manner as our algebra combinators.

The power model we use as an example in section 3 is very simplistic. More
accurate power models are available which base power estimation on switching
activity in CMOS circuits [27, 28]. These models are expressed as continuous
functions, most appropriately modeled in the continuous domain from Figure 1.

5 Conclusions

In this paper we have demonstrated a framework for the analysis of Rosetta
specifications. Rosetta is structured in a hierarchy of domains, offering vocab-
ularies and computational models to be chosen as appropriate for a particular
specification task. We structure our analysis framework as a semantics for a
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collection of languages, each corresponding to a Rosetta domain. A domain
semantics consists of a model of computation, manifested as a monad in the
semantics, as well as domain-specific syntax.

To facilitate heterogeneous analysis, we combine specification semantics using
algebra combinators. First, we demonstrate that single specification, when in-
terpreted with different semantics, allows us to analyze different properties of a
system. Secondly, we use the same technique to combine analysis semantics in
a dependent manner.

5.1 Future Work

While this framework allows the systematic generation of analysis tools using
monads, the combination of semantics using algebra combinators places a sig-
nificant burden on the tool developer to construct an appropriate monad for
heterogeneous models. We plan to explore the use of more powerful computa-
tional effects [29, 30] for defining deriving these complex monads.

As noted above, the example power model from section 3 is very simplistic. We
plan to extend this work to utilize more realistic activity-based models. This
will result in more meaningful estimation results, as well as demonstrate the
ability of the framework to bridge the gap across more disparate computational
models.
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