The University of Kansas /

INFORMATION

& TELECOMMUNICATION
[ECHNOLOGY CENTER
The University of Kansas

Technical Report

Final Report: Advancing SensorNet
Technologies to Monitor Trusted Corridors

University of Kansas
Information and Telecommunication Technology Center
D.D. Deavours, J.B. Evans, V.S. Frost, G.J. Minden,
D.W. Petr, D. DePardo, E. Komp, L. Searl,
S. Aroor, D.T. Fokum, M. Kuehnhausen, P. Mani,
S. Muralidharan, A.N. Oguna, and M. Zeets

EDS/HP Enterprise
M. Gatewood, S. Hill, L. Sackman, J. Spector, J. Strand,
T. Terrell and J. Walther

ITTC-FY2010-TR-41420-26
June 2010

Project Sponsor:
Oak Ridge National Laboratory (ORNL)
Award Number 4000043403

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559

All rights reserved.

Abstract

This effort demonstrated an integrated data-oriented methodology that can increase efficiency
and security by monitoring cargo movements along a trusted corridor, and especially rail facilities.
This was achieved by developing, analyzing, and evaluating the Transportation Security SensorNet
(TSSN) for rail transportation, and by demonstrating its feasibility in two field trials. These results
have laid the foundation for increased private sector efficiency through close collaboration with
Kansas City SmartPort’s Trade Data Exchange system, and the increased security benefits law
enforcement and national security. The project culminated with a “long haul test” that monitored rail-
based cargo in central Mexico, combining real-time sensing and trade data.

Table of Contents

N 011 - T S SO SRTUTURURPRPR 1
LI 101 (o) O] 01 1=] SRR 2
TS 00 T U =T PSR 2
I ES 0 R 1=] LSS 3
I [T [FTox (o o RSSO 4
2. BACKGIOUNG ...ttt b bbbt bbbt b et e b et et e b et e bt eeneas 4
KO0 4] 0] [=] 1=To B I]SS SSSSN 5
3.1. Task 1: Intermodal Technology Proof of Concept and Integration of the SmartPort Trade
Data Exchange architecture and SensorNet teChnolOgIes..........cccveveiieiiiie i, 5

3.2. Task 2: System architecture development, design, measurement and modeling for the
SmartPort intelligent transportation systems, with a focus on identification of bottlenecks and

o8 L1010 SIS0 9
3.2.1. Transportation Security SensorNet ArChiteCtUre.........cccevvieeiieie v 9
3.2.2. Transportation Security SensorNet Measurement and Modeling...........cccceceveevveinnnee. 10

3.3. Task 3: Data integration and processing, e.g., controlling the storing and access of

information in the SmartPort data clearinghouSe............cccoiii i 15

3.4. Task 4: Communications technologies to enable continuous monitoringcccccevvevenen. 16

3.5, Task 5: RFID @pPPlICALIONScceeiiiieiieieeiie ittt sttt et sae e nneas 17

4. Description OF STUAENT ACHIVITIESccuiiieiieieeie ettt sre et e e sreestesneesneeneas 18
ST O] T [] o] 1 RSP PTR 19
B, RETEIEIICES ... ettt bbbt bbb b bRt bbbt bbb beene e 20
[0] Y o] 1= o Lol TSP URRTR TR 23

List of Figures

Figure 3: Image of the short haul test. The small box attached to the top-front of the locomotive contains the

external electronics DOX (AeSCribed DEIOW).ciiiiiiiiic e 7
Figure 4: Electronics box outside of locomotive during 1ong haul test. ... 7
Figure 5: Placement 0f SENSOI 0N CONTAINETc.ciuiiiiiiiiiiitiie bbb bbbttt sttt et 7
Figure 6: Train passing through central Mexico during 10ng haul teSt............cccoviiiiiiiiiii e 8
Figure 7: Partial route of long haul test northbound from San Louis POTOSI.ccccuiveiiiiiiiii e 8
Figure 9: High-level architeCture 0f the TSSIN. ..ot bttt se bbb e 9
Figure 10: Architecture of the MRN SENSOT NOGE.ccvciiiiiiie i e st e tesbeete e e eseesrestesresneas 10
Figure 11: Architecture of the Virtual Network Operations Center (WVNOQC).........ccocvvveieniiieie s eieeseesie e e e 12
Figure 12: Typical sequence of events that take place from a tamper event to notification of a decision-maker....... 13
Figure 13: Optimal sensor locations (a), where Unit ID 0 is the locomotive and slot represents elevation of double-

stacked containers, and visibility vs. cost (b) obtained by varying the number of Sensors.cccocvevvivvivinnnnns 13
Figure 14: Cost of track-side system varying the required response time (a) and both the trackside reader cost and

reSPONSE AEAAIINE (10). .oviiiiiic bbb bbbt b bbbttt 14
Figure 15: Comparison of train-mounted and trackside communication SYSTEMS.ccoevvririininsinensinesceens 14
Figure 16: Security architecture used between TSSN and TDE.ccocooiiiiiiiiniiner s 15
Figure 17: Distributed shared queue model of message exchanges for unreliable communications channel. 16
Figure 18: Measured results of message dwell times during the long haul trial..............ccoooiiiiiiie 17

List of Tables

Table I: Summary of time statistics for decision-maker NOtIfiCation.ccccviviiviiiiieic e 13
Table I1: List of students and their participation 0N the ProjJECt. ... 18

1. Introduction

Exports from Asia have increased creating bottlenecks at key US ports. Conterminously, a
Kansas City group, known as SmartPort, recognized the strategic position of Kansas City and has
actively worked to expand its role in distribution to increase traffic through the Kansas City area.
SmartPort is developing a US export capability and has the only Mexican Customs clearance
capability that is not at the border. One of the key goals to expanding this program is the creation of
trusted corridors. In support of that goal, the purpose of this research effort has been to develop and
integrate systems that provide the ability to track and monitor the security of cargo in transit. This
tracking serves two purposes: it provides greater visibility to stakeholders, and it provides sensor-
based security to enable corridors to be trusted.

These goals were met through the execution of five tasks.
1. Integration of a distributed sensor system, known as SensorNet, with the SmartPort architecture.
2. Development of the system engineering models and approaches required to support the design

optimization and lifecycle operation to the SensorNet-enabled trusted corridor.

3. Development of information systems required for the SmartPort data clearinghouse.
4. Development of the communication system required for monitoring cargo in transit.
5. Examination of the role of RFID in trusted corridors.

The project has come to a successful completion with numerous publications describing the
results of the research activities. The following sections contain a summary to those activities and
references to details where appropriate.

2. Background

The US economic security is based in part by the efficient transportation of goods. The key
ports of entry on the US West Coast are Los Angeles/Long Beach, Seattle/Tacoma, Oakland, and
Portland, with LA/Long Beach being the largest. Recent events on the west coast, e.g., the
Longshoreman’s Strike, Union Pacific track problems, noise and environmental concerns, limitations
of the Alameda corridor, etc., highlight the vulnerability of that port. Further, any disaster, including
terrorist attacks, will hypothetically shut down the targeted port. As a consequence, a number of
companies are developing backup plans utilizing other ports. Some companies are moving their
businesses to less busy ports; others are now splitting their cargos between ports. A number of
companies are looking to the West-coast Mexican ports for relief. The three principal West-coast
Mexican ports are Ensenada, Manzanillo, and Lazaro Cardenas. Kansas City-based Kansas City
Southern Railway has the ability to land cargo at Lazaro Cardenas and carry it all the way to the center
of the US, i.e., terminating in Kansas City. In a related move, Mexican Customs recognized the
strategic location of Kansas City and is now building its first Customs office outside Mexico. Thus, an
integrated SensorNet-based system is useful to secure these trusted corridors.

Additionally, industry associations including KC SmartPort have indicated the industry’s need
for visibility into freight and cargo movement. There are intermodal “black holes” when freight
changes hands across modes and carriers. Visibility will only be possible through the integration of
carrier, shipper, broker, importer, exporter, and forwarder information. Currently, industry is
demonstrating that it is possible to integrate disparate transportation information. The SmartPort
Trade Data Exchange (TDE) was contemporaneously developed to address this need, which has laid
the foundation for large-scale information integration. The successful technology demonstration of
SensorNet’s Transportation Security SensorNet (TSSN) has demonstrated the successful integration of
the TSSN and TDE. This integration has enhanced value to SmartPort’s TDE by providing greater
visibility into these “black holes” and securing trade lanes.

This effort focused on use cases centered on monitoring and tracking containers with the goals
of proving that a container breach did not occur during the stakeholder’s custody and providing time
and location of a container intrusion to enable the stakeholder’s response and reduce successful
intrusions. These were selected in collaboration with our rail stakeholder, Kansas City Southern
(KCS). Figure 1 shows the test environment. Figure 2 shows the selected proof of concept
technologies. The associated equipment has been acquired and integrated into a complete system.
This includes servers to host the TDE at HP (formerly EDS) in Overland Park, KS, and the seals, tags,
reader, vehicle mounted TSSN collector (laptop), and a virtual network operations center (VNOC)
functionality at ITTC/KU in Lawrence, KS. Experiments have been conducted with the Hi-G-Tek
seals, tags, reader, and software developed to integrate them into this system. Initial communications
and interactions have been established between the TDE at EDS and the VNOC in the TSSN at
ITTC/KU.

3. Completed Tasks

The project was divided into five tasks. Below, we discuss each of the tasks, give summary of
the results, and reference the corresponding appendix for more detailed information.

3.1. Task 1: Intermodal Technology Proof of Concept and Integration of the
SmartPort Trade Data Exchange architecture and SensorNet technologies

This task produced and demonstrated an integrated SensorNet Transportation Security
SensorNet (TSSN) and SmartPort Trade Data Exchange (TDE) architecture and a field sensing
prototype for intermodal transport. The system architecture is described in greater detail in the
following section (Section 3.2). This task was performed in a number of phases, including: 1) truck-
based trials, 2) a “short haul” trial, and 3) a “long haul” trial. Each of those is described briefly below.

We performed a number of trials using trucks to simulate a number of scenarios without
interfering with rail operations. Truck trials were used to validate the technology, take measurements,
and test boundary conditions.

In January of 2009, we performed an integrated test on the TDE and TSSN to rail-based
monitoring of containers in a short, cross-city rail trial with the invaluable assistance of Kansas City
Southern, a key stakeholder. Figure 3 shows one of the images of the instrumented train in progress.
The results were successful and are documented in [11, 16].

The third phase involved monitoring of a cargo container from San Louis Potosi in the center
of Mexico (originally planned for Lazaro Cardenas, but changed due to scheduling difficulties with
key partners) through Nuevo Laredo and into the US. The results are summarized in numerous
publications, including [10, 15, 16, 17, 18, 20, 21, 22]. Figure 4 shows the external instrumentation of
the locomotive, and Figure 5 shows one of the monitored cargo containers with an attached seal.
Figure 6 was a picture taken from the train as it was moving through central Mexico, and various GPS
measurements taken from the route are shown in Figure 7.

Figure 8 shows a sample email alert that was sent when the TSSN detected an alarm, in this
case, an Open event (one seal had been intentionally opened). An associated GPS reading was taken,
and the TSSN sent the alarm with a Google Maps link. Before the alarm was sent, the TSSN queried
the TDE for shipment data, which is also presented in the alarm. This particular event took place
where there was virtually no cell coverage, and thus relied on satellite communication for
communication between the train and a virtual network operations center, which for this
demonstration, was on University of Kansas campus in Lawrence, KS. The TDE database was in the
HP/EDS facilities in Overland Park, KS.

Wireless Data Carrier

: Carrier Shipment Information
@ |
: P
- /Internek : g &
$ —&,

Satellite Data Carrier Network Control Trade Data
Center Exchange
anm
e o T e Y flas —— g md"

Operational Test Environment

Figure 1: System overview.

Iridium Satellite

Communications

Active tags, seals and reader,
from Hig-G-Tek

Satellite/
Cellular
Communications,

dditional Sensor

/1 GSM/HSDPA Internet
A — l t 5 Terrestrial

aple

P i \ .‘ Comms SOA
. e

Vehicle
Vehicle Mounted
Magnetic Mounted SensorNet
Seal Seal/Tag Collector
Reader/
Writer TDE Other
Applications Applications
P
Internet

Data Tag

Addtional Sensor

Trade Data Command & Other Users
Exchange Control

Figure 2: Selected technologies used for proof-of-concept.

Figure 3: Image of the short haul test. The small box attached to the top-front of the locomotive contains the
external electronics box (described below).

Figure 4: Electronics box outside of locomotive during Figure 5: Placement of sensor on container.
long haul test.

34

Fdrtan Vall

Figure 6: Train passing through central Mexico during Figure 7: Partial route of long haul test northbound
long haul test. from San Louis Potosi.

NOC_AlarmReportingService:
Date-Time: 2009.07.30 10:33:48 CDT / 2009.07.30 15:33:48 UTC
Lat/Lon: 25.12046/-101.10943, Quality: Good
http://maps.google.com/maps?g=25.12046,-101.10943
Trainld=LngHaulMx
Severity: Information
Type: SensorLimitReached
Message: SensorType=Seal SensorlD=1AHA01054318 Event=Open Msg=
NOC Host: laredo.ittc.ku.edu

Shipment Data:
Car Pos: 4
Equipment Id: EDS 53403
BIC Code: 1TTC746485
STCC: 2643137

Figure 8: Sample report sent by the TSSN showing integration of TDE and sensor information.

The trials demonstrated a successful technology integration and achieved all of the major
goals, as well as validating the overall architecture. Sensors were used to sense container safety on a
moving train, reliably communicated by satellite to a virtual network operations center (VNOC), the
VNOC demonstrated secure communications with the TDE and fuse sensor and manifest data to
deliver near-real-time alerts to decision-makers.

3.2. Task 2: System architecture development, design, measurement and modeling for
the SmartPort intelligent transportation systems, with a focus on identification of
bottlenecks and scaling issues

In this section, we present a description of this task. For clarity, we present separate sections
for the architecture, and for modeling and evaluation.

3.2.1. Transportation Security SensorNet Architecture

The system architecture was designed after careful consideration of existing technologies and
architectures [3, 4, 6, 8, 9]. The developed architecture is described in detail [13]. They are briefly
summarized here.

Figure 8 gives a high-level overview of the TSSN architecture. The sensors are deployed
within a Mobile Rail Network (MRN), which directly communicates with the container sensors and
through back-haul communications to the Virtual Network Operations Center (VNOC). The primary
task of the MRN is to monitor the sensors on the train and securely communicate important events to
the VNOC. The prototype MRN has the capability of using cellular networks when available, and
satellite communications otherwise, and thus can be used anywhere in the world. The MRN is
discussed in more detail below. The Virtual Network Operations Center (VNOC) is responsible for
communicating with the MRN, collecting manifest and other information from the Trade Data
Exchange (TDE), processing the information, and sending alarms to the appropriate stakeholder.

Sensor measurements
Sensor alarms

Sensor configurations
Location information

Display

Satellite
network

Shipment data
Train & sensor IDs
Alarms
Location
information

Cellular
network

Seal Interrogation
Transceiver

Database MRN

Figure 9: High-level architecture of the TSSN.

The architecture of the MRN is further refined in Figure 10. Here, we can see that the MRN
includes a considerable amount of decision-making capability. The TSSN architecture is developed
nearly completely around the Services Oriented Architecture (SOA), and Web Services in particular,
and thus conforms to open standard interfaces.

(SensaD f/ ¢ Sensor Node \\\\

<sensar

Sensor Management
Interface

SOS Interface

E
Sensor
Data

Sensor Data
Processing

Location Interface

Notification Process
SAS Interface
Subscription
Registry |

. y

HEu

Figure 10: Architecture of the MRN Sensor Node.

The VNOC is expanded in Figure 11. The VNOC is the primary “hub” of communications
within the TSSN, and contains most of the decision-making intelligence. The VNOC is comprised of
a number of services and interfaces. Essentially, the VNOC receives events from the mobile rail
network (MRN), processes those events, obtains manifest and other information from the TDE if
necessary, and sends alerts to decision-makers. The VNOC uses rules, historical data, and complex
event processing to make real-time decisions. The goal is for the decision-maker to get relevant data
and only relevant data in a timely way. The system evaluation is given in more detail in the following
section.

3.2.2. Transportation Security SensorNet Measurement and Modeling

An additional goal of the system was to better understand the performance characteristics of
the deployed system, to determine how to scale the technology, to evaluate alternative systems and
optimize the system design. The first goal was met through extensive system instrumentation
primarily through data logging. The second two goals were met using analytical models. We begin
this section with an overview of the measured results of the TSSN.

To support measurement, data was collected over all the truck trials, and both short- and long-
haul trail. Detailed measurements were taken during both trials, and are reported in detail in [11, 21].
Through private communication, we learned that rail carriers desire a response to a tamper event
within 15 minutes, which was taken to be a critical deadline.

To assess performance, consider the sequence of events shown in Figure 12. This shows the
typical sequence of messages that flow between services within the TSSN, grouped into epochs. For
all trials, including preliminary truck trials and the two rail trials, we kept detailed logs of events,
which are summarized in Table 1. Considering worst-case times for each epoch, only Epoch 5 took a
significant amount of time (less than one minute). The source of that delay was sending an SMS
message over a provider network. While the number of observations was not sufficient to make an

10

accurate estimate of the probability of meeting the 15 minute requirement, the data suggests that the
probability is very high.

Based on our experience, we have found a critical system bottleneck. The chosen sensors have
limited range when attached to containers. Through testing, we found that we could only monitor
about five rail cars reliably, though it was possible to unreliably monitor cars seven to eight cars away.
Also, the sensors have essentially no peer-to-peer capability. This is unsuitable for complete rail
coverage on long trains. While more capable networking systems are available, such as 802.15.4 and
Zigbee, those systems are likely not sufficiently power-efficient nor do they scale sufficiently well in
transportation environments. Thus, we believe that there is a need to develop wireless sensor systems
capable of peer-to-peer networking using lightweight routing protocols. We are currently
collaborating with partners to investigate ways to do that.

While measurement was important and insightful to gain a better understanding of the system
on a detailed level, it leaves open critical system-level questions. For example, would a rack-side
communication system work better than train-based? To answer this question, we constructed
analytical models, which allowed us to model and evaluate various system-level tradeoffs and
optimize the system. The models were based on integer linear programming. The critical result of
these models is that under realistic conditions, the models strongly indicate that sensor networks such
as the TSSN significantly lower transportation costs. The details of this work is reported in [25] and
summarized below.

First, we say that a container is visible if a sensor is able to correctly report a critical sensor
event within sufficient time. Thus, if a container is visible, then a response team will be able to arrest
or deter a container breach. We considered a number of specific system trade-offs, and for clarity we
present a few representative experimental results.

First, we consider optimal sensor placement on a train. The objective was maximum visibility,
that is, events are detected with a certain probability and reported in a timely manner, and the
probability of a false alarm is kept below a specified threshold. Because the sensors have a limited
communication distance, we assume that every third car has a repeater. We assume 66 containers are
placed on a 30-car train (due to memory constraints of some of the algorithms and tools used). Here,
we assume we are constrained by having only 12 sensors to place on containers. Under these and
other conditions detailed in [25], we were able to find an optimal sensor placement. The optimal
arrangement of sensors is plotted in Figure 13a.

Next, consider the same scenario except that we now vary the number of sensors available and
compute the expected system cost. Here, cost includes all costs, including the cost of sensors,
communication system, the cost of theft, false alarms, etc. (Again, the details are presented in [25].)
That result is shown in Figure 13b. That result clearly shows that costs reduce when visibility
increases, i.e., as the number of containers that have sensors increases. While these models include
cost and probability estimates, since in many cases actual costs and probabilities are not known, the
results show that under assumptions we believe are reasonable, there is significant economic value to
using sensor networks to secure cargo.

Next, we examined how track-side communications affected the price and performance of the
system. Obviously, with track-side communication, the spacing between track-side readers is directly
proportional to the expected delay between an event and the ability to report that event. As the
expected time to report the event, or the expected reporting deadline, increases, the number of track-
side readers decrease, and thus the system costs also decrease, which is verified by the results shown
in Figure 14a. A trackside system is also highly sensitive to the cost of the reader, which was explored
and evaluated, and some results are presented in Figure 14b.

11

Ship

StartMonitorSensors

150

SensorModeStatus
Location

startMonitoring
stopMonitoring
getLocation

Contacts

Alarms

VNOC

Nannci:lrucwapplnqs
SmsProviders

-&—p Subscription

(a) VNOC message overview.

/ Sensor Management

-

(b) VNOC Sensor Management service.

P

===
Reporting
\-‘”“"’“’

(d) VNOC Alarm Reporting service.

/

\ |

(c) VNOC Alarm Processor service

/ Trade Data Exchange

(e) TDE interface from VNOC

Figure 11: Architecture of the Virtual Network Operations Center (VNOC).

A

el s Proo K TDE VNOC Email Decision
Adversary Seal SensorNode AlarmPracessor AlarmProcessor AlarmReporting server Maker
Break Alert burst Alert
seal MRN, A
Shipment Query
Shipment Query Response
Validated Alarm
alidated Alarm Response
VNOC‘Afarm
E—
SMTp
——essage | |\ -
Notification
—
\ I\ I i . J
h v - . 5
Epoch: 1 M : Y .

Figure 12: Typical sequence of events that take place from a tamper event to notification of a decision-maker.

Table I: Summary of time statistics for decision-maker notification.

Epoch Description Min (s) Mean (s) Max (s)

1 Event occurrence to Alert generation 0.81 2.70 8.75

2 Alert generation to MRN AlarmProcessor service 0.01 0.02 0.08

3 One-way delay from MRN AlarmProcessor to VNOC AlarmProcessor 0.45 1.89 2.90

4 MRN Alarm arrival at VNOC AlarmProcessor to AlarmReporting 0.01 0.17 3.01
service

5 Elapsed time from VNOC AlarmReporting service to mobile phone 5.2 11.9 58.7

=
£
=
3 xxx % X R 2
! 5
=
]
o
[
0 x X x E I A
n
0 10 20 0 40 0 10 20 30 a0 50 60 70
Unit 1D Visible Containers
(@) (b)

Figure 13: Optimal sensor locations (a), where Unit ID 0 is the locomotive and slot represents elevation of double-
stacked containers, and visibility vs. cost (b) obtained by varying the number of sensors.

13

g

.w
2
8

== Deadline = 5 mins
1.07

w

== == Deadline = 10 mins

Deadline = 15 mins

r
&
Cost Metric [Units|

Cost Metric [Units)
bl
w

-
-
-

-

o
&
2

-
-

-

-
-

[
o
=]
&

275 : L " i L L L L
0 50 100 150 200 250 300] 0.2 0.4 08 0.8 1 12 14 16 18 2
Expected Reporting Deadline [s] Trackside Reader Cost [Units] 4

(@ (b)

Figure 14: Cost of track-side system varying the required response time (a) and both the trackside reader cost and
response deadline (b).

Finally, we compare the economics of a train-mounted communication system vs. a track-side
communication system. The results in Figure 15 clearly show the advantage of the track-side reader
system. This is because a single reader is able to serve on average 14 trains per week, while a train-
mounted system serves only one train. Here, we assume a track-side reader costs approximately 1,000
units (with a unit as roughly equivalent to one US dollar). Obviously, if track-side readers are
substantially more expensive, then the outcome would be different.

4 4
10X 10 X 10
[
10t —e—Train-Mounted 5l
w o e Trackside z
5 I=
Pl =
%‘ E —e—Train—Mounted
?_, 6 J— % 3_-----'Trackside
w | e —
o | < e 7]
O 3,
2 1 2 3 4 A R rtatat o - .
Prob. of False Alarm -3 8.9 0.92 0.94 0.96 0.98 1
x 10 Prob. of Detection
(@ (b)

Figure 15: Comparison of train-mounted and trackside communication systems.

From these data, we conclude that we have a robust cost model that can be used to evaluate
numerous system tradeoffs. Based on current estimates, a track-side communications system may be
more cost-effective than a train-mounted communications system. However, based on our estimated

14

costs and probabilities (detailed in [25]), it is always economically advantageous to use sensor
networks to monitor cargo shipments.

3.3. Task 3: Data integration and processing, e.g., controlling the storing and access
of information in the SmartPort data clearinghouse

The trusted corridor concept relies on a clearinghouse that integrates information from both the
sensors via a Web services interface and related databases, e.g., external logistical and intelligent
transportation systems such as the TDE. Secure communication between the TSSN and TDE has been
designed and implemented using well-established standards. Thus, the architecture is standards-based
and open. The overall system architecture is described in [13]. An overview of the security aspects is
given in Figure 16. The TDE-TSSN security relies on three layers: 1) firewalls to let traffic in only to
and from certain computers and port numbers, 2) HTTPS (secure sockets) encryption layer for
privacy, and 3) the use of username and password tokens for authentication. This approach was taken
given practical considerations of interfacing with legacy software, and provides adequate security. In
a related project, this feature has been tested with multiple TSSNs communicating with the TDE,
illustrating the security and scalability of the system.

.o""‘
.//
,/';6?%
e
.,/‘" - -
P = ot o
_ Message with " o
- usemame Mhaz’nsss:?:k::h i
/ : pesswor—d | | =

<« /,/'
‘,./"’

IP address/port

Figure 16: Security architecture used between TSSN and TDE.

One of the notable outcomes of this effort was that we found a possible architectural flaw with
the Web Services Architecture (WSA). The conflict arises when one uses the Publish / Subscribe
paradigm, a preferred method for efficient data exchange (as opposed to polling) and publishing the
policy of a security service. The details are found in [19], but essentially there is no mechanism for
discovering the security policy of a service when using the publish / subscribe paradigm. What can be
done is “hard code” the security policy within the two communicating services, which was done for
this project, but that is obviously not ideal, and contrary to the spirit of the Web Services architecture.
We believe that this is a significant finding and an architectural flaw that needs to be addressed by the
Web Services community.

15

3.4. Task 4: Communications technologies to enable continuous monitoring

One of the unique challenges for communication in this environment is that most web services
implementations assume connection-oriented services. Due to economics and other practical
limitations, we can not assure continuous connection to rail, especially in parts of the world with no
wireless coverage and in mountainous regions where satellite communications can be sporadic. We
extensively surveyed technologies that would be useful for continuous monitoring of cargo on rail.
The results are summarized in [3, 8, 9].

We determined the need to develop a messaging service that would seamlessly integrate into
the Web Services paradigm. This is documented in detail in [22], and described briefly below. The
affected clients and servers were modified to communicate through asynchronous messaging services,
which is possible through the Axis2 implementations using callbacks. Then, the transport mechanism
(normally HTTP or HTTPS) was replaced with a Java Messaging Service (JMS), using the ActiveMQ
implementation of JIMS. JMS is an asynchronous message passing service that is robust under
sporadic connections. When JMS detects a connection, it exchanges messages through a shared queue
paradigm. Figure 17 illustrates the distributed queuing model used to exchange messages.

Distributed Queue

Client / 2./ Service/
1 . end |\ end | \
[Client | | Service
o Distributed Temporary Queue : i
6. Client / \5./ Service/ &~ 4
| il | r
\ Sils A end \ /

Figure 17: Distributed shared queue model of message exchanges for unreliable communications channel.

During the long haul test in Mexico, we recorded data from the JMS service. The results are
shown in Figure 18, where the dwell time of each message in the queue is plotted vs. time. At the
bottom, a line shows when the satellite communications channel was connected. As the figure clearly
shows, messages were usually exchanged rather quickly when the communications channel was
established, and buffered, sometimes for considerable time, when the channel was down or busy.

16

ActiveMQ Message Queue
B3 [=——]
61 !
59
577
55 [-]
53 !

51 =

=enon

49
47
=]
45 =
[

41 ——
39]
377 [
35
33
a1
29
27
25
23
21
19
17T — —— — —
15
13

Message

M Bridge established

[0 Seconds on queue

o Nl

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900

Time in seconds from 2009-07-30 08:28:00

Figure 18: Measured results of message dwell times during the long haul trial.

3.5. Task 5: RFID applications

We studied the use of RFID technologies for cargo applications. This resulted in the
development of a long-range passive UHF RFID tag that was capable of identification at long
distances [23], and a survey of commercially-available location-positioning technologies [14]: RF
Controls [26] and Mojix [27]. We summarize our findings below.

e As claimed, Mojix system is extremely sensitive. It was able to detect the developed long-
range passive UHF RFID tag at nearly 130 feet away when the Star was pointing away
from the tag (an adverse condition).

e We observed location-positioning capabilities that were not highly refined and took some
time to settle on an accurate location. Regardless, it showed location positioning accuracy
sufficient to one to two meters, which is sufficient for an intermodal facility.

e Systems continue to improve since the writing of [23], including the use of wireless nodes
in the Mojix system. A mobile eNode could be used to inventory and determine location of
containers within the yard periodically.

e The developed RFID tag provided excellent long-distance performance. Improvement in
the integrated circuit (IC) has been growing steadily so that read distances double every
two to three years. While current IC design is meeting fundamental limits in passive
design, low-cost battery technology continues to develop and may provide continued
performance gains.

We conclude that the use of passive RFID in intermodal facilities is possible given existing

technology, but would require extensive deployment of infrastructure and a community-wide
commitment.

17

4. Description of Student Activities

This project used students extensively in the design, development, and testing of the system.
The following table shows students who were funded by the project and made contributions to the
project as shown by their participation in the following technical reports.

Table I1: List of students and their participation on the project.

Student Title Reference
Daniel T. Fokum A Taxonomy of Sensor Network Architectures [8]
A Survey on Methods for Broadband Internet Access on [9]
Trains
Status Update: A Unified Architecture for SensorNet with | [10]
Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors
Experiences from a Transportation Security Sensor [11]
Network Field Trial
Service Oriented Architecture for Monitoring Cargo in [13]
Motion Along Trusted Corridors
Service Oriented Architecture for Monitoring Cargo in [13]
Motion Along Trusted Corridors
Summary of Status: A Unified Architecture for SensorNet | [14]
with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors
An Open System Transportation Security Sensor Network: | [21]
Field Trial Experiences
Martin Kuehnhausen Experiences from a Transportation Security Sensor [11]
Network Field Trial
Service Oriented Architecture for Monitoring Cargo in [13]
Motion Along Trusted Corridors
Summary of Status: A Unified Architecture for SensorNet | [14]
with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors
Application of the Java Message Service in Mobile [18]
Monitoring Environments
Implementing Web Services: Conflicts Between Security [19]
Features and Publish/Subscribe Communication Protocols
Framework for Analyzing SOAP Messages in Web Service | [20]
Environments
An Open System Transportation Security Sensor Network: | [21]
Field Trial Experiences
Pradeepkumar Mani A Taxonomy of Sensor Network Architectures [8]
Satyasree Muralidharan A Taxonomy of Sensor Network Architectures [8]
Angela N. Oguna Experiences from a Transportation Security Sensor [11]

Network Field Trial

18

Service Oriented Architecture for Monitoring Cargo in [13]
Motion Along Trusted Corridors
Summary of Status: A Unified Architecture for SensorNet | [14]
with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors
Transportation security Sensor Network: Sensor Selection | [17]
and Signal Strength Analysis
An Open System Transportation Security Sensor Network: | [21]
Field Trial Experiences

Matthew Zeets Experiences from a Transportation Security Sensor [11]
Network Field Trial
Service Oriented Architecture for Monitoring Cargo in [13]
Motion Along Trusted Corridors
Summary of Status: A Unified Architecture for SensorNet | [14]
with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors
An Open System Transportation Security Sensor Network: | [21]

Field Trial Experiences

5. Conclusions

The goal of the project was to develop and integrate systems that provide the ability to track
and monitor the security of cargo in transit. To achieve the goal, we developed the Transportation
Security SensorNet (TSSN) to monitor rail cargo with the SmartPort Trade Data Exchange (TDE)
system. The system was demonstrated in both a “short haul” and “long haul” (international) shipping
scenario. Data from the tests were taken and extensively analyzed, identifying bottlenecks and new
research directions, including the use of security and notification events in Web Services, and the need

for efficient, long-range wireless sensors appropriate for the rail environment.

SmartPort continues to develop and commercialize the TDE, and has funded additional activity
to further integrate TSSN and the TDE to support the exchange of custody through sensors and mobile
communication systems, as well as continue to look for opportunities to collaborate on developing the
necessary technologies to enable full coverage of a train, container yard, and other intermodal facilities

and transports.

19

6. References

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Pradeepkumar Mani, David W. Petr, “Cliqgue Number vs. Chromatic Number in Wireless
Interference Graphs: Simulation Results,” University of Kansas, Lawrence, KS, Tech. Rep.
ITTC-FY2007-TR41420-01, October 2007.

S Muralidharan,V. S. Frost, and G. J. Minden , “A Framework for Sensor Networks with
Multiple Owners,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2008-TR-41420-
03; December 2007.

Daniel T. Fokum, Dr. Victor S. Frost, and Dr. Gary J. Minden, “An Evaluation of Sensing
Platforms Used for Sensor Network Research,” University of Kansas, Lawrence, KS, Tech.
Rep. ITTC-FY2008-TR-41420-04, December 2007.

Andrew Boie and Douglas Niehaus, “Performance Constraints of Distributed Control Loops on
Linux Systems,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2008-TR-41420-
05, December 2007.

Gary Minden, Victor Frost, David Petr, Douglas Niehaus, Ed Komp, Daniel Fokum,
Pradeepkumar Mani, Andrew Boie, Satyasree Muralidharan, and James Stevens, “Phase One
Report: A Unified Architecture for SensorNet with Multiple Owners,” University of Kansas,
Lawrence, KS, Tech. Rep. ITTC-FY2008-TR-41420-06; December 2007.

Leon S. Searl, “Service Oriented Architecture for Sensor Networks Based on the Ambient
Computing Environment,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2008-
TR-41420-07; February 2008.

D.T. Fokum, V.S. Frost, P. Mani, G.J. Minden, J.B. Evans, and S. Muralidharan, “A
Taxonomy of Sensor Network Architectures,” University of Kansas, Lawrence, KS, Tech. Rep.
ITTC-FY-2009-TR-41420-08, July 2008.

Daniel T. Fokum and Victor S. Frost, “A Survey on Methods for Broadband Internet Access on
Trains,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY-2009-TR-41420-09,
August 2008.

Victor S. Frost, Gary J. Minden, Joseph B. Evans, Daniel T. Fokum, “Status Update: A
Unified Architecture for SensorNet with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors,” University of Kansas, Lawrence, KS, Tech. Rep.
ITTC-FY2009-TR-41420-10, August, 2008.

Daniel T. Fokum, Victor S. Frost, Daniel DePardo, Martin Kuehnhausen, Angela N. Oguna,
Leon S. Searl, Edward Komp, Matthew Zeets, Joseph B. Evans, Gary J. Minden, “Experiences
from a Transportation Security Sensor Network Field Trial,” University of Kansas, Lawrence,
KS, Tech. Rep. ITTC-FY2009-TR-41420-11, June 2009.

20

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Victor S. Frost, Gary J. Minden, and Joseph B Evans, “Summary of Status: A Unified
Architecture for SensorNet with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors,” University of Kansas, Lawrence, KS, Tech. Rep.
ITTC-FY-2009-TR-41420-12, December 2008.

Martin Kuehnhausen, Daniel T. Fokum, Victor S. Frost, Daniel DePardo, Angela N. Oguna,
Leon Searl, Edward Komp, Matthew Zeets, Daniel D. Deavours, Joseph B. Evans, and Gary J.
Minden, “Service Oriented Architecture for Monitoring Cargo in Motion Along Trusted
Corridors,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-13,
July 2009.

Daniel D. Deavours, “Application of Passive UHF RFID in Intermodal Facilities,” University
of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-14; July 2009.

V.S. Frost, G.J. Minden, J.B. Evans, L. Searl, D.T. Fokum, D. Deavours, E. Komp, A. Oguna
M. Zeets, M. Kuehnhausen, D. Depardo, “Summary of Status: A Unified Architecture for
SensorNet with Multiple Owners: Supplement to Advance SensorNet Technologies to Monitor
Trusted Corridors,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-
41420-15; July 2009.

EDS, an HP Company, J. Walther, L. Sackman, M. Gatewood, J. Spector, S. Hill, J. Strand,
“EDS HP Final Report,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-
41420-16; December 2009.

Angela Oguna, “Transportation Security Sensor Network: Sensor Selection and Signal
Strength Analysis,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-
41420-17; December 2009.

M. Kuehnhausen and V. S. Frost, “Application of the Java Message Service in Mobile
Monitoring Environments,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-
TR-41420-18; December 2009.

E. Komp, V. Frost, and M. Kuehnhausen, “Implementing Web Services: Conflicts Between
Security Features and Publish/Subscribe Communication Protocols,” University of Kansas,
Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-19; February 2010.

M. Kuehnhausen and V. S. Frost, “Framework for Analyzing SOAP Messages in Web Service
Environments,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-20,
March, 2010.

D. T. Fokum, V. S. Frost, D. DePardo, M. Kuehnhausen, A. N. Oguna,

L. S. Searl, E. Komp, M. Zeets, D. D. Deavours, J. B. Evans, and G. J. Minden, “An Open
System Transportation Security Sensor Network: Field Trial Experiences,” University of
Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-21; March 2010.

21

[22]

[23]

[24]

[25]

[26]

[27]

M. Kuehnhausen and V. S. Frost, “Transportation Security SensorNet: A Service Oriented
Architecture for Cargo Monitoring,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-
FY2010-TR-41420-22; April, 2010.

S. Aroor and D. D. Deavours, “A Dual-Resonant Microstrip-Based UHF RFID *Cargo’ Tag,”
University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-23; March, 2008.

Pradeepkumar Mani, Satyasree Muralidharan, Victor S. Frost, Gary J. Minden, and David W.
Petr, “Unified SensorNet Architecture with Multiple Owners: An Implementation

Report,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-24; May,
2010.

Daniel T. Fokum and Victor S. Frost, “Modeling for Analysis and Design of Communications
Systems and Networks for Monitoring Cargo in Motion Along Trusted Corridors,” University
of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-25; May, 2010.

RF Controls, LLC., “Welcome to RF Controls!”, available http://www.rfctrls.com/index.html,
accessed June 16, 2010.

“Mojix Star System Brochure,” Mojix, 2008, available
http://www.mojix.com/products/documents/Mojix STAR System.pdf, accessed June 16,
2010.

22

http://www.rfctrls.com/index.html
http://www.mojix.com/products/documents/Mojix_STAR_System.pdf

List of Appendices

The following is a list of the appendices for this report. Each appendix is also a technical report.

Appendix
Number ITTCTR# Title

A1l ITTC-EY2008-TR41420-07 Service _Orlente(_j Architecture for Sensor Networks Based on the Ambient
Computing Environment

A2 ITTC-FY2009-TR41420-08 A Taxonomy of Sensor Network Architectures

A3 ITTC-FY2009-TR41420-09 A Survey on Methods for Broadband Internet Access on Trains
Status Update: A Unified Architecture for SensorNet with Multiple

A4 ITTC-FY2009-TR41420-10 Owners: Supplement to Advance SensorNet Technologies to Monitor
Trusted Corridors

A5 ITTC-FY2009-TR41420-11 Experiences from a Transportation Security Sensor Network Field Trial
Summary of Status: A Unified Architecture for SensorNet with Multiple

A.6 ITTC-FY2009-TR41420-12 Owners: Supplement to Advance SensorNet Technologies to Monitor
Trusted Corridors

A7 ITTC-FY2010-TR41420-13 Service Orler_1ted Architecture for Monitoring Cargo in Motion Along
Trusted Corridors

A8 ITTC-FY2010-TR41420-14 Application of Passive UHF RFID in Intermodal Facilities
Summary of Status: A Unified Architecture for SensorNet with Multiple

A9 ITTC-FY2010-TR41420-15 Owners: Supplement to Advance SensorNet Technologies to Monitor
Trusted Corridors

A.10 ITTC-FY2010-TR41420-16 EDS HP Final Report

A1l ITTC-EY2010-TRA41420-17 Transportation S_ecurlty Sensor Network: Sensor Selection and Signal
Strength Analysis

A12 ITTC-FY2010-TR41420-18 App_llcatlon of the Java Message Service in Mobile Monitoring
Environments
Implementing Web Services: Conflicts Between

AlL3 ITTC-FY2010-TR41420-19 Security Features and Publish/Subscribe Communication Protocols

Al4 ITTC-FY2010-TR41420-20 Framework for Analyzing SOAP Messages in Web Service Environments

A 15 ITTC-EY2010-TR41420-21 An Open System Transportation Security Sensor Network: Field Trial
Experiences

A 16 ITTC-FY2010-TR41420-22 Transportat!on _Securlty SensorNet: A Service Oriented Architecture for
Cargo Monitoring

Al7 ITTC-FY2010-TR41420-23 A Dual-Resonant Microstrip-Based UHF RFID ‘Cargo’ Tag

A 18 ITTC-FY2010-TR41420-24 Unified Sens_orNet Architecture with Multiple Owners: An
Implementation Report

A 19 ITTC-EY2010-TR41420-25 Modeling for Analysis and Design of Communications Systems and

Networks for Monitoring Cargo in Motion Along Trusted Corridors

23

The University of Kansas /

INFORMATION
& TELECOMMUNICATION
T INCALE T CEMTTE.

The University of Kansas

lechnical Report

Service Oriented Architecture for Sensor Networks
Based on the Ambient Computing Environment

Leon S. Searl

ITTC-FY2008-TR-41420-07

February 2008

Project Sponsor:
Oak Ridge National Laboratory

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612

All rights reserved.

N @ 1V/=T VATV 2R 1

2 ACE SOA INTIASIIUCTUIE.........oviiiiiieeieiesreiee e 1
2.1 Client/Service COMMUNICAIIONccuoiviiiiiiiiieieieie e 3
2.1.1 CHENt SOAP STACK.........cviiiieirirec e 4
212 ServiCe SOAP STACKccviiiiiieie e 5
2.1.3 Event NOTIFICAION..........cviiiiiiiccc e 5

2.2 SErviCe DITECIONY SEIVICEcoouiiiieiiiie ettt nneas 6
2.2.1 Service PUBIICATIONcovoiiiieiciece e 7
2.2.1.1 ASD Service AlIVE SEAtUS........cccoviieieiiieiesie e 8

2.2.2 Service DiScovery DY CHENtcccvev e 8

2.3 AULNENTICALION SEIVICE.......cuiiiiiiiiiiiieiecie e 9
2.4 AULNOTIZALION SEIVICEoviiiiiiiiieeeiese et 9
2.5 REMOLE SEIVICES.eiuiiiitiiieiti sttt bbb 9

3 Client and Service DeVEIOPMENLcceiieiieiieic e 10
4 SCENANO EXAMPIES.. oot 10
4.1 Client/Service Messaging Example plus Remote Service Example................. 10
4.2 ACESOA Federation EXample ... 24
4.3 Event Notification EXampPIesccooeiiiiiiiiiiesiee e 35
43.1 Service — Service NOUTICAIONcccviiiiiicec e 35
4.3.2 Client - Service — Service NOEIFICAtIONccooeiiiniiiiieesn 36
4.3.3 Client — Service NOUTICALIONccoiiiiiieieic e 37

1 Overview

ACE SOA (Ambient Computing Environment)(Service Oriented Architecture) is the
forth generation ACE implementation for providing distributed computing, media and
sensing services to service consumers (clients) in a dispersed environment. ACE SOA is
the infrastructure providing message and data communication, confidentiality,
authenticity and permissions plus service discovery within an enterprise and between
enterprises. ACE also provides a framework for developing new services and clients of
services.

ACE SOA is a reimplementation of the original ideas of ACE but utilizing current
technology and widely accepted Web Service specifications and publicly available

implementations which are suitable for Sensor Networks. Some of the Web Service
specifications in use are SOAP, the WS-X specifications and UDDIv3.

2 ACE SOA Infrastructure

ACE SOA is an infrastructure to allow Web Service based clients and services of one or
more enterprises to interact using the following features:

e Provide means for service to publish its URL location and Web Service Interface for
discovery by clients.

e Allow clients to discover service’s URL location and Web Service Interface.
e Provide a secure communication channel between clients and services.

e Provide mechanism for clients to subscribe to service ‘events’ or ‘alarms’.

e Authenticate a client to a service.

e Provide fine grain authorization of a client’s use of a service.

e Provide a framework for development of new clients and services.

e Establish a trust relationship between enterprises.

Enterprise B

Enterprise A

Figure 1 Federation of Services Overview

Figure 1 illustrates a simplified federation of clients and services. The client in this
example is in ‘red’. The services are in blue. The ACE infrastructure provided services
are the “‘Service Directory’, ‘Authenticate’ and ‘Authorize’ services. The remaining
services have been developed by the enterprise.

Each federation has its own Service Directory (UDDI), Authentication service and
Authorization service (although this example does not show an authorization service for
enterprise A).

When a service starts up it publishes its location URL (host and port) and its Web Service
interface (operations and operation arguments and argument types) to its Service
Directory so that clients are able to find it. In Figure 1 the ‘Sense DB’ service of
Enterprise B has published its information to the ‘Service Directory’ service.

Service Directories subscribe with each other for new inter-service publications. When a
new service that can be used from outside the enterprise publishes with its Service
Directory, the Service Directory then notifies any other subscribed Service Directories
about the new service. In Figure 1 the Service Directory of Enterprise B has notified the
Service Directory of Enterprise A of the service ‘Sense DB’ from Enterprise B.

A client can discover a service by querying its own Service Directory (query can be by
service type or by some other distinguishing category published by a service). The
service directory tells the client where the service(s) is and the interface (operations and
arguments to the operations) needed to communication with the service. The service may
be in the client’s own enterprise or it may be in another enterprise. In Figure 1 the Client
has queried for a service that is in the ‘Sensor Database’ category and its Service

Directory has returned the location URL and interface for the ‘Sense DB’ from Enterprise
B.

Services may also be clients of other services. In Figure 1 ‘Sense Proxy’ is a client of
‘Sensor’. Service ‘Sense Filter’ is a client of service ‘Sense Proxy’. Service ‘Sense DB’ is
a client of ‘Sense Filter’, ‘Authorize’, “‘Authenticate’ and ‘Service Dir’.

The Enterprise A client communicates with the Sense DB service using encrypted
messages. The ‘user’ of the client will be authenticated by ‘Sense DB’ using a certificate
that the client obtained from its Authenticate service and passed along it’s message.

The service determines if a client/user is authorized to perform the requested operation in
the message by querying its Authorize service.

In Figure 1 there is a remote service that is connected by a slow or intermittent
connection so instead of communicating with Service Dir, Authenticate and Authorize
services it has a “‘Sense Proxy’ service that handles that communication. Only the ‘Sense
Proxy” service is allowed to communicate with the remote service so the remote service
can have its authentication and authorization information in local files.

2.1 Client/Service Communication

ACESOA clients communicate with ACESOA services utilizing the open web service
standard SOAP (Service Operation Access Protocol) specification. ACESOA only uses
version 1.2 of the SOAP specification. The implementation of SOAP used by ACESOA

is the Apache Axis2 package.

Soap Soap

XML XML

Autkor Cert
WS-Authorization < WS-Authorization
— Authen en —
Authen Token < Authentication < Authentication
WS-Security (Encryption) WS-Security (Encryption)
WS-Addressing (ID, Routing) WS-Addressing (ID, Routing)

[1ranspor rve. swre. e | [1ranspor e, sure, e |
—

Ethernet, GSM
Figure 2 ACESOA Message Stack

Figure 2 shows the SOAP message stack utilized by ACESOA. A message originates
with the client application code, passes down through the SOAP layers to the underlying
network. The network routes the message to the proper host and port. The message then
passes up through the soap layers for the service until it reaches the service application
code.

Each client and each service has ACESOA specific code that is used to interface with
portions of the SOAP stack (labeled as ‘ACE Infra’).

The Serialize and XML layers adhere to the SOAP 1.2 specification for the message
body. This is integral to Apache Axis2.

The WS-Authorization specification has not been written yet. Until the WS-
Authorization is written ACESOA will utilize xACML (extendable Access Control
Markup Language) to specify credentials and will make a best guess for the protocol for
placing xACML into SOAP messages based a working draft WS-Authorization XML
schema found on the web.

The Authentication layer uses the WS-Security mechanism for signing headers and
messages. This is implemented by the Apache Rampart module.

The Encryption layer uses the WS-SecureConversation specification. This is
implemented by the Apache Rampart module.

WS-Addressing layer follows the like named specification. This is integral to Apache
AXis2.

2.1.1 Client SOAP Stack

To invoke a procedure on a service the client must first create the message body. Since
ACESOA utilizes the Axis Axiom Object Model the client must create the message as an
Axiom Object Model. The Object Model has the procedure name and procedure
argument names and argument values placed in it.

The client passes the OM (message object model) to SOAP which then serializes the OM.
The serialized object model is placed in XML in the SOAP schema.

On the client side WS-Authorization is skipped.

On the client side the Authentication layer (which is really a part of WS-Security) is
given a certificate or token that has been provided by an enterprise authentication
Certificate Authority (CA) through the *Ace Infra’ layer. The ‘Ace Infra’ layer handles
this automatically for the client. The token or certificate identifying the user is placed in
the message.

The message head and body is encrypted by WS-SecureConversation which is part of
WS-Security. WS-Security in Axis2 to is provided by the Rampart module.

SOAP routing information (service being called, session in the service to use and the
procedure being called) is placed in the message at the WS-Address layer.

The message is encapsulated and network routing information is added by the transport
layer then the message is placed on the network.

2.1.2 Service SOAP Stack

A message from an ACESOA client, destined for an ACESOA service is first received by
the transport layer from the network. The SOAP message is extracted from the transport
message and delivered to the WS-Addressing layer.

The WS-Addressing layer determines from the message which service the message is for,
which session within the service to deliver the message to and which procedure in the
service session to invoke.

The header and body of the message are decrypted by WS-SecureConversation in the
WS-Security layer. WS-Security is implemented by the Rampart package from Apache.

The authentication of the client user is determined by extracting the token or certificate
from the message and verifying the token or certificate with the CA of the service’s
enterprise. The communication with the CA (Authenticate service) is handled by the ‘Ace
Infra’ layer. To reduce communication overhead with the Authenticate service the token
or certificate is cached in the service with a limited cache lifetime. The service also has
subscribed to the Authenticate service to be notified if the validity of the user’s token or
certificate changes. Any failed authentication results in an error message back to the
client.

The WS-Authorization layer determines which procedure and the arguments of the
procedure that the client is trying to use. To determine if the client is authorized to invoke
the procedure with the specified arguments the service’s Authorize service is queried. To
reduce communication overhead with the Authorize service the user’s authorization
credential is cached in the service with a limited cache lifetime. The service also has
subscribed to the Authorize service to be notified if the validity of the user’s credential
changes. Any failed authorization results in an error message back to the client.

The message is extracted from the XML and placed in an Axiom Object Model by the
XML and serialize layers.

The appropriate method for invoking the procedure is called with the Axiom Object
Model as the argument.

2.1.3 Event Notification

An Event is the asynchronous generation of data by a service (an event). Event
Notification is the sending of Event data by asynchronous message (publishing) from a
service to an event subscriber. An event generating service allows clients to send

subscription messages to it specifying the desired event and the destination for the event
notification (publishing).

Event notification in ACE_SOA is based on the WS-Eventing specification and
implemented by the Apache Savan module for Apache Axis2.

In Web based SOA, messages are either one way or in-out exchange. An in-out exchange
IS one message into a service and a single response to the client that originated the
message. Clients must always initiate a message exchange. Clients may never receive a
one way message nor be the recipient of the first message of an in-out exchange. Because
of this Web Service restriction a client can not receive an Event Notification directly.

For a standalone client to receive an Event Notification it is necessary to embed a service
server within the client. The service server then starts up a service that can receive Event
Notifications. The client must register a callback class/method with the embedded service
to be called when the embedded service receives an Event Notification. When the client
sends a subscription request to an Event Notice generating service it includes in the
request the URI of the embedded service as the delivery endpoint of the Event
Notification.

When a ‘normal’ service wants to receive Event Notifications the above described
scenario is not require. A ‘normal’ service runs within a server (such as Axis2 within
Apache Tomcat) so all that is required of the service is to subscribe to the event with the
delivery URI is its own endpoint.

The Saven module intercepts subscription messages for a service so it is not necessary to
add anything to a service to handle subscriptions. When a service wishes to publish an
event it makes a Savan API call with the event data as an argument. The Savan core code
takes care of determining which subscribes are to be notified of the event and sends the
event message to those subscribers.

2.2 Service Directory Service

The ACE Service Directory Service (ASD) stores location URL and interface
information about currently running ACESOA services. Without the Service Directory,
clients would have to ‘know’ the location (host, port and service name) and the interface
(procedures and their arguments) of its desired services. This information would have to
be hard coded or stored in configuration files for the client. If the interface or location of
a service were to change the client code would have to be changed or the configuration
file of the client would have to be changed. Changing client code would be impractical.
Changing a configuration file would be cumbersome. With many different clients using
the same service any service change would prohibitively difficult to manage.

ACESOA uses the Web Service specification UDDI (Universal Description Discovery
and Integration) version 3 for a standard interface to service discovery. The
implementation used is the OpenUDDI Server which is based on the Novell UDDI

Server. With UDDI v3, UDDI servers may be replicated and UDDI has the ability to
register subscriptions for events.

The UDDI differs from the WFS (Web Features Service). The UDDI is intended to only
store programmatic interface information about a service. The WFS is intended to store
geographic features. The UDDI and WFS can be used together to locate and interface to a
service in a specified geographic area. The UDDI can also be used to find the URL to the
WES.

Although there may be more than one Service Directory (UDDI) in an enterprise,
generally a client or service will only use one Service Directory. There is no mechanism
to ‘search’ for a Service Directory so the network location of an ASD for a client or
service must be stored in a configuration file.

2.2.1 Service Publication

When an ACE service is starting up it must register its location and interface with the
ASD. The Web Service specification for describing a service location URL and interface
is WSDL (Web Services Description Language). In ACESOA WSDL v2.0 is used.
Information from the WSDL for the service is stored in the UDDI server (ASD) as
described in the OASIS Technical Note “Using WSDL in a UDDI Reqgistry”.

In addition to the ‘standard” WSDL information for a service the ACESOA infrastructure
uses Java’s introspection to travel the service’s Java class hierarchy to find each inherited
class and each implemented interface. The name of each inherited class, interface and the
class’s name are stored in UDDI as added category values for the service’s interface
under the category key named ‘acesoa:service-intf’. These categories are used by clients
to search for services with a desired interface implementation. Example: All services that
provide a temperature measurement implement the “org.tssn.service.sensor.temperature”
interface. This interface name is stored in the ASD as a ‘acesoa:service-intf’ category for
each service that implements it when the service is published by the ACE infrastructure
as the service starts up. A client can ask the ASD for all services that have the
‘acesoa:service-intf’ category value of ‘org.tssn.service.sensor.temperature’.

The mechanism for a service to register with the ASD is automatic and does not have to
be considered by a service developer. ACESOA utilizes the Apache Axis2
implementation of SOAP with its AxisObserver interface. When Axis2 deploys a service
the ACESOA implementation of an AxisObserver, named AceServiceEventListener, is
invoked. The ‘serviceUpdate’ method of the AceServiceEventListner extracts the WSDL
from the service and information from the service’s configuration file and publishes the
service’s location URL and interface to the ASD(UDDI).

All of the information needed by the service to locate and communicate with the UDDI
(username, password) is stored in the service’s Axis2 service configuration ‘service.xml’
file. It is up to the administrator of the host running the service to ensure that the
‘service.xml’ file can not be read by unauthorized users of the host.

Since OpenUDDI (the implementation used for the ASD) utilizes Axis2 for its SOAP
implementation, the SOAP message authentication and authorization mechanism used by
ACE clients and services would be used with the UDDI. To avoid a chicken and egg
problem the certificates for authentication signing of headers and messages are stored in a
configuration file for the UDDI..

2.2.1.1 ASD Service Alive Status?

Previous version of ACE had a mechanism in the ASD and in the service infrastructure
that provided a means of determining if a service that was registered with the ASD was
still alive. The service would send a keep-alive message to the ASD periodically to tell
the ASD that it was alive. The ASD had a timeout for each service. If the service did not
send its keep-alive message to the ASD within the timeout period the ASD would remove
the service information.

The UDDI has no “active service’ mechanism similar to past ACE ASDs. To have the
UDDI only have published information of active services a ‘Active Status’ service is
required. An Active Status service “pings’ each service listed in the ASD periodically to
determine if it is alive. If the service fails to respond to N successive pings the Active
Status service would un-publish the no longer responding service.

2.2.2 Service Discovery by Client

An ACESOA client uses the Service Directory service to discover the location URL and
interface of one or more desired services. The ACESOA infrastructure provides an API
for the client to call to perform the search. The method *ACECIient.findServices’ takes as
an argument a string that is the name of a service interface that a service must implement
in the UDDI search.The client must be coded to “know” how to interact with any service
that implements the specified service interface. The ‘findServices’ method queries the
UDDI (ASD) to search for all services that have published interfaces with categories that
include the key name “acesao:service-intf” and the category value as the specified service
interface name. The UDDI returns the information it has on each service that matches the
search.

The information returned by the ‘findServices’ method for each service found that
matches the specified service interface includes:

- URL of the service
- Name of the service

- Namespace of the service (needed to create SOAP messages to the service).

! The mechanism for Authorization is has yet to be determined

% This service has not yet been implemented (November 7, 2007).

In a near future version of ACESOA, extended data stored in the UDDI for the service
shall also be returned.

2.3 Authentication Service

NOTE: This infrastructure item is currently being integrated (November 7, 2007).

Authentication service exists in each enterprise to provide certificates to clients to
prove who the client user is.

The authentication service verifies for a service the authentication certificates
received by a service from a client.

A trust relationship has to be established between enterprises so that Enterprise A
will accept certificates issued by the authentication service of Enterprise B and

visa-versa.

2.4 Authorization Service

NOTE: This infrastructure item has not yet been integrated (November 7, 2007).

Services use authorization service to verify that the user specified in the client’s
message authentication certificate has the authority to invoke the procedure
specified in the message

The WS-Authorization specification has not been written yet.
Items used to determine authorization include:

o0 Time of day

o Service name

0 Host name

0 GEO Location of service

o0 Name of user

o0 Procedure Argument values

2.5 Remote Services

NOTE: This infrastructure item has not yet been integrated (November 7, 2007).

Remote services are not directly connected to the internet.

Frequently have limited bandwidth and limited duration connections to the home
office. (examples: GSM, Satellite Phone).

- Because of limited connections it is not practical to have remote services use the
ASD, Authorization and Authentication services (too much communication
overhead and out of date information).

- Use a service proxy that is connected to the internet and the wireless comm Link
to the remote service.

o0 Proxy is responsible for handling ASD publishing, authentication and
authorization of clients.

0 Proxy communicates with remote service using single/fixed authentication
and authorization. Remote service compares authentication and
authorization with local files instead of using ‘normal’ authentication and
authorization services.

o Comm link between proxy and remote service is only ‘up’ during message
exchange.

3 Client and Service Development®

- The Apache Axis2 package is written in Java and thus clients and services developed
for ACESOA are written in Java.

- Embedded services can use gSOAP and be written in C++.

- ACESOA has client and service Java code templates to ease development of new clients
and services.

4 Scenario Examples

This section contains examples of how the ACESOA infrastructure, clients and services
fit together.

4.1 Client/Service Messaging Example plus Remote Service
Example

In this example an ACESOA client discovers a desired service that has published itself
with the ASD. The service happens to be a Service Proxy for a remote service so the
mechanism for communicating with a remote service is also shown in the example. The
following interactions are described:

- Service publication

% The content of this section will be written one the client/service authentication and authorization
mechanisms have been implemented.

10

- Client search for a service via Service Directory (UDDI).
- Client user authentication.

- Client user authorization

- Client/Server communication

- Client/Remote Service communication

- Remote Service authentication

- Remote Service authorization

In this example the communication between a remote service proxy and a remote service
is shown. This is different than ‘normal” ACESOA communication since the assumption
is that the communication link with the remote service is over a slow and time limited
wireless link (example: GSM mobile phone).

Because of the limitations of the communication link the remote service keeps a local
authentication file of trusted Certificate Authorities (CAs) and a local authorization file of
credentials for a single user or only a very few users.

All communication with the remote service by clients must pass through the proxy
service. The proxy service is the only entity that knows how to connect to the remote
service and is the only user authorized to use the remote service (via the remote services
authorization file).

In Figure 3 the initial state of the system is with the 3 ACESOA infrastructure services
“Service Directory”, “Authenticate” and “Authorize” and the remote service “Sensor”
running.

11

CService Dir2

Authenticate

Figure 3 Client/Service Messaging Initial State

In Figure 4 the Sensor Proxy service starts up and is automatically published to the ASD
by the ACESOA infrastructure. The service’s location URL and interface information
(WSDL information) is stored in the ASD UDDI database for later query by a client
looking for the service.

Authenticate

Figure 4 Service Publication

12

When starting up the Sensor Proxy Service obtains the information it needs about its
remote service from its configuration file as show Figure 5. Included in the information is
the remote service GSM phone number.

CService Dir2

Authenticate

remotelnfo

Figure 5 Proxy Service Configuration Info

In order to communicate with the remote service the Sensor Proxy service must act as a
client and obtain the remote service client authentication token/certificate as shown in
Figure 6. To simply the remote service, the token/certification for only Sensor Proxy user
is stored in the Authentication file.

13

CService DI

Authenticate

Sensor @
Proxy
Figure 6 Remote Service Proxy Authentication Token

A client that intends to us use the “Sensor Proxy” service starts up as shown in Figure 7.
The name of the client is “Sensor Filter”.

CService DI

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 7 Client Startup

14

The client “Sensor Filter” wants to find the “Sensor Proxy” service as shown in Figure 8.
The client knows the location of the ASD from an entry in its configuration file. An ACE
API call is used by the client to perform the search query. The client specifies that it
wants a service that implements the interface named “Sensor Proxy”. There could also be
more query information such as the senor type desired”.

CService Dir2

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 8 Client Query for Service

The ASD returns to the client those services that match the service query. In this
example, shown in Figure 9, the service information returned to the client contains the
WSDL information such as location (URL) and interface for the “Sensor Proxy” service.

* The additional query information needed shall be reevaluated as more experience is gained with the
sensor network.

15

CService Dir3

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 9 Client Query Return

In order for the service to recognize the client user the client must obtain an
authentication token/certificate from a Certification Authority that the service trusts. In
this case, as shown in Figure 10, the client queries the Enterprise A Authenticate service
with a username and password for the client user. The message to the Authenticate
service is encrypted by the ACESOA/AXis2 Rampart infrastructure so that the username

and password are not easily seen on the network.

16

CService Dir2

Authenticate

Sensor
Filter

Sensor @
Proxy
Figure 10 Client gets Authentication Token

Figure 11 shows the Authenticate service returning an authentication token/certificate
after it has verified that the username and password provided by the client is valid.

CService Dir 3

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 11 Client Authenticate Token Return

17

CService DI

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 12 Client Request of Data from Service

The client, using the WSDL information obtained about the service from the ASD,
composes and sends a data request to the service. The ACESOA/AXis?2 infrastructure
handles signing the message (authentication info) and encrypting the message before it is
sent to the service. See Figure 12.

CService DI

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 13 Service Authentication Check

18

The ACESOA/AXis?2 infrastructure checks the authentication token/certificate (signature)
of the message to determine if it is authentic and from a trusted Certificate Authority.
First the service infrastructure looks to see if the information for this user is already in the
service authentication cache. If it is not then its sends a request to the ACESOA
Authenticate service to verify the users certificate/token. See Figure 13.

CService Dir 2

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 14 Verified Authentication

If the authentication token/certificate that the “Sensor Proxy” sent to the Authenticate
service was valid then the Authenticate service returns an “OK” to the “Sensor Proxy”
service. To save time in the future the ACESOA infrastructure saves the client user’s
authentication token/certificate in a local authentication cache so that the Authenticate
service will not have to be queried for the next message from the same user. The
authentication entry in the cache is given a timeout period. The entry in the cache is
removed if the timeout occurs.

Note shown in Figure 14 is that the ACESOA infrastructure for the “Sensor Proxy”
service subscribes to the Authenticate service so that the “Sensor Proxy” service is
notified if the trustworthiness of a Certificate Authority changes.

19

CService DI

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 15 Service Authorization of User

In Figure 15 the ACESOA is querying the Authorize service to determine if the user that
has just been authenticated is authorized to invoke the procedure specified in the
message. To save time the infrastructure provides an authorization cache. The
authorization cache is first examined for a certificate/credential for the client user before
trying the Authorize service.

CService Dir2

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 16 Authorization Certificate/Credential

20

An authorization certificate/credential is returned by the Authorize service to the
requesting service as shown in Figure 16. This certificate/credential is stored in a local
cache by the ACESOA infrastructure so that the Authorize service will not have to be
queried for the next message from the same client user. A timeout period is set for the
cache entry. At the end of the timeout period the entry is removed from the cache.

Not shown in the figure is the subscription of the “Sensor Proxy” service to the Authorize
service by the ACESOA infrastructure so that the service can be notified of any change in
the authorization certificate/credential of the client user.

In Figure 17 the remote service Sensor is the service that does the actual measurements
so the Sensor Proxy must connect to the remote service. The Sensor Proxy uses the phone
number it obtained from its configuration to call the remote sensor using its attached
GSM phone (not shown).

CService Dir3

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 17 Remote Service Connection

The Sensor Proxy service sends the request message ‘getData’ to the remote Sensor
service. The ACESOA/AXis2 infrastructure includes the Sensor Proxy user’s
authentication token/certificate in the message and encrypts the message. This is shown
in Figure 18.

The remote service compares the certificate authority in the message’s authentication
certificate/token and compares it with the trusted CA in its local Authenticate file. If the
CA is trusted then the remote service checks to see if the Sensor Proxy user is allowed to
invoke the ‘getData’ procedure by evaluating the credentials in the local Authorize file. If
the user is authorized then the remote Sensor service obtains the measurement data.

21

CService Dir2

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 18 Remote Service Data Request

The remote service returns the data as shown in Figure 19. The ACESOA infrastructure
encrypts the message. The Sensor Proxy service then passes the data on to the client that
originally requested the data.

CService Dir2

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 19 Remote Service Data Return

22

The Sensor Proxy tears down the GSM connection once the message transaction has
completed as shown in Figure 20.

CService DI

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 20 Remote Service Connection Termination

In Figure 21 the measurement data is finally returned to the client.

CService Dir2

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 21 Client Data Return

23

4.2 ACESOA Federation Example

In this example a client in Enterprise B wants to query a Sensor DB service in Enterprise
A. The majority of the interactions of clients and services are shown in this example. The
following interactions are described:

Inter-Enterprise authentication trust.

Inter-Enterprise service publication subscription

Service publication

Client search for a service via Service Directory (UDDI).
Client user authentication.

Client user authorization

Client/Server communication

CService i3

Authenticate

Sensor
DB
Sensor
Filter

Authenticate

Sensor @
Proxy

Figure 22 Federation Initial State

In Figure 22 Enterprise A has its ACE Service Directory, Authenticate and Authorize
service running. It also has a remote sensor that only communicates with the Sensor
Proxy Service. The sensor data from the Sensor Proxy service is manipulated by the
Sensor Filter service to be more useable by sensor clients.

For this scenario the service Sensor DB start up is shown. The purpose of the service is to
store sensor data in a database and provide the sensor database data to clients inside and

24

outside Enterprise A. It will obtain its sensor data from the Sensor Filter service although
the “Sensor DB”-*Sensor Filter” interaction is not shown in the example.

At some point in the future the client in Enterprise B will want to obtain data from the
database in the Sensor DB service of Enterprise A.

CService Dir2

Authenticate

Authenticate

Sensor
Filter

Sensor @
Proxy

Figure 23 Federation Authentication Trust

In order for a client in Enterprise B to authenticate itself to Enterprise A there must be a
trust relationship between the Authenticate services of enterprise A and B (see Figure
23). This must be done by humans in the two enterprises by exchanging Certificate
Authority signatures over a secure communication mechanism (example: encrypted and
digitally signed email). In this example an administrator in Enterprise A takes the
Certificate Authority signature that it has received from an administrator in Enterprise B
and stores it in a database of trusted Certificate Authorities for the Authenticate service of
Enterprise A.

In Figure 24 the ASD of Enterprise A is sending a subscription request to the ASD of
Enterprise A. This subscription request tells the ASD of Enterprise A that the ASD of
Enterprise B should be notified of any services that publish with Enterprise A’s ASD.
This reduces internet traffic since clients query their own ASD to find services in other
enterprises.

The ASD of Enterprise A may also subscribe to the ASD of enterprise B but that is now
shown in this example.

An enterprise will want to keep some services private (intra-enterprise). In this case there
would be two ADSs in the enterprise. One ASD would be for services that allow inter-

25

enterprise usage. The other ASD would be for service with intra-enterprise usage only
(not shown).

CService DI——0rbe CService D)

i Trust._ Authenticate
Authenticate)¢ --==-=--=-r---""

Sensor
Filter

Sensor @
Proxy

Figure 24 Federation ASD subscription

In Figure 25 the Federation A service ‘Sensor DB’ has been started. The startup could
have been initiated by a host computer booting up or a human could have started it
manually.

CService Dir2 CService DI

- Authenticate
Authenticate

Sensor
DB
Sensor
Filter

Sensor @
Proxy

Figure 25 Federation Sensor DB Service Startup

26

In Figure 26 the service Sensor DB publishes is internet location information and
interface to the public (inter-enterprise) ASD so that clients outside Enterprise A are able
to find it.

Authenticate

Authenticate

Sensor
DB
Sensor
Filter

Sensor
Proxy

Figure 26 Federation Service Publication

In Figure 27 the ASD of Enterprise A has received the publication of the Sensor DB
service. For each ASD that has subscribed to it, Enterprise A’s ASD publishes the
information for the Sensor DB service. In this example it publishes the service
information to Enterprise B’s ASD since it had previously subscribed to Enterprise A’s
ASD.

Although not shown in the figures, service Sensor DB queries the ASD of Enterprise A
for the Sensor Filter service. The ASD returns the location and interface information for
the Sensor Filter service and the Sensor DB service connects as a client to the Sensor
Filter service to obtain sensor readings to store in the Sensor DB database.

27

publicize

CService Dir 2 CService DI

- Authenticate
Authenticate

Sensor
DB
Sensor
Filter

Sensor @
Proxy

Figure 27 Federation Inter-Enterprise Publication

The client in Enterprise B wants to find and query the Sensor DB service in Enterprise A
as shown in Figure 28. The client sends a service query request to its Enterprise B ASD
looking for services that implement the Sensor DB interface.

CService Dir CService Dir2

i === Authenticate
Authenticate Y€---/-----f---""~

Sensor
DB
Sensor
Filter

Sensor @
Proxy

Figure 28 Federation Client Query for Service

28

In response to the clients query for service information, Enterprise B’s ASD returns the
location URL and interface information for the Sensor DB service that it knows about in
Enterprise A. This is illustrated in Figure 29.

CService DI

. eet Authenticate
Authenticate J¢-->-----1--"""~

Sensor
DB
Sensor
Filter

Sensor @
Proxy

Figure 29 Federation Client Query Service Information

The client must authenticate itself with the Sensor DB service in Enterprise A. To do this
it must have a certificate or token that will be accepted by Enterprise A. Since the trust
relationship has been established between the Authenticate services of Enterprise A and
Enterprise B, the client can request its certificate/token from its Authenticate service as
shown in Figure 30. In the token request to the Authenticate service, the client provides a
username and encrypted password for identification of the client user.

29

CService Dir3 CService Dir 2

. Trust ___. Authenticate
Authenticate J¢-------=-r--"""

Sensor
DB
Sensor
Filter

getAuthentToke

Sensor @
Proxy
Figure 30 Federation Client Authenticate Request

The Authenticate service, once it verifies the validity of the username and password,
returns a certificate/token to the client to use to authenticate itself with services. This is

shown in Figure 31.

Sensor
DB
Sensor
Filter

Sensor @
Proxy
Figure 31 Federation Client Authenticate Return

As shown in Figure 32, using the network location information returned by the ASD, the
client creates a message containing the location URL and name of the service and adds
the procedure request ‘getData’. The authenticate token is automatically added to the

30

message and the header and body of the message are encrypted by the ACESOA
infrastructure and Apache Rampart Axis2 module.

- Authenticate

Sensor
DB
Sensor
Filter

Sensor @
Proxy

Figure 32 Federation Client Request of Service

The service Sensor DB has received the ‘getData’ request from the client as shown in
Figure 33. The ACESOA infrastructure first checks the local authentication cache in the
service to see if the client user is already known, if the user is not known then the
Enterprise A Authenticate service is queried to authenticate the client user by checking
the user’s token/certificate to see if it was issued by a trusted Certificate Authority.

31

CService Dir 2 CService DI

- Authenticate
Authenticate

Sensor
DB
Sensor
Filter

Sensor @
Proxy

Figure 33 Federation Authenticate Client

For this scenario, as shown in Figure 34, the Authenticate service tells the Sensor DB
service that the user is really who he/she claims to be. The Sensor DB stores the user’s
authentication information in a cache to be used for future queries by the same user to
save time by skipping the authentication with the Authenticate service. The entry in the
cache is given a limited lifetime and then removed from the cache at the end of the
lifetime.

Not shown in the figure is that the Sensor DB has subscribed with the Authenticate
service to be notified if a Certificate Authority is no longer trusted. When this notification
happens all certificates/tokens cached by the service that were issued by the no longer
trusted CA are removed from the cache.

32

CService Dir 2 CService DI

- Authenticate
Authenticate

Sensor
DB
Sensor
Filter

Sensor @
Proxy

Figure 34 Federation Authenticate OK Result

Once the client user has been authenticated the service has to determine if the user is
allowed to invoke the requested operation ‘getData’. The Sensor DB sends a query to the
Authorize service to get the authorization credentials/certificate of the user if the service
does not already have the credential in a local credential cache. This request is shown in
Figure 35.

Note shown in the figure is that the Sensor DB has subscribed to the Authorize service to
be notified when credentials change.

The credentials in the Authorize service have to have been setup by an administrator
some time in the past.

33

CService Dir 2 CService DI

Authenticate

Authenticate

Sensor
DB
Sensor
Filter

Sensor @
Proxy

Figure 35 Federation Get Authorization

Figure 36 shows the returned of a user’s authorization certificate/credential by the
Authorize service to the Sensor DB service. The Sensor DB service caches the
certificate/credential to use with future requests by the users until the cache entry times-
out or the Authorize service notifies the service of a change in authorization
certificate/credential.

CService Dir2 CService DI

Authenticate

Authenticate

Sensor
DB
Sensor
Filter

Sensor @
Proxy

Figure 36 Federation Returned Authorization

34

The final act in a client from Enterprise B requesting data from a service in Enterprise A
is for the service to return the requested data as shown in Figure 37. The ACESOA/AXis2
infrastructure encrypts the return message and sends it to the client then it is decrypted
and given to the client code.

Authenticate

CService Dir2

Authenticate

Sensor
DB
Sensor
Filter

rtnData

Sensor @
Proxy

Figure 37 Federation Service Data Return to Client
4.3 Event Notification Examples

The following examples illustrate the messaging that occurs to subscribe to, publish and
consume Event Notifications. Note that in these examples it is assumed that service
discovery, authentication and authorization are occurring but is not shown.

The WS-Event specification implementation used in the ACE environment is Savan.
Savan provides and API for clients to send subscription messages to an eventing service.
Savan intercepts subscription messages coming into an eventing service so not external
API is needed to receive subscriptions. Services use a Savan API to publish events. There
is no API to receive published event notification messages.

4.3.1 Service — Service Notification

In Figure 38 the messages involved with having one service subscribe to and be the
consumer of Event Notifications of another service are shown. This is the simplest Event
Notification scenario.

Message 1 is the Sensor Filter Service using the client Savan API to send an Event
Notification subscription to the service Sensor. Included in the subscription is a filter to
determine which events the consumer is interested in. Also included is the ReplyTo: field

35

which is the URI of the endpoint to send Event Notifications to for this subscription. In
this case the ReplyTo is the Sensor Filter service endpoint.

The Savan WS-Eventing Axis2 module intercepts the subscription in the Sensor service
and stores the subscription information (hidden from the service Sensor business
implementation).

When an event occurs (message 2 originating from some other source) the service Sensor
business implementation places the event data into a data binding (class) and then calls
the Savan PublishEvent API with the event data. The Savan implementation then handles
checking each subscription filter to determine which consumers are to be sent Event
Notifications. The subscriptions that pass the filter check then have the event data sent
(published) to the ReplyTo: found in the subscriptions (message 3 in Figure 38).

Sensor Filter receives the event notification as a ‘normal’ operation message.

- 2:Event
1:eventSubscription

3:eventNotification

Figure 38 Service - Service Event Notification
4.3.2 Client - Service — Service Notification

This scenario (Figure 39) involves a client subscribing to events in a service on behalf of
another service. This is a common scenario where a user is using a client application to
tell a service where to send Event Notifications.

In this case the eventSubscription message ReplyTo field from the client contains the
URI of the Sensor Filter service. See section 4.3.1 for more details of the messages and
the implementation tasks of the remainder of the messaging.

1.eventSubscription ‘Event

3:eventNotificatiop

Figure 39Client - Service - Client Notification

36

4.3.3 Client — Service Notification

In the scenario shown in Figure 40 the desire is to have Event Notifications delivered to a
client. Clients can not receive notifications directly (as discussed in section 2.1.3). This
restriction requires a service to be embedded in the client to receive the notifications. The
embedded service then passes the notification data to the client.

In order for a service to run it must be handled by a server. In this scenario the client
starts an embedded server (1: in the figure), specifying the name of a desired service to
start. The server then starts the specified embedded service.

The client registers a callback class (usually itself) with the embedded service to be used
when a notification is received by the embedded service (2: in the figure).

Messages 3:, 4: and 5: in the figure are the same as described in section 4.3.2 except that
the ReplyTo: field of the subscription message is the URI endpoint of the embedded
service. The client obtains the embedded service endpoint from from the server.

When the Embedded Service receives the notification it looks up the callback class
(previously registered by the client) associated with the type of notification data received.
It then calls the callback method of the callback class with the notification data as the
argument (6: in the figure). If the callback class was the client class then the client
directly receives the notification data.

Stthscription

ntNofification

Figure 40 Client - Server Notification

37

The University of Kansas /

INFORMATION
& TELECOMMUNICATION
TGO I CENTTR.

The University of Kansas

lechnical Report

A Taxonomy of Sensor Network Architectures

D.T. Fokum, V.S. Frost, P. Mani, G.J. Minden,
J.B. Evans, and S. Muralidharan

ITTC-FY2009-TR-41420-08

July 2008

Project Sponsor:
Oak Ridge National Laboratory

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612

All rights reserved.

A Taxonomy of Sensor Network Architectures

D.T. Fokum ®*?2 V.S. Frost »*2 P. Mani®?, G.J. Minden *2,

J.B. Evans?, S. Muralidharan ™!

& Ungversity of Kansas, Information and Telecommunication Technology Center,

Lawrence, Kansas 66049, USA

bCerner Corporation, Kansas City, Missouri USA

Abstract

Several architectures have been proposed for sensor networks. However, there is a
lack of an over-arching sensor network architecture. Here we present some of the
issues associated with existing sensor network architectures. Next we present several
sensor network architectures, including one suitable for a multi-owner environment,
classifying these architectures in terms of function and compositional elements. We
also highlight each architecture’s key attributes in order to identify their common-
alities. In making our arguments we refer to the concept of invariants, which are
components of a system that cannot be changed without losing backward compat-
ibility [1]. Our results show that while several sensor network architectures exist,

each with different attributes, these architectures share several invariants.

Key words:

Sensor Networks; Taxonomy; Sensor network architecture; Invariant

Preprint submitted to Elsevier 15 May 2008

1 Introduction

Sensor networks are an emerging application of advanced wireless networking
and computer technology. Sensor networks typically consist of a set of small
resource-constrained computers, called sensor nodes that collect data from
their environments and then transmit that data on to a base station, or other
central site. In general a wireless sensor node (WSN) would consist of a sensing
device, e.g., an electronic nose, a temperature sensor or a motion detector, a
small microprocessor, a radio and a limited energy source. It should be noted
that when a sensor node is connected to just one sensor, the sensor node is
sometimes called a sensor, which causes some confusion [2|. Base stations,
unlike wireless sensor nodes, will generally have radios, but will have available
more computing resources and a larger energy source. The base stations will
generally aggregate information from the nodes and then pass them on to

other computers for presentation [2].

Sensor networks have been identified as being key technology in monitoring
and detecting threats. These systems face critical technical challenges in pro-
viding a security and management architecture in scenarios representative of

a large class of applications. The design and architecture of sensor networks

* Corresponding author.
Email addresses: fokumdt@ittc.ku.edu (D.T. Fokum), frost@ittc.ku.edu

(V.S. Frost), mpradeep@ittc.ku.edu (P. Mani), gmninden®@ittc.ku.edu (G.J.
Minden), evans@ittc.ku.edu (J.B. Evans), satyam@ittc.ku.edu (S.

Muralidharan).
I Present address: Cerner Corporation, Kansas City, MO USA
2 This work was supported in part by Oak Ridge National Laboratory under award

number 4000043403 as part of the ORNL-SensorNet Initiative.

has been studied in [3,4] and [5], while deployment experiences are recorded
in [5-10]. However, a taxonomy for sensor network architectures still needs to
be defined. This paper makes some steps to address this deficiency; here we
classify sensor network architectures in terms of function and compositional
elements. In addition we show that these sensor network architectures all pos-
sess invariants [1], which are system elements that cannot be changed without

losing backward compatibility.

The rest of this paper is laid out as follows: In section 2 we define the at-
tributes used in our architecture comparison. Section 2 also lists some of the
issues with existing sensor networks. Section 3 presents several sensor net-
work architectures, and highlights their attributes and invariants. Included in
section 3 is a discussion of a new sensor network architecture focused on a
multi-owner environment. Section 4 summarizes the findings from Section 3.

We conclude the paper in section 5.

2 Related Work and Context for Discussion

An architecture decomposes a system into component parts. Additionally an
architecture may also define structures and functions (interfaces) to its com-
ponents. At its lowest level an architecture may define protocols and state

machines for communications [11].

A new method for designing and evaluating networking protocols and archi-
tectures is proposed in [1]. It states that all systems contain invariants, i.e.,
components that cannot be changed without losing backward compatibility;

for example IP addresses are an invariant in the current Internet. Explicit

invariants result from deliberate decisions to limit the flexibility of a system,
while implicit invariants are the unplanned result of deliberate design deci-

sions. A set of invariants may be evaluated using the following questions:

(1) Is the set complete?

(2) Is the set independent?
With individual invariants we also have to ask these questions:

1) Does an invariant affect many components or just a few?

2) Does an invariant affect many aspects of an architecture or just a few?

4

(1)

(2)

(3) Does an invariant affect hardware or just software?

(4) Does an invariant have security or privacy implications?
(5)

5) Does an invariant have internal flexibility?

Evaluation on these characteristics should help us determine the quality of the

given architecture [1].

Some of the attributes that we will be using to characterize sensor networks
include whether or not the architecture is agent-based, delay-tolerant or fault-
tolerant. Whether or not the architecture supports data fusion, Internet con-
nectivity, location encoding, metadata communications, or has support for
security mechanisms. Finally, we will also evaluate architectures to see if they
are context-aware, based on standards, or have tiered architectures. We define

each of these attributes below to give some context to this discussion.

Agent-Based Incorporate an agent (piece of software) that travels between
the nodes of an architecture to perform some task autonomously, while
fulfilling the goals of the program that dispatched the agent [12].

Delay-Tolerant Used in instances where an end-to-end path may not be as-

sumed to exist between two nodes. Delay-tolerant networks can be concep-
tually partitioned into two parts, with a gateway serving as a link between
both parts. The gateway node is assumed to have significant storage ca-
pabilities so that data may be buffered when an end-to-end path does not
exist, and transmitted when a path becomes available [13].

Fault-tolerant Fault tolerant architectures are those which have the ability
to deal with system faults such that service failures do not result [14] and
[15].

Data Fusion Architectures that support data fusion have certain intermedi-
ate nodes within the architecture that process data from several sensors into
a more concise representation, which is then retransmitted to the sink [16].

Internet Connectivity Support This attribute is used to characterize ar-
chitectures that contain a node, or several nodes, that can be used to bridge
the connection between the global Internet and the sensor network. Justifi-
cation and examples for this architecture may be found in [6,13,17].

Location Encoding Sensor networks supporting this attribute have the abil-
ity to store sensor readings with location information so that the two may
be correlated.

Metadata communications In sensor networks that support this attribute
data is read and stored on sensors, and the sensors forward messages (meta-
data) describing the data that was read to the sink. The metadata is then
used to query the sensor network [18].

Security Support Sensor networks supporting this attribute should provide
the following services: data confidentiality (data should not be leaked to
unauthorized users), data authentication (proof that a message was actually
sent by a given user), data integrity (proof that a given message is the same

as that which was sent), and data freshness (ensures that data is recent,

and could not be a replayed copy of a message) [19].

Context awareness Context-aware sensor networks are cognizant of their
environments. Applications running in context-aware sensor networks would
typically have sensors for collecting context information, a set of rules on
how to act given context, as well as a set of actuators to carry out actions
20].

Standards Based This attribute is used to describe sensor networks that
are based on some standard, such as the Open Geospatial Consortium’s
(OGC) Sensor Web Enablement standards, or the IEEE 1451 standard. It is
important to identify this attribute, as we shall see in the following sections
that sensor networks have evolved largely free of any standardization.

Tiered architectures These architectures consist of different layers of sensor

nodes (as in [5,9,10,18,21,22]) or different layers of programs (as in [23]).

In this paper we will be classifying sensor networks in terms of the above
attributes, and determining which of those attributes are invariants. How-
ever, others (References [24] and [25]) have suggested alternate approaches for
evaluating sensor network architectures. In particular [24] states that sensor
network architectures be evaluated in terms of the design objectives for sen-
sor nodes. Reference [24] suggests the following architectural design attributes
for sensor nodes: small physical size, low power consumption, concurrency-
intensive operation (that is acquisition of sensor data, local processing of data
followed by simultaneous transmission of data from several nodes to a base
station), diversity in design and usage, robust operation, security and pri-
vacy, compatibility, and flexibility. Tilak et al. [25] suggest another approach
for classifying sensor networks. They state that sensor networks may also

be classified by communication models, data delivery models, and network

dynamics models. In making their arguments, Tilak et al. suggest that en-
ergy efficiency/system lifetime, latency, accuracy, fault-tolerance and scala-
bility metrics be used to evaluate sensor network protocols. Next they state
that sensor networks may be viewed in terms of infrastructure, network pro-
tocol and application/observer interests. Communication in a sensor network
may be classified as either application or infrastructure. Application commu-
nications arise from informing the observer about sensed data. Application
communications may be further characterized as either cooperative or non-
cooperative. With cooperative communications, sensors cooperate with other
sensors to fulfill the observer’s need; non-cooperative sensors do not cooperate.
Infrastructure communications on the other hand relate to the communica-
tions needed to configure, maintain and optimize the network. Sensor networks
can be classified by application requirements for data delivery as continuous,
event-driven, observer-initiated or hybrid. Sensor networks can also be clas-
sified in terms of network dynamics models. They may be classified either as
static sensor networks or dynamic sensor networks. In this paper we do not
classify sensor networks by any of these criteria. Instead we classify sensor
networks by the attributes defined above, while indicating which of these at-
tributes are invariants for the given architecture. In the next subsection we
begin our examination by identifying some of the problems with current sensor

network architectures.

2.1 Issues with Ezisting Architectures

The reader may conclude that only a limited number of sensor network ar-

chitectures exist. In fact [26] distinguishes just two possible architectures for

wireless sensor and actuator networks — namely semi-automated and auto-
mated architectures. In semi-automated architectures a central base station
coordinates the activities of the sensor nodes and the actuator nodes. In au-
tomated architectures a base station is not required, instead the actuators
are programmed to operate and respond to events autonomously. Rather than
limit ourselves only to two types of sensor network architectures, we contend
that the number of sensor network architectures is much richer. In this paper
we present a number of these architectures classified by function. Prior to pre-
senting these architectures we argue that there is no overall sensor network

architecture.

References [11] and [27] observe that sensor networking research is fragmented.
In particular [11] argues that research into sensor networks is impeded by “the
lack of an overall sensor network architecture” and not by any specific technical
challenge. Moreover, it argues that while complex systems have been built
by ignoring boundaries between subsystems, a sensor network architecture
should be developed to allow others to extend previous work. This sensor
network architecture will be akin to the architecture that has facilitated the
growth of the Internet. The claim is that sensor networks will thrive if there
is “a narrow waist in the architecture,” called the Sensor-net Protocol (SP) to
allow protocols to evolve. SP will be a single hop protocol, but is analogous to
IP. Below SP will be different link, MAC and physical layers, whereas above
SP will be different sensor-application protocols. It should be noted that this
sensor network architecture is slightly different from the OSI and Internet
architectures since sensor networks mainly collect, aggregate and disseminate
data, while the Internet is mainly concerned with end-to-end communication.

One final requirement of the proposed sensor network architecture is that it

must allow cross-layer interactions between layers for more efficient sensor

network operation [11].

Reference [27] also observes that sensor networking research is fragmented;
however, it does not go as far as reference [11]. Instead it argues that better
integration in sensor networks research may be achieved by using the following;:

PY A4

a “hardware abstraction for new sensor node prototypes,” “abstract model of

)

power consumption,” and a “protocol architecture scheme” for wireless sensor
networks. The benefits of a protocol architecture include the following: it may
facilitate the passing of packets between different layers of a protocol stack,

and it may also help organize how information should be exchanged between

different layers of the protocol stack [27].

From the discussion above it is evident that there is a lack of consensus on an
over-arching sensor network architecture. The examples that we will present
in section 3 will go towards highlighting the lack of an over-arching architec-
ture. However, we argue that while there is a lack of an architecture, some
similarities exist in sensor network architectures, in terms of their invariants

and their functions.

3 Architecture Taxonomy

In this section we present a number of sensor network architectures and classify
those architectures in terms of the attributes presented in Section 2. For each
architecture we will also classify each of its attributes in terms of invariants,

as introduced in Section 2.

3.1 Architecture Classification

In section 2 we discussed some issues with sensor networks and sensor net-
work research. In this subsection we classify some successful sensor network

architectures by decomposing each architecture into components.

Sensor networks have been successfully deployed to study birds on Grand Duck
Island, Maine [5,9,10]. This sensor network used a multi-level architecture with
sensor nodes performing computation and networking at its lowest level. The
sensor nodes are grouped into a sensor patch, which is linked to a gateway
node at the next level. The gateway transmits packets from the sensor patch
to one or more base stations. These base stations provide database services as
well as Internet connectivity. Finally, the last level consists of remote servers
to support analysis, visualization and web content [5]. The reader may consult

Fig. 2 in [5], Fig. 1 in [9], or Figure 1 in [10] for a system architecture diagram.

Reference [10] goes beyond the simple architecture presented in [5] to present
an architecture that organizes all the sensor nodes within a sensor patch into
a routing tree. In addition computation located within the sensor network so
as to reduce the energy consumption of the individual nodes as well as reduce
the volume of data being transmitted. Here the sensor network also has an in-
dependent verification network whose sole purpose is to generate independent
data that can be used to corroborate readings from the sensor network. The
verification network will consist of fewer, but more established sensor nodes.
In addition to presenting the basic architecture discussed above, [10] also gives
examples of sensor networks whose architectures are extensions of the basic ar-

chitecture presented in [5,9,10]. One of these extensions uses Tiny Diffusion,

10

a routing protocol to establish communications between sources and sinks.
With this architecture the network is aware of data naming and can apply fil-
ters. Another extension of the architecture uses the Tiny Application Sensor
Kit (TASK) with a TinyDB database. With this architecture the sensor nodes
have an SQL-variant query interpreter running on each node, and sensor nodes
receive queries in an epidemic fashion [10]. The key attribute for this family
of architectures is the tiered architecture. The Tiny Diffusion architecture has
the additional attribute of supporting data diffusion, but we deal with this
attribute at the end of the next paragraph. The tiered architecture may be
seen as an explicit invariant since it results from a decision to limit the amount
of processing that is done on the end nodes of this sensor network due to their

limited computing power.

A slightly more complex architecture uses Directed Diffusion, which estab-
lishes n-way communications between one or more data sources and sinks [28].
The communications architecture is based on directed diffusion, matching rules
and filters. Directed diffusion disseminates information in the distributed sys-
tem, while matching rules identify when data has reached its destination.
Finally filters process the data while it is en-route. This architecture can be
seen as a method for performing in-network aggregation of data in a sensor
network, thereby leading to a reduction of traffic in the sensor network [28].
The key attribute for this architecture is the support for data fusion, which
is an implicit invariant since it results from the deliberate decision made to
support communications between n sources and one sink. The task-awareness
of sensor nodes is another attribute of this architecture, where task-awareness

means sensor nodes store and interpret the data interests of other nodes.

Reference [29] can be viewed as an extension of Directed Diffusion [28]. It as-

11

sumes that nodes within a sensor network are named, and each node is within
radio range of several nodes. Communication from the sensor network to the
outside world is assumed to take place through some key nodes. Observations
refer to readings from sensors, while certain collections of observations consti-
tute an event, e.g., elephant-sighting event. Upon detection of an event data
is sent to external storage for further processing. In addition data is stored
by name within the sensor network, i.e., data-centric storage. Data-centric
storage is preferable if the sensor network is large, i.e., contains many nodes,
or if the sensor network detects many events, but not all the event types
are queried. The data centric storage is supported by a geographic hash ta-
ble (GHT), which provides a (key, value)-based memory. GHT uses Greedy
Perimeter Stateless Routing (GPSR) for routing [29]. The key attribute for
this scheme is the location encoding scheme. The implementation of the lo-
cation encoding scheme, the GHT, constitutes an explicit invariant since the
memory is deliberately limited to the (key, value) pair. Another invariant for
this architecture is connectivity with the outside world through a limited set
of nodes, which may be seen as an explicit invariant since the network is being

deliberately limited.

Wireless sensor networks are typically composed of resource-limited nodes. As
a result we need efficient algorithms to communicate in this environment. One
suggestion is to use a data handling architecture that will support efficient
spatio-temporal querying of data [30]. The design goals for this architecture
include: multi-resolution data storage, distributed communication and com-
putation load, and adaptability to correlations in sensor data. Temporal data
reduction is only done at a single node, and has no communication overhead;

once this data reduction is performed, only potentially interesting events are

12

reported to the rest of the sensor network. The DIMENSIONS architecture
assumes a clustered sensor network with location encoding; as a result some
of its attributes include a tiered architecture with location encoding support.
The invariant for this architecture would be the implementation of the location

encoding scheme.

A two-tier storage architecture (TSAR) for sensor networks, is yet another
proposed sensor network architecture. With TSAR sensors transmit metadata
rather than send actual sensor readings, since the metadata which may be a lot
smaller than the actual data itself. Design of TSAR is based on the following
principles: 1) Store locally, access globally; 2) Distinguish data from metadata;
and 3) provide data-centric query support. At each proxy tier TSAR uses an
Interval Skip Graph for storing data (The interval skip graph is an ordered,
distributed structure that allows one to locate all intervals containing a par-
ticular value or range of values.) At the sensor level TSAR implements a local
archival store and a mechanism to allow sensors to adapt to changing data
and query characteristics. The TSAR scheme was field-tested, and experimen-
tal results show that TSAR displays good performance in a multi-tier sensor
network [18]. The key attributes of this scheme are the metadata communica-
tions and the tiered architecture. The invariant for this architecture is limited
to the Interval Skip Graph, which can be seen as an implicit invariant since
the coarseness of the data intervals influences the resolution of query results.
Related to this invariant is the adaptive summarization scheme, which allows
sensor nodes to adjust the frequency of sending data updates with the proba-
bility of not being able to fulfill a query. Please consult Figure 1 in [18] for a

logical view of the TSAR architecture.

Middleware can also be incorporated into a sensor network architecture. Romer

13

et al. [31] state that sensor network middleware should be geared to support
the development, maintenance, deployment, and execution of sensing appli-
cations. In addition, they [31] state that sensor network middleware should

possess the following attributes:

It must provide ways of putting application knowledge into the sensor net-

work,

It should integrate communication and application-specific data processing

closely,

Provide ways to support automatic configuration and error handling.

Support for time and location management.

Shen et al. [32] introduce middleware called Sensor Information and Network-
ing Architecture (SINA). SINA allows sensor applications to issue queries and
commands, collect query results and monitor the sensor network. The SINA
architecture consists of hierarchical clustering — allows sensor nodes to aggre-
gate into clusters, — attribute-based naming — which allows users to query
the sensor network by some attribute, e.g., what is the average temperature
in a given quadrant, — and location awareness, which requires sensor nodes
to know their physical location, for example by using GPS. SINA [32] also

provides the following attributes:

Information abstraction , that is the sensor network is conceptually seen
as a collection of attributes of each sensor node.

Sensor Query and Tasking Language (SQTL) , which serves as an in-
terface between sensor applications and the SINA middleware.

Sensor Execution Environment (SEE) , which runs on each sensor node

and dispatches all incoming messages, examines all incoming SQTL mes-

14

sages, and performs the operations specified by each message. SEE also
handles outgoing messages.
Built-in Declarative Query Language to give users the ability to submit

a query directly instead of submitting an SQTL script.

Dyo [22] suggests middleware that can be used in sensor networks to support
data retrieval applications with mobile data collectors. This paper observes
that not very much research has been done on data collection using mobile
sinks. Consequently the paper develops a scalable, energy-efficient, distributed
spatial index that adapts to the sensor network query and data update rates.
The proposed index uses a static clustering algorithm and proactive and reac-
tive modes for index updates [22]. The key attributes of this architecture are
the tiered network architecture and the distributed spatial index for querying
of the network. The spatial index can be seen as an explicit invariant since
it now requires all queries submitted to the sensor network to now contain

information about the area of interest for the query.

Another application for sensor networks is to fuse data from several sources
using a fusion application, and present the fused data to a user. A fusion
application is continuous in nature, requires efficient transport of data from
sources to sinks, and it also requires efficient in-network processing of applica-
tion fusion functions. Ramachandran et al. [33] present a fusion architecture
for sensor networks called DFuse in [33]. Informally, the DFuse architecture
consists of the following: an application task graph — showing the data flows
and relationships amongst the fusion functions, — code for the fusion func-
tions, and a cost function that formalizes some metric for the sensor network.
Note that the fusion functions may be placed anywhere in the sensor network,

subject to the cost function being satisfied. In addition every node in the WSN

15

has a network layer that allows it to reach any node within the WSN [33]. More
formally, the two main parts of the DFuse architecture are the Fusion Module

and the Placement Module. The Fusion module performs the following tasks:

e Structure management (handles the channels used for fusion functions -
fusion channels. This management includes migrating the channels to other
nodes)

e Correlation control (handles specification and collection of data supplied to
the fusion code)

e Computation management (handles specification, application and migration
of fusion functions)

e Memory management (handles caching, prefetching and buffer manage-
ment)

e Failure and latency handling (deals with sensor failure and communication
latency. It also allows fusion functions to operate on partial data sets.)

e Status and feedback handling (handles interaction between data sources and

fusion functions.)

The main responsibility of the Placement module is to create an overlay of
the application task graph onto the physical network that best satisfies an
application-defined cost function [33]. The key attribute of this architecture is
support for data fusion, including the code that performs the fusion functions.
Thus fusion support may be seen as an explicit invariant since it deliberately
limits the user from getting fine-grained data from a sensor network. Related
to this invariant, is the fusion channel, which is itself an explicit invariant. The
fusion channel is an invariant since it provides interconnection between differ-
ent parts of the system. For a diagram summarizing the DFuse architecture,

please consult Fig. 2 in [33].

16

The last major class of sensor network architectures is based on databases.
Yao and Gehrke [34] advocate a database approach to sensor networks, since
declarative queries are suited for sensor networks. They propose using a query
proxy on each sensor node that lies between the network layer and the ap-
plication layer on that sensor node. Another reason for advocating the use of
databases is that communication is more expensive that computation in sensor
networks. Databases allow computation to be moved from nodes outside of the
network to nodes within the network. With this approach, a query optimizer
located on the sensor network’s gateway node. The query optimizer generates
a distributed query processing plan for queries generated from outside of the
network. The query plan is sent to all nodes, and the gateway node responds
to the query with the records coming back to the gateway node [34]. The key
attribute for this architecture is the tiered network architecture. In particular
the query proxy layer constitutes an invariant for this architecture. The query
proxy layer may be viewed as an implicit invariant, since all queries are now

required to be submitted to the query optimizer node in a network.

3.2 Standards-Based Sensor Networks

In the previous subsection we saw that many previous sensor networks have
been marked as one-off designs generally devoid of any standardization. Recall
from section 2.1 that there is no protocol akin to IP for sensor networks.
Recently we have seen an emerging class of sensor networks that include open
standards in their development, for example architectures based on the Open

Geospatial Consortium (OGC) Sensor Web Enablement standard [35, 36].

Reference [37] makes the case for the use of standards in sensor networks, par-

17

ticularly those used for homeland security purposes. This paper states that
open, standardized sensor interfaces and sensor data formats are needed to ef-
fectively integrate, access, fuse and use sensor-derived data for homeland secu-
rity applications. The paper goes on to argue that without open, standardized
interfaces and data encoding schemes it will be impossible to integrate a wide
variety of sensors and networks. Open sensor interface standards such as the
IEEE 1451 [38] and Universal Plug and Play (UPnP) [39] standards provide
ways to interface transducers to networks. Meanwhile, Sensor Web Enable-
ment (SWE) standards offer methods for sensor system discovery and control
based on the Internet and the OGC’s geo-processing framework. In summary,
reference [37] states that the following standards are necessary for the devel-
opment of a homeland security sensor network: transducer interface standards
based on IEEE 1451 and web-based application interfaces. The key attributes
of the sensor network proposed for homeland security include hardware-based
fault tolerance [40], Internet connectivity support, location encoding, secu-
rity support, and a standards-based architecture. Of these attributes location
encoding and the standards-based architecture may be considered implicit in-
variants, since the location encoding scheme requires that data be stored with
locations encoded in a specific format, while the standards-based architecture

deliberately requires all sensor interfaces to comply with a given standard.

The OGC Sensor Web Enablement standard addresses the problem of having
isolated, custom-designed sensor networks with incompatible sensor standards.
Reference [36] introduces the sensor web enablement (SWE) specifications.

These specifications include:

e Standard constructs for accessing and exchanging observations and mea-

surements.

18

Sensor Model Language (SensorML) Implementation, which provides an
information model that enables the discovery and tasking of sensors.
Transducer Markup Language (TML) Implementation, which provides a
method for describing information about transducers.

Sensor Observation Service (SOS) Implementation, which allows standard
access to observations from sensors and sensor systems.

Sensor Planning Service (SPS) Implementation, which specifies interfaces
for a service to participate in collection feasibility plans.

OpenGIS Sensor Alert Service, which allows users to subscribe to specific
alerts, and determines the nature of offered alerts, and the protocols used
for those alerts.

OpenGIS Web Notification Service (WNS) Interface, which allows a client
to have asynchronous communication with other services.

A universal method for connecting transducer interfaces and application
interfaces, such as the IEEE 1451 for smart transducers. The IEEE 1451
standard is an object-based protocol that allows sensors to be made acces-
sible to clients over a network. The IEEE 1451 standard allows sensors to
be accessible to clients across a network using Network Capable Application
Processor (NCAP), which is the point of interface between the application

and transducer interfaces.

An example of an architecture that uses the SWE standards is SensorNet [35].

This architecture uses standards from the OGC to learn the location of every

sensor and measurement and help with interoperability. Interoperability is

enhanced in this architecture by making use of web services for application

interfaces. In particular this architecture uses the ORNL SensorNet node to

host middleware that interfaces between the sensors and remote users and

19

applications. The ORNL SensorNet node is directly connected to the Internet,
and it also hosts a web server to allow for intelligent processing, as well as
any local processing of data. Another way in which this architecture tries to
facilitate interoperability is by representing sensor data using “features,” which
is an XML-like representation of data and sensor entities [35]. The key features
of a sensor network based on the OGC Sensor Web Enablement standard are

summarized in Figure 2 in [35].

The key attributes of the SensorNet architecture include fault-tolerance (each
SensorNet node is equipped with two communication links for redundancy
purposes), Internet connectivity support, location encoding, security support,
a standards-based architecture that is also tiered. Of these attributes the
location-encoding scheme is an implicit invariant, since locations must be en-
coded with a certain format. Recall that this architecture also has Internet
connectivity support; therefore, extending the argument from section 2 we

can also conclude that IP is an invariant for this architecture.

3.3 Internet-Connected Sensor Networks

While some sensor networks have possessed the ability to connect to the global
Internet, in general, Internet connectivity support has not been a major con-
sideration for sensor networks. One of the earliest references on sensor net-
works [41] argues for the use of multi-hop communications in sensor networks.
These authors go on to state that work needs to be done to investigate how
to link sensor networks to the global Internet. This statement is motivated by
the fact that many current Internet protocols do not take the need to con-

serve energy very seriously. In addition this paper states that work needs to be

20

done on evaluating where processing and storage should take place in a sensor
network [41]. For a logical view of this architecture, please consult Figure 2
in [41]. The attributes for this architecture include the tiered network archi-
tecture as well as support for conventional network services. The invariant in
this architecture appears in the gateway that serves as the interface between
the sensor network and the conventional network service. In general removal
of any functionality from the gateway node will lead to a loss in backward

compatibility of that node.

One example of a sensor network that has Internet connectivity is IrisNet
(Internet-scale Resource-Intensive Sensor Network services), which aims to
provide software components for a world-wide sensor network [6,7]. These au-
thors state that their sensor network is broader than the traditional definition
of sensor networks, and includes Internet-connected, dispersed PC-class nodes.

Such a sensor network must provide the following services:

e Planet-wide local data collection and storage.

e Real-time adaptation of collection and processing

e Data as a single queriable unit

e Support for queries posed anywhere on the Internet
e Data integrity and privacy

e Robustness

e Ease of service authorship

Under IrisNet service authors will have to figure out how to collect data, as
well as how to query the collected data. IrisNet uses a two-tier architecture
consisting of sensing agents and organizing agents. Sensing agents provide a

generic data acquisition interface for sensors, while organizing agents collect

21

and organize data to respond to a query. Each sensor agent controls one or
more senselets. Each senselet allows one to upload and control the execution
of code in a sensor. As was the case with the OGC’s Sensor Web Enablement
standards, sensor-derived data is represented in XML in IrisNet. It should
be noted that IrisNet has been deployed to monitor the Oregon coastline [6].
Please consult Figure 1 in [6] for an IrisNet architecture diagram, showing the

organizing agents and the sensing agents.

The attributes for the IrisNet architecture include the agent-based architec-
ture, Internet connectivity support, and the tiered network architecture. More-
over the invariants for this architecture include the agents, which may be seen
as explicit invariants, and IP addresses, if we extend the example on invari-
ants from section 2 to this architecture. The requirement to represent sensor-

derived data in XML may also be seen as an explicit invariant.

Another architecture that allows access to sensor networks from Internet-type
networks is the Janus architecture [17]. A prototype of the Janus architecture
has been used to connect a sensor network with hosts on a network LAN.
Janus uses an engine (This is a program running on the sink that provides an
interface to sensor network functionality. The agent uses the engine to discover
resources and functionality provided by the sensor network) running on the
sensor network’s sink as well as an agent that communicates with the engine.
The engine and the agent communicate using eXtensible Resolution Protocol

(XRP). The agent and engine exchange XRP messages to:

e Discover which sensor network resources are available;
e Send queries from the agent to the sink node on sensor network state; and

e Send information from the sink to the agent concerning the sensor network

22

state.

Janus also supports multiple access applications for sensor networks. All XRP
messages are transported between the agent and the sink node using UDP.
The use of XRP allows for expressive messages — that is XRP queries may be
interpreted — to be exchanged between agent and sink. Use of XRP also allows
for modularity in network design [17]. Figure 2 in [17] shows the extended

architecture for sensor networks that use Janus for Internet access.

The attributes for Janus include the agent-based architecture as well as the
support for Internet connectivity. The invariants for this architecture com-
prises of the agent and the engine. These components are considered invari-
ants since they enable communications between the sensor network and the
Internet. Adding functionality to one of these components without adding to

the other will result in the loss of backward compatibility.

By no means do we claim that the two examples of Internet-connected sensor
networks constitute an exhaustive list. More recently a group of researchers
has come formed an Internet Engineering Task Force (IETF) working group to

study routing over low-power and lossy networks, such as sensor networks [42].

3.4 Context-Aware Sensor Networks

A novel class of sensor networks is the group of context-aware sensor net-
works. Incorporating context into a network can have implications for energy
efficiency. For example suppose sensors are equipped with light sensors, and
it is known that temperature changes less frequently after dark. Sensors in

this sensor network can then wake up and make temperature readings less

23

frequently once night falls.

An argument for building a context aware sensor network is presented in [43].
Reference [43] argues that if each sensor node is context-aware, then the en-
tire network will be context-aware. In making this argument, these authors
assume that a context-aware sensor network (CASN) is node-centric. They
state that the goal of designing a context-aware sensor network is to prolong
the life of the network. The CASN is composed of middleware running on
sensor nodes. The middleware is composed of the following components: con-
text representation (CRP), context interpretation (CI), context aware services
(CAS), and a sensor society kernel (SSK). The CRP provides context avail-
ability, the CI interprets the context, the CAS manages services, and the SSK
allows each sensor node to act as a member of a larger society — the sensor
network. Finally, these authors suggest using a role-based local storage scheme
(RBLS) to store contexts on a sensor node [43]. Figure 2 in [43] summarizes

the architecture for a context-aware sensor network.

The key attribute for this architecture is context awareness. The middleware
on sensor nodes also hints to the fact that this architecture is tiered or layered.
The invariant in this architecture is the middleware. If any of its components
is changed, we can lose backward compatibility. For example if the context in-
terpretation module is changed it may return states that the other middleware

components do not know how to handle.

24

3.5 Agent-Based Sensor Networks

Agents can also be used in designing sensor networks, as we have already seen
from [6]. The use of agents in a sensor network architecture allows for flexibility
in that architecture since the sensor network can be quickly reprogrammed to

perform a different task.

Reference [12] makes the case for the use of mobile agents in sensor networks.
This paper observes that sensor networks are moving towards a single deploy-
ment, multiple applications paradigm; however, sensor nodes may not neces-
sarily have the capability to store all the programs needed for the different
applications. Mobile agents can be used as an option for dynamically deploying

applications to sensor networks. Some examples of use might include:

e Deploying mobile agents to a visual sensor network to collect reduced data
from some region of the WSN and query the data set for some information.
e Using mobile agents for target tracking and object recognition in a sensor

network.

According to [12], two types of sensor networks — hierarchical or flat — may
be distinguished. In hierarchical (clustered) sensor networks mobile agents
may be either deployed by a cluster head to visit all nodes within the cluster,
known as the intra-cluster method, or they may be deployed by the sink node
of a sensor network to visit all the cluster heads, known as the inter-cluster
method. In flat sensor networks the sink node can dispatch a “mother agent,”
which visits a target region of the sensor networks. Once in the sensor network
the mother agent will dispatch child agents to visit the nodes in the target

region and collect information that will either be carried directly to the sink

25

or to the mother agent.

It should be noted that mobile agents are frequently implemented in middle-
ware. This middleware may be either coarse-grained or fine-grained, where
coarse-grained agents typically have smaller code sizes with lower re-tasking
flexibility while fine-grained agents have larger code sizes with higher re-
tasking capability. In addition, having multiple agents cooperate can actually
lead to an improvement in performance of the entire WSN [12]. Figure 4 in [12]
summarizes the architecture of one type of mobile agent-based sensor network
architecture. Note that the battleship in the figure represents the mother agent
deployed by the sink node, and the arrows represent data flow to and from

the mother agent.

The agent-based architecture and support for data fusion, particularly in sen-
sor networks with mobile agents, form the set of attributes for this family
of sensor network architectures. The invariants for this architecture are the

agents.

3.6 Service-Oriented Sensor Networks

An emerging trend in sensor network architectures is the deployment of service-
oriented sensor network architectures. Architectures such as these permit the
incorporation of a diverse set of platforms and allow sensor nodes to discover

the capabilities of other nodes by querying a service repository.

Rezgui and Eltoweissy [44] introduce a service-oriented architecture for sensor-
actuator networks, called SOSANET. In proposing their architecture Rezgui

and Eltoweissy [44] argue that existing sensor network architectures are application-

26

specific. Service-oriented network architectures can address this issue by allow-
ing future sensor network designers to pick components from different sensor
networks and integrate these into a new sensor network application. Sensor-
actuator networks (SANETS) are different from ordinary sensor networks in
that they include actuators that are able to change the environment of a sensor
network. One example of a SANET can include a sensor network that has heat
sensors and fire sprinklers. If the heat sensors detect combustion, the sensors
will notify the sink, and the sprinklers can be triggered to douse the flames.
SANETs may be classified as either generic or customizable. Service-oriented

sensor-actuator networks are a type of customizable SANET.

Each node in a SOSANET exposes its capabilities as services. Each node in the
SOSANET has a service directory showing the capabilities provided by reach-
able nodes. The service directories are used to perform service-driven routing
in the SOSANET. Users get information from the SOSANET by submitting
queries to either the base station or one of the nodes in the SOSANET. The
queries may be either classified as task queries or event queries. Queries spec-
ify an event, condition, action, spatial scope, and temporal scope (ECAST)

when invoked [44].

The architecture for the SOSANET consists of a service-oriented query (SOQ)
layer, which receives queries from the service-driven routing layer, interprets
them, invokes the services necessary for the query, collects the service results,
packages the services’ results into query results, and submits the query re-
sults to the query issuer. This layer consists of a service invocation scheduling
module and an event detection module. When a query is received at a node
it is submitted to the event detection module, which checks for the existence

of a given condition. When the condition is detected, the query is submitted

27

to the service invocation scheduling module. Above the service-oriented query
layer is the service layer, which contains the implementation of all services
in the SOSANET. The architecture also includes a routing layer that delivers
queries to the SOQ layer, sends out query results from the SOQ layer, and for-
wards received queries and query results. The routing layer is composed of the
service-driven routing protocol (SDRP) and the trust-aware routing protocol
(TARP). The former routes queries from the base station to sensor network
nodes, while the latter forwards results from sensor network nodes back to the

base station [44].

It should be noted that the proposed architecture has been implemented in
TinySOA. Simulation results show that SDRP is an energy-efficient routing
protocol. TinySOA is also shown to be more energy efficient than TinyDB. In
addition TinySOA queries have a shorter response time than TinyDB queries.
Finally SANETSs based on TinySOA can be more deployed more rapidly than
sensor networks based on TinyDB, since queries are automatically discov-
ered under TinySOA. Figure 1 in [44] summarizes the key components of a

SOSANET node.

The attributes for SOSANET include the service-oriented architecture as well
as the layered, or tiered, architecture. The invariant for this architecture is the
service-oriented query layer, which performs a lot of the processing necessary
to receive query results. Improper changes to this layer can result, for example,

in the query issuer not being able to interpret the query results.

Another service-oriented sensor network architecture is found in [45]. This
three-tiered service-oriented sensor network architecture has been used to in-

tegrate with RFID and monitor hazardous chemicals for a petroleum company.

28

The tiered architecture allows sensor nodes with a range of capabilities to be
integrated into a large-scale sensor network. The layers of the architecture
consist of the backend, gateway, and front-end. The back-end (application)

layer consists of the following:

e Service repository, which contains a database of all services available in the
sensor network,

e System state manager, which keeps track of the states of the sensor nodes

e Service mapper, which maps the services to different nodes

e Service invocation manager, which contacts all the nodes running a given
service and returns the results of that service invocation to the application,
and the

e Notification manager, which uses a web service to distribute event messages.

The gateway (platform abstraction) layer facilitates interoperability between
sensor platforms. In particular this architecture uses Universal Plug and Play
(UPnP) [39] as the interface between the application layer and the sensor net-
work. The gateway layer performs the following functions: message transforma-
tion — translating between packet-level proprietary sensor network messages
and UPnP arguments, — and assisting in the deployment of services to the
sensor network. One key feature of the gateway layer is the dynamic instantia-
tion of service proxies. The service proxies — which are virtual representations
of the service interfaces — are instantiated whenever a service is provided by

the sensor network and destroyed whenever the service becomes unavailable.

The front-end (device) layer incorporates the multitude of sensor networking

and RFID devices. Some of the functions provided by this layer include:

e Reliable dissemination of messages to nodes — this allows new service exe-

29

cutables to be transferred reliably to nodes

e Platform-dependent service executables

e Event detection and alarms — this allows timely detection and reporting
of special conditions to a central node, — and platform-specific networking

protocols.

This architecture was successfully deployed in a trial with an oil company,
and the architecture was shown to be feasible; however, more work needs to
be done to make the architecture more scalable. Figure 3 from [45] summarizes

the key features of this architecture.

The attributes for this architecture include the tiered architecture, which is
also service-oriented. On the other hand the invariants for this architecture
include the gateway layer and the service repository layer. For example, im-
proper changes in the service repository layer can prevent other nodes from
knowing the locations of other services, while changes in the gateway layer can

prevent the correct translation of network messages and UPnP arguments.

3.7 Secure and Fault-Tolerant Sensor Networks

Another emerging trend is sensor networks that include security and fault-
tolerance from the time of design [46] and [47]. No architecture is presented
in [47], but this paper presents a scheme for enhancing the reliability of sensor
networks. When a sink has little energy left, the sink is relocated to another

sensor node [47].

Reference [46] presents an architecture for a secure and survivable wireless sen-

sor network with heterogeneous nodes. The architecture will provide security

30

and survivability mechanisms and techniques, and security and survivabil-
ity requirements and services. Since sensor networking applications need to
be able to run continuously and reliably without interruption, survivability
needs to be factored into the development of a WSN. The security require-
ments for a sensor network are: confidentiality, authentication, integrity, and
secure management, while the survivability requirements include: reliability,

availability, and energy efficiency.

The reader is referred to [46] to obtain more details on the architecture.
It should be noted that [46] provides simulation results to show that if a
small number of powerful sensor nodes have reasonable storage, processing
and transmission capabilities when using the proposed scheme, then the WSN
can have good key connectivity, reliability and resilience. In addition the sim-
ulation results show that there is a trade off between security and survivability
in some scenarios. Figure 1 from [46] summarizes the key components of the

secure and survivable sensor network architecture.

The key attribute for the secure and survivable sensor network architecture is
security support. On the other hand the invariant here is the key management
scheme. If a new key management scheme is chosen for a set of sensor nodes

these sensor nodes can lose the ability to communicate with other sensor nodes.

3.8 Vehicle-Based Sensor Networks

In the near future, we will begin to see sensor networks deployed to vehicles
to enhance driver safety, and allow drivers to pick the best route between two

points based on road conditions. Reference [48] describes an architecture for a

31

vehicular ad hoc network that is safety-oriented. In this architecture vehicles
and roadside entities are seen as peers. The peers are organized in zones called
peer spaces, while nodes in a peer space share a common interest. Peers may

be organized into either cluster-based or peer-centered structures [48].

One protocol for vehicular ad hoc networks is Vehicular Information Trans-
fer Protocol (VITP), which is an application-layer, stateless communication
protocol analogous to HT'TP [21]. The VITP architecture (infrastructure) con-
sists of VITP peers (software components running on vehicle computers), a
location encoding scheme, and additional protocol features for performance
optimization, quality assurance and privacy protection. VITP stores location
information as two-value tuples. When a vehicle needs some information, it
formulates a query and broadcasts it. The dynamic collection of VITP peers
that responds to a query is called a virtual ad hoc server (VAHS), in other
words the VAHS is based on a query and target-location area. Simulation re-
sults for VITP performance show that the Return Condition for VITP requests
is very important, since it affects the dropping rate of VITP transactions as
well as the accuracy of VITP query results [21]. Figure 3 from [21] shows how

protocols are layered in VITP.

The attributes for VITP include the tiered architecture and VITP’s support
for location encoding. The latter may be seen as an implicit invariant since all

nodes must now use the same format for representing location information.

Another example of a mobile sensor network is found in [8]. This paper dis-
cusses a mobile sensor network composed of CarTel nodes that processes het-
erogeneous data. In general mobile sensor networks allow one to cover a larger

surface area with fewer sensors. Each CarTel node consists of a mobile, embed-

32

ded computer connected to several sensors. The node runs software that func-
tions as a gateway between the node and the rest of the sensor network. The
architecture consists of a portal, which hosts CarTel applications and serves as
a sink for data sent from the mobile nodes. There is also an ICEDB (Intermit-
tently connected database), which is a delay-tolerant query processor. Finally,
there is a CafNet (Carry and forward network), which is a delay-tolerant net-
work stack. Unlike TCP, CafNet uses a message-oriented data transmission
and reception API. This allows CafNet to be used in delay-tolerant networks.
CafNet informs the sensor network applications when network connectivity
is available, then the application decides which sensor network information
needs to be sent. The CafNet communication stack consists of a Transport
Layer, a Network layer and a Mule Adaptation Layer. The CafNet network
layer supports buffering of some data [8]. Figure 2 in [8] shows the software

architecture for CarTel.

The main attributes for CarTel include the delay-tolerant network architecture
as well as the location encoding scheme. The invariant in this architecture is
CafNet, the delay-tolerant network stack, which must continue to expose the
same interfaces and services after any changes if backward compatibility is to

be maintained.

Reference [49] discusses a network in which cars communicate with each other
using TrafficView nodes to exchange data on the state of the road. According
to [49] this form of inter-vehicle communication is different from traditional
MANETS because of rapid changes in link topology, a frequently disconnected
network, data compression/aggregation, prediction of vehicle’s positions, and
energy consumption not being an issue. A TrafficView node consists of the fol-

lowing modules: a GPS/OBD module, a receive module, a validation module,

33

an aggregation module, a send module, and a display module. Two algorithms
that may be used for aggregating data (cost-based and ratio-based) in a ve-
hicular network are discussed and evaluated in [49]. The results indicate that
ratio-based aggregation works well in actual test conditions [49]. The compo-

nents of a node architecture for TrafficView are found in Figure 4 in [49].

TrafficView’s set of key attributes includes location encoding and data fusion
support. As was the case for VITP, the location encoding scheme can be seen
as an implicit invariant since all nodes must now use the same format for

representing location information.

The last class of vehicle-based sensor networks uses a system of train-based
sensors to monitor wheel bearing temperatures [50]. This sensor network uses
IEEE 802.11b for inter-car train communications, GPS information to provide
location information. Backhaul communications are provided by a 1xRTT
radio, and the train data is uploaded to a web server. Beyond the system
specifications provided above, the architectural details of this sensor network

are not available.

3.9 Habitat Monitoring Sensor Networks

As we observed in section 3.1, some of the earliest sensor networks were used
for monitoring seabirds on Grand Duck Island in Maine [5], [9] and [10]. Refer-
ence [9] indicates that a tiered architecture was developed for this monitoring.
At its lowest level are sensor nodes, which collect environmental data. The next
tier consists of a sensor network gateway, which communicates with the sensor

network and the transit network. At the next tier is the “remote base station

34

that provides WAN connectivity and data logging.” In order to provide some
degree of fault-tolerance, each tier of the sensor architecture provides persis-
tent data storage to guard against data loss. The architecture also provides
data management services ranging from simple data logging to a full-fledged
relational database service running on the base station. It is worth noting that
the habitat monitoring sensor network also includes iPaqs (known as gizmo in

the paper) to allow for remote management of the sensor network [9].

3.10 Multi-owner Sensor Network Architecture (MOSN)

There is growing literature concerning the architecture and design of sen-
sor networks [2—4], as well as the Open Geospatial Consortium Sensor Web
Enablement efforts [51] and Oak Ridge National Laboratory’s SensorNet In-
formation Architecture [52]. Several of these types of sensor networks have

already been deployed [5].

A premise of this discussion is that elements of the sensor network will be
owned by multiple organizations and communicate across administrative do-
mains. Thus, there is a need for mechanisms that facilitate access to and con-
trol of sensors across multiple organizations as well as a requirement for rapid
deployment. Ownership by a wide variety of administrative domains is briefly
mentioned in [53]. While SensorML [35] has sensor schemas that include se-
curity, user limitations and access constraints (like documentConstrainedBy),
and schemas that identify the responsible party (like operatedBy), the inte-

gration of these into an overall system remains to be explored.

The MOSN architecture extends ORNL’s SensorNet Information Architec-

35

ture and has been built upon the existing sensor network architectures (e.g.,
[6,51,53,54]), to create a system based on the above concepts that facili-
tate the participation of multiple organizations in supplying needed compo-
nent /subsystem functionality. A model of MOSN has been implemented and

evaluated.

The objective of the MOSN is to develop a unified architecture that has ele-
ments owned /controlled by a variety of organizations which can communicate
across administrative domains. The MOSN architecture is general, scalable (in
size and evolution of technologies), flexible (able to mix and match technologies
based on the venue requirements), economical (based on COTS technologies),
and leverages standards where possible. The MOSN approach facilitates mul-
tiple organizations providing different services, enabling the development of a

business model based on sensor network technologies.

MOSN components are divided into three layers, as shown in Fig. 1 in [23].

These layers include the following:

e The device layer, which is composed of all the sensor nodes, as well as the
data access and management endpoints for the entire architecture.

e The repository layer, which forms a link between the lower device and the
upper application layers to allow for information dissemination. This layer
is composed of databases that store sensor data as well as databases that
store information needed to support the system.

e The application layer, which presents a unified view of the different compo-

nents of the architecture to the user.

Communication between the layers in the MOSN architecture is done by ex-

tending the Ambient Computing Environments (ACE) architecture [52, 55].

36

The device control and data flow mechanisms developed for ACE are used to
manage connections between applications and sensor nodes. The ACE control
mechanisms allow devices to be authenticated by a controlling application. In
addition ACE allows access and control of devices to be based on an estab-
lished security policy. Finally, the ACE data flow mechanism supports real
time exchange of data between applications and devices that is private and
checked for integrity. ACE supports establishing services within the environ-
ment to archive data flows, replicate data flows to multiple receivers, and play

back archived data.

We conclude this section by observing that the key attributes of the multi-
owner sensor network architecture include: Internet connectivity support, se-
curity support, a standards-based architecture that is also tiered and service-
oriented. On the other hand the invariants include the service-oriented archi-
tecture, and the standards-based architecture. Due to Internet connectivity

support, IP addresses may also be seen as an invariant for this architecture.

4 Architecture Comparison Summary

In the previous section we presented the key elements of different classes of
sensor networks, including a new sensor network architecture suitable for a
multi-owner environment. Those architectures were compared in terms of cer-
tain attributes. Table 1 summarizes the key features, while Table 2 summarizes

the invariants of the architectures presented in Section 3.

37

oded)xou UO ponuIuOd

[6¢] o8e101g
X OLIJUDD-RYe(]
[8z] uorsny
X JId PRIl
(016 ‘] woy
-SAS SULI0)1
X X -uowr ejqel
110ddng
110d sut AyATy 110d
poseq -dng | pojuorr() | ‘swwo)) -pooun] -0ouuo)) | oIRMY -dng jueIo[o], jurIo(O], paseq
PoIol FpIepuR)}S KIIIN0oS | -9dIAIG RIRPRIDJA | UOIIRIOT] JOUIONU] [JX03U0)) | wolsnyg | -yneq | -Aep(| -juesy

38

oded)xou UO ponuIuod

[zg] seotae(
O[IqOIN puw
SYIOMIDN
IOSUOG jo
UOI}RISOIU]
10§ USISo(]
X OIRMI[PPIN
X x [81] UVSL
jr0ddng
110d 3ur A1AT) 110d
poseq -dng | poyuorr() | swwo)) | -poousy -09UUO)) | oIRMY -dng fueio[o], puerdo, | poseq
poIsl EpIRpuUR]S KILIND0G | -90IAIS RIRPRISIA | UOIIRIOT] JOUIU] [(JX0IU0) | uolsnyg | -yneq | -Le[o(] | -juesy

oded snorsead woay peonurjuod

39

oded)xou UO ponuIuOd

X X [T7] SNIM
[L€°Gg] yoNI08
X X X X X X -eS INYO
X X [fe] re8nop
X [eg] asniaQ
[0g]
* X SNOISNAINIA
jr0ddng
110d 3ur A1AT) 110d
poseq -dng | pojualLi() | ‘SwWwo)) | -poour] -oUUO0)) | oIeMY -dng juers[o], jueIo[O], | Poseq
POIST EPIRpUR)S KJIINIOG | -991ATOG [BJEPRIDIN | UOIYeIOT] JOUIOIU] [IX03U00) | uoisng | -ymeq | -Ae(q | -juely

oded snorsead woay peonurjuod

40

oded jxou UO ponuIIUOI

[77]
X LHANVSOS
[21] NSMVIN
X X pue NSAVIN
X X [€7] NSVD
X X [L1] snuep
X X X [19] 1ONSU]
jr0ddng
110d 3ur A1AT) 110d
paseq -dng | pajuali() | ‘swwo) | -poour] -oUU0)) | oIeMy -dng jues[o], fueId[o], | poseq
PoIdI FRIepUR)S KIINDSG | -90IAISG [R)ePRIDJN | UOIYRDOT JOUIYU] [)X03U0)) | uolsn | -yneq | -Le[o(q | -1uely

oded snorsead woay peonurjuod

41

oded)xou UO ponuIIUOI

[GF] sy10Mm

-9 I0Suog

SSO[RITAN
O[(RAIAING
X pue 9Inoog
[G7] s{10Mm
-joN 10Sudg
SSOTOII AN
X X urtopyerdiyniy
jr0ddng
110d 3ur A1AT) 110d
paseq -dng | pejueLl() | ‘swwo)) | -poour] -0OUUO)) | oIeMY -dng fueio[o], puerdo, | poseq
poIsl EpIRpuUR]S KILIND0G | -90IAIS RIRPRISIA | UOIIRIOT] JOUIU] [(JX0IU0) | uolsnyg | -yneq | -Le[o(] | -juesy

oded snorsead woay peonurjuod

42

oded)xou UO ponuIUoOd

[eg])09
-oIe YIom
10U IOSUOS
X X X X X IOUMO-T) NN
[67]
X MITA DRI,
X [8] PL.TeD
X X [12] d.L1A
jr0ddng
110d 3ur A1AT) 110d
paseq -dng | pejueLl() | ‘swwo)) | -poour] -0OUUO)) | oIeMY -dng jueIs[o], pueIs[O], | Poseq
poIsl EpIRpuUR]S KILIND0G | -90IAIS RIRPRISIA | UOIIRIOT] JOUIU] [(JX0IU0) | uolsnyg | -yneq | -Le[o(] | -juesy

oded snorsead woay peonurjuod

43

SOINYed,] SINPIRIYDIY Jo Arewrung ‘T o[qe],

PoOLER

paseq

Iepue)q

110d
-dng

K91Ino0g

pojuLLI()

-901AIOG

"SIm0,

RIEPRIDIN

sut

-poouy]

UuoI1yed0]

jr0ddng
Ay
-0auu0))

JOUIIIU]

SAL v

1X99U0))

110d
-dng

uorsn,J

JueIo[O],

-Hneq

JueIo[O], | poseq

-Ke[o(] | -Juely

oded snorsold wogy ponurod

44

Architecture Classification

Invariants

Explicit

Implicit

Habitat monitoring system [5,9,

10]

Tiered architecture

IP

Directed Diffusion [28]

Data fusion

Data-centric Storage [29]

Location encoding

scheme (GHT), Out-

side world connectivity

support

TSAR (18]

Interval skip graph, in-
cluding adaptive summa-

rization scheme

Middleware Design for Integra-
tion of Sensor Networks and Mo-

bile Devices [22]

Distributed spatial index

continued on next page

45

continued from previous page

Architecture Classification

Invariants

Explicit

Implicit

DIMENSIONS [30]

Location encoding

scheme

DFuse [33]

Data fusion support, in-

cluding fusion channels

Cougar [34]

Query proxy layer

ORNL SensorNet [35,37]

Location encoding

scheme, IP

WINS [41] Interface code in WINS
gateway, IP
IrisNet [6, 7] Agents, XML representa- | IP
tion of data
Janus [17] XRP agent and XRP en- | IP
gine
CASN [43] CASN middleware

MADSN and MAWSN [12]

Agents

SOSANET [44]

Service-oriented query

layer

46

continued on next page

continued from previous page

Architecture Classification Invariants
Explicit Implicit
Multiplatform Wireless Sensor Gateway layer and ser-
Network [45] vice repository layer
Secure and Survivable Wireless Key management scheme
Sensor Networks [45]
VITP [21] Location encoding
scheme
CarTel [8] CafNet
TrafficView [49] Location encoding
scheme

Multi-owner sensor network ar-

chitecture [23]

Service-oriented archi-
tecture, standards-based

architecture, and IP

Table 2. Summary of Architecture Invariants

5 Conclusion

In this paper we have presented a discussion of several sensor networks. From

our discussion we have seen that there is no over-arching sensor network ar-

47

chitecture, as was previously argued in [11,27]. However, from our review of
sensor network architectures, we see that sensor networks share many features.
In addition by examining their invariants (where invariants are components
that cannot be changed without losing backward compatibility [1]) we also see
that many architectures have several invariants in common, even if they are

quite different.

Another contribution of this paper has been a discussion of an architecture,
suitable for a multi-owner sensor network, developed at the University of
Kansas. Unlike many of the other architectures presented in this paper, this
architecture is not limited to low-powered sensor nodes, and in fact it has been
used in conjunction with devices such as motes, Sun SPOTs, gumstix comput-
ers, and full-fledged PCs. However, it lacks certain features that some of the

other architectures possessed, such as delay tolerance and context-awareness.

Sensor networks are increasingly being used to instrument our world. However,
there is no single sensor network architecture, as one might find for the Inter-
net. As was argued in [11] we conclude that sensor networks would be better
able to fulfill their purpose if there is a single over-arching architecture. Some
suggestions for developing such an architecture would be to identify and build
physical, MAC, link and network layer protocols suitable for sensor networks.
Above these layers we can build location-encoding schemes or any other ap-
plications or functionality needed by sensor network designers. Such a design
might allow better portability of code and ideas from one sensor network to

the next.

48

References

1]

B. Ahlgren, M. Brunner, L. Eggert, R. Hancock, S. Schmid, Invariants: a New
Design Methodology for Network Architectures, in: FDNA ’04: Proceedings of
the ACM SIGCOMM Workshop on Future Directions in Network Architecture,

ACM Press, New York, NY, USA, 2004, pp. 65-70.

F. Zhao, L. Guibas, Wireless Sensor Networks: An Information Processing

Approach, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

D. Estrin, D. Culler, K. Pister, G. Sukhatme, Connecting the Physical World

with Pervasive Networks, IEEE Pervasive Computing 1 (1) (2002) 59-69.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless Sensor

Networks: a Survey, Computer Networks 38 (4) (2002) 393-422.

R. Szewczyk, J. Polastre, A. Mainwaring, D. Culler, Lessons From a Sensor
Network Expedition, in: EWSN 2004: Proceedings of the First European

Workshop on Sensor Networks, 2004.

P. B. Gibbons, B. Karp, Y. Ke, S. Nath, S. Seshan, IrisNet: an Architecture for

a Worldwide Sensor Web, IEEE Pervasive Computing 2 (4) (2003) 22-33.

J. Campbell, P. B.
Gibbons, S. Nath, P. Pillai, S. Seshan, R. Sukthankar, IrisNet: an Internet-
scale Architecture for Multimedia Sensors, in: MULTIMEDIA ’05: Proceedings
of the 13th Annual ACM International Conference on Multimedia, ACM, New

York, NY, USA, 2005, pp. 81-88.

B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih,
H. Balakrishnan, S. Madden, CarTel: a Distributed Mobile Sensor Computing

System, in: SenSys ’06: Proceedings of the 4th International Conference on

49

Embedded Networked Sensor Systems, ACM Press, New York, NY, USA, 2006,

pp. 125-138.

[9] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson, Wireless
Sensor Networks for Habitat Monitoring, in: WSNA ’02: Proceedings of the 1st
ACM international workshop on Wireless Sensor Networks and Applications,

ACM Press, New York, NY, USA, 2002, pp. 88-97.

[10] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, D. Estrin,

Habitat Monitoring with Sensor Networks, Commun. ACM 47 (6) (2004) 34-40.

[11] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre,
S. Shenker, I. Stoica, G. Tolle, J. Zhao, Towards a Sensor Network Architecture:
Lowering the Waistline, in: HOTOS’05: Proceedings of the 10th conference on
Hot Topics in Operating Systems, USENIX Association, USENIX Association,

Berkeley, CA, USA, 2005, pp. 24-30.

[12] M. Chen, S. Gonzalez, V. C. M. Leung, Applications and Design Issues for
Mobile Agents in Wireless Sensor Networks, IEEE Wireless Communications

[see also IEEE Personal Communications] 14 (6) (2007) 20-26.

[13] K. Fall, A delay-tolerant network architecture for challenged internets,
in: SIGCOMM ’03: Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications, ACM,

New York, NY, USA, 2003, pp. 27-34.

[14] D. Hutchison, J. P. G. Sterbenz, Resilinets architecture definitions, Wiki (Feb.
6 2007).

URL http://wiki.ittc.ku.edu/resilinets wiki/index.php/Definitions

[15] R. J. Abbott, Resourceful systems for fault tolerance, reliability, and safety,

ACM Comput. Surv. 22 (1) (1990) 35-68.

20

[16] W. Chen, J. C. Hou, Handbook of Sensor Networks: Algorithms and
Architectures, John Wiley & Sons, 2005, Ch. Data Gathering and Fusion in

Sensor Networks, p. 495.

[17] A. Dunkels, R. Gold, S. A. Marti, A. Pears, M. Uddenfeldt, Janus: an
Architecture for Flexible Access to Sensor Networks, in: DIN ’05: Proceedings of
the 1st ACM Workshop on Dynamic Interconnection of Networks, ACM Press,

New York, NY, USA, 2005, pp. 48-52.

[18] P. Desnoyers, D. Ganesan, P. Shenoy, TSAR: a Two Tier Sensor Storage
Architecture Using Interval Skip Graphs, in: SenSys ’05: Proceedings of the
3rd International Conference on Embedded Networked Sensor Systems, ACM

Press, New York, NY, USA, 2005, pp. 39-50.

[19] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J. D. Tygar, SPINS: Security
Protocols for Sensor Networks, in: MobiCom ’01: Proceedings of the 7th Annual
International Conference on Mobile Computing and Networking, ACM, New

York, NY, USA, 2001, pp. 189-199.

[20] G. Biegel, V. Cahill, A Framework for Developing Mobile, Context-aware
Applications, in: PerCom 2004: Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications, IEEE Computer

Society, 2004, pp. 361-365.

[21] M. D. Dikaiakos, S. Igbal, T. Nadeem, L. Iftode, VITP: an Information Transfer
Protocol for Vehicular Computing, in: VANET ’05: Proceedings of the 2nd ACM
International Workshop on Vehicular Ad Hoc Networks, ACM Press, New York,

NY, USA, 2005, pp. 30-39.

[22] V. Dyo, Middleware Design for Integration of Sensor Network and Mobile
Devices, in: DSM ’05: Proceedings of the 2nd International Doctoral Symposium

on Middleware, ACM Press, New York, NY, USA, 2005, pp. 1-5.

o1

[23] P. Mani, S. Muralidharan, V. Frost, G. Minden, D. Petr, A Unified Architecture

for Sensor Networks with Multiple Owners, in: ACM SenSys 2008, Submitted.

[24] J. Feng, F. Koushanfar, M. Potkonjak, System-Architectures for Sensor
Networks Issues, Alternatives, and Directions, in: ICCD’02: IEEE International

Conference on Computer Design, IEEE, IEEE Computer Society, Los Alamitos,

CA, USA, 2002, pp. 226-231.

[25] S. Tilak, N. B. Abu-Ghazaleh, W. Heinzelman, A Taxonomy of Wireless Micro-
sensor Network Models, SIGMOBILE Mobile Computing and Communications

Review 6 (2) (2002) 28-36.

[26] F. Martincic, L. Schwiebert, Handbook of Sensor Networks: Algorithms and
Architectures, John Wiley & Sons, Hoboken, NJ, 2005, Ch. Introduction to

Wireless Sensor Networking, pp. 25-26.

[27] V. Handziski, A. Kopke, H. Karl, A. Wolisz, A Common Wireless Sensor
Network Architecture, in: Proc. 1. GI/ITG Fachgesprach ”Sensornetze”
(Technical Report TKN-03-012 of the Telecommunications Networks Group,
Technische Universitat Berlin), Technische Universitat Berlin, Berlin, Germany,

2003, pp. 10-17.

[28] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin,
D. Ganesan, Building Efficient Wireless Sensor Networks with Low-level
Naming, in: SOSP ’01: Proceedings of the 18th ACM Symposium on Operating

Systems Principles, ACM, New York, NY, USA, 2001, pp. 146-159.

[29] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, D. Estrin, Data-centric
Storage in Sensornets, SIGCOMM Computer Communications Review 33 (1)

(2003) 137-142.

[30] D. Ganesan, D. Estrin, J. Heidemann, DIMENSIONS: Why Do we Need a

New Data Handling Architecture for Sensor Networks?, SIGCOMM Computer

52

Communication Review 33 (1) (2003) 143-148.

[31] K. Romer, O. Kasten, F. Mattern, Middleware Challenges for Wireless Sensor

Networks, SIGMOBILE Mob. Comput. Commun. Rev. 6 (4) (2002) 59-61.

[32] C.-C. Shen, C. Srisathapornphat, C. Jaikaeo, Sensor Information Networking
Architecture and Applications, IEEE Personal Communications, [see also IEEE

Wireless Communications] 8 (4) (2001) 52-59.

[33] U. Ramachandran, R. Kumar, M. Wolenetz, B. Cooper, B. Agarwalla, J. Shin,
P. Hutto, A. Paul, Dynamic Data Fusion for Future Sensor Networks, ACM

Transactions on Sensor Networks (TOSN) 2 (3) (2006) 404-443.

[34] Y. Yao, J. Gehrke, The Cougar Approach to in-network Query Processing in

Sensor Networks, SIGMOD Rec. 31 (3) (2002) 9-18.

[35] B. L. Gorman, M. Shankar, C. M. Smith, Advancing Sensor Web
Interoperability, Sensors Magazine 22 (4) (2005) 14-18.
URL http://www.sensorsmag.com/sensors/article/articleDetail. jsp?

id=185897

[36] G. Percivall, C. Reed, OGC Sensor Web Enablement Standards, Sensors and

Transducers 9 (9) (2006) 698-706.

[37] K. B. Lee, M. E. Reichardt, Open Standards for Homeland Security Sensor
Networks, IEEE Instrumentation & Measurement Magazine 8 (5) (2005) 14—

21.

[38] A Smart Transducer Interface for Sensors and Actuators, IEEE Draft Std.

(2007).
[39] UPnP Device Architecture (2006).

[40] Computational Sciences and Engineering Division, SensorNet: Concept

Definition Document, Tech. report, Oak Ridge National Laboratory (2004).

23

[41] G. J. Pottie, W. J. Kaiser, Wireless Integrated Network Sensors,

Communications of the ACM 43 (5) (2000) 51-58.

[42] J. P. Vasseur, Routing Over Low Power and Lossy Networks (roll), IETF
Working Group (Dec. 17 2007).

URL http://www.ietf.org/html.charters/roll-charter.html

[43] Q. Huaifeng, Z. Xingshe, Context Aware Sensornet, in: MPAC ’05: Proceedings
of the 3rd International Workshop on Middleware for Pervasive and Ad-hoc

Computing, ACM Press, New York, NY, USA, 2005, pp. 1-7.

[44] A. Rezgui, M. Eltoweissy, Service-Oriented Sensor-Actuator Networks, IEEE

Communications Magazine 45 (12) (2007) 92-100.

[45] M. Marin-Perianu, N. Meratnia, P. Havinga, L. M. S. D. Souza, J. Mller,
P. Spiess, S. Haller, T. Riedel, C. Decker, G. Stromberg, Decentralized
Enterprise Systems: a Multiplatform Wireless Sensor Network Approach, IEEE

Wireless Communications [see also IEEE Personal Communications] 14 (6)

(2007) 57-66.

[46] Y. Qian, K. Lu, D. Tipper, A Design for Secure and Survivable Wireless
Sensor Networks, IEEE Wireless Communications [see also IEEE Personal

Communications| 14 (5) (2007) 30-37.

[47] I. Saleh, A. Agbaria, M. Eltoweissy, In-network Fault Tolerance in Networked
Sensor Systems, in: DIWANS ’06: Proceedings of the 2006 Workshop on
Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks, ACM,

New York, NY, USA, 2006, pp. 47-54.

[48] I. Chisalita, N. Shahmehri, A Peer-to-peer Approach to Vehicular
Communication for the Support of Traffic Safety Applications, in: Proceedings
of the IEEE b5th International Conference on Intelligent Transportation

Systems, 2002, pp. 336-341.

54

[49] T. Nadeem, S. Dashtinezhad, C. Liao, L. Iftode, TrafficView: Traffic
Data Dissemination Using Car-to-Car Communication, SIGMOBILE Mobile

Computing and Communications Review 8 (3) (2004) 6-19.

[50] M. C. Edwards, J. Donefson, W. M. Zavis, A. Prabhakaran, D. C. Brabb, A. S.
Jackson, Improving Freight Rail Safety with on-board Monitoring and Control
Systems, in: Proceedings of the 2005 ASME /TEEE Joint Rail Conference, 2005,

pp. 117-122.

[51] S. Muralidharan, V. Frost, G. J. Minden, SensorNet Architecture with Multiple
Owners, Tech. Report ITTC-FY2008-TR-41420-02, University of Kansas,

Lawrence, Kansas (July 2007).

[52] G. J. Minden, J. B. Evans, A. Agah, J. W. James, L. Searl, Architecture and
Prototype of an Ambient Computational Environment: Final Report, Tech.
Report ITTC-FY2004-TR-23150-09, University of Kansas, Lawrence, Kansas

(July 2003).

[53] M. Botts, G. Percival, C. Reed, J. Davidson, OGC Sensor Web Enablement:
Overview and High Level Architecture, OGC 06-050r2, Architecture (2006).

URL http://www.opengeospatial.org/pt/06-046r2

[54] M. Botts, OpenGIS Sensor Model Language (SensorML) Implementation
Specification, Specification (2005).

URL http://portal.opengeospatial.org/files/7artifact_id=13879

[55] J. Mauro, Security Model in the Ambient Computational Environment,

Master’s thesis, University of Kansas (2002).

25

The University of Kansas /

INFORMATION
& TELECOMMUNICATION
TGO I CENTTR.

The University of Kansas

lechnical Report

A Survey on Methods for Broadband Internet
Access on Trains

Daniel T. Fokum and Victor S. Frost

ITTC-FY2009-TR-41420-09

August 2008

Project Sponsor:
Oak Ridge National Laboratory

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612

All rights reserved.

A Survey on Methods for Broadband Internet Access on
Trains

Daniel T. Fokum, Student Member, IEEE
Victor S. Frost, Fellow, IEEE

Abstract

Interest in broadband Internet access on trains has been increasing. Here a survey of approaches
for providing broadband Internet access to trains is presented. In this paper we examine some of
the factors that hinder the use of broadband Internet on trains, and then examine some of the
opportunities for broadband deployment on trains. This survey examines some of the basic
concepts for providing broadband Internet access and then reviews associated network
architectures. The review of network architectures shows that we can subdivide networks for
providing broadband Internet access on trains into the train-based network, the access network —
for connecting the train to the service provider(s), — and the aggregation network for collecting
user packets generated in the access network for transmission to the Internet. Furthermore, our
review shows that the current trend is to provide Internet access to passengers on trains using
IEEE 802.11x; however, a clear method for how to connect trains to the global Internet has yet to
emerge. A summary of implementation efforts in Europe and North America serves to highlight
some of the schemes that have been used thus far to connect trains to the Internet. This paper
concludes by discussing some of the models developed, from a technical perspective, to test the
viability of deploying Internet access to trains.

1 Introduction

With the explosion in growth of the Internet in the last 20 years, people have a much higher
expectation of being able to get on the Internet independent of location. Until recently trains and
airplanes have been two locations where passengers have not necessarily been able to achieve
high-speed Internet connections. In the particular case of trains, providing Internet access to
passengers on board trains makes good business sense; Internet access for passengers can provide
a revenue stream for the train company while attracting more travelers. For example, a 2004
study in the United Kingdom found that 72% of business travelers were more likely to use trains
than cars or airplanes if Wi-Fi access was available on trains. This study also found that 78% of
business travelers would use Wi-Fi access if it was made available on trains [1]. In the case of
freight trains Internet access can allow for real-time or near-real-time tracking of freight-related
events on board the train, and potentially resulting in a decrease in insurance charges to the
freight carrier. In addition to these benefits, on-board Internet access on trains can also enhance
the safety of the train, by allowing an operations center to monitor, in real-time, train-related
data, as in [2].

Internet access on board trains is already available today in parts of Europe. For example,
beginning in July 2004 a British train operator, GNER1, began offering Internet access on some
of its trains [3]. In 2005 another British company, Nomad Digital, claimed to have addressed the
problem of providing high-speed Internet access to passengers on Southern Trains’ London to
Brighton route using WiMax [4]. In what follows we provide an overview of communications on
board trains, beginning with some of the earliest papers on providing high-speed Internet access
to users on the move.

The main contribution of this paper is to provide a survey of work done on providing Internet
access to trains. The conditions of a rail environment that make communications from trains
difficult are highlighted. Another contribution of this paper is to summarize projects that seek to
provide Internet connectivity on board trains. For reasons that shall become apparent later, we
make a distinction between work done in Europe, and work done in North America due to the
different characteristics of rail transportation on those continents. The rest of this paper is laid out
as follows: Section 2 lists the issues hindering high-speed communications from trains. In
Section 3 we present a reference architecture for the deployment of broadband Internet access to
trains. Section 3 also presents the initial concepts for broadband Internet access on trains. In
Section 4 we present the efforts made, or those efforts underway to carry out high-speed
communications from trains. Section 4 is further subdivided into examining implementation
efforts underway in Europe and in North America. Section 4 concludes by presenting business
models developed to determine the viability of providing broadband Internet access on trains. In
Section 5 we provide concluding remarks.

2 Difficulties and Opportunities

2.1 Difficulties

Communications on board trains are complicated by several factors. Lannoo et al. [5] state that
railcars have Faraday cage like characteristics which can lead to high penetration losses for
signals. Beeby [6] adds that some other complicating factors include:

* A high vibration environment that may require mechanical isolation of communication
devices

» A thermally challenging environment, since heat may be a significant issue in certain parts
of the train

» A harsh electrical environment due to:
» The proximity of high voltages, as in electrical trains
» High magnetic fields, as in magnetic levitation (Maglev) trains
» Trains are not designed to provide a ‘clean’ electrical supply for computers

e The need to have equipment with minimal maintenance schedules — this may result in
equipment with near military-grade specifications

» The presence of track-side features, such as railway signaling equipment
Some other factors hindering communications on trains include:

'GNER subsequently lost its license to operate the East Coast Mainline, where the Wi-Fi-enabled trains
were deployed. National Express replaced GNER on the East Coast Mainline, and they offer free wireless
(Wi-Fi) Internet access on all trains on the East Coast line.

e Railway companies constantly add or remove rail cars from trains. As a result it is
necessary for the communications network to discover these changes automatically [7].

» Poor coupler contacts on rail vehicles, which may introduce communications failures [7].
* Tunnels may limit visibility to wireless communication infrastructure.

» Frequent handoffs in the cellular network. To see why this might be a problem, consider a
train travelling at 60 m/s (216 km/h) through an environment with cell sizes of the order of
3 km, then we would have handoffs every 50 s. Assuming that it takes about 1 s to
complete a handoff the handover time is 2% of the dwell time in the cell, which is high.

In spite of these difficulties, there are several opportunities to provide Internet access on trains
using a variety of technologies, including Wi-Fi, WiMax, satellite technologies, and radio-over-
fiber. In Section 2.2 we discuss some of these opportunities.

2.2 Opportunities

The growth in wireless communication technologies over the last two decades opens up several
opportunities for supporting communication on board trains. For example, customers in a
stationary train can have Internet access through the existing cellular infrastructure without many
modifications, except for an antenna on the outside of the train. Issues only arise when the train
begins to move, particularly at high speeds and requires several handoffs in a short period of
time. Beeby [8] argues that communications capabilities on mobile terminals is constantly
improving, with some phones now having multiband and Wi-Fi capabilities. Currently it is
standard to have Wi-Fi integrated on laptops, and eventually WiMax might also be commonly
available. These factors, especially the latter, have the potential to drive Internet usage higher,
particularly because as connectivity becomes more prevalent usage increases [8]. Beeby goes on
to argue that there are significant opportunities available for Internet access on trains if [8]:

 access to the technology can be made simple,
 ubiquitous (as in not requiring any special software or terminal), and
» useable, i.e., acceptable throughput and delay with few service interruptions.

In this respect, Fourth Generation (4G) communications technologies, such as WiMax, offer the
best potential for offering Internet access on trains. In fact, WiMax is already being used in the
UK to provide Internet access on trains [4, 9-11]. We expect further growth in broadband Internet
access availability on trains as more train operators are convinced of the business viability of
negotiating for Internet access along their tracks using WiMax or some other 4G technology.

3 Reference Architecture and Initial Concepts

In this section we present a reference architecture to guide our discussion of broadband Internet
access on trains. Next we examine some initial ideas related to broadband Internet deployment on
trains.

3.1 Reference Architecture

Access Network

Access Network
Technologies:
GPRS/UMTS/HSDPA
WiMax
WiFi

Flash-OFDM
|IEEE 802.20
Y Satellite links

4 Train (E)

[
Access
Access Terminal Access
point (TAT) point
D PDA] J

g
Laptop N
Gatewa\OQ (D Gatewa Gateway, CX) (X)
9 Rail car) 9 Rail car)
Y Y
Coach level network Coach level network
Y

Train level network

Figure 1: Architecture for Internet Connectivity between Rail Cars

Fig. 1 shows a logical architecture for the computer networks on a train, i.e., the networks aboard
the trains used to provide access to passengers. This architecture, which incorporates aspects of
the Train Management System [12], uses gateways in each train car to build a train level network.
Broadband Internet access on the train is provided through the Train Access Terminal (TAT).
This terminal, which can support one or many technology types, connects to the access network
using an antenna mounted on the outside of one train car. The incoming signal from the train
access terminal is then fed to gateways and wireless access points in all the rail cars in the train.
Within each rail car IEEE 802.11 is commonly proposed to provide connectivity to passengers;
however, passengers may also connect to a wired network in the railcar, if one is available. The
benefit of using an architecture such as the one described above include the following:

1. The cellular network system is not put under strain attempting to make handovers for
several fast moving users simultaneously [13].

2. The train access terminal can combine different access technologies for network
redundancy. In addition, the train access terminal can also implement some “intelligence”
to select the best means of communication between the train and the access network, as in
[13].

Service
Providers’
Networks/

Network Core
Internet

Technologies used:
Optical fiber

Satellite

ground station

Aggregation Network

Service Technologies used:
gateway IEEE 802.11
Ethernet
Optical fiber
ADSL

Acces Access

Access Network
gateway gateway \

(Ground-vehicle
communications)

Technologies used:
GPRS/UMTS/HSDPA
WiMax
WiFi
Flash-OFDM
IEEE 802.20
Radio-over-Optical fiber

BS BS

oo len

Figure 2: Reference Architecture for Internet Access on Trains

The entire train is connected to the Internet using the reference architecture shown in Fig. 2. The
reference architecture for Internet access on trains is layered and consists of the access network,
aggregation network, and the service providers’ networks. The access network is close to the
train tracks, and it provides the last hop communications for the train access terminal. The
aggregation network lies between the access network and the service providers’ networks, and it
forwards data from the access network to the global Internet. The access gateway in the
architecture combines the data from a group of users into a tunnel and forwards that data to the
service gateway. The service gateway serves as an interface between the aggregation network and
service providers’ networks. Van Quickenborne et al. [14] argue that aggregated tunnels per train
are ideal for this architecture since they are more manageable and efficient than a per user
connection scheme. From the reference architecture diagram, we can also see that there are
different technology options, including satellite technologies, for the access and aggregation
networks. This observation is in agreement with Conti [10], who states that currently there is
general agreement on how to provide Internet access to passengers aboard trains. A disagreement
arises on the best method to connect moving trains to the Internet backbone, i.e., how to connect
the antenna on the train access terminal to the access network. However, we expect that the

widespread deployment of 4G technologies may lead to some consensus on the best way to
connect trains to the Internet.

It should be noted that Fig. 2 combines features of several proposed architectures, including
the FAMOUS? architecture [15] that we will see later in this paper. Some other features of this
architecture include:

e The access network is a wireless network with base stations along the train tracks. The
access network can use either GPRS/UMTS/HSDPA [9, 10], WiMax [4, 9-11], WiFi [16],
Flash-OFDM [17], satellite links [10], or IEEE 802.20 [18].

» The aggregation network can use the following technologies for forwarding data: IEEE
802.11 [19, 20], Ethernet [14, 21-24] and Radio-over-fiber [5, 25].

* Virtual Local Area Networks (VLANSs) are preferred in Ethernet-based aggregation
networks to carry aggregated traffic flows from the access gateway to the service gateway
[15]. In other words, VLANS are used in the aggregation network to group the different
base stations in an access network that satisfy a given train’s traffic demands.

 Satellite links® can be used to provide Internet access to trains; however, they do not fit this
architecture neatly, since the satellite ground station cannot be easily classified as either a
service gateway or an access gateway. Consequently the satellite links in Fig. 2 are shown
straddling the different networks.

3.2 Initial Concepts

Efforts to deploy broadband Internet access on board trains are constantly evolving. In this
subsection we provide an overview of some of the initial concepts that have guided the
deployment of broadband Internet access on trains.

Due to their mobility, Internet access can be provided on trains only by use of a wireless link.
Correia and Prasad [26] present some of the technical challenges involved in providing wireless
broadband services. The reader is referred to [26] for a more complete treatment of the important
attributes of a wireless broadband system. The problem of providing broadband communications
to fast moving users was addressed in [27] and [28]. In 2001 Gavrilovich [27] argued that a large
number of small cells operating at high frequencies was the most economical and practical
infrastructure for providing wireless broadband access to many users. In Gavrilovich’s model
these small cells were provided by moving base stations that travel along a track beside the
roadway. The moving base stations were then linked to fixed base stations using wireless links.
The fixed base stations were uniformly distributed along the roadway and were also interspersed
with the mobile base stations. This combination of mobile and stationary base stations allowed
the realization of broadband wireless communications while also yielding fewer handoffs due to
the mobile base stations [27]. However, a moving base station may not be practical.

An architecture for providing communications and entertainment aboard a high-speed public
transport system is proposed in [28]. This architecture is composed of the following components:

* A mobile subsystem that consists of mobile subnetwork, access to an infrastructure
network, and a mobility management component. This mobile subsystem is analogous to
the access network in this paper; however it does not include any of the wireless
communication technologies incorporated at the access network in our architecture.

*The FAMOUS architecture was developed to provide Internet access to FAst MOving USers
¥ Lannoo et al. [5] state that satellite communications are not ideal for high-speed access to trains since
satellite links have limited bandwidth and long round trip times (RTT).

* A wireless transport subsystem that handles radio transmission between the mobile
subsystem and the infrastructure network. This subsystem is analogous to the wireless
communication technologies found in the access network of our reference architecture.

* A land subsystem consisting of an infrastructure network and a network management
component. This would be analogous to the aggregation network and the service providers’
core networks.

In addition Lin and Chang [28] argue that the link between the passenger device and the base
station can be provided by IEEE 802.11, Bluetooth, or one of the Third Generation (3G) wireless
standards. As we have seen already, WiMax — which is one of the 4G wireless standards — has
been chosen in [4, 9] to provide the link between the train and a terrestrial network, while Wi-Fi
has been chosen to provide the link between the passenger terminal and the train network.
Finally, [28] also notes that for a train moving along a track, the cell planning problem reduces to
a one-dimensional problem, which should greatly facilitate frequency planning.

Next we examine work done on the FAMOUS architecture; an architecture designed to
support broadband Internet access for FAst MOving USers. All of this work ([5, 12-15, 19-25,
29-34]) was conducted by researchers in Belgium.

3.2.1 FAMOUS Architecture and Its Extensions

In 2003 it was observed that popular Internet applications may not be available at high-speeds
due to lack of bandwidth, poor quality of service, and frequent hand-offs [29]. These problems
could be partially addressed by: increasing network bandwidth using smart antenna systems and
MIMO technologies, as well as improved handoff protocols that prevent connection loss when
moving from one base station to another. Van Leeuwen et al. [29] state that the technologies
discussed above are not sufficient to support broadband communications at high speeds; new
modulation schemes and context-aware applications are also needed to achieve high data rates in
fast moving vehicles.

Other ideas for supporting broadband communications from trains divide such a network into
an access network and an aggregation network [15] and [21]. Each of these networks performs
the functions that were discussed in Section 3.1. Furthermore, each network is located as
previously described. In the FAMOUS architecture users do not connect directly to the base
stations in the access network; instead the entire train has a single connection to the access
network. This connection is then shared amongst all the users on the train. The FAMOUS
architecture assumes that seamless connectivity is not guaranteed for users in fast moving
vehicles; instead they will hop from one access gateway (AGW) to the next [24]. Within the
aggregation network VLANS are used to group the different base stations in an access network
that satisfy a given train’s traffic demands [15]. Another component of this network architecture
is the service gateway, where connections between service providers and the aggregation network
are made. The FAMOUS architecture is summarized in Fig. 3.

Service
Internet Providers’
Networks/

Network Core

Aggregation
Network

Access Ethernet Access

gateway / links gateway Access
(Ethernet switch) (Ethernet switch) Network

Figure 3: FAMOUS Architecture for providing broadband Internet access to FAst MOving USers
based on [15, 23]

In [15, 21] and subsequent papers [14, 22-24, 31, 32], Ethernet is chosen for the aggregation
network since it is simple, cost-effective and bandwidth flexible. In spite of Ethernet’s
advantages, it requires some modifications to support fast moving users. One of Ethernet’s issues
is the rapid depletion of VLAN databases in Ethernet switches. In fact, Ethernet already has an
extension, called GVRP* [21], that can register VLANs automatically in a consistent and reliable
manner; however, standard GVRP distributes VLAN IDs of all tunnels to all the switches in the
network, thereby flooding the VLAN databases. This issue is resolved by developing a “scoped
refresh” of GVRP, such that Ethernet switches determine whether or not they are part of a given
tunnel. If they are, then the switch will issue de-registration messages on all its interfaces that do
not have the VLAN registered, otherwise the switch would attempt to register the VLAN. GVRP
needs a mechanism to configure Ethernet switch hardware to meet the QoS-parameters associated
with each tunnel. As a result G2RP° has been developed to support fast moving users by allowing
for the separate distribution of traffic reservation parameters and VLANSs. When combined
GVRP and G2RP allow switched Ethernet to be used as a transport technology for an aggregation
network.

“‘GARP VLAN Registration Protocol, where GARP is Generic Attribute Registration Protocol
*GARP Reservation Parameters Registration Protocol

The same architecture used in developing G2RP is also found in [15]; however, [15] focuses
on handoff strategies in a network with fast moving users found in cars or trains. In 2005 De
Greve et al. [15] stated that high link speeds for end users could only be achieved in cellular
networks by reducing the cell size to efficiently reuse spectrum. However, small cells also mean
more handoffs between cells. Furthermore, Mobile IP is not a good protocol for delivering high
link speeds to fast moving users since Mobile IP does not work well with frequent handoffs due
to handoff latency, handoff packet loss and control message load. As a result, [15] stated that
higher link speeds could be given to fast moving users on a train by using small cells operating in
the millimeter wave band. In addition these authors suggest using radio-over-fiber with moveable
cells to reduce handoff times, an idea that is an extension of Gavrilovich’s moving base stations
model [27]. We will revisit this concept later in this subsection.

Handoffs may result in packet loss, consequently handoffs, i.e., when the train access terminal
hops from one base station in the access network to the next, must be tackled satisfactorily to
provide broadband communications to fast moving users. De Greve et al. [23] presents the
Motion-aware Capacity and Flow Assignment (MCFA) algorithm to optimize the use of network
resources, determine paths for dynamic tunnels in an aggregation network, and minimize the
impact of packet loss and packet reordering when designing an aggregation network to support
fast moving users. The schemes presented include:

* An ideal routing algorithm for minimal network cost, which does not take any additional
constraints into account when solving the MCFA problem.

* A limited Hop Count Variations routing scheme, which guarantees maximum delay by
limiting the variation in hop counts between two different paths.

* A shared routing algorithm, which requires the paths assigned to a given connection
between the node and the aggregation network to share some nodes in common.

* An incremental routing method, which is an even stricter form of shared routing in which
the different paths share even more nodes in common.

Of the schemes presented in [23], incremental routing exhibits excellent packet loss features but
poor scalability while Limited Hop Count Variations (LHCV) routing yields a network that has a
slightly higher network cost than if ideal routing was used. However, LHCV routing shows better
congestion performance. De Greve et al. [23] also presents a heuristic, called Subpath
Assignment (SpA), for mapping aggregation network routes onto a minimal set of spanning tree
instances. When this heuristic is compared with other path aggregation schemes it is seen that
SpA can perform the path mapping in the shortest amount of time.

Recall that in the aggregation network in the FAMOUS architecture is built on switched
Ethernet. Furthermore, dynamic tunnels are used in the aggregation network to support the traffic
demand from a given set of trains. For switched Ethernet to be used in a carrier-grade network,
Ethernet must provide a mechanism for fast recovery from link failures in the aggregation
network. De Greve et al. [24] present an extension to Ethernet’s Rapid Spanning Tree Protocol
(RSTP) that uses a fast detection mechanism for link and node failures. This mechanism, which
is resilient to node or link failures, bypasses the RSTP failure detection process and monitors
links by examining incoming and outgoing packets at a given switch. De Greve et al. [24] show
that if reliability constraints are added to the MCFA optimization problem, then it is possible to
have good recovery times in the aggregation network, even when there are dynamic VLANSs
present.

De Greve et al. [22] argue that aggregation networks are not optimally designed for
broadband services from fast moving vehicles, e.g., trains; therefore, it develops an integer linear

program (ILP) to calculate the exact dimensioning and tunnel paths needed to satisfy traffic
demands from a train to the global Internet. For large network cases, the ILP can take several
days or weeks to solve; therefore, De Greve et al. [22] develop and apply a heuristic — which
achieves low congestion and optimizes the use of network resources — to solve the problem, i.e.,
meeting the traffic demands of fast moving users in the FAMOUS architecture. In the ILP model
each train is assumed to generate a certain amount of traffic, where these traffic demands can be
defined as either:

» Exact, which would require optimization of network resources with knowledge of the exact
access gateway (AGW) where two trains cross each other, and the exact instant when the
Ccrossing occurs.

» Static, which results from exact demands by neglecting all time-related aspects of the
demand. This is required if a network lacks a dynamic reservation mechanism; however, it
results in over-dimensioning of resources.

e Train delay insensitive (TDI), which results from neglecting the exact time-position
between multiple trains, i.e., we neglect the information of exact point when and where the
trains cross each other. This implies the network is dimensioned to allow for trains to cross
at any AGW along their respective paths.

It is shown in [22] that using TDI demand results in a more complex optimization problem;
however, if traffic demands are defined as train delay insensitive, the QoS guarantees of
passengers can be fulfilled always. In addition [22] concludes that for optimal network design the
links that need to be considered for connecting the service gateway to the access gateway are
those closest to the rail line end terminuses®

Van Quickenborne et al. combines the findings from [21] and [22] in [31]. Reference [31]
deals with designing an aggregation network that combines data from several users as they move
from one access network to the next. The access network traffic is aggregated into tunnels in the
aggregation network, and these tunnels have to move with the users from one access network to
the next. In designing the aggregation network Van Quickenborne et al. [31] relies on an
objective function that minimizes the number of hops between the train and the service gateways.
The objective function’s constraints include link capacity constraints and ensuring that only one
path is needed from source to destination. Using this optimization model it can be shown that if
each train requires two dynamic tunnels — one for basic demand and the other tunnel for
transient spikes in traffic demand — then the solution to the optimization problem can be
obtained quickly. On the other hand, this problem takes longer to solve if we seek to minimize
the cost of the network interface card and routing costs subject to the same constraints. Another
result from this paper shows that dynamic tunnel configuration and activation reduces network
cost, since the basic traffic demand is routed over a shorter path, while the transient spikes in
traffic demand are routed over longer paths [31].

The FAMOUS architecture has also been used in [14] to show that a hierarchical wired
Ethernet aggregation network in combination with Ethernet-based’ wireless access networks

®In this problem assume that the different towns/stations in the rail network represent the vertices of a
graph, while the rail lines represent the edges of the graph. Then, only links between the service gateway
and the access gateways closest to the vertices need to be considered when using the heuristic approach.
For more details please consult [22].

"Reference [14] presents an example of an Ethernet-based wireless access network that has a single
WiMax station per access network. Each base station is linked to the aggregation network via an Ethernet
link.

10

between trackside antennas and the train access terminal may be used for providing broadband
Internet access to fast moving users. Reference [14] assumes the use of dynamic tunnels, as
proposed in [31]. Here the dynamic tunnel management takes one of three forms:

» Management-based approach, that uses location information, e.g., from GPS to set up
tunnels to a train. When the train arrives at an access gateway, the train’s location
information is sent to a management platform that sets up the train’s tunnels. When the
train moves to another access gateway the previous tunnel is torn down.

» Signaling-based approach, in which a train announces its presence at a given access
gateway, resulting in tunnel setup for the train. After a timer expires the tunnels are torn
down.

» Hybrid approach, which incorporates portions of the schemes described above, i.e., a
signaling-based approach in the tunnels nearer the train, and a management-based approach
in the higher parts of the network.

Simulation results from [14] show that the signaling-based approach is hard to use in aggregation
networks, since tunnel-setup times increase with tunnel length — number of hops in the
aggregation network. As a result, the hybrid approach is recommended. This approach has the
added benefit of reducing packet loss while providing accurate tunnel-setup triggers.

The FAMOUS architecture is also extended in [19] and [20] to support the case where several
leaf nodes (trains) require connectivity with a limited set of service gateways through a wireless
mesh network, i.e., the aggregation network is built using wireless mesh networks. De Greve et
al. [19] say this is possible because wireless mesh networks are cheaper to deploy than their
wired equivalents. In [19, 20] the access gateways are replaced by wireless gateways. In addition
the underlying aggregation network technology is replaced with IEEE 802.11e instead of
switched Ethernet [19]; in the future we expect that such a wireless aggregation network can also
be provided by emerging Ethernet-based gigabit radios. Wireless networks can sometimes be
subject to reduced throughput due to interference from neighboring stations. Therefore, De Greve
et al. [20] suggest wireless throughput may be improved in mesh networks by intelligent
distribution of neighbour mesh nodes and minimising link interference levels by assigning
different channels to the different interfaces of the wireless gateways. These objectives can be
achieved by using a distributed channel assignment module that tries to minimise interference
levels on links by assigning different channels to various interfaces on the wireless gateways.
Fast moving users can then be supported by using a wireless mesh node placement algorithm that
minimizes the hop count of the service gateway-wireless gateway paths [20].

In [32] the FAMOUS architecture is used to provide high-bandwidth and low latency traffic
to fast moving users. In this case the MCFA optimization problem from [24] is used to determine
optimal aggregation gateway location, the number and speeds of interface cards, and traffic
tunnel set-up. The routes computed by MCFA are then mapped onto VLANS and spanning tree
instances for routing in the FAMOUS architecture. Results from a testbed show that low latency
high bandwidth links can be provided to fast moving users, and that rapid recovery with spanning
trees is feasible without a centralized system [32].

In 2005 and 2007 Lannoo et al. ([5] and [25]) proposed extensions to Gavrilovich’s [27]
moving base stations model. Lannoo et al. [5] argue, just as in [15], that frequent handovers
greatly reduce the bandwidth available to fast moving users. Consequently they propose using
radio-over-fiber, as suggested in [15], to feed base stations along the rail track. Unlike in
Gavrilovich’s model there are no moving moving base stations; instead there is a fiber-fed
distributed antenna network. These distributed antennas are located along the railroad tracks, and

11

they are called remote antenna units (RAU) (these correspond to the base stations in Fig. 2). The
remote antenna units are supervised by one control station via an optical ring network. For
communications from the access network to the train, data is modulated at the control station and
sent optically to each remote antenna unit using wavelength division multiplexing, i.e., each
RAU has a unique wavelength for communications. The remote antenna unit will convert the
optical signal to radio waves and transmit to the train. For communications from the train to the
access network the data will typically be captured by the remote antenna unit closest to the train.
In order to reduce handover times for the train access terminal, Lannoo et al. propose using
“moving cells”, i.e., a cell pattern that is constantly reconfigured at the same speed as the train so
that the train access terminal communicates on the same frequency during a trip. For a more
complete treatment of Lannoo’s moving cell concept, please consult [5]. Fig. 4 presents a
reference architecture for the radio-over-fiber deployment.

Aggregation
Network

Technologies used:
Ethernet
Optical fiber
ADSL

Access
gateway

Access
Network

Centralized Technologies used:
Radio-over-Optical fiber
Control

RAU RAU
RAU 5
/ freq uenues\ / fr:a,ﬁ;zljs\ / frequencnes\

switched switched

A Aok _\ A

RAU RAU

Figure 4: Reference Architecture for Internet Access on Trains using Radio-over-Fiber, based on

[5]

3.2.2 Other Architectures, Handoff and Addressing Issues

An architecture similar to the FAMOUS architecture is found in [35]. This architecture divides
train communications into backhaul connections, Ground-to-vehicle communications (GVC) and
on-board vehicle communications (OVC). The GVC is analogous to the access network in our
reference architecture in Fig. 2, while the OVC network consists of customer devices as well as
other networking devices, such as a train server, placed in the train. The OVC network is similar
to the train-based network shown in Fig. 1. On board each train the OVC and GVC are connected
through a connection manager (CM), which is analogous to our train access terminal in Fig. 1
[35].

12

In 2003 Bianchi et al. [36] thought that it may be expensive to wire a train for network access.
In addition [36] stated that rewiring may be needed every time the train is reconfigured.
Therefore, they proposed using IEEE 802.11 to construct a wireless network between the train
cars. In their basic architecture, the train is connected to the Internet through a “train server”
using satellite links. The train server here is analogous to the train access terminal in Fig. 1.
Aboard the train IEEE 802.11 is used to perform the following tasks:

1. To link all the railcars on the train into a computer network,
2. To provide Internet access to passengers, and

3. To connect the train to the Internet when the satellite links become too expensive. For
example, if a given train station has IEEE 802.11 access points, the train can be connected
to the Internet through those access points instead of through the train server.

Bianchi et al. proposed two topologies, based on IEEE 802.11 for constructing the computer
network aboard the train. In their first topology the railcars are linked into a network using IEEE
802.11 access points whose antennas are on the outside of each railcar, i.e., in this case the
gateways shown in Fig. 1 are IEEE 802.11 access points. In order to minimize interference
between adjacent access points, Bianchi et al. state that directional antennas should be used in
this deployment. Furthermore, channels should be chosen on each access point, such that
neighboring access points do not interfere with each other. Additional gains in performance may
be achieved by using IEEE 802.11a for the wireless network between railcars, and IEEE 802.11b
within the rail car. These technology choices imply that the computer network on the outside of
the train would not interfere with that inside the railcars. An alternative topology for the network
aboard the train arranges the access points in each railcar such that each access point serves as a
client station for the access point in the previous car, while also serving as an access point for all
the stations within its car. In other words, given train cars 1 and 2; the access point in car 2 serves
as a client (station) of the access point in car 1 while also serving as the host (access point) for all
stations within car 2. Since an access point may not transmit and receive simultaneously, this
topology requires that each access point possess two interface cards — one for transmitting and
the other for receiving. Bianchi et al. conclude by noting that their proposed topologies need to
be tested in a real-world deployment to assess the impact of interference [36].

References [12, 13, 33] come from the same group that developed the FAMOUS architecture,
but these papers do not use that architecture directly. Jooris et al. [33] studies seamless handover,
roaming, Quality of Service (Qo0S), and connections between heterogeneous wireless networks,
such as the on-board network and the track-side network. On each train the Mobile Access
Router (MAR) — for connecting the train to the outside Internet — will have one interface for
each type of technology, and it will constantly choose the best link from the train to the outside
world. It should be observed that the mobile access router is analogous to the train access
terminal (TAT) in Fig. 1. Aboard a train handoffs can occur when a mobile device is either
unplugged from the train’s wired network or when a mobile user moves from one Wi-Fi hotspot
on the train to another. In each case the user’s session must be protected. Jooris et al. [33]
proposes carrying out this protection by creating a convergence layer that hides the Ethernet and
WLAN interfaces, and instead creates a single virtual interface and assigning a single IP (CL-IP?)
and a single MAC (CL-MAC?) address to it. Outgoing packets will be encapsulated with the CL-
IP and CL-MAC, while devices connected to the train LAN will only see one device and one

¥Convergence Layer IP
Convergence Layer MAC

13

MAC address. In Jooris et al.”’s implementation [33] every wireless user device is associated with
a unique software object, which they call the access point. This software object is installed on the
nearest base station (BS) on the train, but it is moved from one WLAN base station to the next as
the user moves. In this architecture each base station is configured with two interfaces, but the BS
operates on a fixed frequency. The first interface runs an access point for all WLAN stations —
for example, wireless user devices — within range of the BS, whereas the second interface listens
to neighboring base stations’ frequencies and measures the signal strengths of the broadcast
messages. If the second interface detects a stronger signal from a station than the signal measured
by the station’s current base station, then the station’s access point is changed to that of the
measuring interface. The station is also informed that its access point has changed frequency.
This handover mechanism has been simulated successfully, and it should allow passengers to be
mobile while using the networks on board trains.

Pareit et al. [13] assumes that one would need to combine different technologies to provide
broadband Internet access on trains. As a result, they tackle the issue of handoffs as the train
moves from the coverage area of one access technology to another in [13]. To prevent the cell
system from having to make several simultaneous handoffs, it is proposed that train passengers
connect to the Internet via on-board Wi-Fi access points that are connected to the local train
network. The architecture proposed in [13] places a Policy Decision Function (PDF) on the
gateway, i.e., the train access terminal, between the train’s network and the outside world. The
PDF decides which interface should be used to provide the connection between the train and the
access network. This decision is based on link quality, train location and speed, and possibly cost
or load balancing. The Mobility Management modules are the other key part of the architecture.
They reside partly on the train and partly on the Central Management System. These modules
take input from the PDF to make handovers as smooth as possible. Pareit et al. [13] evaluates the
feasibility of using either Mobile IP or MMP-SCTP* for a mobility management handoff
protocol. Recall that Mobile IP allows nodes to change their point of attachment to the Internet
without changing their IP address [13], while Stream Control Transport Protocol (SCTP) is a
reliable transport protocol that resides above an unreliable connectionless packet service [13].
SCTP allows for the detection and retransmission of packets that might be lost during a handover.
In addition SCTP endpoints allow for multihoming. In [13] it is shown that MMP-SCTP displays
better performance than Mobile IP after a slow start for TCP performance without a handoff.
Pareit et al. emulate the case where a train passenger gets Internet access using a satellite link and
an HSDPA link. Reference [13] shows that for a satellite link Mobile IP exhibits better
performance than MMP-SCTP (also after the slow start). When there is a handoff between
satellite and HSDPA™ we see that Mobile IP does not require any retransmissions, and all packets
arrive in order. Very similar results were obtained when the same test was performed using
MMP-SCTP [13]. Pareit et al. [13] concludes by noting that MMP-SCTP and Mobile IP are able
to handle handoffs seamlessly when handoffs can be predicted. In spite of its overhead, MMP-
SCTP can be a better choice for a mobility management protocol since it does automatic
retransmissions. Pareit et al. [13] defer to future work how to decide the optimal instant to make
a handoff in order to minimize handoff delay, packet loss and network load.

The possibility of providing Internet access on inter-city trains in California is studied by
Kanafani et al. in [37]. These researchers propose an architecture for Internet access on trains that

“Mobile Multi-Path Stream Control Transport Protocol
“Note that [13] only studied handoffs between satellite and HSDPA; however, we expect similar results
for other cellular-based systems.

14

is based on open standard radio technologies, such as IEEE 802.11 and IEEE 802.16, Mobile IP,
in-train network components, train to backhaul architecture components, a track-side
communication system, a homeland security surveillance system, and command and control
centers. In addition this architecture also has a subsystem that would handle handoffs as the train
moves from the coverage area of one trackside unit to the next [37]. The train to backhaul
architecture component in Kanafani’s architecture is analogous to the train access terminal in
Fig. 1. The track-side communication system is the access network, while the in-train network is
the same as the network shown in Fig. 1.

Most of the papers that we have seen thus far use existing radio technologies, such as IEEE
802.16 [38] or cellular technologies. In [18] Zou et al. deviates from most of the previous work,
and calls for using IEEE 802.20* [39], which is technology under development, to provide
broadband Internet access for trains. IEEE 802.20 is chosen because existing 3G technologies do
not offer sufficiently high data rates to support many users on a high-speed train. IEEE 802.20,
on the other hand, is being designed to support data delivery at high bit rates to vehicles
travelling at up to 250 km/h, while using the wireless spectrum efficiently [39]. As in many of the
other systems that we have reviewed thus far, Zou et al. uses an IEEE 802.11x WLAN on board
the train to provide Internet access to passengers. In other words their architecture for the
network on-board the train does not deviate significantly from Fig. 1. In order to allow for
smooth handoffs between base stations, they call for the train to make two IEEE 802.20
connections to base stations, i.e., the train access terminal in Fig. 1 will make connections to two
separate base stations in the access network. However, the train would maintain a single IP
address, using Mobile IP, throughout its journey. Furthermore, they argue that since the train’s
schedule is known, handoff instances should be handled by a Predictive Pre-handover (PPH)
algorithm that would pre-compute the routes needed after a handoff. The access node on the train
would actively monitor the received signal strength from IEEE 802.20 stations, and it would
trigger a handoff whenever the received signal strength from the new station exceeds that of its
current base station [18].

With the exception of the system proposing the radio-over-fiber methods for Internet access
on trains, hitherto all the systems that we have studied examine communication protocols for
providing Internet access. White and Zakharov [40], on the other hand, deal strictly with physical
layer issues. They argue that high-altitude platforms, such as airplanes and airships at
stratospheric altitudes, are a less costly yet feasible method of providing Internet access to trains.
Digital Signal Processing (DSP) algorithms for tracking high-altitude platforms are presented in
[40]. The algorithms’ purpose is to estimate the direction of arrival (DOA) for signals transmitted
from a high altitude platform (HAP) to a train. Some of the methods applied for DOA estimation
include Spectral-based [40] and Polynomial-based [40] techniques. An Extended Kalman Filter
(EKF) is used to track the train location while beam forming is used on the satellite uplink.
Finally the paper shows that EKF can track slow variations in train velocity and account for
sudden HAP motion. Null steering (beam steering) is also shown to be advantageous in HAP-
train data communications.

Thus far we have covered getting Internet access onto trains; however, we also need to
account for the network topology and addresses on the train-based network. Network topology on
board the train changes constantly [12], hence there is a need to create a robust management
infrastructure that will establish and maintain connectivity on the train while providing logical
and IP addressing services [12]. This can be achieved by using the Train Management System

2|EEE 802.20 can be seen as the access network technology.

15

(TMS) architecture, which consists of a network® layer, middleware infrastructure layer, and the
user layer. Verstichel et al.’s [12] network layer is further subdivided into: the subsystems and
components layer (which controls components found throughout the train such as doors, lighting
and air conditioning), vehicle layer (which includes all subsystems and services on board of a
single car), and the train layer (which results from communications between all the cars on a
train). All of these layers are connected by gateways, for example, all of the gateways located in
coaches are interconnected using a train-level network, as shown in Fig.1l. The Train
Management Scheme uses IP addressing to link the devices in a coach-level network into one
network across the entire train. This IP addressing can be done using either IPv4 or IPv6. A
summary of the TMS architecture is shown in Fig. 5. Refer to Fig.1 to review the relationship
between the train-level network and the coach-level network.

User Layer

Middleware Infrastructure Layer

—
Train layer
*** Physical
Vehicle layer >~ Network
,,, Layer
Subsystems and components layer
_J

Figure 5: Reference architecture for Train Management System based on [12]

3.2.3 Discussion of Testbed Results and a Feasibility Study

References [41] and [42] begin the transition from the more theoretical to prototypes and
deployment. In [41] Sivchenko et al. presents simulation results that show that Internet traffic
performance on high-speed trains decreases as the number of users increase, which is an expected
result. The performance of several existing radio technologies with respect to data rates
experienced on fast moving trains is investigated in [42]. Gaspard and Zimmerman [42] evaluate
the relationship between throughput as a function of Doppler shift (speed). This investigation was
carried out in two phases; in the first stage a channel sounder was used to take channel
measurements for different placements of a mobile receiver, while the mobile transmitter was
moved along the track. In the next stage different radio technologies were evaluated using a
hardware emulation of the channel characteristics. The experiments evaluated how throughput

1t should be noted that the network layer in [12] is different from that in the OSI model

16

would vary for a channel between a trackside transmitter and a receiver on board a train.
Experimental results indicate that:

e TCP/IP throughput of a UMTS/FDD downlink does not vary much with receiver input
power; however, it is relatively low, i.e., ~0.06-0.35 Mbps.

e At 300 km/h TCP/IP throughput of an IEEE 802.11b link between a trackside transmitter
and a receiver on the train varies with receiver input power due to multipath channels. It
should be noted that IEEE 802.11b provides high data rates under the measurement
conditions. In addition the authors state that one would need several access points along the
track to have good coverage.

e The IEEE 802.16 system evaluated in [42] was not suited for high-speed trains since
TCP/IP throughput decreased sharply with increasing speed. However, the authors note
that the amendments to the IEEE 802.16e standard for mobility should enhance the
performance of the IEEE 802.16 system.

Lundberg and Gunningberg [43] study the feasibility of using IEEE 802.11x networking
equipment to provide Internet access for a train traveling at 200 km/h between Uppsala and
Stockholm. Here they observe that commercial solutions for providing Internet access on trains
are available, but note that they are either limited or expensive. Furthermore, they observe that if
IEEE 802.11x technology is used, the technology choice will depend on the possible impact of
fading and related problems, such as the Doppler effect due to the train’s motion [43].

4 Implementation Efforts and Business Models

In the previous section we reviewed the reference architecture and initial concepts underpinning
broadband Internet deployment on trains. In this section we look at how those ideas have been
implemented in Europe and North America. As we mentioned in Section 1 broadband Internet
access is increasingly becoming available on trains in Europe. In Europe the preponderant
demand for Internet access is from passengers, while in North America most train traffic is
dominated by freight [44]. As a result efforts to carry out communications from trains have
evolved in slightly different directions on these two continents due to market forces. We review
the implementation efforts in Europe and North America separately, since conclusions drawn
from one continent might not necessarily apply to the other. Furthermore, implementation efforts
in Europe are much more advanced than those in North America. This section concludes with a
look at some of the business models developed, from a technical perspective, to evaluate the
viability of broadband Internet access on trains.

4.1 Implementation in Europe

One of the earliest accounts of Internet access on trains comes from the Railway Open System
Interconnection Network (ROSIN) project. In 1999 Fabri et al. [45] presented a report on a web-
based tool deployed to a train to allow maintenance staff to supervise railroad equipment using a
GSM connection between the train and an operations center. Aboard the train the railcars were
linked into a network using the Train Communication Network (TCN') standard. Unfortunately,

“The TCN specification consists of a train bus and a vehicle bus. The train bus can self-configure itself by
connecting a new node (railcar) to the network and dynamically assigning it a new address The vehicle
bus is optimized to handle small packets originating from a large number of devices. The train bus and the
vehicle bus are connected through a gateway, which allows for exchange of data between devices in the

17

reference [45] does not provide any additional details on the bit rates seen during the trial or the
network topology.

Ceprani and Schena [46] present implementation details on their Fast Internet for Fast Train
Hosts (FIFTH) project. The FIFTH architecture consists of Mobile Train Terminal Prototype
(MTTP) and FIFTH Access Network Infrastructure (FANI) modules. The MTTP is composed of
a Satellite Access Terminal (SAT), which uses the Ku band to provide satellite access for the
train, and the Train User-Local Area Network (TU-LAN) which constitutes the LAN onboard the
train. The satellite access terminal is analogous to the train access terminal in Fig. 1, while the
Train User-Local Area Network is akin to the rest of the computer network shown in Fig. 1. The
antenna for the SAT is adjusted by a Navigation and Tracking Unit during a trip to optimize
reception conditions. The TU-LAN consists of a coach LAN (within a train car) and a train LAN
(between cars on the train). The TU-LAN is implemented by using Ethernet connections between
train cars as well as Ethernet connections and IEEE 802.11 links for passengers to use.
Unfortunately, additional details are not available on what bit rates were seen during the trial.

Conti [10] provides a contemporary view of the implementation of Internet access on trains in
Europe. In his paper he argues that telecommunications operators have offered Internet access to
passengers using GPRS or 3G wireless cards; however, this is not sufficient for most users.
Furthermore he states that there is now agreement that Internet access should be provided on
board trains using IEEE 802.11 access points within the train; however, there is not much
agreement on how to connect moving trains to the Internet backbone. In the United Kingdom
GNER trains use a combination of satellite and cellular links to provide a backhaul link from the
train. Therefore, the train access terminal in this instance supports both satellite and cellular
technologies. The Internet connection is shared with all cars on the train using the train’s lighting
circuit, this implies that the topology of the computer network on the train is not radically
different from that shown in Fig. 1. Unfortunately additional details are not available on how the
wired portion of the network aboard the train operates. GNER’s system favours satellite access
for the backhaul link, but when the train enters a tunnel, the system automatically switches over
to GPRS (The technical details of how this switch is accomplished are not clear from [10];
however, it may be assumed that the GPRS signal is brought into the tunnel via a leaky cable, or
some similar mechanism). For redundancy purposes the train connects to base stations from two
different mobile carriers. In addition up to six parallel cellular phone links are established for
redundancy purposes when the train passes through a tunnel. It is worth noting that this same
technology is also used by the Swedish train operator, SJ, to provide Internet access [10].

Conti [10] also discusses Southern Trains’ efforts to provide Internet access on its trains using
WiMax [4]. It is interesting to note that this system does not use any of the enhancements found
in IEEE 802.16e, which is designed for mobile access. Instead, this system uses a draft
implementation of IEEE 802.16d [9]. Conti [10] adds that T-Mobile and Nomad Digital
collaborated on this venture, and that in addition to the pre-WiMax standard, GPRS and 3G
technologies are also used for robustness with each train having three GPRS modems for
robustness [9]. As of 2005 there were 37 WiMax base stations deployed along the 60 mile train
track, with plans to install up to 60 base stations [9]. Each of the base stations was equipped with
a 2 Mbps ADSL link to the Internet [9]; each base station in this system could achieve data rates
of up to 32 Mbps for both the uplink and the downlink wireless channels [10]. In Southern
Trains’ implementation the train access terminal consists of a server with support for WiMax and

same railcar, or in two different train cars. The TCN can also be linked to the Internet by means of a radio
link between the train and a ground station.

18

GPRS technologies. The architecture of the in-train network is akin to that shown in Fig. 1, with
passengers connecting to the in-train network using an IEEE 802.11b link [9]. Finally, the access
network in this case uses WiMax and GPRS [9], while the aggregation network uses ADSL [9].

Apart from WiMax and GPRS technologies, satellite technologies may also be used for
Internet access. For example, elsewhere in Europe, Thalys [10] uses a bi-directional satellite link
operating in the Ku-band to support link speeds of up to 2 Mbps, i.e., the train access terminal
only supports satellite links. The downside of relying on satellite links is that operational costs
are probably higher than for links that rely on either WiMax or 3G technologies [10].

Echensperger [17] discusses work done by T-Mobile in Germany to bring Internet access to
intercity trains. He discusses the Railnet effort, which aims to provide WLAN access on board
trains while also providing a broadband radio connection between the train and the land side. The
Railnet system uses a Central Train Unit to control traffic and store on-board content, several
antennas to maintain the train to base station link, an IEEE 802.11 network to link the rail cars
into a train level network, and IEEE 802.11 access points on-board the train for passenger access.
The on-board network for the Railnet effort is very similar to that shown in Fig. 1, except that
there are no wired links between the railcars. Instead this time we have IEEE 802.11x links
between the cars. The train access terminal in this case supports T-Mobile’s access technology™.
Since T-Mobile (the service provider) owns its network, and also provides service on board the
train, there is not much of a distinction between the access and aggregation networks in this case.
It is worth noting that Flash-OFDM has also been evaluated in the course of the Railnet effort,
and its throughput has been found to be nearly independent of velocity [17].

4.2 Implementation in North America

As previously mentioned rail transportation in North America and Europe have very different
characteristics. Consequently broadband Internet deployment to trains on those continents has
evolved differently. In fact, it could even be argued that these deployments are in their infancy in
North America. However, there are some efforts underway for North America. For example,
Conti [10] points out that PointShot Wireless has worked on initial deployments with Canada’s
VIA Rail and California’s Altamont Commuter Express and Capitol Corridor operators.

A lot of the work coming from North America is experimental, given the lack of widespread
Internet access on board trains. One example of some experimental work comes from the
University of Nebraska, where Hempel et al. [16] presents work done on a wireless testbed for
IEEE 802.11 deployed along a train track. In this testbed IEEE 802.11 access points were placed
along the tracks with line of sight paths to neighboring access points. This arrangement allowed
for seamless IEEE 802.11 coverage along the tracks. IEEE 802.11a channels were used to
provide backhaul links between the testbed access points, while IEEE 802.11b was used to
provide wireless Internet connectivity to the train car used in the tests. Results from the testbed
showed that IEEE 802.11b could support data rates data rates of up to 11 Mbps; however, IEEE
802.11b was also subject to interference from passing trains. Additional test results showed that
train velocity does not appear to have a significant effect on the throughput experienced by the
node on board the train. The conclusion from this paper is that while it is feasible to deploy IEEE
802.11 along the train track, IEEE 802.11 has a limited coverage area; therefore, such a
deployment would be expensive [16]. In addition we have already seen from [42] that the TCP/IP

“Unfortunately, technical details on the access technology are not available in [17].

19

throughput of an IEEE 802.11b link varies with receiver input power. Hence, IEEE 802.11x is
not suitable for providing Internet access to trains.

More recently Nomad Digital collaborated with the Utah Transit Authority (UTA) and
Wasatch Electric to provide a wireless broadband connection on a commuter line between Ogden
and Salt Lake City. In this case the access network consists of WiMax radios from Redline
Communications. On board the train passengers get Internet access from a free Wi-Fi connection
[11]. The on-board network for this rail deployment is very similar to that shown in Fig. 1, while
in this instance the train access terminal supports WiMax. Unlike in any of the examples seen
thus far, the aggregation network in this instance is composed of fiber optic links, some of which
run trackside [11].

Most of the work we have reviewed in this paper has discussed providing Internet access to
passengers on a train. However, a train operator might also like to collect operational data from
its trains. Edwards et al. [2] discuss just such a scheme that allows for controlling and monitoring
various sensors and supervision modules on a freight train. This scheme uses IEEE 802.11b for
intra-train communications to allow for braking, coupling and uncoupling, etc. This scheme uses
a Controller Area Network (CAN) bus to collect data from sensors on board the train. The data is
then coupled with GPS information and reported to a web server via a CDMA-based transmitter.
In this case the train access terminal is a 1XRTT radio, whereas the links between the cars are
IEEE 802.11b links; unlike the wired links shown in Fig. 1.

4.3 Business Models for Internet Service on Trains

As we have seen in previous sections broadband Internet access is increasingly being deployed to
trains. However, for us to see more widespread deployments, train operators would have to be
convinced of the business advantages of such a deployment. In this subsection we present
different business models for paying for Internet service on trains.

One of the earliest business models developed studied deploying Internet access to inter-city
trains in California [37]. In developing this model, the authors say that the provision of Internet
access on trains would likely lead to an increase in ridership on the inter-city trains. The train
operators on the other hand could collect revenue from this service either by applying “per use or
time charges, subscription fees,” or negotiating an arrangement with a third party to pay for the
service through advertising, or sponsorship, or an increase in ridership [37]. In the case of
California trains, the authors present two business models for providing Internet access:

e Option 1 is a conservative model that uses satellite and cellular networks for backhaul,
with an IEEE 802.11 access network on the train. This option has a low operational cost
with low bandwidth and a high operational cost with high bandwidth, but it generally
results in low revenue for the train operator. This option is aimed at capturing mobile
Internet users on trains in a conservative manner.

e Option 2, uses WiMax for backhaul access with an on-board Wi-Fi network, but it has a
high initial cost (due to the cost of deploying WiMax antennas) with low operational costs.
Kanafani et al. [37] state that this model should result in high revenue for the train
operator, and that it should help capture mobile Internet users as the market grows.

The next two business models were developed for use in Europe. Using data from Belgian
railways, Lannoo et al. [34] present business models that investigate the possibilities and
economic viability of providing Internet access on trains. Recall that these researchers are part of
the same group that proposed the FAMOUS architecture. As in previous work, they argue that

20

broadband Internet access on trains can be provided by using an in-train network, and a network
between the train and the service provider for Internet access. For the backhaul network trains
can use cellular networking technologies such as GPRS/UMTS/HSDPA, or wireless networking
technologies such as Wi-Fi, WiMax, Flash-OFDM, or even a satellite networking standard, such
as DVB-S/DVB-S2/DVB-RCS. These backhaul networks can be classified as either incumbent
networks, for example GPRS/UMTS/HSDPA, or dedicated networks, for example, WiMax or
Flash-OFDM, or satellite networks. With incumbent networks the goal would be to provide
Internet access on trains without making a major capital expenditure. The business model
presented in [34] considers using incumbent networks until their capacity requirements are
exceeded, then one can roll out a dedicated network. Satellite networks would only be used as
gap fillers, i.e., in areas where the other networking standards do not provide adequate coverage,
just as we saw in [10]. The analysis carried out in [34] assumes revenue schemes where:

1. every passenger pays for Internet service, or
2. only first class passengers get free Internet access, while all other passengers pay.

Their analysis also includes the capital expenses required for deploying Internet service, as well
as the operational costs required to maintain service. The model then presents results to show that
train operators would realize a net profit if only first class passengers get free Internet access.
Lannoo et al. [34] conclude by noting that using a combination of technologies is the best way to
provide broadband Internet access to trains, and that in the particular case of Belgian railways it
would be better to use a mix of WiMax and UMTS for Internet access [34].

More recently Riihimaki et al. [35] have studied Finnish railroads to determine the feasibility
of deploying broadband Internet to trains. They argue that revenue from providing Internet
service to train customers may come from the following sources:

1. An increase in passenger volume, if a train operator offers free Internet access for
passengers

2. An increase in the number of first class passengers, if first class passengers get free Internet
access.

3. Reduced personnel costs, if passengers who buy their tickets online get free on-board
Internet access.

4. Direct revenue, if train tickets and data connections are sold separately

From the standpoint of the train operator Internet access on trains could allow for more efficient
train operations, e.g., allowing real-time traffic control, or more efficient staff who can verify
passenger tickets in real-time.

Hitherto, we have focussed on Internet access to passengers, Riihimaki et al. state that train
operators shipping freight could use a broadband Internet connection to allow their customers to
perform accurate cargo monitoring. In the case of the Finnish railroads, it is argued that the cost
of building a network for Internet access from trains can be spread out over a period of time if the
network is built in two or more phases, for example by using GPRS or Flash-OFDM in the first
phase, and then using mobile WiMax in the second phase. Furthermore, in the case of WiMax
they show that the average revenue collected per user, and the cell range of the WiMax network
are the most critical parameters influencing this technology’s viability for Internet access on
trains [35]. For example, their analysis is based on an estimated WiMax cell size of 5 km.
However, if this cell size is decreased by 10% then it becomes unprofitable to provide Internet
access using WiMax [35].

21

Given that most of the train traffic in North America is freight traffic [44], possibly the best
avenue for getting broadband Internet access on trains would be to forge some kind of
partnership between the train companies and telecommunications companies. If the train
operators can see a reduction in their insurance payments by allowing freight customers to gain
visibility into their shipments or other gains in efficiency, then the long-term viability of
broadband Internet on trains may be achieved in North America. In the case of the United States,
Amtrak passengers can also benefit from a deployment of broadband Internet access to trains,
and perhaps even more people can be lured to riding trains in the United States resulting in lower
greenhouse emissions.

5 Conclusion

The availability of broadband Internet access on trains should prove to be a revenue source for
operators. Previous studies from the United Kingdom show that train companies can attract more
users if Wi-Fi access is made available [1]. In this paper we have presented some of the initial
approaches, current technologies, and future ideas, such as IEEE 802.20 and radio-over-fiber,
related to Internet access on trains. We have also provided an account of implementation efforts
for broadband Internet access on trains in Europe and North America. These efforts, particularly
from Europe, show that broadband Internet access on trains is realizable. Furthermore, business
models, developed to test the viability of Internet access on trains, show that broadband Internet
access on trains is best realized by using a combination of access technologies. However,
efficient operation requires proper system design. North America does not share the same rail
traffic characteristics as Europe [44], and so broadband Internet access on North American trains
is not as readily available. In North America broadband Internet access on trains may be used for
collecting operational data from trains, as well as freight monitoring. Future work could be to
develop a business model for broadband Internet access on North American trains that takes into
account the fact that North American rail traffic is dominated by freight. A good business model
might serve to accelerate the deployment of broadband Internet access in North America.

Acknowledgment

The author would like to thank Ms. Yewande Lewis for reading and commenting on a previous
version of this paper.

22

References

[1] BBC News. (2004, May 20) Wi-Fi May Tempt Travellers. News. BBC News. London,
United Kingdom. [Online]. Available: http://news.bbc.co.uk/2/hi/technology/3729583.stm

[2] M. C. Edwards et al., “Improving Freight Rail Safety with on-board Monitoring and Control
Systems,” in Proceedings of the 2005 ASME/IEEE Joint Rail Conference, Pueblo, CO, USA,
Mar. 2005, pp. 117-122.

[3] BBC News. (2004, July 6) Rail Users Get Wi-Fi Net Access. News. BBC News. London,
United Kingdom. [Online]. Available:
http://news.bbc.co.uk/2/hi/uk_news/england/3868585.stm

[4] B. Wilson. (2005, Oct. 26) Rail Internet Access Picks Up Speed. News. BBC News. London,
United Kingdom. [Online]. Available: http://news.bbc.co.uk/2/hi/business/4363196.stm

[5] B. Lannoo et al., “Radio-over-fiber-based Solution to Provide Broadband Internet Access to
Train Passengers,” IEEE Communications Magazine, vol. 45, no. 2, pp. 56-62, Feb. 2007.

[6] I. Beeby, “Demystifying Wireless Communications for Trains,” Presented at the BWCS
Train Communication Systems 2006, London, UK, June 2006.

[7] P. A. Laplante and F. C. Woolsey, “IEEE 1473: An Open-Source Communications Protocol
for Railway Vehicles,” IT Professional, vol. 5, no. 6, pp. 12-16, November/December 2003.

[8] I. Beeby, “The Future for Terrestrial Wireless Services for the next Five Years: Myths and
Realities for WiFi on Trains,” Presented at the BWCS Train Communication Systems 2007,
London, UK, June 2007.

[9] P.Judge. (2005, Apr. 3) 100 mph WiMax hits the rails to Brighton. News. TechWorld.
United Kingdom. [Online]. Available:
http://www.techworld.com/mobility/features/index.cfm?FeaturelD=1351

[10]J. P. Conti, “Hot Spots on Rails,” Communications Engineer, vol. 3, no.5, pp. 18-21,
Oct./Nov. 2005.

[11] Nomad Digital. (2008, May 21) U.S. First for Nomad Digital: WiFi provided free for all rail
passengers. Press Release. Nomad Digital. Newcastle, United Kingdom. [Online]. Available:
http://www.uknomad.com/news_details19.html

[12] S. Verstichel, K. Lamont, F. De Turck, B. Dhoedt, P. Demeester, and F. Vermeulen, “On the
Design of a Train Communication Management Platform,” in Symposium on
Communications and Vehicular Technology, Liege, Belgium, Nov. 2006, pp. 29-34.

[13] D. Pareit et al., “QoS-enabled Internet-on-train network architecture: inter-working by
MMP-SCTP versus MIP,” in 7th International Conference on ITS Telecommunications
(ITST ’07), Sophia Antipolis, France, June 2007, pp. 1-6.

[14] F. Van Quickenborne et al., “Managing Ethernet Aggregation Networks for Fast Moving
Users,” IEEE Communications Magazine, vol. 44, no. 10, pp. 78-85, Oct. 2006.

[15] F. De Greve et al., “FAMOUS: A Network Architecture for Delivering Multimedia Services
to FAst MOving USers,” Wireless Personal Communications, vol. 33, no. 3-4, pp. 281-304,
2005.

[16] M. Hempel et al., “A Wireless Test Bed for Mobile 802.11 and Beyond,” in INCMC ’06:
Proceedings of the 2006 International Conference on Wireless Communications and Mobile
Computing. Vancouver, BC, Canada: ACM, 2006, pp. 1003-1008.

[17] H. Echensperger, “Railnet: High-Speed Internet on High-Speed Trains,” Presented at the
IET Seminar: Broadband on Trains, London, United Kingdom, Feb. 2007.

23

[18] F. Zou, X. Jiang, and Z. Lin, “IEEE 802.20 Based Broadband Railroad Digital Network -
The Infrastructure for M-Commerce on the Train,” in The Fourth International Conference
on Electronic Business - Shaping Business Strategy in a Networked World (ICEB), Beijing,
China, 2004, pp. 771-776.

[19] F. De Greve et al., “Towards Ethernet-Based Wireless Mesh Networks for Fast Moving
Users,” in EUROMICRO ’06: Proceedings of the 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications. Dubrovnik, Croatia: IEEE Computer
Society, Aug. 2006, pp. 387-397.

[20] F. De Greve et al., “Design of Wireless Mesh Networks for Aggregating Traffic of Fast
Moving Users,” in MobiWac ’06: Proceedings of the 4th ACM International Workshop on
Mobility Management and Wireless Access. Terromolinos, Spain: ACM Press, Oct. 2006,
pp. 35-44.

[21] F. Van Quickenborne et al., “Tunnel Set-up Mechanisms in Ethernet Networks for Fast
Moving Users,” in 11th International Telecommunications Network Strategy and Planning
Symposium (NETWORKS 2004), Vienna, Austria, June 2004, pp. 303-308.

[22] F. De Greve et al., “Aggregation Network Design for Offering Multimedia Services to Fast
Moving Users,” in Quality of Service in Multiservice IP Networks: Third International
Workshop, (QoS-IP 2005), M. A. Marsan, G. Bianchi, M. Listanti, and M. Meo, Eds., vol.
LNCS 3375/2005. Catania, Italy: Springer-Verlag New York, Inc., Feb. 2005, pp. 235-248.

[23] ------ , “Cost-effective Ethernet Routing Schemes for Dynamic Environments,” in
GLOBECOM’05: IEEE Global Telecommunications Conference, vol. 2. St. Louis, MO,
USA: IEEE, Nov. 2005, pp. 1023-1028.

[24] ------ , “Rapidly Recovering Ethernet Networks for Delivering Broadband Services on the
Train,” in LCN’05: The 30th IEEE Conference on Local Computer Networks. Sydney,
Australia: IEEE Computer Society, Nov. 2005, pp. 294-302.

[25] B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Extension of the Optical Switching
Architecture to Implement the Moveable Cell Concept,” Presented at the ECOC
2005:Proceedings 31st European Conference on Optical Communication, vol. 4, Glasgow,
United Kingdom, Sep. 2005, paper Th 1.4.3, pp. 807-808.

[26] L. M. Correia and R. Prasad, “An Overview of Wireless Broadband Communications,”
IEEE Communications Magazine, vol. 35, no. 1, pp. 28-33, Jan. 1997.

[27] C. D. Gauvrilovich, “Broadband Communication on the Highways of Tomorrow,” IEEE
Communications Magazine, vol. 39, no. 4, pp. 146-154, Apr. 2001.

[28] K. D. Lin and J. F. Chang, “Communications and Entertainment Onboard a High-speed
Public Transport System,” IEEE Wireless Communications Magazine, vol. 9, no. 1, pp. 84—
89, Feb. 2002.

[29] T. Van Leeuwen et al., “Broadband Wireless Communication in Vehicles,” in FITCE 2003:
42nd European Telecommunications Congress, Berlin, Germany, Sep. 2003, pp. 77-82.

[30] F. De Greve et al., “Evaluation of a Tunnel Set-up Mechanism in QoS-aware Ethernet
Access Networks,” in LANMAN 2004: The 13th IEEE Workshop on Local and Metropolitan
Area Networks, San Francisco, CA, USA, April 2004, pp. 247-252.

[31] F. Van Quickenborne et al., “Optimization Models for Designing Aggregation Networks to
Support Fast Moving Users,” in Proceedings 1st Int. Workshop of the EURO-NGI Network
of Excellence on Wireless Systems and Mobility in Next Generation Internet, G. Kotsis and
O. Spaniol, Eds., vol. LNCS 3427. Dagstuhl, Germany: Springer, June 2005, pp. 66-81.

24

[32] F. De Greve et al., “A New Carrier Grade Aggregation Network Model for Delivering
Broadband Services to Fast Moving Users,” International Journal of Communication
Systems, vol. 20, no. 3, pp. 335-364, Mar. 2007.

[33] B. Jooris et al., “Mobile Communication and Service Continuity in a Train Scenario,”
Presented at the Proceedings of the 12th Symposium on Communications and Vehicular
Technology in the BENELUX, Enschede, Netherlands, Nov. 2005.

[34] B. Lannoo et al., “Business Model for Broadband Internet on the Train,” in Proceedings of
the 46th Federation of Telecommunications Engineers of the European Community
Congress (FITCE 2007), Warsaw, Poland, Aug. 2007, pp. 60-66.

[35] V. Riihimaki et al., “Techno-economical Inspection of High-speed Internet Connection for
Trains,” IET Intelligent Transport Systems, vol. 2, no. 1, pp. 27-37, Mar. 2008.

[36] G. Bianchi et al., “Internet Access on Fast Trains: 802.11-based on-board wireless
distribution network alternatives,” in 12th IST Mobile & Wireless Communications Summit,
Aveiro, Portugal, June 2003, pp. 15-18.

[37] A. Kanafani et al., “California Trains Connected,” University of California - Berkeley, Tech.
Report UCB-ITS-PRR-2006-4, Apr. 2006.

[38] Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std. 802.16, 2004.

[39] Draft Standard for Mobile Broadband Wireless Access (MBWA), IEEE Draft Standard
802.20-D1, 2006.

[40] G. P. White and Y. V. Zakharov, “Data Communications to Trains From High-Altitude
Platforms,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 2253-2266, July
2007.

[41] D. Sivchenko et al., “Internet Traffic Performance in High Speed Trains,” in HET-NETSs *04:
Second International Working Conference: Performance Modelling and Evaluation of
Heterogeneous Networks, Ilkley, United Kingdom, July 2004, pp. 26-31.

[42] I. Gaspard and G. Zimmermann, “Investigations for Broadband Internet within High-speed
Trains,” Advances in Radio Science, vol. 3, no. 13, pp. 247-252, May 2005.

[43] D. Lundberg and P. Gunningberg, “Feasibility Study of WLAN Technology for the Uppsala
- Stockholm Commuter Train,” Department of Information Technology, Uppsala University,
Tech. Rep., June 2004.

[44] J.-P. Rodrigue, C. Comtois, and B. Slack, The Geography of Transport Systems. New York,
NY USA: Routledge, 2006, ch. 3. Transportation Modes, p. 284.

[45] A. Fabri, T. Nieva, and P. Umiliacchi, “Use of the Internet for Remote Train Monitoring and
Control: the ROSIN Project,” Presented at the Rail Technology Conference, London, United
Kingdom, September 1999.

[46] F. Ceprani and V. Schena, “FIFTH Project Solutions Demonstrating New Satellite
Broadband Communication System for High Speed Train,” in VTC 2004: Proceedings of the
59th IEEE Vehicular Technology Conference, Spring, vol. 5, Milan, Italy, May 2004, pp.
2831-2835.

25

The University of Kansas /

INFORMATION

& TELECOMMUNICATION
TECHNOLOGY CENTER
The University of Kansas

lechnical Report

Status Update: A Unified Architecture for SensorNet
with Multiple Owners: Supplement to Advance
SensorNet Technologies to Monitor
Trusted Corridors

University of Kansas
Telecommunication Technology Center
V.S. Frost, G.J. Minden,].B. Evans,
L. Searl and D.T. Fokum

EDS
T. Terrell, L. Sackman, M. Gatewood,]. Spector,
S. Hill, and J. Strand

ITTC-FY2009-TR-41420-10
August 2008

Project Sponsor:
Oak Ridge National Laboratory (ORNL)
Award Number 4000043403

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612

All rights reserved.

Abstract

This effort is aimed at monitoring cargo movements along a trusted corridor, e.g., rail facilities,
in association with an integrated data-oriented methodology to increase efficiency and security. This
goal is being achieved by performing research and deployment of an associated testbed focused on rail
transportation issues. The results of this effort will lay the foundation for enhancing the ability of the
private sector to efficiently embed security that provides business value such as safety, faster transport
and reduced theft while supporting law enforcement and national security. In the end, the benefit of
the combination of real-time sensor date with trade data exchange information will be demonstrated

through field tests on a deployed rail testbed.

Table of Contents

Y 011 - T ST RT TP RUR PR PR i
QLI 101 L) 001 (=] SRS ii
IS a0 T U =TSSP ii
IS 0 R 1=] LTSS ii
O T (0o 0ot AT] OSSPSR 1
2.0 Status on Technology Proof of Concept and Integration of the SmartPort Trade Data Exchange

and Transportation Security SensorNet TeChNOIOGIES..........covvveiieii i 2
3.0 Status of the Development of Transportation Security SensorNet (TSSN) Technologies................. 3
4.0 Status of System Architecture, Modeling, and Optimizationcccceevvierieie s 9
5.0 Status of Communications System EVAlUALIONcccoiieiiiiiiieeee e 11
6.0 Status RFID Technology Evaluation and Development............ccccviveieiieiiecie e 13
7.0 ASSOCIALE EFFOITSeiiii e ettt ettt st et e b e be b e neenrs 13
ST O (0] (<ot I 1] T o= SRS 15
0.0 RETEIBINCES. ... ettt ettt s e bttt h ekt e b e e st e bt et e e b e e b e e Rt e e Rt e be et e er e e nbeeeeeneenes 16
OO o] o =TT (=TSSR 16

List of Figures
FIQUIE L2 FIEIA THHAL.....eeiieieee bbbt bbbt 2
Figure 2: Selected Proof of Concept TEChNOIOGIESccvveiviiieiiece e 3
Figure 3: TSSN IMPIEMENTATIONc.oiuiiiiieiee et 4
Figure 4: Mobile Rail NEIWOIK..........coiiiiicce et 5
Figure 5: Virtual Network Operations CENTETccoiiiiiiiiiieiesie st 5
Figure 6: Example Train Configuration (red square indicates deployed Sensor)c.cccceevvevvereernenne. 10
Figure 7: Relative System Cost VS NUMDEr OF SENSOIS..coviiiiiiiieiesesesee e 11
Figure 8 (from’): COSt PEr FUNCHION TIENGveveieeeeeeeeeeeeeeeeeeeteeesesees e es e esee s s senees e 11
Figure 9: Cost/Capability Trade-off for Communications DEVICES............cceverererereneneniseeeeeeeen, 12
Figure 10: Future Trends in Sensor Technology (FFOM [4]) .eccveeieiieie i 13
FRIQUIE L1 ottt bbb bbbt e R e b e bbbt b bRt et e bbbt bt n e e n s 14
Figure 12: ProjeCt TIMEIINEc..ociiiiece ettt e et e e naaeteeneesreeneenes 15
List of Tables

TaDIE 1: ACE SOA STALUS. ... ecueeitierieiiesieeiesee st eseesee e estesseesteetesseesbeeseeaseesseesseaseesseeseeaneesseeseaseesseensennes 6
Table 2: TSSN PhaSE 1 STALUSoiuiiiiieiieieie ettt bbbt 7
Table 3: TSSN PNASE 2 STALUSecuveiieeiieiiesiiesieeie ettt ee sttt esteete s e steenteaneesneenteeneesreeneeanes 8

1.0 Introduction

This project is demonstrating the tracking and monitoring technologies needed to establish a trusted
corridor for international and domestic cargo movements along a path including inter-modal facilities.
The results of this effort will lay the foundation for enhancing the ability of the private sector to
efficiently embed security that provides business value, e.g., faster transport and reduced theft, while
supporting law enforcement and national security.

Exports from Asia have increased, creating bottlenecks at key US ports. A Kansas City (KC) group,
known as SmartPort, recognized the strategic position of KC and has actively worked to increase
shipments through the KC area. SmartPort is developing a US export capability and will have the only
Mexican Customs clearance capability that is not at the border. This project is aimed at improving the
efficiency and security of these trade lanes by combining monitoring, real-time tracking, and
associated sensor information with trade data exchange (TDE) information. The focus is on
technology development to address transportation issues, and validation of the concepts via the
deployment of a testbed.

KC SmartPort, through the Mid America Regional Council (MARC), is fostering the development of
several trade lane projects. SmartPort/MARC supported EDS to execute the International Corridor
Integration Project (ICIP), which demonstrated a reduction in international transport shipping time
from KC to Mexico from 10-14 days to 3 days. SmartPort/MARC through its Intelligent
Transportation Integration Project is supporting EDS to develop a Trade Data Exchange (TDE) that
captures commercial clearance and other data. The ORNL SensorNet initiative is aimed at developing
the technology, standards, and technical requirements for an integrated national warning and alert
system to provide an incident discovery, awareness, and response capability, addressing local,
regional, and national needs. Thus the ORNL SensorNet provides the basis for obtaining the real-time
tracking and associated sensor information. ITTC/KU has been focused on creating technologies that
will allow SensorNet to interact in an environment composed of multiple enterprises, owners, and
operators of the infrastructure, including sensors and TDE. ITTC/KU research has addressed assured
and controlled access to SensorNet assets, implying a focus on security and management mechanisms;
and archives and information dissemination, including interfaces/schemas. This effort is focused on
creating an interoperable TDE and SensorNet. A cost-effective communications system to facilitate
continuous monitoring of containers and communications is also under study as is the role of evolving
Radio Frequency ldentification (RFID) technologies. In the end, the benefit of the combination of
SensorNet with TDE information will be demonstrated through field tests on a deployed testbed.

This effort is being executed by a team from EDS and ITTC/KU. There have been close interactions
between the EDS and ITTC/KU teams. There have been weekly conference calls to coordinate
activities. The project conference calls have involved Steve Peterson and Randy Walker from ORNL.

The next section addresses the integration of a distributed sensor system with the TDE, along with the
status of the proof of concept field trial. EDS is leading the TDE and field trial efforts. The status of
development of technologies effort to facilitate the participation of multiple organizations is described
next. This aspect of the effort addresses access/control/security mechanisms. The status of the system
architecture, modeling, and optimization will then be addressed. The communications system required
for monitoring will be addressed in the next section followed by the status on the associated RFID

efforts. We conclude by discussing the relationship of this effort to several aligned activities; a
timeline for the remainder of the project is then presented.

2.0 Status on Technology Proof of Concept and Integration of the
SmartPort Trade Data Exchange and Transportation Security
SensorNet Technologies

Here an integrated Transportation Security SensorNet (TSSN) and Trade Data Exchange environment
is under development where the prototype will be evaluated in a field trial. A requirement of the
prototype will be to create commercial value for a SmartPort stakeholder using the TSSN and TDE
technologies.

Though an extensive series of meetings and interactions, including trips to locations at the US/Mexico
boarder (Laredo, Texas), a SmartPort stakeholder has been identified and agreed to participate in the
field trial. This stakeholder will be providing access to their facilities in Kansas City and Mexico; they
will also allocate personnel time to support the field trial at no cost to this project. Three field trials
are planned; short haul tests as well as two trials in Mexico.

Specific use cases were identified in consultation with the SmartPort stakeholder. Interactions with the
SmartPort stakeholder combined with the use cases resulted in the selection of devices to be employed
for sensing, processing, and communications. The use cases center around monitoring and tracking
containers with the goals of proving that a container breach did not occur during the stakeholder’s
custody and providing time and location of a container intrusion to enable the stakeholder’s response
and reduce successful intrusions. Figure 1 shows the test environment.

- / Carrier Shipment Information

Wireless Data Carrier
/

F@ Internet s]

Satellite Data Carrier Network Control Trade Data
Center Exchange

D T

@ O m T i

e — GEe B T

==l PR P T

Operational Test Environment

Figure 1: Field Trial

Figure 2 shows the selected proof of concept technologies. The associated equipment has been
acquired and is being integrated into a complete system. This includes servers to host the TDE at EDS
and the seals, tags, reader, vehicle mounted TSSN collector (laptop), and a virtual network operations
center (VNOC) functionality at ITTC/KU. Experiments have been conducted with the Hi-G-Tek seals,

tags, reader, and software developed to integrate them into this system. Initial communications and
interactions have been established between the TDE at EDS and the VNOC in the TSSN at ITTC/KU.

Iridium Satellite
Communications

Active tags, seals and reader, \ ' s

from Hig-G-Tek :

dditional Sensor

Satellite/
Cellular
Communications,

GSM/HSDPA Internet
Terrestrial

Comms SOA

i

Vehicle

=l

Vehicle Mounted =
Magnetic Mounted SensorNet =
Seal Seal/Tag Collector

Reader/ e
Writer TDE Other
Applications Applications

IP
Internet

Q

Data Tag

e/
= Trade Data Command & Other Users
Exchange Control

Addtional Sensor

Figure 2: Selected Proof of Concept Technologies

Integration with the TDE has been started. A test plan to describe how we will unit test, field test and
conduct integrated testing is under development.

3.0 Status of the Development of Transportation Security SensorNet
(TSSN) Technologies

The TSSN technologies are built upon the results of previous development efforts. The TSSN
technologies use the ACE SOA (Ambient Computing Environment) (Service Oriented Architecture)
which is the forth generation ACE implementation for providing distributed computing, media, and
sensing services to service consumers (clients) in a dispersed environment. ACE SOA is the
infrastructure providing message and data communication, confidentiality, authenticity, and
permissions plus service discovery within an enterprise and between enterprises. Also provided is a
framework for developing new services and clients of services. ACE concepts were use in developing
an initial prototype of a SensorNet with multiple owners [1]. This effort moves beyond the previous
work; the ACE SOA is a reimplementation of the original ideas of ACE but utilizing current
technology and widely accepted open Web Service specifications and publicly available
implementations which are suitable for Sensor Networks. Some of the Web Service specifications in
use are SOAP, the WS-X specifications, and UDDIv3. The ACE SOA infrastructure allows Web
Service based clients and services of one or more enterprises to interact using the following features:

. Provide means for service to publish its URL location and Web Service Interface for discovery

by clients.
. Allow clients to discover service’s URL location and Web Service Interface.
. Provide a secure communication channel between clients and services.
. Provide mechanism for clients to subscribe to service ‘events’ or ‘alarms’.
. Authenticate a client to a service.
. Provide fine grain authorization of a client’s use of a service.
. Provide a framework for development of new clients and services.
. Establish a trust relationship between enterprises

A detailed discussion of the ACE SOA is in Appendix A [2].

The TSSN using the ACE SOA is being implemented in three phases. The first phase will be used in
the field trials described above.

Phasel — Simple service messages based on OGC specifications (used in trials)
Phase2 — Use full OGC specification interface messages.
Phase3 — Use lessons learned from Phasel and 2 to make improvements

The TSSN implementation is composed of SOA Infrastructure for TSSN, the VNOC, and the Mobile
Rail Network (MRN) as shown in Figure 3. Some detail of the VNOC and MRN as well as the
interworking with the TDE is shown in Figure 4 and Figure 5. The status of SOA infrastructure for
TSSN as well as each phase is given below in Tables 1, 2, and 3.

Sat. Provider

P

Sensor Measurements A
Sensor Alarms f-_ AN
Sensor Config s,
Location

Wireless Seal & Tag Sensoret
ReaderWriter Collector

ShipmentData
Train/Sensor 1d’s
Alarms Location

TDE

Internet

GPS
Recelver

Figure 3: TSSN Implementation

. . . -

Communications links not shown
Web Feature

Catalog
Service
Service

ensor Observation Lat/L.
Service avkon
Read EdgeNode Sensor
eader Measurement DB

High-G Tech
Tags/Seals -
Sense Meas
DB

Lat/Lon
Req/Resp

SensorML
DB

ORNL Implementation
I TSSN Implementation
I ACE Implementation

OGC Implementation/
Interface

EdgeNode
GPS

GPS Device

Figure 4: Mobile Rail Network

TSSN Implementation

.
[ACE Implementation

Mobile
Rail OGC Implementation/
Net (MRN) Interface

Communications links not shown

ensor Alerting/ Web Notification
Service

~

Web Feature
Service

TrainPosReg/Resp
Figure 5: Virtual Network Operations Center

Functionality

%% Complete, Tasks

Transport 100%

- SOAP/HTTP

- Apache Axis2 implementation (v1.4)
Confidential Data 100%

- WS-Security, HTTPS
- Axis2 implementation (Rampart)

Remote Exception 100%

- SOAP Fault

- Axis2 has extendable exception mechanism
Server Alert/Alarm 100%

- WS-Eventing

- Implemented mechanism for stand alone clients to receive events.
- TODO: Switch over to WS-BasicNotification

Authentication Service
(signed token)

Authentication, Client- 100%
Server - WS-Security

- Axis2 implementation (Rampart)
Intra-Enterprise 80%

- Axis2 implementation (Rampart)

- Use Standard Token Service (STS)

- TODO: decide on token and signing mechanism/type

- Decision may be impacted by load data rate of Iridium

Inter-Enterprise
Authentication
Trust

20% Complete

- WS-Federation/WS-Trust specifies mechanism (Axis2 Rampart)

- Use Standard Token Service (STS)

- TODO: Verify that implementation provides required functionality

Intra-Enterprise
Authorization Service

0%
- WS-Authorization has not been written
- Can use XACML as language

[TDE Integration

50%
- Testing with local TDE using EDS provided WSDL
- TODO: use EDS located TDE service.

Intra-Enterprise Service
Discovery

90%

- UDDI v3, OpenUDDI Implementation (v0.9.8)

- Implemented common service code for automatic publishing

- Implemented common client code for simplified service discovery.
- TODO: complete enterprise service to clean up stale UDDI info.

Inter-Enterprise Service
Discovery

50%

- UDDI v3, OpenUDDI Implementation replication

- Each enterprise has public UDDI for replication with other enterprise public
UDDIs

- TODO: Need enterprise service to publish public services to public UDDI.

Auditing/Monitoring

50%

- Implemented message logging module for Axis2

- Implemented GUI for message monitoring

- TODO: Evaluate current utility of module and GUI and make improvements.

Table 1: ACE SOA Status

Functionality

%% Complete, Tasks

MRN Communication
Service

50%

- Basics of setting up network connection over Iridium and GSM complete
- Can measure GSM signal strength for connection switch over decision

- TODO: write SOA service code

MRN Sensor Node Service

85%

- Can process all service operations (start, stop, GetCapabilities, etc)
- Can generate alert events based on simulated sensor events

- TODO: complete last HGT AVL Reader commands

MRN Alarm Processing
Service

70%

- Can receive Alerts from Sensor Node

- Can do simple if/then/else event processing and publish alarms to subscribers
- TODO: finish Complex Event Processing code using Esper.

MRN Alarm Reporting
Client

100%
- Subscribes to MRN Alarm Processing Service for Alarms
- Uses simple text output.

NOC Sensor Management
Service

100%
- Accepts TDE start operation
- Sends start operation to MRN Sensor Node

NOC Alarm Processor
Service

70%

- Subscribes to MRN Alarm Processor for Alarm events

- Can receive Alarms from MRN Alarm Processor

- Can do simple if/then/else event processing and publish alarms to subscribers
- TODO finish Complex Event Processing code using Esper.

NOC Alarm Reporting
Service

100%

- Subscribes to NOC Alarm Processor for Alarm Events

- Receives Alarm events and notifies users by SMS message and/or Email based in
information in user notification database

Table 2: TSSN Phase 1 Status

Functionality

% Complete, Tasks

IMRN Alarm Reporting
Client

0%
- TODO: Change to using a web browser interface

IMRN Sensor Node Service

0%
- TODO: Use full OGC service interface (SOS, SAS, FaultReport)

MRN Alarm Processing
Service

0%

- TODO: Use full OGC SAS Alert and FaultReport

- TODO: Develop rules for Complex Event Processing based on GPS, Cargo Info
and Sensor Readings

Service

NOC Sensor Management (0%
Service - TODO: Use full OGC FaultReport
NOC Alarm Processing 0%

- TODO: Use full OGC FaultReport
- TODO: Develop rules for Complex Event Processing Develop rules for Complex
Event Processing

NOC Alarm Reporting
Service

0%
- TODO: Publish user notifications to subscribed clients. This is really just for the
NOC Alarm Reporting Client

NOC Alarm Reporting
Client

0%
- TODO: Similar to MRN Alarm Reporting Client but also subscribes to NOC
Alarm Reporting Service

Table 3: TSSN Phase 2 Status

4.0 Status of System Architecture, Modeling, and Optimization

This task is focused on developing models of the system that can be used to articulate trade-offs and
enable optimization. To develop the understanding required for creating the models we first studied
the taxonomy of sensor network architectures, see Appendix B [3]. In [3] several proposed
architectures for sensor networks are reviewed. We observed that there is a lack of an over-arching
sensor network architecture. In [3] we present some of the issues associated with existing sensor
network architectures followed by a discussion of several specific cases, including the one for multi-
owner environment associated with this effort [1]. We also classify these architectures in terms of
function and compositional elements. We also highlight each architecture’s key attributes in order to
identify their commonalities. In making our arguments we refer to the concept of invariants, which are
components of a system that cannot be changed without losing backward compatibility. Our results
show that these architectures share several invariants.

Also as part of developing appropriate models, we conducted a survey on methods for broadband
internet access on trains, see Appendix C. Here we studied approaches for providing broadband
Internet access to trains and examined some of the factors that hinder their deployment. This survey
exposes some of the basic concepts for providing broadband Internet access and then reviews
associated network architectures. The review of network architectures shows that we can subdivide
networks for providing broadband Internet access on trains into the train-based network, the access
network — for connecting the train to the service provider(s), — and the aggregation network for
collecting user packets generated in the access network for transmission to the Internet. Furthermore,
our review shows that the current trend is to provide Internet access to passengers on trains using IEEE
802.11x; however, a clear method for how to connect trains to the global Internet has yet to emerge. A
summary of implementation efforts in Europe and North America serves to highlight some of the
schemes that have been used thus far to connect trains to the Internet.

There are many ways to deploy TSSN technology. At one extreme every container could be assigned
sensors and reach back communications capability, at another extreme only “valuable” containers
could be assigned a sensor and a low cost radio for communications to a single collector and reach
back communications system, and at another extreme there is no reach back communications
capability on the train and track side readers are deployed. There are trade-offs in all of these cases.
The model developed here is aimed at addressing these system trade-offs.

There are also several success metrics to consider, e.g.,

 System operational cost. This metric is computed per trip, and it consists of the system’s false alarm
cost, the cost of deploying the sensors, repeaters and readers, and the backhaul communications
device, as well as the cost of reporting events in a deployed cargo monitoring system. The costs of
missing an event at a given load (container) as well as the costs of a communications failure at a
sensor are also components of this metric.

» Weighted sum of probability of sensor detection. This metric is computed by adding the probabilities
of detection at each of the loads weighted by each load’s value. Ideally the goal would be to maximize

this metric, so that it is as close to 1 as much as possible. It should be observed that as this metric is
increased the cost of a missed detection is reduced leading to a decrease in the system operational cost.

» Weighted sum of probability of false alarm. This metric is computed by adding the probabilities of
false alarm at each load weighted by the loads’ values. Here the goal would be to minimize this metric,
so that it is as close to 0 as much as possible.

« Sensor network lifetime. It is assumed that all the sensors in the network would be battery powered.
Consequently we would strive to maximize the sensor network lifetime, while keeping the probability
of detection above some threshold value.

* Time taken for event to be successfully received at decision point. With this metric, lower values
would always be desirable. This metric would be computed on a per-load basis, and we assume that if
a load does not have a sensor, then an event can be detected at that load only when the train arrives at
its destination. If, on the other hand, the load carries a sensor, then this metric consists of the time
required to detect the event plus the time taken to report an event.

The model under development will enable the study of system trade-offs with respect to these metrics.
As an illustrative example suppose that the containers are in fixed positions on the train as shown in
Figure 6, and sensors are attached to selected loads (containers). Here the collector of sensor
information and the backhaul communications device is located in the locomotive. In this case we
evaluate how the system operational cost varies as sensors are added to the containers in order of
value.

=3 =1, p=1y_(3111}=1 | A i=3,j=2 p=1 y_(3212)=1 | C

i=2,j=1, p=2 y_{2121}=1

=1, =, p=2 || =1, 2, p=2

k=0 k=1 k=2
Figure 6: Example Train Configuration (red square indicates deployed sensor)

We have developed an initial model and objective function that enables us to address this question.
The model when completed will provide a way to address complex system trade-offs. Under our
initial simplified assumptions (details of this analysis beyond the scope of this report) the system
operational cost as sensors are added to the containers in order of value is given in Figure 7. Note
deploying zero sensors means a system with no protection and has the highest relative system cost;
this reflects the high cost of missing an event.

Further work is needed on the model, objective function, and obtaining realistic model parameters.

Then the framework needs to be applied to study system trade-offs. A contribution of the effort will
be this complex system model.

10

System Cost

12000

10000 +——f

8000 +—

6000 +——

Relative System Cost

4000 +——

2000 -

: I N N I

0 1 2 3

Number of Deployed Sensors

Figure 7: Relative System Cost vs Number of Sensors. Relative system cost includes cost of missing an event,
deployment costs, cost of false alarms and communications costs.

5.0 Status of Communications System Evaluation

Providing visibility, accountability, efficiency, and security requires the coordinated application of
sensing, communications, and the integration of information. There are several trends that need to be
recognized.

a) Increased processing capabilities
The cost of memory and computing has been continually decreasing as a result of Moore’s law. This
trend is expected to continue, enabling new uses of embedded intelligence like those proposed here.
Figure 8 (from®) shows the cost per function trend and forecasts predict an additional two orders of
magnitude in cost/performance by 2010.

1.00E+05

Costreductiontrend
35% peryear

1.00E+04

1.00E+03
Intel X86 is cost

1.00E+02 per Mip

1.00E+M

1.00E+00 DRAM is cost
per megabhit

Cost per function ($)

1.00E-01

1.00E-02

1.00E02
1960 1970 1980 1890 2000 2010 2020

Year 140101

Figure 8 (from’): Cost per Function Trend

! http://www.icknowledge.com/economics/productcosts2.html

11

b) Increased communications capabilities
The communications architecture is composed of: 1) local communications, e.g., using two-way
systems like the SunSpot? or ZigBee®, 2) communications between groups of container, e.g., using
WiFi or Vehicle Infrastructure Integration-VI1I (see below for details), and 3) reach-back to backbone
networks, e.g., using, satellite, cellular technology or VII in some circumstances. Note that
communications “holes” are a property of cellular technology that can result in problems when applied
in the transportation domain, e.g., loss or mistaken tracking of containers. All of these elements of
wireless networking technology continue to advance, resulting in increased capability at lower costs.

The Vehicle Infrastructure Integration (V1) initiative* aims to endow vehicles with the ability to
communicate to other vehicles and surface transportation infrastructure to promote public safety. The
system is intended to warn drivers of impending problems, as well as provide real-time data for the
transportation infrastructure to increase efficiency. Other applications are also envisioned, ranging
from in-vehicle entertainment to measuring weather and road conditions from information transmitted
and collected using the VI1°. The VII also specifies the use of Dedicated Short Range Communication
(DSRC) technology operating at a frequency band of 75 MHz centered at about 5.9 GHz; this band has
been allocated for this application by the FCC. The VII is in its early stages of development, however
1) it is clear that V11 can play a role here and 2) the VII has not yet been applied in a freight security
environment.

Figure 9 shows the conceptual tradeoff between communications costs and capabilities. The trend is
that the cost of these devices will continually decrease, enabling new roles for each technology. This
trend will enable wider spread of two-way communications device.

Cost/Capability Trade-off for Communications
Devices

Two-way radio
Active Tag

10

Hybrid Tag

Cost

Passive Tag
0.1 &

Capability

Figure 9: Cost/Capability Trade-off for Communications Devices

2 http://www.sunspotworld.com/

® http://www.zigbee.org/en/index.asp

*Vehicle Infrastructure Integration (V11): VIl Architecture and Functional Requirements-Version 1.1, FHWA, ITS Joint
Program Office, US Department of Transportation, July 20th, 2005.
http://www.ral.ucar.edu/projects/vii/docs/VIIArchandFuncRequirements.pdf

® VIl Weather Applications Workshop Boulder, Colorado, June 21, 2006.
http://www.ral.ucar.edu/projects/vii/PresWrkShop1/VIl_Goals_Motivation_%20Petty.ppt

12

¢) Improved sensing technologies
Sensors will continue to decrease in size and cost, increase in integrated signal processing, applied in
multisensor configurations, and be more closely integrated with wireless communications capabilities
[4]. These are summarized in Figure 10 [4]. Research will continue radio technologies for TSSN.

p-System Technology
PN D
§2® Nanotechnol
@ anotechnology i Networking

Miniaturization Multi-Sensor Systems
Reduction cf Improvement of.
Costs __\:%\ Accuracy
Wireless inflw-
Communication fUtonomous
$_eswn5e Systems Reliability
ime

Wireless Systems

Figure 10: Future Trends in Sensor Technology (From [4])

6.0 Status RFID Technology Evaluation and Development

Knowledge of the identification and location of containers and other mobile elements of the system is
a key component of the trusted corridor concept. RFID technologies will play a major role in
providing this knowledge. RFID technology has the potential to determine fine scale location of
elements, e.g., containers. To be effectively deployed RFID technology, seals and/or readers must
account for multiple operating frequencies. The technology enabling operation on-metal, i.e., on a
container, of passive RFIDs at multiple frequencies (covering both Europe and the USA) has been
developed at ITTC/KU and is described in Appendix D [5]. Systems have begun to appear which
provide passive RFID based location-detection see [6]. The combination of the new ITTC/KU on-
metal RFID tag technology and the Mojix system offers a potential solution to the identification and
location of containers issues in intermodal facility, especially a train yard and train-to-truck
transportation.

The combination of the new ITTC/KU on-metal RFID tag technology and the Mojix system was
deployed and tested in a warehouse environment. While this initial testing focused on the suitability
of the system on a MES (manufacturing and execution system, i.e., an assembly line) and for scanning
entering and exiting a dock door, the results of this testing lead to conclusions concerning applicability
in an intermodal environment. Analysis of the results of those tests is under way. Additional
experiments are planned.

7.0 Associated Efforts

The current effort is aimed at monitoring cargo movements along a trusted corridor in association with
an integrated data-oriented methodology. This goal is being achieved by performing research and a
deployment of an associated testbed focused on rail transportation issues. A rail partner has been
identified and has agreed to participate in a field trial in the US and Mexico; the technology concepts

13

developed will be validated via deployment of this testbed. The field trial is currently planned for fall
of 2008. This effort is integrating TSSN with the TDE information for correlation between documents
and sensed environment, and integrating real-time tracking information for correlation between
documents and tracking data. The effort is standards-based, leverages the Service Oriented
Architecture (SOA), appropriate OGC efforts and web technologies. A unique partnership with
SmartPort/MARC and EDS (EDS is a subcontractor to KU/ITTC) has resulted from this effort. The
Kansas City SmartPort organization has recognized the strategic transportation position of Kansas
City. Kansas City SmartPort, through the Mid-America Regional Council (MARC), is encouraging
the development of several trade lane projects.

KC SmartPort/MARC is supporting the Cross Town Improvement Project (CTIP). The goal of CTIP
is to build a database application that supports basic rail and truck interchange information needs in
Kansas City. This capability will allow users to view all equipment available for return to the dray’s
origin terminal. The aim is to enable the seamless, efficient and safe movement of legitimate
intermodal freight between facilities in and around economically vital metropolitan areas. CTIP is
also standards based and uses a web-based SOA approach.

US-DoT is supporting Electronic Freight Management (EFM) initiative activities in association with
KC SmartPort/MARC in the Kansas City area. The EFM initiative is an effort aimed at improving
data and message transmissions between supply chain partners. Their goal is to provide a mechanism
for sharing supply chain freight information that is simpler, cheaper and more efficient than traditional
EDI, enabling supply chain partners to access the information, and make it easier to customize the
flow of information between partners. EFM is also standards based and uses a web-based SOA
approach.

KC SmartPort has recognized the potential of leveraging TSSN, CTIP and EFM to positively impact
the freight movement supply chain through logistics transactions (CTIP and EFM) and field sensing
(TSSN). TSSN is the critical element with respect to security and possible visibility by appropriate
government agencies. The combined vision is shown in Figure 11.

| Stakeholder o ;
| " er |
i Computer Purchasing SAP Oracle Enterprise |
i Environments Systems Systems :

Web Services (EFM) EDI
Other Web Services
Secure Internet Transactjons

Member Event :
Management Management :

Satellite \ired

Services
Architecture

{ SmartPort
i Applications
i Environment

Field Sensing SensorNet

Environment Cellular

ifEEs Wireless

Sensors - -

Figure 11

The combination of these efforts has significant potential. Recognizing this potential, in June 2008,
KC SmartPort started to coordinate monthly meetings for the groups involved in TSSN, CTIP and

14

EFM. The goal is to create a common, open environment with low entry barriers to enable broader
access by stakeholders while contributing a venue to commercialization. The KU/ITTC and EDS
teams are supporting the interactions between these efforts to realize the vision shown in Figure 11.
This activity will ensure issues associated with security and possible visibility by appropriate
government agencies are considered.

8.0 Project Timeline

Figure 12 is the current project time line. The field trial is target for completion by then end of 2008.
The efforts associated with the system modeling, communications, and RFID are planned to be
completed by about April 2009 and a report describing these activities delivered by mid-June 20009.
Activities associated with SmartPort, EFM, and CTIP will continue until June 2010.

Project Timeline

Final Report

EFMICTIP/SmertPort Activities

Interim Report

RAD applications

Communications Systems

Detaintegration and processing

Modeling-systens engineering capability

Intermodal Technology Proof of Concept and Integration

o) 6 12 18 24 0 P
Aug 07 Aug 08 North Aug 09 Aug 09
Field Trials Project
Completed Complete

Figure 12: Project Timeline

15

9.0 References

[1] Gary Minden, Victor Frost, David Petr, Douglas Niehaus, Ed Komp, Daniel Fokum, Pradeepkumar
Mani, Andrew Boie, Satyasree Muralidharan, and James Stevens, “Phase One Report: A Unified
Architecture for SensorNet with Multiple Owners,” Technical Report ITTC-FY2008-TR-41420-06;
December 2007.

[2] Leon S. Searl, “Service Oriented Architecture for Sensor Networks Based on the Ambient
Computing Environment,” Technical Report, ITTC-FY2008-TR-41420-07, February 2008.

[3] D.T. Fokum, V.S. Frost, P. Mani, G.J. Minden, J.B. Evans, and S. Muralidharan, “A Taxonomy of
Sensor Network Architectures,” ITTC-FY2009-TR-41420-08 July 2008.

[4] Kanoun, O. and H.-R. Trénkler, Sensor technology advances and future trends. IEEE Transactions
on Instrumentation and Measurement, 2004. 53(6): p. 1497-1501.

[5] Supreetha Aroor and Daniel D. Deavours, "A Dual-Resonant Microstrip-Based UHF RFID
“Cargo” Tag," Proc. International Microwave Symposium, June 15-20, 2008, Atlanta, GA, USA.

[6] http://www.mojix.com/

10.0 Appendixes

Appendix A. Leon S. Searl, “Service Oriented Architecture for Sensor Networks Based on the
Ambient Computing Environment,” Technical Report, ITTC-FY2008-TR-41420-07, February 2008

Appendix B. D.T. Fokum, V.S. Frost, P. Mani, G.J. Minden, J.B. Evans, and S. Muralidharan, “A
Taxonomy of Sensor Network Architectures,” ITTC-FY2009-TR-41420-08 July 2008.

Appendix C. Daniel T. Fokum, Victor S. Frost, “A Survey on Methods for Broadband Internet
Access on Trains” ITTC-FY2009-TR-41420-xx July 2008.

Appendix D. Supreetha Aroor and Daniel D. Deavours, "A Dual-Resonant Microstrip-Based UHF
RFID “Cargo” Tag," Proc. International Microwave Symposium, June 15-20, 2008, Atlanta, GA, USA

16

The University of Kansas /

M FORMATION

& TELECOMMUNICATION
[ECHMNOLOGY CENTER
The University of Kansas

Technical Report

Experiences from a Transportation Security
Sensor Network Field Trial

Daniel T. Fokum, Victor S. Frost, Daniel DePardo,
Martin Kuehnhausen, Angela N. Oguna,
Leon S. Searl, Edward Komp, Matthew Zeets,
Daniel D. Deavours, Joseph B. Evans,
and Gary J. Minden

ITTC-FY2009-TR-41420-11

June 2009

Project Sponsor:
Oak Ridge National Laboratory
Award Number 4000043403

Copyright © 2009:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559

All rights reserved.

CONTENTS
I Introduction 4
Il System Architecture 6
I-A Trade Data Exchange e 7
II-B Virtual Network Operations Center. v ... 8
I-C Mobile Rail Network e 9
1-C1 Mobile Rail Network Hardware 9
[1-C2 Mobile Rail Network Software 11
Il Experiments 12
I-A Road Test with Trucks 12
I-B Short-haul Rail Trial i 14
IV Postprocessing of Experimental Data 15
\% Results 17
V-A VNOC to MRN to VNOC Interaction 18
V-B Elapsed Time from Alert Generation to AlarmReporting Segv 19
V-C End-to-end Time from Event Occurrence to Decision Maketifidation 21
V-D TDE to VNOC to TDE Interaction 23
V-E VNOC to TDE to VNOC Interaction 25
V-F Summary of Time Statistics 26
V-G Messages by Schema Element, 26
V-H Message SizeS, 27
V- Intercommand and Interalarm Times e 29
V-J HSDPA Signal Strength e 29
VI Impact on System Modeling 30
VIl Refinements Based on Preliminary Results 32
VIII Conclusion 33

Acknowledgments 33

References

LIST OF FIGURES

1 Transportation Security Sensor Network (TSSN) Architecture.
2 Virtual Network Operations Center Architecture
3 TSSN Collector Node Hardware Configuration oo ...
4 Container Seal L e
5 Mobile Rail Network Collector Node Architecture
6 Partial Map of Road Test with Event Annotations
7 Short-haul Rail Trial Configuration.
8 Partial Screen Shot of e-mail Message Sent During Trial
9 LogParser Framework Showing Message Couples and TransmitkeePairs
10 Request/response and Network Times from VNOOVMRN — VNOC
11 Processing Times at MRN e
12 Sequence Diagram with Messages Involved in Decision Milkgification
13 Elapsed Time from Alert Generation to VNOC AlarmReport®grvice
14 Elapsed Time from Event Occurrence to Alert Generation
15 Time Taken to Deliver SMS Messages for All Carriers
16 Request/response and Network Times from TBEVNOC — TDE
17 Processing Times at VNOC e
18 Request/response and Network Times from VNOCIDE — VNOC
19 Processing Times at TDE e
20 Component Interactions inthe TSSN e
21 Intercommand and Interalarm Timesat MRNo oL
22 HSDPA Signal Strength versus Time i oo
23 HSDPA Signal Strength and Geographical Location
LIST OF TABLES
I Summary of Time Taken to Deliver SMS Messages« cuuw.....
Il Summary of Time Statistics
i Number of Messages Generated by Schema Element

IV Summary of Message Size Statistics e e

Abstract

Cargo shipments are subject to hijack, theft, or tamperigthermore, cargo shipments are at
risk of being used to transport contraband, potentialluligsy in huge fines to shippers. We seek to
mitigate these risks through development of a Transportadiecurity Sensor Network (TSSN) based on
open software systems and Service Oriented Architectu@A)Srinciples. The TSSN is composed
of three geographically distributed components: the MobRail Network (MRN), Virtual Network
Operations Center (VNOC), and the Trade Data Exchange (TD4&hg commercial off-the-shelf (COTS)
sensors, the TSSN is able to detect events and report thesantto appropriate decision makers. Two
experiments have been conducted to assess the TSSN'silgyita monitoring rail-borne cargo. Log
files were collected from these experiments and postpredess this paper we present empirical results
on the interaction between various components of the TS3Msd results show that the TSSN can be
used to monitor rail-borne cargo. We also discuss some ofdbearch issues that must be addressed
before the TSSN can be deployed.

Index Terms

Service oriented architecture, Mobile Rail Network, Trddeta Exchange, Virtual Network Opera-

tions Center

. INTRODUCTION

In 2006 the FBI estimated that cargo theft cost the US econcetwden 15 and 30 billion dollars per
year [1]. Cargo theft affects originators, shippers, antkirers as follows: originators need a reliable
supply chain in order to stay afloat, but cargo thefts adweraiéct the reliability of the supply chain
(A receiver’s ability to receive goods in a timely mannereait the originator.). Shippers, on the other
hand, hold liability and insurance costs for shipments titiesy would like to maintain low costs due to
cargo theft. Finally, receivers are impacted by out-ofdstaed scheduling issues due to cargo theft. Most
non-bulk cargo travels in shipping containers. Contairerdport is characterized by complex interactions
between shipping companies, industries, and liabilitymmeg [2]. Stakeholders (originators, shippers, and
receivers) are looking for a higher degree of visibilitycagntability, efficiency, and security in complex
container transport chains. Deficiencies in the contairemsiport chain expose the system to attacks
such as the Trojan horse (the commandeering of a legitinnaténg identity to ship an illegitimate or
dangerous consignment), hijack, or the theft of goods.flicgencies in these areas can be overcome by
creating secure trade lanes (or trusted corridors), eslheat intermodal points, for example, at rail/truck

transitions. Research and development is underway tazectie vision of trusted corridors.

The work described here focuses on: advanced communicatietvgorking, and information technol-
ogy applied to creating trusted corridors. The objectivehaf tesearch is to provide the basis needed
to improve the efficiency and security of trade lanes by combinmeal-time tracking and associated
sensor information with shipment information. One crucidearch question that must be answered in
order to attain this objective is how to create technologdhest will allow continuous monitoring of
containers by leveraging communications networks, sesnsemvell as trade and logistics data within an
environment composed of multiple enterprises, owners,aadators of the infrastructure. The resulting
technologies must be open and easy to use, enabling smalinadiim sized enterprises (SMES) to
obtain the associated economic and security benefits.

To achieve improved efficiency and security of trade laneshawe developed a Transportation Security
Sensor Network (TSSN), based on Service Oriented Architecturd)$8) principles, for monitoring
the integrity of rail-borne cargo shipments. The TSSN is compader Trade Data Exchange (TDE) [4],
Virtual Network Operations Center (VNOC), and Mobile RaiétMork (MRN). The functions of each
of these components are discussed in greater detail in 8dttibhe TSSN detects events and reports
those important to decision makers using commodity netsofior the TSSN to be deployed we need
to understand the timeliness of the system; however, we dd&maw a priori how the TSSN would
perform due to the unknown execution time of SOA-based progrf5] and [6]), unpredictable packet
latency on commodity networks, and the slow and potentiafiseliable nature of SMS (Short Message
Service) [7] for alarm notification. Thus, we have carried oud &xperiments to characterize the TSSN
system, particularly the end-to-end time between eventiroence and decision maker notification using
SMS. The data collected from these experiments will be used ihefado investigate system trade-offs
and the design of communications systems and networks foitarimg rail-borne cargo.

In this paper we present a high-level description of our @argpnitoring system and experimental
results documenting the interactions between various ooents of the TSSN. These results indicate
that decision makers can be notified of events on the trainimelyt manner using the TSSN. The rest of
this paper is laid out as follows: In Section Il we present acdptson of the TSSN system architecture
including the components. Section Il also discusses thewsaed configuration used in the MRN. In
Section Ill we discuss two experiments conducted to assessuikability of the TSSN system for cargo
monitoring. Section IV discusses the framework used to posgss the log files from our experiments.
Section V presents empirical results showing the interadbetween various components of the TSSN.
In Section VI we discuss how the empirical results can be used model to determine optimal or

near-optimal sensor placement. Section VIl discusses sefirements to the TSSN architecture based

on preliminary results. Finally, we provide concluding reksain Section VIII.

I[I. SYSTEM ARCHITECTURE

To achieve the objectives presented in Section | we have budystem called the Transportation
Security Sensor Network (TSSN). The SOA and web services used in the €8&Ne the integration
of different systems from multiple participating partnekdoreover, the use of SOA and web services
enable data to be entered once and used many times. Usingearormahoff-the-shelf (COTS) sensors,
the TSSN is able to detect events and report those relevant ppeski and other decision makers as
alarms. Furthermore, the TSSN supports multiple methods fafyimgt decision makers of alarms.

The TSSN uses open source implementations of Web service sp@oifistandards such as Apache
Axis2 [8] and OpenUDDI [9]. Axis2 is an implementation of tBémple Object Access Protocol (SOAP)
[8], where SOAP is used in Web services to exchange structofednation between a service provider
and a requester [10]. Universal Description Discoverydrdaéon (UDDI), on the other hand, provides
a service directory and allows a “standard-based appraadbcate and invoke a service, and manage
metadata relating to that service [10].” Support for mudtighvners and users is done through use of
WS-Authorization, WS-Trust, and WS-Federation. Our current TS&bfype uses sensors and readers
from Hi-G-Tek [11]. Moreover, the TSSN supports terrestriahoounication technologies such as HSDPA
(High-Speed Downlink Packet Access) [12] and satellite camigation technologies such as Iridium
[13]. The use of HSDPA and Iridium allows decision makers to béfied of alarms through SMS
(Short Message Service) and/or e-mail messages. There arantbperformance benefits to using both
HSDPA and Iridium, including the following: it is cheaper afadter to send messages over an HSDPA
link versus an Iridium link; on the other hand, a satellitkklis needed as an access technology in those
parts of the countryside where an HSDPA connection is urebail

Since the TSSN system is currently a prototype, there is a needtherglog files that will allow for
system debugging as well as to capture metrics that can letasyaluate system performance. Logging
is currently done at the MRN, VNOC, and TDE using Apache lodg4f][Log4j enables “logging at
runtime without modifying the application binary [14].”

The TSSN system is composed of three major geographicallyliséd components: the Trade Data
Exchange (TDE), Virtual Network Operations Center (VNOC), #mel Mobile Rail Network (MRN), as

shown in Fig. 1. Each of these components is presented in gt in the following subsections.

Satellite

Q network 0
&l ¥
SMS alarm s " e"
ensor measurements N>
i Sensor alarms ~
Display Sensor configurations
alarm Location information

Shipment data

Train & sensor IDs LR

Alarms N

Location Cellular

information network
Wireless seal GPS Receiver

reader/writer

Cargo seal Aé
| G- 8 —&

Database

Fig. 1. Transportation Security Sensor Network (TSSN) Architecture

A. Trade Data Exchange

The Trade Data Exchange (TDE) contains shipping data and itcorteects commercial, regulatory
and security stakeholders. The TDE is based on a “technolegyral, standards-based, service-oriented
architecture [4].” The TDE is hosted on a server that is gedycafly separated from the VNOC, and it
responds to queries from the VNOC. The TDE also stores alarnsages sent by the VNOC. Finally,
the TDE sends startMonitoring, stopMonitoring, and getLiocaiessages to the VNOC.

In addition to the functions mentioned above, the TDE will mmnthe progress of shipment and
other logistics information. The TDE captures commercial alghrance data including: the shipping
list, bill of lading, commercial invoice, Certificate of Onig(for example, NAFTA Letter), and shipper’s
export declaration. It also validates and verifies data tarenaccuracy, consistency, and completeness.
The TDE will monitor the progress of the documentation andfnagsponsible parties when errors or
incompleteness pose the threat of delaying a shipment.l¥itia@ TDE will also forward notification to
the customs broker to request verification of the trade caigon documents. The customs broker accesses
the TDE via the same portal to review and verify the trade dantation. The TDE will also allow for
collaboration between participating shippers, thirdiypéogistics providers, carriers and customs brokers

to define and document business requirements and risk assgssquirements.

ED =

User Alarm
Client

Lat./Long.

Alarm
Subscription/Event

Sensor Alerting/ Web

Sensor Alarm/ Shipment Data Notification Service

Set Alarm Rules
Alarm subscription/
Alarm publication

Sensor
Management
Service

Fig. 2. Virtual Network Operations Center Architecture

B. Virtual Network Operations Center

The Virtual Network Operations Center (VNOC) is the shippenterface to clients and services that
are outside the shipper’s network—the TDE. The VNOC is also #mral decision and connection point
for all of a shipper's MRNs. The VNOC performs the followingnfttions:

» Receives messages from the MRN.

» Obtains event-associated cargo information from the Tial& Exchange (TDE).

« Makes decisions (using rules) on which MRN alarms are ighareforwarded to decision makers,
for example, a low battery alarm is sent to technical stafilevian open/close event is sent to
decision makers. These decisions are made using a complex gnacessor, Espef15], which
takes into account shipping information as well as data ¢iaample, geographical location) from
current and past MRN alarms.

« Combines cargo information with an MRN alarm to form a VNO@ral message that is sent (by

SMS and/or e-mail) to decision makers.

!Esper was chosen because of the flexibility that it offers in defining.rileghermore, Esper was designed to operate on
a stream of events, such as the set of incoming alarms from the MRNt Aad a rich syntax for specifying the relationship

between elements of the input stream.

(") 7

3-Axis USB to Serial HSDPA
Accelerometer Converter Modem

l
HQ
+®

1 J
Ruggedized | RF Ampllfler
Notebook PC — Interrogation | /N o\
Transceiver j_,] jf
|_]
| |
USB to Serial | |
Converter [GpPs |
s L l |
) (. B i
v = — | |
74 VDC to 120 VAC GPS I !
Power Inverter Iridium Modem | I
; ‘ | |
(Lridium |
6y & - '
1|7 .
mmmmm USB L L
s Serial
<+—» RF -
_ Locomotive Cab J External Antenna
Electronics Suite Array Assembly

Fig. 3. TSSN Collector Node Hardware Configuration

« Forwards startMonitoring, stopMonitoring and getLocatiostructions from a TDE client to the

TSSN collector node.

Fig. 2 summarizes the VNOC and its components.

C. Mobile Rail Network

1) Mobile Rail Network Hardware:The MRN subsystem hardware consists of a set of wireless
shipping container security seals and a TSSN collector node.cttector node is composed of two
major sections: an electronics suite mounted in the lociva@iab and a remote antenna assembly that
is magnetically attached to the exterior of the locomotkig. 3 summarizes the key components of the
TSSN collector node.

The electronics suite contains a power inverter, a secuedy imiterrogation transceiver, a computing

10

platform, wireless data modems, a three-axis accelerajreetd a GPS receiver. The antenna assembly
consists of three communications antennas, a GPS receiiennan and a bidirectional RF amplifier. A
bundle of four 5.5 m£ 18 ft.) lengths of low insertion loss RF coaxial cable conrelectronics suite
devices to corresponding antennas.

Powering the TSSN collector node using the available 74 V dc lative power posed a challenge.
The devices that comprise the node require four differenngdativoltage levels, which ideally would be
provided through the use of typical dc-to-dc conversiommégues, but in the interest of quickly deploying
a proof of concept system, a 74 V dc to 120 V ac conversion wiestsel. Inverting the available dc
power to 120 V ac allows plug-and-play use of the ac power edars provided with individual devices.
A modified sine wave power inverter mounted in the electrosigse enclosure supplies 250 W of ac
power capacity to the collector node.

The TSSN is designed to monitor and report security seal eveciisding seal opened, seal closed,
tampered seal, seal armed, and low battery warnings. Pingegsd storage of these events is tasked
to a ruggedized notebook computer, which also serves astal powireless communications resources.
The three-axis accelerometer mounted in the electronide siimonitored by the notebook computer,
which logs movement data.

Container physical security is monitored using a systerhwees originally designed for tanker truck
security [11]. The interrogation transceiver communicatél active and battery-powered wireless data
seals over a wireless network using a 916.5 MHz signal. Therrimgation transceiver communicates
with the notebook computer via a serial data connection. Tmainer seals use a secondary 125 kHz
channel for communications with handheld programming gmeint. The container seals are equipped
with flexible wire lanyards that are threaded through comtiakeeper bar lock hasps. Fig. 4 shows a
container seal with a flexible wire lanyard.

Initial tests of the security seal and reader system redesdad ranges that were not adequate for
the needs of this project. A bidirectional RF amplifier addetieen the interrogation transceiver and
the antenna dramatically improved system performanceltieg in typical seal read ranges of several
freight car lengths during field tests. It is understood thanewith this improvement in read ranges we
will not be able to monitor an entire train with our currenthaology choice. Different seal and/or mesh
networking technologies would be needed for monitoringdhgre length of typical cargo trains.

Communication between the MRN and the VNOC is accomplisheidgua HSDPA cellular data
modem. An Iridium satellite modem is also available and iended for use in remote locations that

lack cellular network coverage. System communicationsgugtie Iridium modem are in the process of

11

Fig. 4. Container Seal

Alarm
Processor
Service

Set Alarm Rules,
Alert publicatig

Sensor Sensor Config.
Measurements Measurement req./resp

SensorNode
Service

Service

HSDPA |[Iridium
L modem

]

Fig. 5. Mobile Rail Network Collector Node Architecture

being implemented. The Iridium modem is a combination urdt fincludes a GPS receiver, which is
used to provide the MRN position information.

2) Mobile Rail Network SoftwareThe MRN software consists of a SensorNode service, an Alarm-
Processor service, and a Communications service. The Serdmdéovice finds and monitors sensors

which have been assigned to its control. The SensorNode eanamages several sensor software plug-

12

ins, for example, a seal interrogation transceiver plugsid a GPS device plug-in, that do all the work
on behalf of the SensorNode service. During typical opemagi@ch container seal listens for interrogation
command signals at three second intervals. The interragatinsceiver also queries the seals periodically
(This took place every two minutes in these experiments.thénevent of a seal being opened/closed
or tampered with, the seal immediately transmits a messagleet SensorNode service running on the
Collector Node. The message contains the seal event, a uségiéD, and event time. The SensorNode
service passes the seal message as an alert message teitteethat has subscribed for this information.
The AlarmProcessor service determines messages from therSedsoservice that require transmis-
sion to the VNOC. Alarm messages include the seal eventt ¢vea, seal ID, and train’'s GPS location.
The Communications service currently logs the HSDPA sigmahgth. In the future we plan to build
some intelligence into the Communication service so thedit switch between an Iridium and an HSDPA

signal. Fig. 5 shows the key software functions of the MRN.

[1l. EXPERIMENTS

We have conducted two experiments to assess the suitatfilihe TSSN system for cargo monitoring
as well as to collect data that would be used to guide the dediguture cargo monitoring systems. In
this section we present the experimental objectives andpsalata collected during the tests, and issues

that were encountered during the tests.

A. Road Test with Trucks

The first experiment was conducted on the roads around LawrKaosas to determine the following:

« Approximate communication distances between the Hi-G-S@ksors and the readers.

« Processing time through the system, including MRN, VNOC, &b, to SMS/e-mail messages to

decision makers.

« Correct information is reported by the TSSN collector nodeuditig valid GPS coordinates.

The test was carried out using two pickup trucks, one of whiatl the locomotive cab electronics
suite in the truck bed (The external antenna assembly was tewbiio the tailgate of this truck.), while
the other had a laptop that was used to control and monitoMti@®C. The VNOC was located in
Lawrence, Kansas while the TDE was located in Overland Parks&a Both trucks also had seals in
their truck cabins so that seal open and close events coukinidated and reported. The seals were
opened and closed at selected intersections along theotigst that were easily identifiable on Google

Maps [16].

13

W

g/ﬂ.,_,, i 4] H’eiaa-
bl " W EAF

aaaaaa o Bugors
7

e (AL S R ~QD__ L
g
g
= E
Hesper
o &
Sibley o
g 5
E
Pleasant
Grove
4 v
2 mi
gz km ©2008 Gosgle - Map data ©2008 Tele Aflas - o GiLse [

Fig. 6. Partial Map of Road Test with Event Annotations

Fig. 6 shows a trace of our route and the events overlaid on I8ddgps. The pink tear drops indicate
an open event, green tear drops a close event, pink tacksatedh GPS lost signal, green tacks indicate
where the GPS signal was regained, a red exclamation sigoaiedi where HSDPA connectivity was
lost, and a green arrow indicates where HSDPA connectivity kegained. In summary, the road tests
went well because open and close events were propagatestityrthrough our system. Furthermore,
the system was able to recover from a dropped HSDPA connection

Our test results indicate that all open and close events vegrerted as expected. The sensors and
readers performed reliably. However, it is worth notingt tthee reader failed to read the sensors when the
trucks were over 400 m apart on a hilly road. Finally, in ourexkpent we were able to combine sensor
and shipment information to present reports to distributecision makers. As a result, we conclude that
the TSSN prototype worked in a mobile scenario.

During this experiment, system time on the TSSN Collector Nods maintained using the default
mechanism in the Linux kernel (Even though we had a GPS recaividrei MRN, it was not used to
maintain system time.). Analysis of event logs generatedhenMRN and VNOC revealed that there
was a significant amount of clock drift on the TSSN Collector Noderdy this relatively short (about
2.5 hours) trial. The time recorded at the VNOC for receipt ohessage, in some cases, was earlier
than the time recorded at the TSSN Collector Node for sendingnégssage. Since time at the VNOC is
controlled by a Network Time Protocol (NTP) [17] server, we dade that the clock drift is occurring
on the TSSN Collector Node. Correcting, or at least minimizihe, clock drift at the TSSN Collector

Node is critical for evaluating overall TSSN performance, sitice Collector Node is responsible for

14

EDS in Overland Park,
Kansas

V — —,

- '~
R MRN N,
K (On the train) N\
: Iridium GPS \-
‘osm \
N\ . / \
. Start * .
/ Sensor Samser . Monitorihg @ Poll Sensor \
) Mané?:nn;ent W e | ensor Node = ====== > Management | -
/ 1
e '
. 1
| (KU Campus) : Alert | RF Link !
. |
- I A [A
; SMS -’
\ Email Alarm Alarm Seal /
— ’
-\ Reporting - Alarm* Processor /-
. End User . : ’
N /
N ’
/
'/

Query shipment data from TDE

Fig. 7. Short-haul Rail Trial Configuration

establishing the time at which seal events occur. In the werdion of the TSSN we have resolved the
clock drift problem through a combination of software anddwaare. It should be noted that in spite of
the clock drift in the TSSN collector node we were able to corfectcertain delays in our data. We

discuss these corrections in Section V.

B. Short-haul Rail Trial

Our next experiment was carried on a train making an appratdly 35 km (22 miles) trip from an
intermodal facility to a rail yard. Our objectives in thispetiment were the following:

« To determine the performance of the TSSN system when deteatérgseon intermodal containers
in a rail environment.

» To investigate if decision makers could be informed of eseint a timely manner using SMS
messages and e-mails.

« To collect data that will be used in a model to investigateteaystrade-offs and the design of
communications systems and networks for monitoring rafkk cargo.

Fig. 7 shows the configuration used in the short-haul rail .tlialthis experiment the VNOC was

located in Lawrence, Kansas, the TDE was located in Overlankl Ransas, while the TSSN collector

15

NOC_AlarmReportingService:
Date-Time: 2009.01.07 07:12:17 CST/
2009.01.07 13:12:17 UTC

Lat/Lon: 38.83858/-94.56186, Quality: Good

http://maps.google.com/maps?q=38.83858.-94.56186

Trainld=ShrtHaull

Severity: Security

Type: SensorLimitReached

Message: SensorType=Seal
SensorlD=IAHA01054190
Event=Open Msg=

NOC Host: laredo.ittc.ku.edu

Shipment Data:

Car Pos: 3

Equipment Id: EDS 10970
BIC Code: ITTC054190
STCC: 2643137

Fig. 8. Partial Screen Shot of e-mail Message Sent During Trial

node was placed in a locomotive and used to monitor five séateg on intermodal shipping containers
and in the locomotive.

During the experiment, events were simulated by breakimbchwsing a seal (sensor) that was kept in
the locomotive. The VNOC reported these events to decisiokersausing e-mail and SMS messages.
Fig. 8 shows the content of one of the e-mail messages thatevdscthe decision makers.

In Fig. 8, the sensor ID, latitude and longitude data, and tetygre come from the MRN, while the
shipment data comes from the TDE. The VNOC combines these pa#dasormation into an e-mail
message that also includes a link to Google Maps, so thatxhet ¢ocation of the incident can be
visualized. The ultimate value of the TSSN is getting this typeneksage to the decision maker.

During the test the reader lost communication with the skmls brief period along the route. Future
experiments will determine whether or not this loss of catingy was due to RF interference. In spite
of this, the experiment was a success as events were delgcted seals and reported to decision makers
using both e-mail and SMS messages. Extensive log files werectedl during the test and they are

being postprocessed to obtain data on TSSN system performance.

IV. POSTPROCESSING OEXPERIMENTAL DATA

In this section we discuss the framework for postprocesgirgesults of our experiments. Following
the short-haul rail trial we collected log files from the VNOKZRN, and TDE. These log files contain
data on message sizes, timestamps, event type, messagéniygaing/outgoing) amongst other data

elements. Our objective was to postprocess these files taatealhe performance of the TSSN system.

16

Transmit/receive
pair

TDE

VNOC

Fig. 9. LogParser Framework Showing Message Couples and Titaesmive Pairs

Postprocessing of log files from geographically distributethputers was accomplished using a Java
library (LogParser) that was developed in-house. First, itvary read in all available information in
each log file including time, message size, from and to addsess well as the original SOAP message.
Information from all (MRN, VNOC, and TDE) of the log files in an egment was combined into a
single collection of log entries. We expect that every mgssaansmitted in the TSSN should result in
at least two log entries—a transmit log entry (at the orightpentity) and a received log entry (at the
receiving entity). The LogParser library identified log erdraes:

« Transmit/receive pairs, that is, the outgoing and incomoy entries with the same SOAP WS-
Addressing (The SOAP WS-Addressing specification “providesspart-neutral mechanisms to
address Web services and messages [18]."), and

» Couples, that is, SOAP request/response message pairs.

Fig. 9 shows the relationship between log entry couples artsmit/receive pairs. Suppose the TDE
sends a message to the VNOC requesting the current MRN docdthe circled “1” and “2” in Fig. 9
denote the log entries representing message transmissiontlie TDE and receipt of this same message
at the VNOC. Couples are a bit more involved; much of the comoaiion between client/server is
based on a request/response model. As a result, there arelated messages which contain additional

information to establish their relationship:

17

1) REQUEST: from client to server asking for something; and

2) RESPONSE: from server back to the client with the response.

Log entry couples are marked by the records for the outgoiqgest and response messages. Conse-
guently, the circled “3” and “5” in Fig. 9 constitute the logtgncouple for the VNOC forwarding the
location request message to the MRN and the MRN'’s originatiba response respectively. Using the
receive pairs for records “3” and “5”, we can also identifytres “4” and “6.”

With this framework, programs were written against the logryecollection to extract the number of
messages sent by each service, request/response time §eages, processing time at either the MRN,
VNOC, or TDE, the time that messages were carried by the nejvaort message sizes. Additional
information, for example, latitude, longitude, sensor,|Bsd event timestamps, could be extracted from
the SOAP message using XPath expressions. XML Path langidph) allows for addressing “parts
of an XML document [19].” XPath also provides “basic faddi for manipulation of strings, numbers

and booleans [19].”

V. RESULTS

In this section we discuss the results of the TSSN system ei@iuaased on the short-haul rail trial.
One objective of our experiments was to determine whetheiside makers could be notified of events
in a timely manner. Due to significant clock drift in the TSSN colite node, we can only present an
estimate of the time taken for an event report to travel frtwe MRN to the VNOC. However, exact
time values can be computed for other TSSN component intenactio

In addition, we present time statistics on interactionsveen the TSSN component subsystems. These
statistics hint at how the aggregate time from event detedth decision maker notification is distributed
among the various services and communication links in the TS@H. this information we will be able
to guide system refinements to further reduce the overall. timeur analysis we present results on the
following:

« Service request processing timeThis is the time between when a service receives a request and
when a response message is composed. Using Fig. 9, this timne@mputed as the time difference
between log entries “5” and “4.”

« Request/response timeThis is the time taken to get a response from a remote servickiding
the processing time. Using Fig. 9, this time can be computethedime difference between log

entries “6” and “3.”

18

o Network time. This is the time taken to get a response from a remote serviadding the
processing time. This can be computed by subtracting théceerequest processing time from the
request/response time.

Our time analysis in this section will examine request/oese messages going from the VNOC to the
MRN back to the VNOC, from the TDE to the VNOC back to the TDE, amuhfrthe VNOC to the
TDE back to the VNOC.

A second objective for the short-haul rail trial was to conftlrat messages were being passed correctly
between the different components of the TSSN. As a result, weiggraa summary of the messages
exchanged between different parts of the TSSN system.

The last objective of the short-haul rail trial was to colldeta that will be used in a model [20] to
design systems for monitoring rail-borne cargo and deteentiade-offs. Message sizes and interevent
times are two components of this model. As a result, we pteséable summarizing the message Size
statistics between different components of the TSSN. We alsgept histograms summarizing message
intercommand and interalarm times at the MRN. Both of théseg are needed, in conjunction with
message sizes, to compute the cost of reporting messagist(idalarms and commands were simulated
in our experiment; deployed systems will show differentistizs for intercommand and interalarm times.).

Finally, this section also presents results showing how HSBiBAal strength varied with time during
the short-haul test. The HSDPA signal strength results maysked to help determine when to switch
between HSDPA and Iridium.

A. VNOC to MRN to VNOC Interaction

The statistics on VNOC to MRN to VNOC interaction allow us t@arconclusions on the time taken
to complete one component of processing startMonitoritapMonitoring, and getLocation messages. In
addition, these statistics allow us to gain insight into dhe-way network delay from the TSSN collector
node to the VNOC—a delay that is one component of sending anteeport from the MRN to the
VNOC. Fig. 10a is a histogram showing the request/responseftr messages going from the VNOC to
the MRN and back to the VNOC. Using Figs. 10b and 11 we cannatlada that the request/response
time is dominated by the processing time. In this instanae rdgquest/response time appears almost
equally split between the processing and network timese Nt in Fig. 11 our minimum i§ within

the resolution of the experiment.

2It should be noted that message sizes can be computedori; however, the distribution of these messages cannot be

determined beforehand.

19

15F----——=——————- e i i e C
T o] —— Fomm o oo A HE R A 1
0 Medan =395 | Median=388 . | | | | |
100 Tl |- -Std-Bev=240- - : Mean=372 o
- | | Min.=090 | | g O[Std-Dev=t24 - T
3 ! Max. = 10.96 ! 3 Max 0 s 791 | | | |
! ! ! ! o s e | 1 | |
U : : : : 4777777\ 77777 [[-7]
5r--- - - e ! ! — ! !
1 o AR .- {1501 (R -
0 1 1 0 1 ‘ 1
0 2.5 5 7.5 10 12.5 0 1 2 3 4 5 6 7
Request/response Time (s) Network Time (s)
(a) Request/response times (b) Network times

Fig. 10. Request/response and Network Times from VNOQVRN — VNOC

35t T CoTT T CooTT
v
! ! 1Med|an‘ = 0.01: !

251 - e ;Mean;‘tO.ﬁl”;”””,;
! ! 'Std. Dev = 1.69 !

2200 fiooeoodeooood Min. =0.00- - -
3 ! ! 'Max. ='5.21 ' !
Sustl b
T e R S
s St S SO

0 | | | : s

0 1 2 3 4 5 6

Processing Time (s)

Fig. 11. Processing Times at MRN

Due to clock drift in the TSSN collector node, we are unable taaiobstatistics on the one-way
network delay for sending an MRMlarm message—which indicates an event at a sensor—to tf@G/N
However, it is reasonable to assume that the MRN/NOC links are symmetric thus, the one-way delay

from the MRN to the VNOC is approximately 1.89 s.

B. Elapsed Time from Alert Generation to AlarmReporting Service

The time taken for the TSSN to process an event report is an inmpamiatric in evaluating this
system. Furthermore, demonstrating that this metric is efatder of several seconds can help convince

decision makers of the TSSN'’s utility. Due to clock drift in theRM we cannot compute an exact value

20

Electronic MRN MRN VNOC TDE

Seal SensorNode AlarmProcessor AlarmProcessor
Alert burst Alert
MRN_Alarm
———Alam |

Shipment Query
Shipment Query Response
Validated Alarm

alidated Alarm Response

| aldate A ——]

VNOC Email

= = = = L AlarmReporting server
Yo
(el

\«q/e

SmTp Message
AN

Fig. 12. Sequence Diagram with Messages Involved in Decision Makéfiddtion

for time taken for an MRNAlarm to go from the MRN to the VNOC. However, we can use the91s8
estimate from the previous subsection as a reasonable f@luhis network delay. Fig. 12 shows the
rest of the messages involved in notifying a decision makemoevent at a seal.

Given a system with no clock drift and an identifier that redaderts, MRN Alarms, and NOCAlarms,
we can easily compute the time taken to notify decision nskgrsubtracting the log entry timestamp
for the Alert message when it is generated at the SensorNodieesdrom the log entry timestamp for
the NOC Alarm when it arrives at the VNOC AlarmReporting service.faftunately, we do not have
a unigue identifier and there is clock drift in the MRN. As a feswe generated the results in this
subsection as follows: three sets were created compridiag NOC_Alarms, all MRN_Alarms, and all
Alerts respectively. For each NO@larm, the set of MRNAlarms was scanned for a message having the
same seal ID and event timestamp without being a status ges$he time difference between the log
entries for the incoming message at the VNOC AlarmProcessbttee VNOC AlarmReporting services
gives us the period taken for the VNOC AlarmProcessor to moemy shipment queries, store alarms,
and transmit the message to the VNOC AlarmReporting ser¥ehis value we add our estimated one-
way MRN_Alarm network delay of 1.89 s. Next, we search the set of Alést a message having the
same seal ID and event timestamp without being a status gesshe time difference between the log
entries for the outgoing Alert message at the MRN SensorNedece and the outgoing MRMlarm

at the MRN AlarmProcessor service gives us the elapsed timeeba the two services as well as

21

100 -
80H f-----remmmmmmmmmmoooo- T
| Median = 1,97 |
| Mean = 2.08 |
. 607 - HARREREEE, St -Dev =032 ----- w:
% ! ;Min.=1.92; !
O ! Max. = 4.91 !
407 e [[|
20n et i T

0 — —

2

4
Elapsed Time (s)

Fig. 13. Elapsed Time from Alert Generation to VNOC AlarmReporting Berv

the processing delay at the MRN AlarmProcessor service. Téni®g is added to the two previously
calculated time periods.

Fig. 13 is a histogram showing the distribution of the elaps®eé from when the MRN SensorNode
generates an alert until the VNOC AlarmReporting serviaeikes the notification. By performing this
analysis we see that on average it takes about 2 s for medsagessfrom the MRN SensorNode service
to the VNOC AlarmReporting service. Thus, we conclude thattime taken to process events in the

TSSN is not an impediment to timely naotification of decision maker

C. End-to-end Time from Event Occurrence to Decision Makeifibsiation

An important metric for TSSN performance is the time betweemewecurrence until a decision
maker is notified using an SMS message. Since this time is a ranvdoiable, we can create other
metrics based on this time that return the probability tiet TSSN can deliver notification within a

specified interval. The components of the end-to-end timeudec!

« Time between between event occurrence and when the MRN S&dm®rservice generates the
related event alert.

« Time from alert generation to the VNOC AlarmReporting seeviBased on the previous subsection,
this is about 2.08 s on average, while the longest time obdenas 4.91 s.

« Time taken for the VNOC AlarmReporting service to procesd aand an e-mail message to an
e-mail server.

« Time taken by the SMS vendor to get the message to a decisioarimgkone.

22

25 S RREREEEEEETEEEEPES

00 T Median=210 !
! Mean =2.7 | !

o 150 ‘ ‘
c
=1
3

10 -1

5 ,,,,,

0O 2

4 6
Event Detection Time (s)

Fig. 14. Elapsed Time from Event Occurrence to Alert Generation

To overcome inaccurate clocks in the seals, we set up a ladriexgnt to determine the elapsed time
between event occurrence and the TSSN'’s generation of thededsent alert. In this experiment, a
stopwatch was started when a seal was either broken or c¢ledezh the MRN SensorNode service
generated an event alert the stopwatch was stopped. Fig.alisgogram showing the time distribution
between event occurrence and the MRN SensorNode serviceatjagean alert. From Fig. 14 we see
that the longest observed time between event occurrenctharldRN generating an Alert is about 8.8 s.
Furthermore, it takes about 2.7 s on average.

A second experiment was carried out to determine the elapredetween the VNOC AlarmReporting
service’s transmission of a VNOC alarm message and theideaisaker receiving event notification.
In this experiment a client program was written to send ngessao the VNOC alarm reporting service.
A stopwatch was started when the VNOC sent an alarm to a dacisiaker and the stopwatch was
stopped when the decision maker's phone received an SMS geesEable | summarizes the statistics
for delivery of alarm messages for different carriers. Fi§.id a histogram showing the distribution of
the time taken to deliver alarm messages to decision makers.

From Table | we see that even though SMS was not designed astanmealystem, it provides excellent

notification for our purposes; since most of our messages delreered within a short time.

23

TABLE |

SUMMARY OF TIME TAKEN TO DELIVER SMS MESSAGES

Carrier Min./s || Max./s || Mean/s || Median/s || Std. Dev./s|| n
Telco 1 5.9 18.4 12.2 11.8 2.9 30
Telco 2 5.2 30.4 8.8 7.8 4.5 || 30
Telco 3 7.1 43.0 10.8 9.0 6.7 || 30
Telco 4 5.9 58.7 15.7 11.1 11.1 30
80—
69
641
_ 48r
c
3 Median = 9.8
© ! Mean = 11.9
Std. Dev=7.4
20| 18 Min.=5.2
16 Max. = 58.7 ,
6 4
0 gt 1 L

4 12 20 28 36 44 52 60
Delivery Time (s)

Fig. 15. Time Taken to Deliver SMS Messages for All Carriers

Combining all of these experimental results, we see thdtdéridngest observed case it can take just over
one minuté to notify decision makers of events. Most of this time is spgglivering an SMS message
to the decision maker, so we conclude that the TSSN provides aanisen for timely notification of

decision makers.

D. TDE to VNOC to TDE Interaction

The statistics on TDE to VNOC to TDE interactions allow us to dmclusions on the time taken to
initiate and process startMonitoring, stopMonitoringtlgeation, and setAlarmSecure messages. These
messages are all forwarded to the MRN, and the VNOC retumsdbponse that it receives from the

MRN. To the TDE, all the elapsed time from when the VNOC recewanessage from the TDE until

3This time is broken out as follows: in the longest observed times in ourriexgets it took approximately 8.8 s between
event occurrence and the TSSN generating an alert; 2) it took appatetimt.91 s for an alert message to go through the TSSN

until notification was sent to decision makers; and 3) it took up to 58.7 slicedean SMS message to decision makers.

24

12p--mmmmmm e T 40”;”? 7777777 i”””ﬁlﬂﬂﬂii””ﬂﬂl
7777777 N : . Median = 0.04 :
10 ! Median=3.94" """ sobd i . Mean=0.14_ |
: Mean :4.29 ! | | Std, Dev = 0,64 |
8r------ Shit PR EEEEE Std.-Dev=12:5% - ! | Min. = 0.00 | |
. gl gy Min.=034 : £ 1 © Max.=4.00 1
S gh---- ! Max.=11.03 ! 320F4 |- R e EREEEEES
o ! ! ! | | | | |
(@) : : :] | | | | |
B S I T
| | | 1004 | T T S :
2r - Ty - - | | | | |
0 r T 1 0 1 1 1 — |
0 25 5 7.5 10 125 0 1 2 3 4 5
Request/response Time (s) Network Time (s)
(a) Request/response times (b) Network times

Fig. 16. Request/response and Network Times from TBE/NOC — TDE

I Co T Co T
-

| Median =385
10r------4---- [- Mean=4.05 |

! Std. Dev=1245

= - Min.=0.29 |
3 Max. = 10.98 |
o S e !
0 1 j

0 2.5 5 7.5 10 125

Processing Time (s)

Fig. 17. Processing Times at VNOC

the VNOC sends a response is processing time at the VNOC, teeaigh part of that time is spent
forwarding a response to the MRN and waiting for a responsg. Féa is a histogram showing the
request/response time distribution for messages going fhe TDE to the VNOC and back to the TDE.
Using Figs. 16b and 17 we conclude that the request/responeds dominated by the processing time
at the VNOC. This conclusion is supported by the requesiresptime result from Section V-A, which

showed times of up to 10.96 s.

25

I P e
I I Median = 0.07. I . I I I I
3004 |-cdoooo ~--Mean=012 - __ ; 3o Median=0.07 ____ . b ;
~ sdoeviom Mean=005 T
251 - S Lo -Min.=0.02 - 25,S'£_d-,D€\!50-,Q2, 77777 R R ——
220r-1 [~y R At et B 710 | S bbb - R
> I I I I
S | | | |
B e o e b | IR N \
10r-{ | IR SRR SN | S !
5 - A e a
0 0.1 0.2 0.3 0.4 0.5 0 0.025 0.05 0.075 0.1
Request/response Time (s) Network Time (s)
(a) Request/response times (b) Network times

Fig. 18. Request/response and Network Times from VNOODE — VNOC

L4 N CoTTT
o ' Median =0.01 ! !

60| |~ --Mean=0.07---------- !
| i Std. Dev=0.10 | |

50r-| |~ FMim=0.0k-----------;
| i Max.=/0.38 | |

240 |- e
3 : : : : :
Sao
T I
o e I el e R
o 1 1 e |
0 0.1 3 0.4 0.5

Fig. 19. Processing Times at TDE

E. VNOC to TDE to VNOC Interaction

The statistics on VNOC to TDE to VNOC interactions allow us tawdiconclusions on the time taken
for the TDE to store alarm messages and execute shipmeneguBith of these actions are carried out
when the VNOC alarm processor service is about to send am atathe VNOC alarm reporting service.
Fig. 18a is a histogram showing the request/response timmandssages going from the VNOC to the
TDE and back to the VNOC. From Fig. 18a we conclude that on avdatdgkes approximately 0.12 s
to either store an alarm message or get a shipment querynsspdsing Figs. 18b and 19 we find that

the request/response time is dominated by the processirgg just as we found in Section V-D.

26

TABLE I

SUMMARY OF TIME STATISTICS

Description Min./s || Max./s || Mean/s || Median/s || Std. Dev./s
Request/response times from VNOGE MRN — VNOC 0.90 10.96 4.39 3.95 2.40
Network times from VNOC— MRN — VNOC 0.89 5.79 3.77 3.88 1.24
Processing times from VNOG& MRN — VNOC 0.00 5.21 0.61 0.01 1.69
Event occurrence to alert generation 0.81 8.75 2.70 2.13 1.86
Alert generation to VNOC AlarmReporting Service 1.92 4.91 2.08 1.97 0.32
Request/response times from TBE VNOC — TDE 0.34 11.03 4.29 3.94 2.51
Network times from TDE— VNOC — TDE 0.00 4.00 0.14 0.04 0.64
Processing times from TDE- VNOC — TDE 0.29 10.98 4.15 3.85 2.45
Request/response times from VNOE TDE — VNOC 0.02 0.41 0.12 0.07 0.11
Network times from VNOC— TDE — VNOC 0.01 0.08 0.05 0.07 0.02
Processing times from VNOE» TDE — VNOC 0.01 0.38 0.07 0.01 0.10

F. Summary of Time Statistics

Table Il summarizes the statistics shown in each of the tilm®grams in this section. Note that there
are no results for the MRN to VNOC to MRN interaction. This issdiw two reasons: first, clock drift
in the MRN prevents us from computing a one-way network deBgcondly, the MRN only generates
response messages. There are no request messages oggiratinthe MRN that could be used in a

log entry couple to calculate request/response or praugssnes.

G. Messages by Schema Element

One objective of our postprocessing was to determine if agesswere being passed correctly between
the TSSN components. Fig. 20 shows the messages exchanged dwysvasimponents of the TSSN
system. From Table Ill we see that all messages are loggeeatiyriin the log files. For example,
the VNOC sent 63 shipment query requests (TDEService/Shipraemgpto the TDE and received 63
shipment query responses (TDEService/ShipmentQueryRegp&msdarly, the VNOC sent 33 validated
alarms to the TDE and got 33 validated alarm responses from it From Table Il we also see that
some of the messages are being filtered by the system. For kxahgeMRN SensorNode service reports
546 alerts to the MRN Alarm Processor. Only 131 alerts met tiRNMubsystem’s rules and these were
forwarded to the VNOC’s Alarm Processor. All of the alarmseieed by the VNOC alarm processor

met the necessary rules so that they could be forwarded isioieenakers as SMS or e-mail messages.

27

TDE

MRN

TradeDataExchange Alert

SensorMNodeEvent

—

AlarmProcessor SensorNode

ValidatedAlarm
ShipmentQuery

ValidatedAlarmResponse
ShipmentQueryResponse

MEN_Alar, -~ StartMonitorSensors

o~ StopMonitorSensp
P getLocation
re SetMonitoringState SersorNodeStatus
AlarmProcessor / Location

SensarManagement

startMonitoring
stop Monitoring
getLocation
setAlarmSecure

NOC_Alarm

getAllContacts

Y getAllAlarmContactMappings f:‘j::‘;?nn
getAllSmsProviders startMonitorjng
‘ getAllAlarms ServiceException
AlarmReporting | /

Contacts
AlarmContactMappings
SmsProviders

Alarms

VNOC

< Subscription

Fig. 20. Component Interactions in the TSSN

H. Message Sizes

A model [20] is under development to determine system ttieas well as optimal or near-optimal
sensor locations when using a rail-borne cargo monitonstesn. The cost of transmitting a message from
the train to an operations center is one component of thisemdthis transmission cost, in turn, depends
on the average message length transmitted from the trainthendrequency at which these messages
are generated. This section presents results on messagebsizeeen the MRN and the VNOC, while
Section V-I presents results on intercommand and interatan@s for messages exchanged between the
MRN and the VNOC.

Table IV summarizes the message size statistics for all #ssages exchanged in the TSSN. Additional
analysis (which is omitted here) showed that the messagegsupings typically coincided with the
number of message types exchanged on each link. For exathpl® RN sent three different message

types to the VNOC, and review of message size data betweeMii and VNOC confirmed three

distinct message types.

TABLE Il

NUMBER OF MESSAGESGENERATED BY SCHEMA ELEMENT

Schema Element Nbr of Messages
Subscribe 1
SubscribeResponse 1
ns:startMonitoring 1
ns:stopMonitoring 2
ns:setAlarmSecure 4
tssn:Status 8
ns:getLocation 30
tns:Location 30
tns:SetMode 1
mrnsnx:StartMonitorSensors 2
mrnsnx:StopMonitorSensors 2
mrnsnx:SensorNodeStatus 4
urn:startMonitoringServiceException 1
mrnsnx:getLocation 30
mrnsnx:Location 30
ns:SetMonitoringState 4
sas:Alert 546
mrnpub:MRN Alarm 131
TDEService/ValidatedAlarm 33
TDEService/ValidatedAlarmResponse 33
TDEService/ShipmentQuery 63
TDEService/ShipmentQueryResponge 63
nocpub:NOCAlarm 131
TABLE IV
SUMMARY OF MESSAGESIZE STATISTICS
Description Min./bytes || Max./bytes || Mean/bytes|| Median/bytes|| Std. Dev./bytes
TDE — VNOC 846 1278 874.7 848 96.8
VNOC — TDE 968 975 971.5 971 2.6
VNOC — MRN 650 1036 690.8 650 101.5
MRN — VNOC 799 1560 1419.2 1536 237.1

29

A e I
- | | | | 125 i e
5r = |- - Median =555.13 - -~~~ — ! ! ! !
i Mean :: 517.53 | i 100 - IR ' __Median=9.70"- - . ___ !
- 1 Std. Dev = 662.33 ! - | i Mean =131.37 |
31001 | |- - Min.=2386_ E ol | _Std.Dev=34212 |
3 ' Max. =3965.67 ' ‘ 8 : ' Min.=1.08 | :
| : ; ; ‘ ' Max. = 2363.20 ‘
! ! ! ! 50f - SR i s
sl | N
‘ ‘ : : 250 i SRR R
0] 1 1 1 1 0 = 1 —
0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500
Intercommand Time (s) Interalarm Time (s)
(a) Intercommand (b) Interalarm

Fig. 21. Intercommand and Interalarm Times at MRN

I. Intercommand and Interalarm Times

The data collected from these experiments will be used in aeirtoddetermine system trade-offs when
using a rail-borne cargo monitoring system. Communicatiosts in this model depend on the frequency
(interalarm time) with which messages need to be reporbedirtode of communications, as well as the
message length in bytes. The intercommand time is includéuisranalysis because incoming messages
may also be billed. Figs. 21a and 21b summarize the inter-@mnand inter-alarm times respectively
at the MRN. The data presented here can be used as a startimggrardaptive MRN Communications

service algorithms that “call” the VNOC periodically.

J. HSDPA Signal Strength

In later iterations of the TSSN we plan to switch between HSDPAIlddidim signals. HSDPA signal
strength traces can help us tune algorithms that determimawo make the signal switch. Work still
needs to be done to develop these algorithms. In this subsese show how HSDPA signal strength
varied with time during the short-haul rail trial.

During the short-haul rail trial, HSDPA was used to transméssages from the MRN to the VNOC.
As a result, the HSDPA signal strength was also recorded ifviR&l log file. The LogParser library
was used to extract this information, and HSDPA signal stfemgas plotted against the number of
seconds from the start of the experiment in Fig. 22. The sigmahgth trace shown in Fig. 22 reflects
our observations from the trial. During the first 80 minutestted experiment the HSDPA signal trace

remains fairly constant, since the train is stationary. ©tie train begins to move the HSDPA signal

30

= RN N W
o o o O O

Signal Strength/ Units

a1

o

0 100 200 300
Time/ Minutes Since 06:25:20

Fig. 22. HSDPA Signal Strength versus Time

strength varies with time. We notice two other flat portionglumtrace at about 220 and 240 minutes. As
before, the train was stationary at these points. Fig. 23 shmw the HSDPA signal strength varied with

location over the duration of our experiment. The placeméckdored tear drops) in Fig. 23 represent
the HSDPA signal strength, which is given in a 0—30 scale witkgesenting no signal and 30 showing
maximum signal strength. A red placemark denotes a sigrenigth of less than 10, a yellow placemark
denotes a signal strength between 10 and 14, a blue placateadtes signal strength between 15 and
19, a green placemark denotes a signal strength betweend?@4arand a purple placemark denotes a

signal strength of over 25.

VI. IMPACT ON SYSTEM MODELING

New models are needed to characterize rail-based cargotoriogi systems. These models can be
applied, along with optimization theory, to determine systtrade-offs when monitoring cargo in motion.
The models can also be used to find the best locations for seinsansil-based sensor network as well
as to guide the design of future cargo monitoring systemsSdntion V we presented experimental
results from a short-haul rail trial of the TSSN. There is ongovayk [20] to determine optimal or
near-optimal placement of sensors for monitoring railAgocargo. Our objective in this research is to
develop extensible models that can give the best (cheapesm design while preserving the shipper’s
desired level of security. Given a sef, of containers to be placed on a train, a det,of possible
locations for the containers on the train, a setof sensors, and a sk, of network elements, we can
create a mapping)M¢, using Laiet al’s [21] approach, that maps containers to locations on a.trai

We can also create mappings(z, and Mg, that map network elements and sensors, respectively, to

31

E!_ View in Google Earth ﬁ Print [Send == Link

A | A Tame 1 | [vsp | soteite |]
" / Traffic More... Map Satellite Terrain
\[r R
(=" DR
A g
7 z 5
am?;“sﬂ“c.w s
A
;"‘i@"\ | o
15 \ Independence
'L
| -
L TR
\ I T W e
7| . oSF
s
\ R l Fleming
1' y | Park
A /% €D j
3 1 Unity:
',_ 1] V\Hafvge 15 _
"@“éﬂ @"‘“‘“ﬁ@ —
1 \ Lee's
Summit

; 7 N
i .

o 1
Greenwood
\
b o
Lghe
S : Winngbaga
Bekon a
x Raymore
Pleasant Hil
|\ Miller Hill
)
\ Coleman
Reculiar
©2009 Gc:O}l{? -Map data ®2008 Tele Aflas - Terms oflse (]

Fig. 23. HSDPA Signal Strength and Geographical Location

locations on the train; alternatively/s may map sensors to containers. Given these mappings we can
create a functionf, that takes as input the sets of containers, locationspsgnand network elements,
as well as the mappings described above and returns a syst&nmetric. The goal of this research
is to develop such a function, use the results from Section ¥haking the model more realistic, and
determine if this function can be minimized in polynomiahé.

To this end two models have been built to compute the costienetra cargo monitoring system.
The models have the following general format: Given a list afgmeter value®:, ps, ... ,p, (such

as the container values, savings resulting from detectumnte at containers, request/response times

32

from VNOC — MRN — VNOC, and message sizes on the VN®EMRN link), we define variables
x1,T9,...,2y (SUCh as a variable that indicates if a sensor is placed ontairteontainer). We also
define a functionf,(z; p) that depends on the parameters and variables to return stensyost. (One
of the components of, includes the cost of transmitting event reports from the MieNhe VNOC.)
Our goal in this research is to minimize this objective fimetsubject to the constrairitspecified by
the system designer. These models will be used to determatemsytrade-offs, such as a rail-mounted

or trackside deployment of network elements.

VII. REFINEMENTSBASED ON PRELIMINARY RESULTS

In preparation for additional rail trials, a GPS receiverrg@has been implemented and other MRN
hardware system upgrades have been planned. To avoid comféoveen GPS receiver operation and
Iridium modem use, a high performance GPS receiver has bestalled on the External Antenna
Assembly to replace the Iridium modem GPS functionality. Timetdrift issue mentioned in Section I11-A
will be resolved by using the high performance GPS receivegetibhigh quality local time. Pulse per
second (PPS) output from the GPS receiver will be used as an ioghetNTP server running on the
TSSN collector node.

In addition to a new GPS receiver, proposed enhancementetMBN hardware prototype include
moving communications devices from the Electronics Suitbedxternal Antenna Assembly. The current
hardware configuration suffers from the insertion loss ofltmgy RF cable connections. Collector node
interconnections between the locomotive cab and the eddtassembly would change from an RF signal
connection to a DC power and data bus connection for eaclteleMoving the wireless modems and
interrogation transceiver as close as possible to the goreling antennas is expected to provide very
significant performance improvements.

Postprocessing of the log files also indicated that a uniguifid@—perhaps composed of a timestamp
and counter—is needed in the Alert, MRAlarm, and NOCAlarm messages to trace an Alert message
through the TSSN. This identifier can also be used in the futuredatéoMRN Alarm messages that
need to be retransmitted to the VNOC following a loss of catimity. Finally, the identifier can be used
to mark previously processed messages so that the VNOC dogsatess the same message more than

once.

4Some of these constraints specify valid placements for sensors auiedisd communications infrastructure. The constraints
might also require that events at certain containers be detected with ia gedbability and reported within a given time interval

with specified probability.

33

Prior to deploying the TSSN system, further research is needaddress issues including:

« Communications infrastructure for whole train monitoring
o Backhaul communications, including choosing when to dwhetween HSDPA and Iridium con-
nections.

« Development and use of a model to seek trade-offs when miongteail-borne cargo.

The desired result of our research is a standards-based apgarenent for cargo monitoring with low

entry barriers to enable broader access by stakeholdets showing a path to commercialization.

VIIl. CONCLUSION

In this paper we have presented results from preliminary figkds of the TSSN (Transportation
Security Sensor Network). Within the TSSN framework we have ssfuly combined sensor and
shipment information to provide event notification to distitied decision makers. This paper has shown
results documenting the interactions between the diffecemponents of the TSSN. Based on our
experiments and evaluations we believe that the TSSN is viablenbnitoring rail-borne cargo. These
beliefs are based on the following: first, we have succegstléimonstrated that alert messages can be
sent from a moving train to geographically distributed di&xi makers using either SMS or e-mail.
Second, based on the experiments reported here, we are atdéetd events and notify decision makers
in just over one minute. Thus, we conclude that the TSSN provideschanism for timely notification

of decision makers.

ACKNOWLEDGMENTS

The authors would like to thank Ann Francis and Daniel Deavdorgeading and commenting on
previous versions of this paper. We would also like to ackedge the support of EDS, an HP company,
one of our partners on this project. Finally, we like to thankrize&Sackman of EDS, an HP company,

for assisting with the short-haul rail trial.

REFERENCES

[1] Federal Bureau of Investigation. (2006, July 21) Cargo Thefiigh Cost. Headline. Federal Bureau of Investigation.
[Online]. Available: http:/ivww.fbi.gov/page2/july06/cargieft072106.htm

[2] European Conference of Ministers of Transp@gntainer Transport Security Across Mode®aris, France: Organisation
for Economic Co-operation and Development, 2005.

[3] OASIS. (2006, Oct 12) Reference Model for Service Orientedhiecture 1.0. OASIS Standard. [Online]. Available:
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

(4]

(3]
(6]

(7]
(8]

&)
[10]

[11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

34

KC SmartPort. (2008, Nov 10) Trade Data Exchange—Nothingtatfoa logistics revolution. Digital magazine. [Online].
Available: http://www.joc-digital.com/joc/20081110/?pg=29

J. Martin et al,, “Web services: Promises and compromisé&3ieue vol. 1, no. 1, pp. 48-58, Mar 2003.

H. Saiedian and S. Mulkey, “Performance evaluation of eventinly s&rvices in real-time applicationgZommunications
Magazine, IEEEvol. 46, no. 3, pp. 106-111, Mar 2008.

J. Brownet al, “SMS: The Short Message Servic&bmputer vol. 40, no. 12, pp. 106-110, Dec. 2007.

The Apache Software Foundation. (2008, Aug 24) Apache AxBfoject documentation. The Apache Software
Foundation. [Online]. Available: http://ws.apache.org/axis2/

OpenUDDI. (2008, Mar 7) Open UDDI. Project webpage. [Orlirvailable: http://openuddi.sourceforge.net/

D. Griffin and D. Pesch, “A Survey on Web Services in Telecomitations,”Communications Magazine, |IEEKol. 45,
no. 7, pp. 28-35, July 2007.

Hi-G-Tek. (2009, Mar 17) Hi-G-Tek—Company. Corporate wigd. Hi-G-Tek. [Online]. Available: http://www.higtek.com/
D. Mulvey, “HSPA,” Communications Enginegevol. 5, no. 1, pp. 38—41, February-March 2007.

C. E. Fossat al, “An overview of the IRIDIUM (R) low Earth orbit (LEO) satellite systenitf Proc. IEEE 1998 National
Aerospace and Electronics Conference, (NAECON 1,998yton, OH, USA, Jul 1998, pp. 152-159.

The Apache Software Foundation. (2007, Sep 1) Apache logdje& documentation. The Apache Software Foundation.
[Online]. Available: http://logging.apache.org/log4j/

EsperTech. (2009, Feb 11) Esper — Complex Event ProgesBimject documentation. EsperTech. [Online]. Available:
http://esper.codehaus.org/

Google. (2009, May 6) Google Maps. Web mapping service. [@hliAvailable: http://maps.google.com

D. L. Mills, “Internet Time Synchronization: the Network Time Probdt Communications, IEEE Transactions,aol. 39,
no. 10, pp. 1482-1493, Oct 1991.

D. Box et al. (2004, Aug 10) Web Services Addressing (WS-Addressing). Merablemission. W3C. [Online]. Available:
http://www.w3.org/Submission/ws-addressing/

J. Clark and S. DeRose. (1999, Nov 16) XML Path Languagea{iXP W3C Recommendation. W3C. [Online]. Available:
http://www.w3.0rg/TR/xpath

D. T. Fokum, “Optimal Communications Systems and Network De$igrCargo Monitoring,” To appear in Proc. Tenth
Workshop Mobile Computing Systems and Applications (HOTMOBILE 200%anta Cruz, CA: ACM Press, Feb 2009.
Y.-C. Lai et al, “Optimizing the Aerodynamic Efficiency of Intermodal Freight Trdingransportation Research Part E:
Logistics and Transportation Revigwol. 44, no. 5, pp. 820-834, Sep 2008.

The University of Kansas /

INFORMATION

& TELECOMMUNICATION
[ECHNOLOGY CENTER
The University of Kansas

Technical Report

Summary of Status:
A Unified Architecture for SensorNet with Multiple
Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors

University of Kansas, ITTC
V.S. Frost, G.J. Minden,].B. Evans, L. Searl,
D.T. Fokum, D. Deavours, E. Komp, A. Oguna,
M. Zeets, M. Kuehnhausen, D. Depardo

EDS
J. Walther, L. Sackman, M. Gatewood,
J. Spector, S. Hill, J. Strand

ITTC-FY2010-TR-41420-12

December 2008

Project Sponsor:
Oak Ridge National Laboratory
Award Number 4000043403

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559

All rights reserved.

Abstract

This effort is aimed at monitoring cargo movements along a trusted corridor, e.g.,
rail facilities, in association with an integrated data-oriented methodology to increase
efficiency and security. This goal is being achieved by performing research and
deployment of an associated testbed focused on rail transportation issues. The results of
this effort will lay the foundation for enhancing the ability of the private sector to
efficiently embed security that provides business value such as safety, faster transport and
reduced theft while supporting law enforcement and national security. In the end, the
benefit of the combination of real-time sensor data with trade data exchange information
will be demonstrated through field tests on a deployed rail testbed. (For background and
definition of terms see [1] V.S. Frost, G.J. Minden, J.B. Evans, L. Searl and D.T. Fokum,
T. Terrell, L. Sackman, M. Gatewood, J. Spector, S. Hill, and J. Strand, *“Status Update :
A Unified Architecture for SensorNet with Multiple Owners: Supplement to Advance
Sensor Technologies to Monitor Trusted Corridors”, ITTC-FY2009-TR-41420-10
August 2008).

Table of Contents

N oL = Tod SRR ORI i
TaDIE OF CONTENTS ... bbbt nbe e e ii
LISE OF FIQUIBS ..ttt ettt ettt et e b nre e i
LISE OF TADIES ... bbbttt bbb ii
1.0 INEFOTUCTION ...t ettt e 1
2.0 Status on Technology Proof of Concept and Integration of the SmartPort Trade
Data Exchange and Transportation Security SensorNet Technologiesc.ccoocveiennene 1
3.0 Status of the Development of Transportation Security SensorNet (TSSN)
TECNNOIOGIES ...ttt et e et e e se e b e e nbeeneesbeebeeneenreas 2
4.0 Status of System Architecture, Modeling, and Optimizationc...cccccvevverinnen. 2
5.0 Status of Communications System Evaluationcccccocevieieninniinnc e 3
6.0 Status RFID Technology Evaluation and Development...........ccccccevvvveiieenesnennnn, 3
7.0 ASSOCIAtEA EFFOITS....ccuiieieiiieie e 4
8.0 ProjeCt TIMEIINE.....c.eceeeeiee ettt sre e enre e 4
9.0 RETEIBNCES ...ttt sttt a e e 5

List of Figures

Figure 1: Project TIMEIINEcve e 4
List of Tables
Table 1: Example results from system trade-off studycccccevieiiiiiiiiiccee e, 3

1.0 Introduction

This effort is aimed at monitoring cargo movements along a trusted corridor, e.g.,
rail facilities, in association with an integrated data-oriented methodology to increase
efficiency and security. This goal is being achieved by performing research and
deployment of an associated testbed focused on rail transportation issues. The results of
this effort will lay the foundation for enhancing the ability of the private sector to
efficiently embed security that provides business value such as safety, faster transport and
reduced theft while supporting law enforcement and national security. In the end, the
benefit of the combination of real-time sensor data with trade data exchange information
will be demonstrated through field tests on a deployed rail testbed. (For background and
definition of terms see [1] V.S. Frost, G.J. Minden, J.B. Evans, L. Searl and D.T. Fokum,
T. Terrell, L. Sackman, M. Gatewood, J. Spector, S. Hill, and J. Strand, *“Status Update :
A Unified Architecture for SensorNet with Multiple Owners: Supplement to Advance
Sensor Technologies to Monitor Trusted Corridors”, ITTC-FY2009-TR-41420-10
August 2008).

2.0 Status on Technology Proof of Concept and Integration of the SmartPort Trade
Data Exchange and Transportation Security SensorNet Technologies

In preparation for rail trials of the integration of the Smartport trade data exchange
and transportation security sensornet technologies, trains at a rail yard in Kansas City,
Mo. were visited on August 27, 2008. Initially a short haul rail trial will be conducted
which will run from the rail yards in downtown Kansas City, Mo. to the intermodal
facility in south Kansas City. Information gathered from this visit lead to the construction
of the hardware required for the trail trials. The construction and testing of the required
hardware has been completed.

A mobile integration test of the communications and interactions between the TDE at
EDS, MRN, and the VNOC has been successfully completed (December 4, 2008). This
mobile integration test was conducted using two pickup trucks to emulate the train. The
mobile component (the MRN) of the integration test was conducted in driving around
Lawrence, Ks.; the VNOC was located in ITTC on the KU campus, and the TDE was
located at the EDS facilities in Overland Park, Ks.. This successful mobile integration
test was preceded by several field experiments of components of the system.

With the successful completion of the mobile integration test, the short haul rail test is
being scheduled with a target of before the end of 2008.

3.0 Status of the Development of Transportation Security SensorNet (TSSN)
Technologies

The development of the TSSN takes an SOA approach, building upon the original
ideas of ACE but utilizing current technology and widely accepted open Web Service
specifications and publicly available implementations which are suitable for Sensor
Networks. Some of the Web Service specifications in use are SOAP, the WS-X
specifications, and UDDIv3.

The TSSN is being implemented in three phases. The first phase will be used in the
field trials described above.

Phase 1 — Simple service messages based on OGC specifications (used in trials).
Phase 2 — Use full OGC specification interface messages.
Phase 3 — Use lessons learned from Phases 1 and 2 to make improvements.

Phase 1 is now complete.

4.0 Status of System Architecture, Modeling, and Optimization

This task is focused on developing models of the Transportation Security SensorNet
(TSSN) and Trade Data Exchange environment that can be used to articulate trade-offs
and enable system optimization. In order to model the container placement and sensor
assignment problem efficiently a new method has been devised for indexing the
containers and the locations (slots) that they occupy on the train as well as the location of
sensors and elements of the communication network. We developed a new concept of
object visibility and defined a visibility space as the set of system costs such that
customer requirements for probability of detection, probability of false alarm and event
reporting deadlines are met. The problem can now be formally stated as: Given a
collection of objects with different values and end-to-end information systems (including
sensors, seals, readers, and networks) with different capabilities: how do we design a
system that allows “visibility” (meeting given constraints) while minimizing overall
system cost? Small train based and trackside systems have been analyzed to confirm our
approach. Sample results are given below (Table 1). (A full description of the current
system model is in [2] Daniel T. Fokum, “Optimal Communications Systems and
Network Design for Cargo Monitoring” Proposal for Ph.D. dissertation research
Department of Electrical Engineering & Computer Science, University of Kansas,
December 2008.)

Case Number of Sensors| Normalized Cost | Average Time to
Metric Record Event/s
5 1,555 6
4 1,581 49,685
3 3,145 99,363
Rail-mounted
Scenario 2 4,795 149,042
1 7,300 198,721
0 11,400 248,400
Trackside Case 5 1,895 556

Table 1 Example results from system trade-off study

Further work is needed on the model, objective function, and obtaining realistic model
parameters. The framework will then be applied to study system trade-offs.

5.0 Status of Communications System Evaluation

Research is continuing on radio technologies for TSSN. As part of evaluating the
current active container seal technology, it was discovered that the communication range
for the devices selected for this research was more limited than expected. The active
seals we are using operate in the 916 MHz band. A vendor of bidirection RF amplifiers in
the 916 MHz band made custom modifications to their device based on our specification.
With those modifications we were able to expand the communications range of the
system. In the course of conducting the mobile integration tests we determined that the
communications range is now on the order of a quarter of a mile. This expanded range
will enhance the rail field tests. Note with all the elements (MRN, VNOC, and TDE) of
the system in operation in a mobile environment exact range measurements are difficult
to obtain.

6.0 Status RFID Technology Evaluation and Development

The combination of the new ITTC/KU on-metal RFID tag technology and the Mojix
system was deployed and tested in a warehouse environment. While this initial testing
focused on the suitability of the system on an MES (manufacturing and execution system,
i.e., an assembly line) and for scanning entering and exiting a dock door, the results of
this testing lead to conclusions concerning applicability in an intermodal environment.
Additional experiments have been conducted and a technical report is in preparation.

7.0 Associated Efforts

KC SmartPort has continued to coordinate meetings for the groups involved in TSSN,
CTIP and EFM. These meeting are creating a common, open environment with low entry
barriers to enable broader access by stakeholders while contributing a venue to
commercialization. The KU/ITTC and EDS teams are supporting the interactions
between these efforts. KU/ITTC and EDS teams participated in KC SmartPort
coordination meetings on August 27, September 30 and October 28, 2008. The next
meeting is scheduled for December 16, 2008.

8.0 Project Timeline

Figure 1 is the current project timeline. The short haul field trial is targeted for
completion by the end of 2008; a long haul field trial in Mexico is anticipated in spring
2009. The efforts associated with the system modeling, communications, and RFID are
planned to be completed by the end of spring 2009 and an interim report describing these
activities delivered by end of summer 2009. Activities associated with SmartPort, EFM,
and CTIP will continue until June 2010. The current date of completion for the effort is
June 15, 2010.

Project Timeline

Final Report H L |
EFM/CTIP/SmartPort Activities —
Interim Report : S

RFID applications
Communications Systems
Data integration and processing

A
A
.]
Modeling-systems engineering capability |

Intermodal Technology Proof of Concept and Integration

o
w
o
©
=
N
=
o
=
©
N
N
N}
i
N
~
w
S

33 36
Aug 07 Aug 08 Month Aug 09 June 10

Figure 1 Project Timeline

9.0 References

[1] V.S. Frost, G.J. Minden, J.B. Evans, L. Searl and D.T. Fokum, T. Terrell, L.
Sackman, M. Gatewood, J. Spector, S. Hill, and J. Strand, “Status Update : A Unified
Architecture for SensorNet with Multiple Owners: Supplement to Advance Sensor
Technologies to Monitor Trusted Corridors”, ITTC-FY2009-TR-41420-10 August 2008.

[2] Daniel T. Fokum “Optimal Communications Systems and Network Design for Cargo
Monitoring”, Proposal for Ph.D. dissertation research, Department of Electrical
Engineering & Computer Science, University of Kansas, December 2008.

The University of Kansas /

M FORMATION

& TELECOMMUNICATION
[ECHMNOLOGY CENTER
The University of Kansas

Technical Report

Service Oriented Architecture for Monitoring Cargo
in Motion Along Trusted Corridors

M. Kuehnhausen, D. T. Fokum, V. S. Frost,
D. DePardo, A. N. Oguna, L. S. Searl, E. Komp,
M. Zeets, D. D. Deavours, J. B. Evans,
and G. J. Minden

ITTC-FY2010-TR-41420-13

July 2009

Project Sponsor:
Oak Ridge National Laboratory

Copyright © 2009:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559

All rights reserved.

Abstract

This thesis describes a system called the Transportation Security SensorNet that
can be used to perform extensive cargo monitoring. It is built as a Service Oriented
Architecture (SOA) using open web service specifications and Open Geospatial Consor-
tium (OGC) standards. This allows for compatibility, interoperability and integration
with other web services and Geographical Information Systems (GIS).

The two main capabilities that the Transportation Security SensorNet provides are
remote sensor management and alarm notification. The architecture and the design of
its components are described throughout this thesis. Furthermore, the specifications
used and the fundamental ideas behind a Service Oriented Architecture are explained
in detail.

The system was evaluated in real world scenarios and performed as specified. The
alarm notification performance throughout the system, from the initial detection at the
Sensor Node service to the Alarm Reporting service, is on average 2.1 seconds. Location
inquiries took 4.4 seconds on average. Note that the majority of the time, around 85%
for most of the messages sent, is spent on the transmission of the message while the rest
is used on processing inside the web services.

Finally the lessons learned are discussed as well as directions for future enhancements
to the Transportation Security SensorNet, in particular to security, complex manage-

ment and asynchronous communication.

Table of Contents

Abstract

Table of Contents

List of Figures

List of Listings

List of Tables

1 Introduction

2 Statement of Problem
2.1 Proprietary Solutions oo
2.2 Variety of Open Standards
2.3 Service Oriented Architecture

2.4 Summary ... o. .o e e

3 Background

3.1 Extensible Markup Language

3.1.1
3.1.2
3.1.3
3.14
3.1.5

Overview e
Descriptive power e
Ease of transformation
Information storage and retrieval

Flexible transmission e

3.2 Open Geospatial Consortium

3.2.1
3.2.2
3.2.3
3.24

Sensor Web Enablement (SWE)
Geography Markup Language (GML)
Catalogue Service for Web (CSW)
Observations & Measurements (O&M)

ii

ii

vi

viii

ix

o o w W

12

3.2.5 Sensor Observation Service (SOS) 31

3.2.6 Sensor Alert Service (SAS) 33

4 Service Oriented Architecture 36
4.1 Representational State Transfer (REST) 39
4.1.1 Traditional Definition 40
412 Current Use 40
4.1.3 Further Development 42

4.2 SOAP 42
4.2.1 Message format 43
422 Faults L 44
4.2.3 Further development 45

4.3 Web Service Specifications L. 46
4.3.1 WS-Addressing 46
4.3.2 WS-Eventing 47
4.3.3 WS-Security 48

4.4 Service Directory L 51
4.5 Web Services Description Language (WSDL) 53
4.5.1 Description L e 55
4.5.2 Types e o6
4.5.3 Interface. 57
454 Binding 57
4.5.5 Service. 58

4.6 Message Exchange Patterns 58
4.6.1 In-Only 59
4.6.2 RobustIn-Only 60
4.6.3 In-Out 60
4.6.4 In-Optional-Out 61
465 Out-Only 61
4.6.6 Robust Out-Only 62
4.6.7 Out-In. 62
4.6.8 Out-Optional-In 62

5 Related Work 64
5.1 Microsoft - An Introduction to Web Service Architecture. 64
5.2 Adobe - Service Oriented Architecture 66
5.2.1 Request-Response via Service Registry (or Directory) 67

5.2.2 Subscribe-Push 67

5.2.3 Probeand Match 68

5.3 Open Sensor Web Architecture 69
5.4 Globus - Open Grid Services Architecture 71
5.5 Service Architectures for Distributed Geoprocessing 74
5.6 Web Services Orchestration 77
B.7 Summary . . . o. ..o e e e 78
Design & Architecture 80
6.1 Overview e e 80
6.1.1 Service Oriented Architecture 80
6.1.2 Services 88
6.1.3 Clients 89
6.1.4 Modules 90
6.1.5 Subscriptionso 92
6.1.6 Synchronous and asynchronous communication 92
6.2 TSSN Common Namespace v .. 94
6.3 Mobile Rail Network, 97
6.3.1 Sensor Node 97
6.3.2 Alarm Processor 102
6.4 Virtual Network Operation Center 104
6.4.1 Sensor Management 105
6.4.2 Alarm Processor 109
6.4.3 Alarm Reporting 111
6.5 Trade Data Exchange 119
6.5.1 Trade Data Exchange Service 119
6.6 Open Geospatial Consortium Specifications 122
Implementation Results 123
7.1 Logging Module. 123
7.2 LogParser. 124
7.2.1 Abstraction Layer Model 124
7.2.2 Message Types o . 125
7.3 Visualization 127
7.4 Performance and Statistics L 0oL 128
7.4.1 Road Tests with Trucks 128

7.4.2 Short Haul Rail Trial 130

8 Conclusion 134

8.1 Current Implementation 134
8.2 Futurework 135
8.3 Acknowledgment 137

References 138

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1

5.2
5.3
5.4
5.5

OGC standardization framework as described in [74] 23
Sensor Web Concept from [10] 25
Catalogue Service reference model architecture from [63] 28
Observation process as described in [20] L. 29
SOS data publishing process as described in [60] 32
SOS data consumption process as described in [60] 32
SAS advertising process described in [78] L. 33
SAS notification process described in [78]o 34
Service overview 36
Traditional web applications and AJAX from Garrett [35] 41
SOAP message format oo 44
WSDL 2.0 overviewo 54
In-Only message exchange pattern 59
Robust In-Only message exchange pattern 60
In-Out message exchange pattern 60
In-Optional-Out message exchange pattern 61
Out-Only message exchange pattern 61
Robust Out-only message exchange pattern 62
Out-In message exchange pattern, 62
Out-Optional-In message exchange pattern 63
Request-Response via Service Registry (or Directory) message exchange

pattern from [65] 67
Subscribe-Push message exchange pattern from [65] 68
Probe and Match message exchange pattern from [65] 68
NOSA layer overview from [19] 69
Globus Toolkit overview from http://www.globus.org/toolkit/about.

html . . . o e 72

vi

http://www.globus.org/toolkit/about.html
http://www.globus.org/toolkit/about.html

5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Forest fire application from [34] 75

Forest fire web services architecture from [34] 75
Web orchestration framework from [47] 78
Service message OVerview 81
Service cloud 82
Axis2 extensibility from [16] oo 84
Axis2 modules from [16] Lo Lo 85
Service composition 87
Mobile Rail Network message overview 97
Mobile Rail Network Sensor Node 98
Mobile Rail Network Alarm Processor 102
Virtual Network Operation Center message overview 105
Virtual Network Operation Center Sensor Management 106
Virtual Network Operation Center Alarm Processor 109
Esper architecture from [27] Lo 109
Virtual Network Operation Center Alarm Reporting 111
Trade Data Exchange message overview 119
Trade Data Exchange Service 120
SOAP message (left) to Log parser classes (right) comparison 124
Two transmit-receive pairs (red and green) 126
A message couple (red) 126
Log file and service interaction visualization 127
Request performance from [31] L. 131
Network transmission and processing performance from [31] 131

System alarm notification performance from [31] 132

List of Code Listings

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
4.1
4.2
4.3
4.4
4.5
4.6
4.7

Simple XML book description L. 14
Library of books 15
Library of books using attributeso 15
Extended library of bookso 16
Element book format oL Lo 16
Element book format with type (elementBook.xsd) 17
Attribute book format with type (attributeBook.xsd) 18
Library schema (library.xsd) 18
Library stylesheet (library.xsl) 20
Library of books in HTML (library.html) 20
SOAP message format example 44
SOAP Fault message example 44
WSDL Description example oL 55
WSDL Types example o 56
WSDL Interface example oo oL 57
WSDL Binding example o 57
WSDL Service example Lo 58

viii

List of Tables

3.1
3.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

Example XPath expressions 21
Collection types from [20] 30
Sensor Node StartMonitorSensors operation 99
Sensor Node StopMonitorSensors operation 99
Sensor Node setSensors operation 99
Sensor Node AddSeals operation 100
Sensor Node getLocation operation 100
Sensor Node GetCapabilities operation 101
Sensor Node GetObservation operation 101
Alarm Processor Alert operation 103
Alarm Processor SensorNodeEvent operation 103
Alarm Processor SetMonitoringState operation 104
Sensor Management startMonitoring operation 106
Sensor Management stopMonitoring operation. 107
Sensor Management getLocation operation. 107
Sensor Management setAlarmSecure operation 108
Sensor Management setAlarmProcessorMonitoringState operation . . . 108
Alarm Processor MRN_Alarm operation 110
Alarm Reporting addSmsProvider operation 112
Alarm Reporting updateSmsProvider operation 113
Alarm Reporting removeSmsProvider operation 113
Alarm Reporting removeSmsProviderByld operation 113
Alarm Reporting getAllSmsProviders operation 114
Alarm Reporting addContact operation 114
Alarm Reporting updateContact operation 115
Alarm Reporting removeContact operation 115
Alarm Reporting removeContactByld operation 115
Alarm Reporting getAllContacts operation 116

ix

6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35

7.1

Alarm Reporting addAlarmContactMapping operation 116

Alarm Reporting updateAlarmContactMapping operation 117
Alarm Reporting removeAlarmContactMapping operation 117
Alarm Reporting removeAlarmContactMappingByld operation 117
Alarm Reporting getAllAlarmContactMappings operation 118
Alarm Reporting NOC_Alarm operation 118
Alarm Reporting getAllAlarms operation 118
TradeDatakExchange ShipmentQuery operation 121
TradeDataExchange ValidatedAlarm operation 121

XPath expressions for WS-Addressing 125

Chapter 1

Introduction

Cargo theft and tampering are common problems in the transportation industry.
According to Wolfe [85] the “FBI estimates cargo theft in the U.S. to be $18 billion”
and the Department of Transportation “estimated that the annual cargo loss in the U.S.
might be $20 billion to $60 billion”. Wolfe [85] also gives good reason to believe that
the actual number may be even higher than $100 billion because of two reasons. First
it is assumed that about 60 percent of all thefts go unreported and second the indirect
costs associated with a loss are said to be three to five times the direct costs.

With the advances in technology, this problem has evolved into a cat-and-mouse
game where thieves constantly try to outsmart the newest cutting edge security systems.

In terms of securing cargo, there are usually two aspects: first ensuring the physical
safety of the cargo and second monitoring and tracking it. The latter especially has
become of more interest as of late because many shipments cross national borders and
cargo may be handled by a multitude of carriers. All of this leads to a huge demand for
tracking and monitoring systems by the cargo owners, carriers, insurance companies,
customs and many others.

In this thesis, a framework is introduced which builds on open standards and software
components to allow “monitoring cargo in motion along trusted corridors”. The focus

lies on the use of a Service Oriented Architecture and Geographical Information System

specifications in order to allow an industry wide adoption of this open framework.

A formal description of the problem to be analyzed can be found in chapter 2. In
particular, it discusses the problems of proprietary systems, the advantages of open stan-
dards and the approach of using a Service Oriented Architecture in the transportation
industry.

Chapter 3 gives an in-depth introduction to the Extensible Markup Language that is
used as the foundation of the framework. Furthermore the specifications provided by the
Open Geospatial Consortium that define the elements and interfaces for Geographical
Information Systems are described.

The formal representation of the framework is a Service Oriented Architecture which
is described in chapter 4 along with the components that it uses.

Chapter 5 refers to related work and focuses on the topics that either deal with the
Service Oriented Architecture or the Open Geospatial Consortium specifications.

The main part of this thesis that details the design and architecture of the framework
can be found in chapter 6. It explains the individual components as well as the software
parts and specifications that are used in the implementation.

Chapter 7 gives test and performance results and describes the tools that have been
developed for that particular purpose.

The thesis concludes with chapter 8 that also provides an outlook for future work.

Chapter 2

Statement of Problem

In order to address the problem of cargo theft, the Transportation Security Sen-
sorNet project has been created. Its goal is to promote the use of open standards and
specifications in combination with web services to provide cargo monitoring capabilities.

The main question is the following:

“How can a Service Oriented Architecture, open standards and specifications
be used to overcome the problems of proprietary systems that are currently
in place and provide a reusable framework that can be implemented across

the entire transportation industry?”

The three main aspects of this question are discussed next.

2.1 Proprietary Solutions

Current commercial systems in the transportation industry are often proprietary.
This is because a lot of effort is spent on research and development in order to create
what is called intellectual property. The assumption is then that as long as the com-
petitors do not have access to the system and its protocols that intellectual property is

safe and provides a competitive advantage. Another common “benefit” of keeping the

systems closed is the perceived additional security since in order to successfully attack
the system its implementation and protocols have to be reverse engineered.

The problem with this is that these advantages are often one-sided and favor ven-
dors. Once a proprietary system has been implemented it has to be maintained. What
happens if a customer that uses the system invested a lot of money into a its infras-
tructure and the training of its employees and the company that provides the system
releases a new version of it which of course costs money again. The customer has several

choices:

Upgrade Throughout the literature this is often considered the most expensive option
because of the cost for the upgrade to the new version and the additional training to
the employees that has to be provided. The benefits of upgrading are the use of new

technology, potential gains in efficiency through new features and the latest bug fixes.

Do Not Upgrade By many regarded as the most cost efficient solution, choosing
not to upgrade compromises new features and updates for the ability to save costs. An
approach that is taken by some companies is the so-called skip a wversion technique.
This allows companies to plan better as internal processes and systems often have to

interoperate and need to remain compatible to each other.

Change Vendor In this situation, the new version of the system that is provided
by company A does not provide the necessary features or is simply too expensive.
Furthermore, a different company B offers a similar product with more features or
for less money. The move to the new system is now dependent on the following things:
How big are the estimated savings and what are the direct and indirect costs of the
transition? It often happens that after careful consideration the costs outweigh the
estimated gains and the customer goes back to considering whether or not to simply
upgrade. If a transition is made, the process could be time consuming and turn out to

be more complicated than expected.

Picture this extreme case as well. What happens if the vendor goes out of business?
All of the sudden, the short-term goal is to maintain support for the system and to
keep it running while in the long-term to look for a suitable replacement and be forced
to transition. Even if this case does not happen the dependency on the vendor can be
crucial. If the system has errors or a particular enhancement is desperately needed, the
vendor decides what to do about it. For big companies that are major customers this
may not be such a big problem because they often get preferential treatment. But for
small and medium businesses the wait might be too long and lose them customers and
revenue.

The main point here is that many customers are locked into proprietary solutions
that are incompatible with similar solutions offered by competitors. In a 2003 survey
by the Delphi Group [36] it was found that 52% of developers and 42% of consumers
see standards enabling the “approval of projects otherwise threatened by concerns over
proprietary system lock-in”. Furthermore, an overwhelming 71% of developers and 65%
of consumers feel that the use of open standards “increases the value of existing and
future investments in information systems”.

The problem of non-interoperability with regard to geospatial processing is the topic
of a paper by Reichardt [75]. Because Geographical Information Systems are often
immensely complex, companies that invest heavily into this area often only support their
product. As described in the sample scenario, this leads to a lack of coordination among
entities such as the Federal Emergency Management Agency (FEMA), the National
Transportation Safety Board (NTSB) and the Environmental Protection Agency (EPA)
because of the inability to share vital information which is the key to fast decision

making and data analysis

2.2 Variety of Open Standards

The idea of open standards and specifications is to define so-called interfaces and
protocols that can be used as references for the implementation of a system. There are
many standards committees and industry groups that aim to define them, most often
focused on a particular area. Some of the most well-known ones include the World
Wide Web consortium (W3C), the Organization for the Advancement of Structured
Information Standards (OASIS), the International Telecommunication Union (ITU) and
the International Organization for Standardization (ISO).

The main principles that govern the development of standards are usually the same

across all organizations. The following is an overview according to ISO:

Consensus All parties that are affected by the proposed standard get the chance
to voice their opinions. This includes initial ideas and continues with feedback and

comments during the standardization process.

Industrywide The idea is to develop global standards that can be used worldwide

by entire industries.

Voluntary The standardization process is driven by the people that are interested
in it and that see its future benefits across a particular industry. It is often based on

so-called best practices that are already commonly in use.

The importance of open standards is emphasized in a paper by McKee [56]. It pro-
vides the evolution and success of the Internet as the “perfect example” for the use of
open standards. In particular it explains that since the Internet is based upon com-
munication and communication means “transmitting or exchanging through a common
system of symbols, signs or behavior”, the process of standardization can basically be

seen as “agreeing on a common system”. The other parts of the paper are focused on

how so-called openness can help Geographical Information Systems (GIS) but many of
the points mentioned apply to open standards in general.

In particular the following aspects are associated with open standards:

Compatibility This includes the ability to share data across vendors and systems
in a uniform and non-proprietary form. It allows processes to use essentially the same
data in order to perform their specific task without the need of costly conversions or
interpretation errors. Most common formats are also backward compatible which means
that no particular version of the system is needed to interpret the data. Only a certain
subset of functionality might be provided when using in older versions though. Another
advantage of open formats is the fact that even if a particular version of a format is
completely outdated and only used in legacy systems, its specification is still accessible

to everyone. Hence systems can still be designed to use the format.

Freedom of Choice A major problem of proprietary solutions that was described
earlier was the so-called vendor lock. Once a customer implements a proprietary system
and builds its infrastructure around it, choices in the future are limited. Open standards
by definition are vendor independent. Furthermore many of them support a broad
variety of implementation scenarios. These implementations often are not even limited
to a particular platform, operation system or programming language. This is especially

true for most of the web standards.

Interoperability Through the use of clearly defined interfaces, standards dramati-
cally enhance interoperability. The standards that define interface specifications do not
provide a specific implementation but provide references to best practices and imple-
mentation patterns instead. Companies choose what kind of system implementation
they prefer. This allows them to make use of existing infrastructure and capabilities
that might otherwise have to be changed when using a proprietary system. The uniform

access to functionality and data enables companies to connect a multitude of systems

and make more use of them. Also, in case one part of the system has to be replaced,
another one that simply provides the same interface can take its place. This allows great

flexibility in terms of the overall system design.

Leverage For companies the standardization of concepts, frameworks and common
approaches provides a number of benefits. Since research and development can be
extremely cost intensive, companies want to make sure there is a guaranteed return on
investment for them. Open standards do not necessarily lead to increased revenue but
they do provide insurance to the companies that they are on the “right” track and what
they implement is actually used industrywide. This is very important because customers
are aware that when they purchase a system from company A that uses a proprietary
or non-standard implementation they might become a victim of vendor lock. Acquiring
a system that is build on open standards allows them to choose the best and most cost
effective solution from a variety of independent implementations. Another advantage is
that once different implementations by the main vendors have been established, there is

room for custom solutions by smaller vendors, often in the form of extensions or plugins.

Open Source The biggest benefit of using open standards is that fact it leads to
innovation. This is because everybody can contribute, suggest enhancements, outline
best practices and address mistakes. In terms of software this approach is often referred

to as open source.

However, there are several problems that can be associated with non-proprietary
systems. Implementations are based upon the interpretation of the standards which
may differ significantly. Furthermore, some implementations only support a subset of the
original specification, are slower than the reference implementation or use incompatible

sub systems.

2.3 Service Oriented Architecture

The concept of information processing and sharing across various applications using
so-called web services is the main focus of this thesis. The basic idea is to define
components of a system as services and users as clients that can retrieve data from them.
Note that interaction between services is done using so-called embedded clients. The
services take care of things such as information processing, data analysis and storage.
With all business logic embedded into services and interaction between them clearly
defined using open standards an infrastructure is built that is called the Service Oriented
Architecture (SOA).

The Internet allows the following two things that are relevant to geospatial pro-
cessing: a common means of communication and the ability for efficient information
sharing. There exist many standards on how to transmit, receive, encode and decode
data. SOA builds on top of them to provide new specifications that enable the design,
implementation and use of web services. Through these web services companies, govern-
ment agencies and others have the ability to share and process information in a uniform
manner which cuts costs, time and resources and improves efficiency. More information
on the Service Oriented Architecture can be found in chapter 4.

Now why is the SOA such an “enabler”” What is possible now that was not possible
before? According to Irmen [44] automation and efficient communication with partners
are the two most important things in supply chain management which represents the
core of the transportation industry. Let us take a look at how the Service Oriented

Architecture addresses both of them in regard to the individual topics outlined in the

paper.

Automation A vital part in transportation is the so-called screening process. Com-
panies that transport goods must ensure safety and therefore check all parties involved

in the trade. An important aspect of this is the use of a so-called denied trade list

which lists items and companies that are not allowed to import or export into specific
countries. With the reduction in manual labor and transition to a web services based
system that automatically performs these checks, efficiency could be greatly increased.

A closely related topic is accountability. Who is responsible if something goes wrong
during the trade process? Since goods are often handled by many different parties,
it must be possible to monitor the location of cargo and handovers tightly. This is
especially important in cases of tampering or even theft of the cargo.

Furthermore, agencies and customs more and more require electronic trade informa-
tion instead of paper documents in order to track trade. Because of different formats
and legacy applications that are often unable to provide this information in its entirety,
additional resources have to be allocated in order to remain compliant with current
practices. Web services and open standards can overcome this problem with uniform
interfaces and common data formats.

Having the ability to monitor the location not just for perishable goods but also
for high value goods is of great importance in the transport chain. Current processes
should be able to automatically route cargo based on its needs and cost effectiveness.

Irmen [44] also points out that “the lack of integration between products causes users
to deal with multiple systems having disparate data and non-uniform input and output”
and calls for the use of a single platform. Using the Service Oriented Architecture this
“call” becomes less necessary because it is platform independent and at the same time

able to provide integration of multiple systems and standardized data formats.

Efficient Communication Building a virtual network among the parties involved in
the trade process establishes efficient means of communication. It allows the coordina-
tion between otherwise disparate entities that is essential to provide cost effective and
reliable shipping of cargo. The Internet provides the communication layer but it is the

standards of web services that enable the integration of different systems.

10

Irmen [44] mentions the so-called Software-as-a-Service (SaaS) approach which al-
lows software to run on a per-use basis without the costs of complex hardware infras-
tructure. This works very well with SOA as the interfaces defined by those services are
often web services interfaces that are essentially part of SOA.

Security within the transportation industry plays a big role because trade data is
to be kept confidential at all times and only distributed on a need-to-known basis.
This puts an additional burden on the parties that are involved, as the parties must
exchange data confidentially at each point of interaction. If open standards are used for
this, security is implemented based on interfaces and policies that are easy to manage.

In order to manage the transportation chain in its entirety, a global view is often
needed. This is problematic since individual parties often only deal with their respective
neighbors. Using open standards and the Service Oriented Architecture approach each
party could provide an uniform information interface that is accessible to other parties
in the chain. This allows consistent reporting, monitoring and analysis at each step
during the shipping process.

The reporting part especially has gained more attention over the past years as the
focus has shifted towards more ethical and socially responsible business practices. Ac-
countability coincides with this social visibility and therefore improvements in moni-
toring cargo not only lead to increased revenue on the business side but better public

relations as well.

Overall the paper by Irmen [44] gives excellent reasons for open systems in terms
of accountability, coordination, scalability and cost. It outlines important aspects that
need to be taken into consideration when designing an architecture such as the Trans-

portation Security SensorNet.

11

2.4 Summary

The following chapters describe how open specifications for Geographical Informa-
tion Systems in combination with web services can be used to address the problems
of proprietary systems that were outlined in section 2.1. In the Transportation Secu-
rity SensorNet (TSSN) this is achieved by using a variety of open standards primarily
because of the aforementioned interoperability and freedom of choice (see section 2.2).
The use of a Service Oriented Architecture for the TSSN allows the creation of the ap-

plications needed for efficient and cost effective transportation chains (see section 2.3).

12

Chapter 3

Background

3.1 Extensible Markup Language

The Extensible Markup Language (XML) is a specification by the World Wide Web
Consortium (W3C) that is used to describe data in a highly flexible but also concise
way. It serves as the basis for most of the specifications that are referenced in this thesis.

As described by Sperberg-McQueen et al. [81] one of the main goals of the specifica-
tion is interoperability and support for a multitude of applications. This is emphasized
by the fact that XML should be human-readable and easy to process by computers.
XML can be used to describe, filter and format data while providing storage function-
ality as well.

In the Transportation Security SensorNet it is utilized in a variety of ways. The
web services and the Open Geospatial Consortium standards define their interfaces and
data elements using XML. SOAP, as described in section 4.2, is a XML message format
that is used as the basis for the transmission of data in the framework. Furthermore,
many configuration files for the web services and clients in the Transportation Security
SensorNet are in XML. The use of the Extensible Markup Language is one of the main

reasons for the flexibility and reusability of the framework

13

3.1.1 Overview

In the following sections some basic principles of XML are introduced. Let us start

by describing a simple book using XML.

1 |<?xml version="1.0" encoding="UTF-8" 7>
2 |<book>

3 <!— english title —>

4 <title>Hamlet</title>

5 <!— author name —>

6 <author>William Shakespeare</author>
7 |</book>

Listing 3.1 Simple XML book description

The first line is the XML declaration. It specifies that the described document uses
version 1.0 of the XML specification and UTF-8 encoding. Line two starts with the
definition of a book that contains a title (line four) and an author (line six). Note that
line three and five are comments that are not part of the actual data but can be used
to further describe it to humans. This example shows that XML can be as descriptive
to humans as it is to computers.

Looking at the XML we can see multiple things. The element book has a so-called
start-tag (line two) and an end-tag (line seven). Information about the specific book
is kept in between these tags. As for the title and author information the actual data
is also contained within their start-tag and end-tags. This demonstrates one basic type
that is used most frequently in XML, an element. An element consists of a start-tag
and an end-tag with either content or other elements in between. Note that there are
also so-called empty-element-tags that look like <empty-element/>. They contain no
further content or elements.

One of the requirements of using XML in applications is that one needs to define
one specific root element. Therefore if we wanted to define more books let us put them

into a library root element.

14

© 00 N O U = W N

— =
N = O

XML is flexible enough to use different descriptions of essentially the same data.
The following example represents the same library using attributes for title and author

information instead of elements. Attributes are basically name-value pairs that contain

<?xml version="1.0" encoding="UTF-8" 7>
<library>
<book>
<title>Hamlet</title>
<author>William Shakespeare</author>
</book>
<book>
<title>Great Expectations</title>
<author>Charles Dickens</author>
</book>

</library>

Listing 3.2 Library of books

information about the element that they are a part of.

= W N

ot

The “problem” with this is that if one application uses elements and the other ap-
plication uses attributes to describe books in their libraries they seem incompatible.
In order to solve this we need to make sure that each description is uniquely identi-
fiable. This can be done declaring so-called namespaces as described by Bray et al.
[13]. The idea is to attach a specific Uniform Resource Identifier (URI) (see Berners-
Lee et al. [6]) to the document or element definitions. For example, this would re-
sult in <a:book xmlns:a="http://www.sample.com/elementBook"> for listing 3.2 and

<b:book xmlns:b="http://www.sample.com/attributeBook"> for listing 3.3. Using

<?xml version="1.0" encoding="UTF-8" 7>
<library>

<book title="Hamlet" author="William Shakespeare" />

<book title="Great Expectations" author="Charles Dickens"

/>

</library>

Listing 3.3 Library of books using attributes

15

these namespaces we have the ability to mix different descriptions in a single document.

1 |<?xml version="1.0" encoding="UTF-8" 7>

2 |<library xmlns="http://www.sample.com/library">

3 <a:book xmlns:a="http://www.sample.com/elementBook">

4 <a:title>Hamlet</a:title>

) <a:author>William Shakespeare</a:author>

6 </a:book>

7 <b:book xmlns:b="http://www.sample.com/attributeBook"
title="Great Expectations" author="Charles Dickens" />

8

9 |</library>

Listing 3.4 Extended library of books

We can also use namespaces to uniquely identify document descriptions. The default
description in listing 3.4 is <library xmlns="http://www.sample.com/library"> and
more specific descriptions are in place for each book.

So what do these descriptions actually look like? They are written in XML as well
and called XML Schema Definitions (XSD). An overview is provided by Fallside and
Walmsley [28] and the exact structure by Mendelsohn et al. [57]. While there are other
standards in place for describing XML documents, XML schemas are the most common.

Let us describe the first book format.

1 |<?xml version="1.0" encoding="UTF-8" 7>

2 |<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
3 targetNamespace="http://www.sample.com/elementBook"
4 xmlns="http://www.sample.com/elementBook">

) <xsd:element name="book">

6 <xsd:complexType>

7 <xsd:sequence>

8 <xs:element name="title" type="xsd:string"/>
9 <xs:element name="author" type="xsd:string"/>
10 </xsd:sequence>

11 </xsd:complexType>

12 </xsd:element>

13 |</xsd:schema>

Listing 3.5 Element book format

16

We defined an element called book that contains two elements called title and author.
Both of them are of type string which is a predefined data type. For ease of use and
compatibility reasons the specification defines a set of standard data types. The type
of book is so-called complex since it is the parent of other elements. Because this type
is defined implicitly it is called anonymous typing. If one wanted to reuse the book type
in some other element definition it makes more sense create a complex book type and

define an element that is of this type. The XML schema would then take the following

form:
1 |<?xml version="1.0" encoding="UTF-8" 7>
2 |<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
3 targetNamespace="http://www.sample.com/elementBook"
4 xmlns="http://www.sample.com/elementBook">
5 <xsd:element name="book" type="BookType" />
6 <xsd:complexType name="BookType">
7 <xsd:sequence>
8 <xs:element name="title" type="xsd:string"/>
9 <xs:element name="author" type="xsd:string"/>
10 </xsd:sequence>
11 </xsd:complexType>
12 |</xsd:schema>

Listing 3.6 Element book format with type (elementBook.xsd)

Line three defines the so-called target namespace of the schema. When the schema
is used in a document, elements from it will automatically have this namespace. Line
four specifies the default namespace for the schema so that elements and types in the
schema are able to reference each other. The sequence tag at line seven specifies that the
elements are to be in order, first title and then author. Other common options include
all for random order and choice for the exclusive selection of elements.

The second book format could be defined by the following schema:

17

<?xml version="1.0" encoding="UTF-8" 7>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.sample.com/attributeBook"
xmlns="http://www.sample.com/attributeBook">
<xsd:element name="book" type="BookType" />
<xsd:complexType name="BookType">
<xsd:attribute name="title" type="xsd:string"/>
<xsd:attribute name="author" type="xsd:string"/>

© 00 N O U = W N

</xsd:complexType>
</xsd:schema>

—
=)

Listing 3.7 Attribute book format with type (attributeBook.xsd)
The only major difference in listing 3.7 is using an attribute instead of an element
for the book information. Since our library should be able to use both descriptions let

us define a schema that will allow this.

1 |<?xml version="1.0" encoding="UTF-8" 7>

2 |<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

3 xmlns:a="http://www.sample.com/elementBook"

4 xmlns:b="http://www.sample.com/attributeBook"

5 targetNamespace="http://www.sample.com/library"

6 xmlns="http://www.sample.com/library">

7 <xsd:import namespace="http://www.sample.com/elementBook"
schemalLocation="elementBook.xsd" />

8 <xsd:import namespace="http://www.sample.com/
attributeBook" schemalocation="attributeBook.xsd"/>

9 <xsd:element name="library">

10 <xsd:complexType>

11 <xsd:choice minOccurs="0" maxOccurs="unbounded">

12 <xs:element ref="a:book"/>

13 <xs:element ref="b:book"/>

14 </xsd:choice>

15 </xsd:complexType>

16 </xsd:element>

17 |</xsd:schema>

Listing 3.8 Library schema (library.xsd)
The two previously defined schemas are imported in lines seven and eight. Line
twelve and thirteen use so-called references to these defined elements. In this case we

define the number of occurrences of each element explicitly. This is because by default

18

all elements have a minOccurs=1 and a maxOccurs=1, meaning that they are required
but may appear only exactly once. Hence, the library consists of books either in element
or attribute format and the possible number of books ranges from none to infinite.
The examples that were covered illustrate how XML can be used to describe and
store data. But what are the advantages of using XML over other technologies that can
essentially do the same? One of the main reasons why the use of XML has grown in
recent years is because of the impact of the Internet. Applications and data that were
previously stored internally, often in proprietary formats, are now made accessible to
remote locations and users. The need to deal with data in a more open and flexible way
became apparent especially for web applications and services. The following sections
describe the different ways of how web applications and applications in general can

utilize and benefit from XML.

3.1.2 Descriptive power

The description of data using XML enables applications to be very flexible and
modular. New fields or attributes of data can be added using schema extensions and
applications can choose either to use the extension or the original XML schema defi-
nition. Data can even be entirely rearranged using new or modified element and type
definitions. This allows different views of the same data which decreases conversion
costs and increases reusability and interoperability. In essence the data stays the same,
the only thing that changes is its interpretation.

This aspect is essential in a Service Oriented Architecture like the Transportation
Security SensorNet because clients and web services are highly dynamic. Using XML

allows the entire framework to be implemented in a flexible, modular and reusable way.

3.1.3 Ease of transformation

Data often needs to be transformed or converted from one format into the other.

Since XML only describes the data we can transform it easily into whatever is needed.

19

For this reason Fxtensible Stylesheet Language Transformations (XSLT) as described by
Kay [46] have been introduced. They enable automatic conversion of XML documents
using so-called stylesheets that are defined in XML. Let us take the initial library in

listing 3.2 and transform it into a simple HTML web page.

1 |<?xml version="1.0" encoding="UTF-8"7>

2 |<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/
Transform" version="2.0" >

3 <xsl:template match="/">

4 <html>

) <body>

6 <hl>Library books</hl>

7 <xsl:for—each select="library/book">

8 <div><xsl:value—of select="title"/> by <xsl:value—of

select="author" /></div>

9 </xsl:for—each>

10 </body>

11 </html>

12 </xsl:template>

13 |</xsl:stylesheet>

Listing 3.9 Library stylesheet (library.xsl)

In listing 3.9 a header is specified that displays “Library books”. For each book in
the library the title and author are then extracted and put into a relationship sentence.

Hence, the resulting output would look like the following:

<html>
<body>
<hl>Library books</hl>
<div>Hamlet by William Shakespeare</div>
<div>Great Expectations by Charles Dickens</div>
</body>

</html>

O N O O = W N =

Listing 3.10 Library of books in HTML (library.html)

Note that this is just one of the many possibilities of converting an existing XML
document into a different format. Within the Transportation Security SensorNet these

Extensible Stylesheet Language Transformations are used by Apache Azis2 to create

20

Java classes from XML Schema Definitions and Web Services Description Language

files so that they can be used by clients and web services (see 6.1.1.2 and section 6.1.1.4).

3.1.4 Information storage and retrieval

Storing data in an XML format makes the data and relations between data more
flexible. Databases often face the problem of sparsity where when a new column is
added to a table all entries must have this new column. XML works in a different way.
Additional information fields can be added just to the elements that need them while for
all other elements the XML schema would simply define the field as optional. This can
potentially save a lot of space when compared to storing the same data in traditional
databases. In the Transportation Security SensorNet this “cost saving” approach is
utilized by SOAP during the message transmission (see section 4.2).

In order to retrieve information efficiently from XML several specifications have
been designed. Boag et al. [8] describes XPath which is a query language specifically
designed for XML. It works on the basis of a document tree, the so-called data model,
that it creates from the original XML. Elements are nodes in the tree and attributes
so-called attribute nodes. Information can then be retrieved using path expressions.
Table 3.1 shows some examples of the information that we are able to retrieve and the
path expressions that were used for the library in listing 3.2. XPath is used by the Log

Parser extract information from log files (see section 7.2).

XPath expression Result

library all books of the library
library /book|[1] first book

//author all authors

//author /text() all author names
//book[title="Hamlet”] /author /text() | author name of Hamlet

Table 3.1. Example XPath expressions

Another specification that is used for XML data information retrieval is called

XQuery which was defined by Siméon et al. [77]. It is more complex and builds on

21

top of XPath 2.0. Immediate result computations and transformations are possible
using a so-called FLOWR expressions. Where Xpath simply extracted information,
XQuery enables applications and users to directly modify or change the appearance of

the information.

3.1.5 Flexible transmission

Since there is a significant overhead associated with conversion, standards have been
defined that allow various forms of XML to be transmitted with little or no modification.
The simplest form is just to send an XML document from sender to receiver using HTTP
which is known as Representational State Transfer (REST) (see section 4.1). In that
case both parties have the schema information. This is not a lot different than using a
binary format since the communication is useless for anybody that does not understand
the format. The advantage though would be that there is no conversion from XML
into another format necessary. For more advanced scenarios it becomes more feasible
to wrap the document that is being transmitted into a standardized transport package
or message. The most common way to achieve this for XML is by using SOAP which

is the case in the Transportation Security SensorNet and described in section 4.2.

3.2 Open Geospatial Consortium

The Open Geospatial Consortium (OGC) is the de facto authority on open standards
for Geographical Information Systems (GIS). Its members develop interface specifica-
tions for geographical applications. One of the primary goals is interoperability: research
and development costs are later diminished by the fact that if one application imple-
ments an OGC standard other applications can use it through the predefined interfaces
that the standard provides. Furthermore, there is a higher interest in the actual im-
plementation of standards since a majority of the industry agreed upon them. This

mitigates one of the main risks that proprietary applications otherwise face, the lack of

22

user and industry acceptance.

Some of the industry needs cover a wide area of topics whereas others are very
specific. For example, there needs to be a standard for dealing with times, locations
and their formats which is something that almost all geographical applications face at
some point. On the other hand, the format for requesting live feeds from a sensor is
of interest only to a smaller group. The OGC tries to cover everything from simple to
complex that could enhance the development of spatial information applications and
services.

The way it is able to achieve this is by not actually implementing the standards but
only providing the framework, the specification and schemas. The usual development

framework looks as follows.

Discussion White
Papers Papers
e N
Implementation A
&)
g Y
Abstract _| Implementation R Implementation B
Specification Specification N 4
g Y
- Implementation C
G)
Compliance
Testing

Figure 3.1. OGC standardization framework as described in [74]

First, abstract specifications are written that describe the goal and primary concepts
of a proposed standard. This is explained in detail by Reed [74]. Second, the abstract
version of a standard leads to an implementation specification which eventually be-

comes a standard after it has been accepted by the OGC members. Third, the industry

23

in terms of application and service developers implements the specification and provides
feedback to the consortium. Furthermore the OGC releases white papers that provide
high-level overviews of the concepts of a standard and a best practices paper that de-
scribes implementation specific development patterns. So-called discussion papers are
usually written by developers talking about the technologies and approaches used in
their implementations. Finally, the OGC encourages implementations to be tested and
marked as compliant using their test suites.

An overview of the procedures and the approaches taken are described in the OGC
Reference Model (ORM) by Percivall et al. [71]. It explains the concepts behind storing
geospatial information, referencing locations and times, and creating maps or so-called
geometries from the available data. The reference model refers to several abstract spec-
ifications in order to establish a connection between them and reiterate the goal of
developing open interoperable standards. Apart from talking about the approaches be-
hind geospatial information processing, the concepts of geospatial services and reusable
patterns are introduced.

The Transportation Security SensorNet aims to be open and interoperable. It uses
the interfaces and elements defined in the specifications of the Open Geospatial Con-
sortium and provides concrete implementations, for example the Sensor Observation
Service and the Sensor Alert Service. In terms of web services within a Service Ori-

ented Architecture the following standards are of importance.

3.2.1 Sensor Web Enablement (SWE)

One of the main focuses of the OGC in recent years has been the development of
concept called Sensor Web. In the Sensor Web Enablement (SWE) architecture and

overview document by Botts et al. [10] it is described as follows:

“A Sensor Web refers to web accessible sensor networks and archived sen-

sor data that can be discovered and accessed using standard protocols and

24

application program interfaces (APIs).”

This is best visualized by the concept figure 3.2 from the document.

- All sensors reporting position - All readable remotely
- All connected to the Web - Some controllable remotely
- All with metadata registered

Figure 3.2. Sensor Web Concept from [10]

The idea is to combine various information modeling specifications with the appro-

priate services that provide the data processing for them. According to Botts et al. [10]

the following specifications make up the Sensor Web:

Observations & Measurements (O&M) specifies the representation of sensor mea-

surements.

Sensor Model Language (SensorML) describes sensors, models and their processes.

For instance the discovery of sensors and data preprocessing.

Transducer Markup Language (TML) specifies the encoding and transport of

streaming sensor data in real-time scenarios.

Sensor Observation Service (SOS) provides interfaces for describing what capabil-

ities a sensor can perform and for retrieving actual observations or measurements.

Sensor Planning Service (SPS) allows users to query the sensor web for a spe-
cific need. For example: “monitor the following 5 intersections every minute for

excessive traffic for the next week”.

25

e Sensor Alert Service (SAS) provides users with the ability to subscribe to certain

sensor events. Like “notify me when the temperature exceeds 100°F”.

e Web Notification Service (WNS) describes message exchange capabilities between

clients and services.

This thesis uses the same approach in order to define the Service Oriented Archi-
tecture for Monitoring Cargo in Motion Along Trusted Corridors called Transportation
Security SensorNet. However, it has to be noted that there are some differences in the
implementation and use of specifications. For instance only a subset of the Sensor Web
specifications are actually used.

The Geography Markup Language (GML), that is only briefly mentioned by Botts
et al. [10] in the SWE document, essentially describes some of the main components and
elements that are used by most of the specifications in the implementation. Addition-
ally, the Catalogue Service for Web (CSW) can provide a so-called service directory of
available services. The Sensor Web Enablement is an initiative from the OGC that aims
at the combined growth of theses specifications that will essentially make up the Sensor
Web. While some of the specifications are agreed standards others like the Sensor Alert
Service (SAS) are still in draft stage as of summer 2009.

Specifications that are relevant to the Transportation Security SensorNet are ex-

plained in more detail in the following sections.

3.2.2 Geography Markup Language (GML)

The need for a standard to encode geospatial features in an abstract way that can
eventually be mapped onto real world things is elementary. The Geography Markup
Language (GML) as described by Portele [72, 73] aims at defining most, if not all, fea-
tures with a geographical background that can be defined. Among the things covered in
the specification are observation models, spatial and temporal reference systems, geome-
tries and units of measure. It considers a variety of base components that are common

between applications and allows for other domain or application specific profiles to be

26

defined, therefore extending them. Application schemas describe a certain subset of
definitions within the standard but might introduce new or extended types that are
specific to the application.

The specification is highly hierarchical in the sense that several abstraction layers
have been introduced in order to hide complexity. The two base objects that are defined
from which all others are derived are abstract object and abstract gml. Basic types like
features that model things like roads or rivers add more properties onto the base objects.
This extension might be as simple as adding a location name and reference to it.

Things that can be modeled mathematically are part of a so-called geometry. This
includes points which are primitives, lines and curves which are aggregates and can lead
to more complex elements like polygons and surfaces.

Another big part of the specification is describing temporal constructs like time in-
stants, periods, intervals, durations and calendars. Coordinate reference systems may
be used differently throughout the world therefore definitions for them are included as
well. They are used to specify time and location formats for instance. Units of measure
are standardized definitions of measures and values of objects. There is also a section in
the GML specification called observation which covers mostly simple types of observa-
tions. A more in-depth specification covering this is the Observation € Measurements
(OM) specification (see 3.2.4).

An article by Bardet and Zand [2] gives an excellent example of how data is converted
from format called AGS into GML. The main problem that is described is the lack of
systematic archiving and exchange of drilling data. Since obtaining this data can be
very cost intensive it has become a big issue. Hence, transforming the data into GML
allows companies and researchers to take advantage of OGC applications for storage,
exchange and visualization of this information. This reduces cost and makes the drilling
data more useful. The article represents a case study in the sense that it describes in
detail all the steps that were taken to implement the data conversion.

GML is used by many other specifications as the basis for describing geographical

27

information. In the Transportation Security SensorNet it is used by the Sensor Observa-
tion Service and the Sensor Alert Service implementations provided by, among others,

the Sensor Node at the Mobile Rail Network (see section 6.3.1).

3.2.3 Catalogue Service for Web (CSW)

The Catalogue Service for Web (CSW) as specified by Nebert et al. [63] describes the
“discovery, access, maintenance and organization of catalogues of geospatial information
and related resources”. It manages resource information for services in the form of

metadata.

Application
Client

OGC Catalogue
mterface

Catalogue
Service

OGC service
interfaces

Distributed
Search

¥

Meta_data describes -
repository T

Resource

Figure 3.3. Catalogue Service reference model architecture from [63]

Whenever a client requires geospatial information or processing capabilities it queries
the Catalogue Service. A metadata repository is kept in order to store information such
as location, capabilities and schema definitions of services. Information that matches
the query is then returned to the client. The client also has the ability to ask for a
description of specific metadata elements and use that to get more specific results. The
CSW therefore acts as broker between the clients and the services. Once the client has
found a suitable service, it looks into the metadata that describes a particular service
and uses that information to perform its request.

One of the advantages of this architecture is the ease of use for the client. A lot of

services could provide essentially the same functionality. After they have all registered

28

with the Catalogue Service it is up to the client to choose which one to use. If a service
is not available the client can simply try a different one. Furthermore it is not necessary
for the client to actually know where the services are all the time since the Catalogue
Service stores this information. This allows for a flexible environment and makes it
scalable.

In the Transportation Security SensorNet this service directory functionality is pro-
vided by an implementation of Universal Description, Discovery and Integration (UDDI)
specification (see section 4.4). Clients and web services in the framework have the option
to contact it and retrieve similar information to the one offered by a Catalogue Service.

For additional scalability the specification also describes an approach called dis-
tributed search. Multiple Catalogue Services can set up a query topology where each
service is responsible for its own metadata but the query is answered collectively. For

the schema definitions of the Catalogue Service for Web see Nebert et al. [62].

3.2.4 Observations & Measurements (O&M)

Since there exists a variety of different sensors for almost every application, defining
a standard that is true to all of them can be quite hard. The goal of the O&M standard
as specified by Cox [20, 23] is to build an abstraction layer model that allows users and

other services to use whatever granularity they need.
i Observation |..__
o Pattern N
! Y
Procedure > Result

Observed Observed
Property A | | Property B

Feature of Interest

Figure 3.4. Observation process as described in [20]

Whenever an action is performed we basically “observe” a feature of interest. What

we are interested in is the value of an observed property of that feature and in order

29

to determine this property value we exercise a particular procedure. Additionally an
observation pattern can be useful for estimation and error correction of the observation
result. In cases where the result is numeric the term measurement is used instead of
observation. There are other specialized result types ranging from simple to complex.
An observation may also be associated with a location. This is quite common.
Depending on the properties of its members, collections of observations can be one

of the following types:

Type Feature | Sampling time Observed properties
complex same same different
time series same different same
discrete coverage same same elements of a larger feature

Table 3.2. Collection types from [20]

The specification deals with collection types where the feature of interest does not
change but stays the same. We speak of a complex observation when different properties
are observed at the same time whenever a sample is taken. In case a particular property
is monitored over a certain time period and the property does not change throughout the
observation, the collection is called a time series. Sometimes the observed property we
are interested in is made up of many smaller observed properties. This scenario describes
a discrete coverage. An example given by Cox [20] is the observation of temperature
values in a particular region where there are multiple sensors in the region but one is
only interested in the temperature for the entire region.

Another thing described in the specification is the fact that in many cases the single
observed property is not actually what is wanted but rather just something indirect.
The sampling of features concept that deals with this is described by Cox [21, 22]. On
the one hand, the observed property value could be in need of adjustment or only usable
after the application of an algorithm as is often the case with light and temperature
values. On the other hand, one value might not be of any importance at all but is just

a part of a bigger sample design. Sometimes both cases can apply at the same time.

30

When an observation falls into this category the sample features form a particular
relation that connects them and a so-called survey procedure is defined. This process
achieves the desired abstraction where at a higher level the result of this relation looks
like just another value since the sampling of features works transparently underneath
it.

The Observations & Measurements (O&M) specification is used by the Sensor Ob-
servation Service in the Sensor Node at the Mobile Rail Network (see section 6.3.1). It
is used in combination with GML because O&M allows for more complex observations

while GML provides a broader field of geographical elements.

3.2.5 Sensor Observation Service (SOS)

The Sensor Observation Service (SOS) is described by Na and Priest [60, 61]. It
aims to provide the user with observation data in a generic way that allows the use of
a variety of different sensors. The two major types mentioned in the specification are
in-situ and remote sensors. The primary goal is to provide access to observations (see
3.2.4). An implementation of this service within the Transportation Security SensorNet
is provided by the Sensor Node (see section 6.3.1).

The service provides so-called observation offerings to users and applications. It does
this by maintaining a sensor registry that contains information such as type, location
and other metadata about the sensors that it knows about. This allows clients to
perform detailed inquiries about possible observation times, available properties and
geographical information of sensors and features.

GML is used to deal with measures and units in the offerings and when referencing
observations. Apart from allowing filtering by sensor id the Sensor Observation Service
is able to filter by spatial, scalar and temporal expressions. The two concepts it uses

are called data publishing and data consumption.

31

3.2.5.1 Data Publishing

Catalogue Service

Service

Registry
/ Sensor Observation \

Service

2. RegisterSensor Sen_sor ||
< > Registry
Data B
» Sensor
Sensor | 3. InsertObserQion Data /

1. GetRecords

Figure 3.5. SOS data publishing process as described in [60]

The data publisher, usually a sensor, is querying the Catalogue Service for Web
(CSW) for available Sensor Observation Services. After it found a suitable one it regis-

ters itself and is then able to publish data. In addition, the new sensor is automatically

integrated in new observation offerings.

3.2.5.2 Data Consumption

Catalogue Service
Service |
Registry

1. GetRecords

/ Sensor Observation \

Service

Sensor |
Registry
Sensor |«

\ Data / 4. GetObservation

Figure 3.6. SOS data consumption process as described in [60]

3. DescribeSensor

Client

32

The user has identified a need for a particular observation. The Catalogue Service
for Web then provides Sensor Observation Services. Depending on the availability of
metadata in the catalogue the user has either already selected a particular sensor or
retrieves that information about a sensor from the observation offerings. More specific
information about a particular sensor can be requested as well. Finally the necessary

observations can be retrieved.

3.2.6 Sensor Alert Service (SAS)

In order to allow for an asynchronous alert reporting mechanism to notify users, the
Sensor Alert Service (SAS) which is a candidate specification by Simonis and Echter-
hoff [78] has been designed. It proposes an event subscription and notification system
that publishes sensor data based on specified criteria. An implementation of this ser-
vice within the Transportation Security SensorNet is provided by the Sensor Node (see

section 6.3.1).

3.2.6.1 Advertising Process

/ Sensor Alert \

Service

—— ‘ Advertise
‘ Registry
Sensor Subscription
Registry

\\ Notification process /

Figure 3.7. SAS advertising process described in [78]

The idea is that sensors advertise their data to the SAS. They then enter into an

advertisement agreement to publish this data whenever it becomes available.

33

3.2.6.2 Notification Process

/ Sersa AT \ 3. DescribeAlert

Service 2. DescribeSensor
Sensor |
Registry
s
Registry
4. Subscribe

‘ Notification process —
\\ Alert

Figure 3.8. SAS notification process described in [78§]

1. GetCapabilities

A

For the client, the service provides so-called subscription offerings. By choosing a
particular offering the client subscribes to the sensor data that is defined by the offering.
The SAS may modify or apply algorithms to the original sensor data which is in a way
similar to applying an observation pattern as described in the O&M specification (see
3.2.4). The offerings are linked to subscription criteria that are used internally to
match the sensor data that is published by the sensors to the individual clients that
subscribed to them. The Sensor Alert Service additionally provides the client with
means to retrieve all necessary information about the sensor itself and the alert data,

especially the format.

The main difference between the Sensor Observation Service and the Sensor Alert
Service is the way query results are provided. If the client is in need of particular
sensor data on an ad hoc basis, it asks the Catalogue Service for Web for a matching
SOS and queries the SOS in order to fulfill this need. The key aspect for the Trans-
portation Security SensorNet is that the SOS only deals with providing the sensor data
synchronously.

In case an alert system is needed to monitor whenever some sensor data reaches a

34

critical value the client does not directly act as the one querying for sensor data but
rather the SAS. The client simply tells the SAS the necessary criteria for an alert through
the means of a subscription. The SAS then monitors incoming sensor data and sends
out notifications accordingly. This is done asynchronously without the client having to

constantly query for data itself.

35

Chapter 4

Service Oriented Architecture

The main idea behind Service Oriented Architecture is that applications are defined

as so-called web services which communicate with each other using a set of predefined

protocols and standards. In terms of technologies, programming languages and plat-

forms used, these web services can be completely independent systems. The key here is

that their interfaces are specified using web service standards.

Service

~

@
\
i
=@
/
T

-7 @H Interface A
D || A / ‘
oes Y Interface B
-
“a |Process B \
-
/ Interface C
Data A
S —— Interface D
N
Figure 4.1. Service overview

The book “Service-Oriented Architecture: Concepts, Technology, and Design” by Erl

36

[26] describes these fundamentals in more detail. In particular the main components
that make up a Service Oriented Architecture are outlined here.

A message represents the data that is required for a so-called unit of work. An
operation covers the logic that processes these messages. The grouping of logic that
handles related units of work is defined as a service. Additionally, the book defines a
process as the business logic that combines several operations in order to complete a
larger piece of work. Erl not only covers the basic concepts of SOA but also explains
how they can be applied in the real world.

The principles of service orientation according to Erl [26] consist of the following:

o Reusability of logic, operations and services

e (Contracts that define the service and information exchange

e Loose coupling of relationships with the goal of minimizing dependencies

o Abstraction that hides implementation logic of services

o Composability of services to form a more complex process

e Autonomy of logic within a service

e Stateless use of information in a service

e Discoverability of services

The SOA approach allows for what is called loose coupling between services. It de-
fines each individual service in two ways. First, a service provides a specific functionality
that could be for instance data processing or information storage. It is autonomous in
doing so which means that it only dependents on itself for providing this functionality.
Second, each service can be replaced by a different service that has the same interface.
This flexibility allows the user to choose between services based on cost, performance
or availability.

Because the functionality of an entire business process or system often depends on

things like cost, availability and quality of a service, so-called service contracts can be

37

defined that allow for the combination of several services into a more complex system
that adheres to specific constraints. This is often necessary given the highly dynamic
environments of distributed, mobile, grid and peer-to-peer systems.

The Service Oriented Architecture is especially useful when dealing with legacy ap-
plications. Since the entire application or system can be “hidden” behind interfaces, the
integration or encapsulation of it into current business models requires far less effort.
Instead of converting or rewriting a complete application, web service interfaces for it
can be defined so that it becomes usable as a web service.

As mentioned before, two of the most important concepts in a Service Oriented
Architecture are autonomy and flexibility. In addition, SOA is very cost effective because
web services by default are built in a reusable way and because of the idea that the most
optimized service which provides the desired capabilities is chosen. Furthermore SOA is
highly scalable since it allows for the easy integration of broker, proxy and load balancing
scenarios.

The statelessness principle can be seen as a rather soft requirement since there are
instances of when a service needs to maintain at least some sense of state. An example
would be an “online time series data processor” that looks at a specific time window in
order to find patterns. It needs to keep track of the data parts that make up the window
and therefore information across multiple messages.

Most of the Service Oriented Architecture deployments make use of at least some sort
service registry that contains metadata about services and allows them to be discovered.
The most standardized approach is the use of Universal Description, Discovery and
Integration (UDDI) (see section 4.4) although a recent investigation by Al-Masri and
Mahmoud [1] found that of all the web services that were discovered 72% can be found
using web search engines and only 38% are registered in UDDI Business Registries.

Since SOA itself is a concept, several so-called Web Services (WS) specifications
have been developed that deal with the different aspects of it. One of the most notable

standards is WS-Addressing (see 4.3.1) which describes how routing information can be

38

directly attached to messages. Another one is WS-Security (see 4.3.3) that provides
end-to-end message integrity and confidentiality.
The benefits of SOA according to Newcomer and Lomow [64] and their relationship

to the Transportation Security SensorNet can be summarized as follows:

o Efficient development through modularity because services can be implemented
independently and solely on the basis of contracts and service descriptions. This
allows for tasks and implementations of clients and web services in the TSSN to

be split up among team members.

e More reuse since it is based on open standards, loose coupling and platform inde-
pendence. The implementation is being made available to everyone and represents

an reference example as to how web services can be utilized in sensor networks.

o Simplified maintenance in the sense that modifications to the implementation do
not necessarily change the service because of abstraction and the fact that clients
utilize the service only through interfaces. With the core of the web services in the
TSSN being implemented, further development can be focused on specific aspects

such as security and enhancements without breaking the current system.

e Incremental adoption since legacy applications can be “wrapped” into a service and
single applications can be transitioned into the Service Oriented Architecture step-
by-step. This is of importance to the Trade Data Exchange as it needs to acquire

cargo and route information from already existing systems (see section 6.5).

e Graceful evolution because service interaction is only interface based and services
can easily be replaced by faster, cheaper or more complex implementations. With
new technology and hardware becoming available parts of the current implemen-

tation of the Transportation Security SensorNet may be upgraded easier.

4.1 Representational State Transfer (REST)

REST is one of the major steps away from Remote Procedure Calls (RPC) and to-
wards scalable and distributed web service architectures. Even though Service Oriented

Architectures most often make use of the more flexible SOAP and its surrounding web

39

services specifications, as is the case with the Transportation Security SensorNet, REST

still plays an important role and is widely supported.

4.1.1 Traditional Definition

The Representational State Transfer (REST) concept was first introduced by Field-

ing [30]. It originally describes the following elements:

Data Elements A resource represents the main data element. It can be anything like
information, data or image. A resource identifier is used to uniquely map to a particular
resource. In order to know what the resource actually is, so-called representations are

defined.

Connectors According to REST, all interactions between a client and server are
stateless. This makes it highly scalable since the server does not need to keep state
information. Additionally, multiple requests at the server can be handled at the same
time. Furthermore, requests can be cached, transferred by intermediaries and reused.
The original definition of request (in) and response (out) parameters is the following.
In parameters are control data, resource identifier and an optional representation. Out
parameters consist of response control data, optional resource metadata and optional

representation.

Components The user agent defines the source of the request and the origin server

is used for so-called namespace resolution of the request.

4.1.2 Current Use

The architectural style of REST has been adapted for web services and is called
RESTful. 1t is closely tied to HT'TP. The idea here is that resources are made available
through Uniform Resource Identifiers (URI). The representation in most cases is XML

but can also be specified using so-called Multipurpose Internet Mail Extensions (MIME)

40

types. HTTP methods such as POST, GET, PUT and DELETE are used as operations
for modifying the resources.

REST can be seen as an “old” standard for web services that is still in use mainly
because it is easy to use and highly flexible. It has traditionally been used in environ-
ments where the communication parties need to transmit small and “relatively” simple
messages. An advantage is that the requirements on bandwidth are usually smaller
when using REST compared to other approaches. With the advent of Asynchronous
JavaScript and XML (AJAX) it has seen an abundance of new application fields. This
is mainly due to the fact that AJAX uses the RESTful web service approach to provide

asynchronous interaction with a web server.

user interface
|
JavaScript call
¢ HTML+CSS data
|
user interface Ajax engine
HTTP request HTTP request
HTML+CSS data XML data
web server web andfor XML server
datastores, backend datastores, backend
processing, legacy systems processing, legacy systems
classic Ajax
web application model web application model

Jesse James Garrett [adaptivepath.com

Figure 4.2. Traditional web applications and AJAX from Garrett [35]

Notable examples that use this approach are Google web applications such as GMajl,
Maps and Docs. Since AJAX is in use by entire industries, a standardization process

as described by van Kesteren [83] has been started.

41

4.1.3 Further Development

Especially with recent developments in HTML5 as defined by Hyatt and Hickson
[43] the flexibility of REST allows it to be used in more and more applications. The
differences to HTML4 in terms of web application integration are significant. The en-
hancements described by van Kesteren [82] include Application Programming Interfaces
(API) for playing video and audio, editing, drag and drop and more. An important
addition is the ability for offline storage which allows web applications to replace desk-
top applications. The specification for this is defined by van Kesteren and Hickson [84].
This was currently only possible through extensions such as Google Gears.

All of this development and use of AJAX makes RESTful web services very appealing
as they can easily be used from web applications. Apache Axis2 which is the foundation
of the Transportation Security SensorNet supports REST for accessing web services.
This allows the use of TSSN web services in web applications without the need for

additional development effort.

4.2 SOAP

The Transportation Security SensorNet makes use of SOAP as the default message
exchange protocol. In the following SOAP is explained and a comparison with REST
is made, which includes the reasons behind choosing SOAP over REST for the TSSN
implementation.

According to Cabrera et al. [14] SOAP, which was formerly called Simple Object
Access Protocol, provides “a simple and lightweight mechanism for exchanging structured
and typed information between peers in a decentralized, distributed environment using
XML”. It is a message standard for web services that aims to provide more flexibility
and better interoperability than REST. In a comparison of SOAP to REST by Pautasso
et al. [70] it was concluded “to use RESTful services for tactical, ad hoc integration

over the Web (a la Mashup) and to prefer [SOAP in combination with] WS-* Web

42

services in professional enterprise application integration scenarios [, which is the case
with the Transportation Security SensorNet,] with a longer lifespan and advanced QoS
requirements”. The reasoning for this, including a detailed description of SOAP, follows.

One of the main differences between SOAP and REST is complexity. SOAP and the
so-called web services (WS) specifications built around it allow for the most complex
scenarios while maintaining a relatively simple basic format. REST on the other hand
is usually used in point-to-point communications and the exchange of simple XML.
Furthermore, one of the major drawbacks of REST is that it is tied very closely to
HTTP transport whereas SOAP is not.

SOAP is independent from platforms and programming languages and allows dif-
ferent transport protocols to be used as so-called bindings. According to Nielsen et al.
[67] a binding represents a “formal set of rules for carrying a SOAP message within or
on top of another protocol (underlying protocol) for the purpose of exchange”. This
includes describing how the protocol provides the necessary services to transport SOAP
messages, how errors are handled and most importantly what features are provided by
the underlying protocol. Although HTTP remains the most common binding, the ex-
tension of binding possibilities was one of the main enhancements to the original SOAP
1.1 specification by Box et al. [11], the other being the more clearly defined use of XML
schemas.

SOAP enables extensive end-to-end message routing which is important in dealing
with firewalls. The WS-Addressing specification (see 4.3.1) describes this in more detail.
Another important aspect is security, which is available as WS-Security (see 4.3.3) for

instance. Overall SOAP is simple in its default form yet very extensible.

4.2.1 Message format

The basic format according to the SOAP 1.2 specification by Nielsen et al. [66]
defines an Fnwvelope that includes a mandatory Body and an optional Header as seen

in figure 4.3. The Header contains control information in the form of so-called header

43

~

Envelope \

Header

Body

|
>/

Figure 4.3. SOAP message format

(==

blocks. These blocks can be used for routing or to pass processing directives to services.

The Body is the mandatory payload of the message and contains the data that is being

transmitted. Listing 4.1 shows the basic format that is used by all SOAP messages:

© 00 N O U = W NN

—
=)

<?xml version="1.0" encoding="UTF-8"7>

<soapenv:Envelope
xmlns:soapenv="http://www.w3.0rg/2003/05/soap-envelope">
<soapenv:Header>

</soapenv:Header>
<soapenv:Body>

</soapenv:Body>

</soapenv:Envelope>

Listing 4.1 SOAP message format example

4.2.2 Faults

Apart from the basic message format, the specification also describes the Fault for-

mat that is common for all messages containing error information.

T W N =

<?xml version="1.0" encoding="UTF-8"7>

<soapenv:Envelope
xmlns:soapenv="http://www.w3.0rg/2003/05/soap-envelope">
<soapenv:Header>

44

6 </soapenv:Header>

7 <soapenv:Body>

8 <soapenv:Fault>

9 <soapenv:Code>

10 <soapenv:Value>soapenv:Receiver</soapenv:Value>

11 </soapenv:Code>

12 <soapenv:Reason>

13 <soapenv:Text xml:lang="en-US">Transport error: 404
Error</soapenv:Text>

14 </soapenv:Reason>

15 <soapenv:Detail />

16 </soapenv:Fault>

17 </soapenv:Body>

18 |</soapenv:Envelope>

Listing 4.2 SOAP Fault message example

The Fault consists of three parts. The Code part classifies the error into a predefined
set dealing with version mismatches, so-called mustUnderstand header blocks, data
encoding, and sender and receiver issues. The Reason allows the Fault to be described
in terms of an error message and supports multiple languages. The Details part may

contain application specific information.

4.2.3 Further development

The SOAP 1.2 Primer by Lafon and Mitra [48] includes references to several en-
hancements of the standard. The main reason for this is the potential for performance
problems and the need for binary data transport in SOAP.

The XML-binary Optimized Packaging (XOP) specification by Mendelsohn et al.
[58] defines the use of MIME Multipart/Related messages provided by Levinson [51]
to avoid encoding overhead that occurs when binary data is used directly within the
SOAP message. XOP extracts the binary content and uses URIs to reference it in the
so-called extended part of the message. An abstract specification that uses this idea
is the Message Transmission Optimization Mechanism (MTOM) by Nottingham et al.
[68].

45

Another extension of this is Resource Representation SOAP Header Block (RRSHB)
as described by Gudgin et al. [37] that allows for caching of data elements using so-called
Representation header blocks. They contain resources that are referenced in the SOAP
Body which might be hard to retrieve or simply referenced multiple times. Instead of
having to reacquire them over and over again, a service may choose to use the cached

objects which speeds up the overall processing time.

4.3 Web Service Specifications

The web services in the Transportation Security SensorNet make use of web service
specifications in order to address topics such as addressing, event notification and se-
curity in a uniform and standardized way. The specifications that are relevant to the
TSSN are described in the following sections while their implementations are addressed

in chapter 6.

4.3.1 WS-Addressing

The WS-Addressing core specification by Gudgin et al. [39] and its SOAP binding
by Gudgin et al. [38] defines how message propagation can be achieved using the SOAP
message format. Usually the transport of messages is handled by the underlying trans-
port protocol but there are several advantages of storing this transport information as
part of the header in the actual SOAP message. For example, it allows the routing of
messages across different protocols and management of individual flows and processes
within web services.

WS-Addressing uses so-called EndPointReferences which are a collection of a specific
address, reference parameters and associated metadata that further describe its policies

and capabilities.

Addressing Header The header fields defined by the specification are the following:

e To which represents the destination of the message

46

e From contains the source, a so-called EndPointReference

e ReplyTo specifies that in case of a response, a message is supposed to be sent to
this EndPointReference, which might be different from the From field

o FaultTo defines the EndPointReference for the fault message in the case of an

error

e Action identifies the purpose of the message, in particular the web service opera-

tion, and is the only required field
e MessagelD uniquely identifies every message

o RelatesTo references the MessagelD of the request message in request-response
message exchanges; the relationship can also be specified explicitly by defining a

so-called RelationShip Thype

4.3.2 WS-Eventing

In order to allow for subscriptions to web services, the WS-FEventing specification has
been defined by Box et al. [12]. It describes the process of establishing subscriptions as
well as how the subsequent publications are delivered to the subscribers. The specifica-
tion relies on WS-Addressing for the routing of messages. The two main components of
a subscription in this specification are the Subscribe and the Subscribe Response message.

After subscriptions have been created, publications will be sent out accordingly.

Subscribe The client that wants to subscribe to a particular web service needs to

define the following:

e The Action field of the WS-Addressing header is set to
http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe

e ReplyTo is the EndPointReference that receives the response to this subscription

request
e A MessagelD that uniquely distinguishes multiple requests from the same source

e FEndTo defines an EndPointReference that is used when the subscription ends

unexpectedly

47

http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe

e Delivery contains the EndPointReferences that are to receive the publications
e An Expires field that defines the expiration time of the subscription

e Filter that by default defines an XPath expression as the Dialect, but could be
any form of expression that is applied to potential publications in order to filter
them

SubscribeResponse The response to a subscription request is generated by the so-

called subscription manager. It sends back a message with these fields:

The Action field of the WS-Addressing header is set to
http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse

RelatesTo specifies the subscription request that this is a response to

SubscriptionManager that contains its own Address and the unique Identifier for

the subscription

An Ezxpires field that defines the expiration time of the subscription

The WS-FEventing specification also offers message constructs for the renewal, status
retrieval and unsubscribing of subscriptions. Additionally a so-called subscription end
message is automatically generated by the service that publishes information in order
to notify subscribers of errors or other reasons for it being unable to continue the
subscription.

It has to be noted that without additional specifications like WS-Reliable Messaging

the delivery of publications is based purely on best effort and is not guaranteed.

4.3.3 WS-Security

The WS-Security specification as described by Lawrence et al. [49] deals with the
many features needed to achieve so-called end-to-end message security. This provides
security throughout message routing and overcomes the limitations of so-called point-

to-point transport layer security such as HTTPS. Furthermore, the specification aims to

48

http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse

provide support for a variety security token formats, trust domains, signature formats
and encryption technologies.

The two main aspects of security are the following:

Confidentiality This means that the information contained in a message is only avail-
able or visible to entities that are authorized. Encryption provides this confidentiality

for messages.

Integrity The integrity of a message is maintained if it has not been modified on the
way from one entity to another. Applying a signature enables the receiver to check if

the message has been altered during the transmission.

These aspects among others are defined as part of the SOAP message. Most of the
security provided by WS-Security is specified in header blocks of the SOAP header. The

following represent its important parts:

Tokens The specification supports various types of security tokens directly:

e User Name Tokens for username and password pairs
e Binary Security Tokens which essentially are X.509 certificates or Kerberos tickets

e XML Tokens described by the Security Assertion Markup Language (SAML) or
Eztensible Rights Markup Language (XrML)

o FEncrypted Data Tokens in which case the token itself is encrypted as well

A different way of specifying these tokens is to reference them. This is useful because
at times the security tokens are specified in a different part or even completely outside of
the SOAP message. The WS-Security specification defines the following most commonly
used:

o Security Token Referemces which can be used to wrap around non-standard im-

plementations

49

e Direct References for using a URI as a reference point
o Key Identifiers that uniquely identify security tokens

o Embedded References which directly include tokens instead of pointing to them

Signatures In order to ensure the integrity of messages so-called signatures can be
applied by the sender. The receiver is then able to check the validity of the message
using this signature. Important properties that can be conveyed in the SOAP header
using WS-Security are:

e Signed Info that defines the algorithms to be used for so-called namespace trans-

formations and proper ordering of signature and encryption elements (for example,

sign an encrypted message or encrypt a signed message)
e Signature Value containing the actual digital signature

o Key Info that defines the type of the signature used

The specification also allows for various forms of so-called Signature Confirmations
to be sent out as responses to the initial messages. They can provide additional security

in certain scenarios.

Encryption WS-Security provides great flexibility when it comes to the actual en-
cryption of the message. It supports header, body as well as individual block encryption.
The reason it is able to do this lies in the fact that it makes use of the following two
constructs:

e Reference List that points to the Encrypted Data elements which, since they are

completely independent of each other, enables different encryption techniques and

keys to be used

o FEncrypted Key which allows symmetric keys to be embedded in the message and
is used for encrypting the SOAP header

50

Security Timestamps Most of the time, security policies need to make sure that
it is possible to change previously distributed keys and force the ones that are not to
be used anymore to expire. For this purpose WS-Security supports so-called Security

Timestamps that can be attached to the message. Two fields are defined:

e ('reated describes the time when the message was serialized for transmission

e FEzxpires defines the point in time when the security applied to this message is no
longer considered valid

It has to be noted that WS-Security does not provide any methods for time synchro-

nization which may potentially limit the effectiveness of Security Timestamps in certain

scenarios.

A white paper by Chanliau [15] extends the definition of security to areas such as
secure message delivery, metadata and trust management. It references the web service
specifications that have been introduced to deal with these aspects of security in more

detail.

4.4 Service Directory

Because web services by default are loosely coupled there has to be a way of for them
to establish connectivity with each other. In general there are two different approaches
for doing this. First, let a service A directly know about the presence and address of
a service B that it seeks to contact. This can cause a variety of problems as all the
addresses have to be managed manually which leads to scalability issues. Second, define
a so-called service registry that keeps track of available services and acts as a mediator
between clients and services.

The latter approach has been realized using the Universal Description, Discovery
and Integration (UDDI) specification as described by Bellwood et al. [5] and is being
used in the Transportation Security SensorNet. UDDI provides a XML based service

registry and directory that provides the following:

o1

Information on web services and their categorizations, so-called metadata

Discovery of web services based on specific criteria

Connection information such as required security aspects, provided transports and

operation parameters that describes in detail how to connect to a service

Alternatives in case of a failure of one service

A paper by Bellwood [4] describes the main focus areas of version 3 of the UDDI

specification:

Multi-registry Environments In order to allow for the logical separation of service
registries, UDDI supports so-called root registries that act as parents to affiliates. Fur-
thermore the replication of registries is supported. Whenever a web service publishes
information to a registry it is able to either provide a key as a “suggestion” or have the
registry automatically assign a new unique key to the information.

The UDDI also provides means for transferring the custody and ownership from
one so-called business entity to another. This is an important aspect when it comes to
handling cargo in the transportation industry. The Transportation Security SensorNet

is able to provide this functionality by using an implementation of the UDDI.

Subscriptions Apart from the basic search interface that the UDDI provides, the

specification describes two different subscription models:

e Active subscriptions check whether or not specified criteria of the previously
defined subscriptions match current entries in the registry. This is done syn-

chronously, meaning only when a request has been issued.

e Passive subscriptions allow for the registry to store so-called asynchronous call-
backs for subscriptions. The registry checks against its entries on its own and
independently of the initial subscriber. Whenever it finds a match it sends out a

notification.

52

The Transportation Security SensorNet provides support for active subscriptions
transparently to clients and web services . Web services automatically register with the
UDDI when they are started. Clients are then able to use them by just specifying the
type of service that they need. An according web service is then automatically handed

to them using an underlying active subscription to the UDDI.

Policies The UDDI supports a complex policy abstraction model which main compo-

nents are:

e Rules that define actions for when a set of particular conditions is met
e Decisions which comprise of a set of rules

e Information access and control that defines what kind of functionality can be

provided with regard to inquiries, publications, subscriptions and others.

Policies are also used to enforce security although the specification acknowledges
that only the integrity part of it is defined. This is partly due to the fact that the UDDI
is supposed to be a public registry and lookup directory. For this particular purpose,
the focus is more on the reliability of entries which can be ensured using signatures.

Advanced policy management that is able to restrict access to web services and even
single operations as well as encrypted message exchanges are especially important when
it comes to the scalability and production deployment of the Transportation Security
SensorNet. Within the TSSN policy information as of summer 2009 is not yet in the

UDDI but kept directly in the clients and web services.

4.5 Web Services Description Language (WSDL)

In order to allow services to interact and collaborate they need to share information
about interfaces, operations, parameters, data elements and means of contact with each
other. This has been addressed by the Web Services Description Language (WSDL).

The most widely used and supported version is WSDL 1.1 as described by Christensen

53

et al. [17] but the newer version 2.0 provides a cleaner and more extensible specification.

According to Liu [54] the main improvements include the following:

e Renaming of some elements to express their intentions in more detail (definitions

to description, port type to interface, ports to endpoints)

e Reorganizing the messages constructs that were previously disparate (definition is

now part of types)

Operations contain messages in a particular Message Exchange Patterns

Introduction of more Message Fxchange Patterns, see section 4.6

Allows for interface inheritance

Overall WSDL 2.0 is a clear evolution and in many ways a lot cleaner but also far
less supported than WSDL 1.1. The Transportation Security SensorNet uses WSDL
2.0 as it aims to provide an open framework that is extensible in the future. Figure 4.4

provides an overview of the core components of WSDL 2.0.

Service

Interface A

Types
O

Element A ~{

AN
Y
ElementB —
e

Y
Element C

-
)

Element D
- @

Figure 4.4. WSDL 2.0 overview

54

Elements that are being used by the service are defined in the types section. They
essentially make up the messages of an operation. A group of operations then defines a
so-called interface. A binding specifies the transport format for these interfaces. Finally
the network addresses for the bindings are exposed as endpoints. Hence, a service can
be seen as a group of endpoints that allow clients to use the functionality provided by

the service through clearly defined interfaces and specified transport formats.

Interfaces from other services may be included using <include schemaLocation="...

/> in which a location pointing to a valid WSDL file must be specified. The import
namespace must be the the same as the one for the WSDL that it is included into. In
order to be able to use different namespaces while still maintaining modularity, WSDL
files can also be imported using <import namespace="..." schemalocation="..."
/> and specifying a target namespace. Both of these directives are modeled after XML
Schema includes and imports by Bray et al. [13].

The following is a more detailed description of the Core Language part of the WSDL
2.0 specification by Moreau et al. [59]. Another introduction to the main components

is provided in the Primer by Booth and Liu [9]

4.5.1 Description

<?xml version="1.0" encoding="UTF-8"7>
<description
xmlns="http://www.w3.org/ns/wsdl"
xmlns:a="http://www.sample.com/elementBook"
xmlns:tns="http://www.sample.com/library"
xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"
targetNamespace="http://www.sample.com/library">

© 00 N O O = W NN =

</description>

Listing 4.3 WSDL Description example

The description acts as the root for a WSDL 2.0 document that contains all other

elements. It takes care of defining the target namespace and aliases for namespaces. In

55

the example the default namespace is set to WSDL which specifies that the document is a
WSDL document. The xmlns:wsoap="http://wuw.w3.org/ns/wsdl/soap" references
the SOAP binding for WSDL. The other namespaces that are mentioned refer to the

library example which was introduced in section 3.1.1.

4.5.2 Types
1 |<types>
2 <xsd:import
3 namespace="http://www.sample.com/elementBook"
4 schemaLocation="elementBook.xsd" />
5 <xsd:schema
6 targetNamespace="http://www.sample.com/library">
7 <xsd:element name="bookList">
8 <xsd:complexType>
9 <xs:element ref="a:book" minOccurs="0" maxOccurs="
unbounded" />
10 </xsd:complexType>
11 </xsd:element>
12 <xsd:element name="user" type="xsd:string">
13 <xsd:element name="error" type="xsd:string">

14 </xsd:schema>
15 |</types>

Listing 4.4 WSDL Types example

XML schema elements for the service are defined in the types part of the WSDL.
Additionally schema includes and imports are supported. The elements can then be
referenced by messages later on. The code in listing 4.4 imports the book element from
the library example which is used in the bookList describing a list of books. Additionally
elements called user and error are defined in the same library namespace. Since user,
error, book and bookList are fully described by the WSDL, they can now be used by
both the service and the client. The service might have known about them already but
by using WSDL it makes them available to clients and other services in a standardized

way.

56

4.5.3 Interface

1 |<interface name="LoanInterface">

2 <fault name="UserIsUnknown" element="tns:error"/>

w

<operation name="getBooks" pattern="http://www.w3.org/ns/
wsdl/in-out">

4 <input messageLabel="Request" element="tns:user"/>

) <output messageLabel="Response" element="tns:library"/>
6 <outfault ref="tns:UserIsUnknown">

7 </operation>

8 |</interface>

Listing 4.5 WSDL Interface example

Since version 2.0, WSDL allows for multiple interfaces to be defined and supports
inheritance between them. An interface includes a group of operations that consist
of messages. The operations must be associated with a Message Exchange Pattern
(MEP). For more information see section 4.6. According to the MEP that is used, input
and output messages are specified. They reference elements from the types part of the
WSDL. Note that since the MEP is In-Out in which a fault would replace the response
in case of an error, an outfault is specified. In the example an operation is defined that

allows a user to retrieve a list of the books that were loaned.

4.5.4 Binding

1 |<binding name="LibrarySOAPBinding"

2 interface="tns:LoanInterface"

3 type="http://www.w3.org/ns/wsdl/soap"

4 wsoap:version="1.2"

5 wsoap:protocol="http://www.w3.0rg/2003/05/soap/bindings/
HTTP/">

6 <fault ref="tns:UserIsUnknown" />

7 <operation ref="tns:getBooks"

8 wsoap:action="tns:getBooks" />

9 |</binding>

Listing 4.6 'WSDL Binding example

57

Each binding is able to reference the interfaces that were previously described in
the WSDL. It associates them with a specific format and protocol that is then used
to transmit messages. A binding can also be defined on a operation or even message
level. This however is not as commonly used. The binding that is specified in listing 4.6
associates the LoanInterface with SOAP 1.2. According to the SOAP binding part of
the WSDL specification by Orchard et al. [69] the type attribute is used to define SOAP
whereas the version and the protocol (SOAP 1.2 over HTTP) are specified using the
SOAP namespace. Note that for the operation in the example a so-called SOAP action
is set which allows SOAP messages received by the service to be pointed to the according

web service operation.

4.5.5 Service

1 |<service name="LibraryService"

2 interface="tns:LoanInterface">

3 <wsdl2:endpoint name="LibrarySOAPEndpoint"

4 binding="tns:LibrarySOAPBinding"

5 address="http://www.sample.com/library/soap" />
6 |</service>

Listing 4.7 WSDL Service example

The last part in a WSDL document is providing an endpoint that specifies a network
address at which the service can be reached. The same interface could potentially have
several different bindings. For each of them an endpoint has to be defined in order to be
able to use them. Hence, a service essentially exposes the defined interfaces and their

bindings.

4.6 Message Exchange Patterns

In order to manage the most complex communication scenarios so-called Message
Ezchange Patterns (MEP) have been defined. They are specified for each operation in

the WSDL document (see section 4.5.3). The basic patterns are explained in detail in

58

the following sections.

The Message Exchange Patterns are in large part based on so-called fault propagation
rules which specify what happens in case of an error. SOAP uses them to clearly define
how error messages are sent from clients to services and in between services. This
allows both parties to be aware of their error handling responsibilities. The following

fault propagation rules are defined:

Fault Replaces Message Whenever an error occurs, the message that was supposed

to be sent is replaced by a fault.

Message Triggers Fault In case of an error a fault is sent back to the sender of the

message. The message itself is not replaced though.

No Faults No fault is created at any time. If something goes wrong only the party

that encounters the error knows about it, nobody else.

A combination of these fault propagation rules and the messages that are exchanged
between client and service make up the Message Fxchange Patterns. Note that whenever
two services exchange messages, one is always acting as the client. Hence the MEPs
depict only client-service interactions.

In the Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts

by Orchard et al. [69] the following Message Exchange Patterns are defined:

4.6.1 In-Only

Request

Figure 4.5. In-Only message exchange pattern

59

Messages in this pattern are one way only. It is defined by http://www.w3.org/ns/

wsdl/in-only. No Faults are sent. This can be seen as a fire-and-forget approach.

4.6.2 Robust In-Only

Error triggers Fault message

Request

Figure 4.6. Robust In-Only message exchange pattern

This message pattern is identified by http://www.w3.org/ns/wsdl/robust-in-only

and extends In-Only in the sense that it creates Faults when errors occur.

4.6.3 In-Out

Error replaces message with Fault

— ~

ys ~

Response

Request
Figure 4.7. In-Out message exchange pattern

The most common Message Exchange Pattern is defined by http://wuw.w3.org/
ns/wsdl/in-out. It specifies a request-response model where in the case of an error a
Fault replaces the response message. Services often act as data or application providers
where clients issue their requests and the service responds with either the requested

data or the result of the processing that it provided.

60

http://www.w3.org/ns/wsdl/in-only
http://www.w3.org/ns/wsdl/in-only
http://www.w3.org/ns/wsdl/robust-in-only
http://www.w3.org/ns/wsdl/in-out
http://www.w3.org/ns/wsdl/in-out

Additional MEPs have been defined by Lewis [53]:

4.6.4 In-Optional-Out

Error triggers Fault message

Request

Figure 4.8. In-Optional-Out message exchange pattern

The pattern identified by http://www.w3.org/ns/wsdl/in-opt-out makes the re-
sponse of an In-Out message exchange optional. It can be used for control messages
where responses are often status messages and the assumption is that only errors are of

importance in which case a Fault is generated.

4.6.5 Out-Only

Notification

Figure 4.9. Out-Only message exchange pattern

http://wuw.w3.org/ns/wsdl/out-only defines a Message Exchange Pattern that
is mostly used in asynchronous communication environments and subscriptions. It is
assumed that the client registered or subscribed with the service and that the service
sends notifications back to the client at a later time. This version does not send out

Faults.

61

http://www.w3.org/ns/wsdl/in-opt-out
http://www.w3.org/ns/wsdl/out-only

4.6.6 Robust Out-Only

Error trig_g_eriFeLuIt message

—

Notification

Figure 4.10. Robust Out-only message exchange pattern

In a similar fashion to Out-Only this pattern which is defined by http://www.w3.
org/ns/wsdl/robust-out-only sends out messages to a client. The difference is that

in case of an error it creates a Fault.

4.6.7 Out-In

Error replaces message with Fault

— -
~ ~

s
Notification response

Notification

Figure 4.11. Out-In message exchange pattern

Being the reverse of the In-Out pattern http://www.w3.org/ns/wsdl/out-in de-
scribes a request-response communication that is initiated by the service. In subscription
scenarios for instance the response can be seen as an acknowledgment that the notifica-
tion has been received by the client. A Fault replaces the notification response in case

of an error.

4.6.8 Out-Optional-In

An extension of the basic Out-In message exchange the http://www.w3.org/ns/

wsdl/out-opt-in pattern provides in a sense a selective acknowledgment of the notifi-

62

http://www.w3.org/ns/wsdl/robust-out-only
http://www.w3.org/ns/wsdl/robust-out-only
http://www.w3.org/ns/wsdl/out-in
http://www.w3.org/ns/wsdl/out-opt-in
http://www.w3.org/ns/wsdl/out-opt-in

Error triggers Fault message

notification
response

Notification

Figure 4.12. Out-Optional-In message exchange pattern

cation that was sent out. It allows for robustness by being able to send Faults.

63

Chapter 5

Related Work

In the following sections related work that is relevant to various aspects of the Trans-
portation Security SensorNet such as Service Oriented Architecture, web services, com-
munication models, the Open Geospatial Consortium specifications and sensor networks

is analyzed.

5.1 Microsoft - An Introduction to Web Service Architecture

The paper by Cabrera et al. [14] about web service architectures gives an excellent
introduction to what eventually evolved into the Service Oriented Architecture. The key

ideas described are the following:

Message only approach The only thing that is exchanged between services are
messages. This principle avoids potential problems that could occur when functionality
embedded in different components becomes too intertwined. It also ensures flexibility
and interoperability between services. The services and messages are defined in Web
Service Description Language (WSDL) and then transported using SOAP. How the
messages are sent from one service to the other is specified is so-called Message Exchange
Patterns (MEP). Additional properties like security or reliability are standardized in the

Web Service (WS) specifications.

64

Flexible protocol stack In order to provide support for a variety of systems, SOA
needs a protocol layering model that ranges from general purpose to highly specific. The
modular architecture of SOAP describes a protocol that consists of “building blocks”.
This ensures two things. First, you only pay for what you actually use and second, it

can be complemented or extended at any time.

Autonomy of services As described before, services aim to embed their function-
ality and be independent from each other. The extensibility of SOAP allows for the
so-called ewvolution of a web service, also known as versioning. The mustUnderstand
annotation can be provided to signal that the recipient of a message needs to know
how to handle the SOAP header specifics. In order to maintain this autonomy and
at the same time allow complex business models to be used, services must form trust
relationships with the services that they use. The reason for this is that essentially
there is no apparent difference between two services that provide the same interface.
Businesses must know that they can trust their data to be handled confidentially by
the service that they choose. Without this trust paradigm there are many potential
security concerns. Another point mentioned is the move from a centralized system to a
more federated approach using SOA which is able to deal better with the entire message

exchange model.

Managed transparency In order to be flexible enough to support different program-
ming languages and platforms, Service Oriented Architectures use a service abstraction
layer model. The implementation and internal processes of a service are completely
hidden from its client. The only thing visible are the so-called interfaces that are pro-
vided. Every service in SOA is described using the Web Service Description Language
(WSDL). The WSDL file of a service defines its capabilities and provides a standard for

the interoperability of clients and services.

65

Protocol-based integration The interaction between services should be restricted
to the communication using a predefined protocol only. This allows for applications to
be self-contained and independent of their implementation language and system. As
described before it provides this by using abstraction layering through interfaces and
the use of metadata. The Service Oriented Architecture follows the “nothing is shared”

approach. This autonomy is the reason why it can provide the aforementioned flexibility.

Cabrera et al. [14] outline concepts that led to the implementation of Service Ori-
ented Architectures and development of the web services specifications that surround
them and are used by the TSSN. A lot of the main approaches have been standardized
in various committees and organizations by now but were only in the early stages when

this paper first came out.

5.2 Adobe - Service Oriented Architecture

An Adobe technical paper by Nickul et al. [65] outlines general architecture ap-
proaches that can be taken when transitioning business processes to the Service Ori-
ented Architecture. It mentions a widely used technology called the Enterprise Service
Bus (ESB) that provides a standardized means of communication for all services that
connect to it. For the Transportation Security SensorNet this is of importance when it
comes to asynchronous communication as the Java Message Service (JMS) uses queues
that are on the ESB for message exchanges (see section 6.1.6 and 8.2).

In the example that is provided, three business processes all have some sort of login,
authentication, name and address management. The problem that occurs most often
in scenarios like this is how to synchronize states across all three processes. Using SOA
this common task is bundled into a service that all three processes connected to the
ESB can use which improves efficiency and greatly decreases required maintenance.

In addition to the basic Request-Response, several other message exchange patterns

that go beyond the standardized ones (see section 4.6) are described:

66

5.2.1 Request-Response via Service Registry (or Directory)

e —
notified of servic/ \service

detail change events details
{ Service Consumer ’ [Service Provider ’
uses offers
2 request . 2
{ Service Client | Service ’
response

Figure 5.1. Request-Response via Service Registry (or Directory) message
exchange pattern from [65]

A so-called registry keeps track of service metadata. The service provider is respon-
sible for updating it whenever a change occurs and the service consumer subscribes to
the registry for any of these changes. The metadata that is provided is then used to
configure a service client. Hence, the client can issue requests and receive responses.

The Transportation Security SensorNet essentially uses a very similar approach with
the UDDI. Web services automatically register with the UDDI when they are started

and clients are able to use specific services by looking them up in the UDDI.

5.2.2 Subscribe-Push

The service consumer uses the client to subscribe to specific events as shown in
figure 5.2. Whenever the service encounters one of these events it pushes notifications
back to the client or other endpoints that were defined in the subscription. This approach

is conceptually similar to what is described by the WS-Eventing specification (see 4.3.2).

67

Service Consumer | Auditable Event

uses notify()

Y Subscribe() Y

Service Client | Service J

-‘/h(,

Figure 5.2. Subscribe-Push message exchange pattern from [65]

Other Service ‘

5.2.3 Probe and Match

When there is no service registry available, a client has to discover usable services
on its own. By using multicast or broadcast messages it probes until suitable services
respond with a match. A hybrid approach could use the registry for a candidate set of
services to probe. This pattern does not scale very well because it is highly dependent

on the available bandwidth.

[Service Consumer ’ Service

uses

Y probe()
Service Client | match() Service

probe()

A 4

| B

Service

Figure 5.3. Probe and Match message exchange pattern from [65]

68

5.3 Open Sensor Web Architecture

An approach to implement the proposed standards of the Sensor Web Enablement
that are described in section 3.2.1 is outlined by Chu et al. [19]. A more detailed
definition of the system and its core services is provided in the thesis by Chu [18]. The
system is called NICTA Open Sensor Web Architecture (NOSA) and is focusing on
the combination of sensor networks and distributed computing technologies. For this

purpose the following four layer model is defined:

Application Layer

High Level Hrgh Level
Application Apphca tion

Sensor Development Tools Third Party Tools

L oo 1T

Service Layer J

Sensor Planning Service Web Notification Service

Sensor Collection Service Sensor Repository Service

Information
L Model&Encoding |
Sensor Da rigm:-zssa ges
Sensor Layer
Sensor Sensor
Application Application
Sensor Operating System /
~
% x =
et n e
/

Figure 5.4. NOSA layer overview from [19]

Physical layer The sensors can be contacted using standardized means such as ZigBee

and other IEEE 802.15 protocols. They can also interact with each other.

69

Sensor layer This layer provides the main sensor applications that are built on top of
the Sensor Operating System. This operating system is called TinyOS (see Levis et al.
[52]) and is widely used in low power sensor environments. It deals with the control,
monitoring and retrieving of data from the sensors in the physical layer. The sensor

layer acts as the basis for services that make use of this data.

Service layer Web services that are compliant to the ones defined in the Sensor Web
Enablement are part of this layer. They provide a uniform and standardized way of

dealing with sensors and the data that they gather.

Application layer Applications that want to interact with the underlying service
infrastructure are provided with development and third party tools that to make use of

the open standards web service interfaces.

The Transportation Security SensorNet uses a similar approach but has some sig-
nificant differences. The goal of both implementations is to integrate a sensor network
into a web services architecture using open standards. NOSA uses a sensor application
that is tightly integrated into the Sensor Operating System and then provides sensor
data and control to web services in a non-standard format. TSSN on the other hand
implements sensor management and monitoring functionality inside a single service, the
Sensor Node (see section 6.3.1) and allows different sensors to be “plugged in”. This
allows other services to use standard web service interfaces and SOAP messages in order
to access sensors.

Furthermore, the web services used by NOSA are implemented manually according
to the Open Geospatial Consortium specifications which causes them to be limited as not
everything that is specified is also implemented. In contrast, the TSSN uses automatic
code generation (see section 6.1.1.4) that enables it to use all OGC specifications. Since
their elements and interfaces are generated the only thing that has to be implemented

is functionality. This approach significantly reduces development efforts.

70

5.4 Globus - Open Grid Services Architecture

Globus is an architecture that is based on grid computing. It focuses on providing
capabilities as services in a grid environment using standard interfaces and protocols.
An initial paper by Foster et al. [32] gives an overview of the architecture and design
decisions. In particular, Globus supports “local and remote transparency with respect
to service location and invocation” and “protocol negotiation for network flows across
organizational boundaries”. Its service approach is similar to the Service Oriented Ar-
chitecture that is used by the Transportation Security SensorNet. Additionally, security

concepts that work inside a grid are applicable to SOA and vice versa.

Services Functionality in the Globus defined architecture can be achieved using so-
called grid services which utilize standard interfaces in order to provide the following:
e Discovery of capabilities and the services using standardized naming conventions

o Lifetime management which includes dynamic service instance creation and con-

currency control of data and processes
e Notification of clients and subscribers in case of events
e Manageability of service relationships and maintenance
e Upgradability in terms of versioning to ensure compatibility between services

o Authorization to enforce access control

Protocols The two important aspects regarding protocols that Globus deals with are:

e Reliable service invocation ensures that the exchange of messages which is the
core of service interaction is reliable. This allows for the means of communication

necessary in a grid computing environment.

e Authentication addresses the need to verify the identity of clients and services in
the grid

71

The current architecture of Globus as shown in figure 5.5 is still based on the same
principles that were initially described by Foster et al. [32]. The combination of custom
components and web services components provides an architecture for security, data
management, execution management, information services and a common runtime in a

grid environment. In the following, the approaches taken are described in detail.

Globus Toolkit® version 4 (GT4)

! Community
I scheduler
I Framework
V' Grid
I Telecontrol | | WebMDS | ! JSV";”
I Protocol 1 e
A c

Workspace
: Management ks WS Core

Grid +
Aesource Java ws
T

Allocaticn & rigger WS Core R RO

Managament

e B

Resource | - MOMOMNG & 3 & common Non-W3
Aliocation || SESCOTeCE Libraries Components
Marnagemant : (MDS2)
eXtensible
1o
(X10)

Execution Information Commaon
Management Services RAuntime

: Core GT Comgonent: public interfaces frozen between incremental releases; best effort suppor

I Contribution/Tech Preview: puslic interfaces may change between incremental releases

- =
..

o |

.

sy ==

: Deprecated Component: not supported; will be drepped in a future release

e e

Figure 5.5. Globus Toolkit overview from http://www.globus.org/
toolkit/about.html

Service model All entities are represented as services that provide standard interfaces
over which their capabilities are accessible. Invocation of a particular functionality

and the interaction between services is performed using message exchanges. These

72

http://www.globus.org/toolkit/about.html
http://www.globus.org/toolkit/about.html

grid services utilize web services specifications for their interfaces and implementations.
Since a service in Globus is both, dynamic and stateful, it is assigned a so-called grid
service handle (GSH) to uniquely identify it. In order to support the wupgradability

concept, a particular version of the service is identified by a grid service reference (GSR).

Factories Services in the grid that are able to create new service instances are called
factories. Whenever a new service is created, it is automatically assigned a new grid

service handle.

Service lifetime management Globus allows task specific services to be instanti-
ated. These so-called transient services perform a predefined task and terminate upon
its completion. It is also possible to associate a particular lifetime with a service. Note
that services that need more time in order to complete their task may request a lifetime
extension. An important aspect regarding the lifetime management is time synchroniza-
tion across all services. In order to achieve this, Globus uses the Network Time Protocol

(NTP).

Handles and references A so-called HandleMap is used to map grid service handles
to specific grid service references. This is necessary since grid service references have a
defined lifetime and may expire. The HandleMap ensures that it only returns valid grid
service references and not ones that are already terminated. This among other things
also allows detailed access control all the way down to the operation level. For this to
work, every service needs to register with a so-called home HandleMap. The grid service
handle is constructed in a way that it automatically references this home HandleMap

to ensure scalability.

Service data and service discovery FEvery grid service is associated with so-called
service data which in Globus is a collection of XML documents that describe the capa-

bilities of the service. By default each service provides this data using the mandatory

73

FindServiceData interface. The overall system contains a registry that contains refer-
ences to each individual service. It provides a Registry interface that is used to register
grid service handles. Since the availability of services can change, the registry has to
adapt. In order to deal with these dynamics in the grid environment, registrations must

be refreshed otherwise they expire after a specified time.

Notification Globus provides an asynchronous notification system that is based on
subscriptions. A client acts as a so-called NotificationSink that issues a request for
particular events to the so-called NotificationSource. In the case of events, notifications

are then pushed from the source to the sink.

Change management Web services interfaces in the grid environment are uniquely
named in order to provide manageability. Whenever a significant portion of the interface

or implementation is changed, a new unique name must be provided.

In contrast to the Transportation Security SensorNet, Globus makes use of web ser-
vice specifications in some of its components but also provides custom implementations
and interfaces as for service discovery and notifications. The TSSN uses web services
specifications and Open Geospatial Consortium standards almost exclusively which en-
sures standards compliance and compatibility. For service discovery the UDDI (see

section 4.4) is used and for notifications WS-Eventing (see section 4.3.2).

5.5 Service Architectures for Distributed Geoprocessing

A research article by Friis-Christensen et al. [34] deals with the integration of Open
Geospatial Consortium specifications. It outlines the implementation of an application
that analyzes the impact of forest fires using web services. The purpose of the application
is to assess the damage inflicted by fires based on land cover data for a particular area.

The previous solution looked like figure 5.6.

74

1. Get image
back drop User 4. Request
statistics Coordinate

transformation

Image 2000 Clip data area

\

2. Lookup
place names

Y

— < Intersect data

statistics

Place names

Corine Land
Cover 2000

Burnt areas
boundary

Figure 5.6. Forest fire application from [34]

Friis-Christensen et al. [34] discuss advantages and disadvantages of their improved,
web services based implementation and outline potential solutions for problems that

they discovered.

Forest fire damage

Client application
area assessment

Geoprocessing Web Proccessing Service i Discovery Catalogue _
service Area Statistics | service service
metadata | 1 metadata metadata
Data access Gazetteer WMS WMS/WFS WFS WFS
services
A A

Geodata
repositories

Corine Land
Cover 2000

metadata

Burnt areas
boundary

Matura 2000

Place names

Image 2000

metadata |

Figure 5.7. Forest fire web services architecture from [34]

Architecture The main focus is the transition from a client application to a flexible

web services architecture using Open Geospatial Consortium specifications. As shown

75

in figure 5.7 the components include multiple data sources that are made available
through data access services like the Web Map Service and the Web Feature Service.
A geoprocessing service performs the analysis of the data and provides it to a client.
Furthermore a discovery service serves as the registry for all services and their metadata.

The general process is described as follows:

1. Retrieve a map

2. Select a time and area of interest

3. Search for data source masks that deal with burnt areas

4. Search for target data masks that serve as the basis for the assessment of fire

damage

5. Execute the process which retrieves the masked features, performs calculations

and returns the desired statistics

6. Display statistics

Statistics Service This is the implementation of a Web Processing Service (WPS)
according to the OGC specifications. Apart from the general getCapabilities interface, a
describeProcess interface is defined which is used to explain how data is handled within
a particular process and what functionality the process provides. The execute operation
is used to start the specified process with previously defined filters, so-called masks, as
the parameters. During the processing, the statistics service uses these masks to collect

features from the data sources.

Mapping and Feature Services These services provide the relevant data such as
satellite imagery and statistics either in its entirety or through the application of spec-

ified masks.

Catalogue The catalogue serves as a service registry and allows searching for services

and features based on title, bounding box and time of interest.

76

Client In the implementation that is described in the paper, the client application is
browser based. It uses a combination of client (AJAX) and server (JSP) based technol-

ogy to display maps and the calculated fire damage statistics

The prototype implemented uses synchronous communication in between services.
The problem in this case is that the actual processing can take quite a long time. In the
future the authors want to transition to an asynchronous communication model that is
similar to the OGC Web Notification Service.

In addition, it is pointed out that even though standardized interfaces allow for a
combination of services which provides flexibility, the transport of high volumes of data
is often not feasible in geoprocessing scenarios which can lead to highly specialized but
not very reusable services.

The implementation described by Friis-Christensen et al. [34] is interesting in the
sense that it exclusively uses specifications from the Open Geospatial Consortium which
makes it compatible to other Geographical Information Systems. The Transportation
Security SensorNet aims to be OGC compliant as well but includes specifications that
deal with sensor networks such as the Sensor Observation Service and the Sensor Alert

Service, something that this forest fire web service architecture does not even address.

5.6 Web Services Orchestration

A paper that specifically deals with the problem of reusability of services and so-
called “next generation challenges” was written by Kiehle et al. [47]. The idea here is to
increase transparency and reusability by splitting processes into smaller more reusable
processes and utilizing a work flow management system called Web Services Orches-
tration. This is especially important for the integration of the Transportation Security
SensorNet into systems used in the transportation industry. Its modular design and
architecture allow single components to be reused and and information flows to be cre-

ated.

7

Client

Interface

9. Return result 1. Starl process

Process
Repository

8. Visualize geodata 2. Load process defintion

Geodata Service & Data
Registry

Services

7. Procass geodala Orchestration " 3. Find required services
Engine

Manipulation
Services

6. Load geodata 4. Select appropiate services according (o rules

Geodata
Access
Services

5. Load rules Rules
Repository

Figure 5.8. Web orchestration framework from [47]

The Web Processing Service specification describes how services can be arranged
and combined into so-called service chains that form a process. Two alternatives are
commonly used in order to achieve this. A Web Processing Service can be setup to com-
bine and “encapsulate” other individual web services and therefore provide the desired
abstraction. However, the best way to define work flows is using the so-called Business
Process Ezecution Language (BPEL). BPEL enables complex service chains as shown
in figure 5.8 to be defined without the need for custom and potentially not reusable Web

Processing Services that just “encapsulate” services.

5.7 Summary

The related work addresses the following key technologies that play an important

part in the Transportation Security SensorNet:

78

Service Oriented Architecture The development of the Service Oriented Architec-
ture and its web services specifications has come a long way but is still far from over.
Even though specifications exist, organizations and businesses often implement compo-
nents that are similar to the specification but not compliant. As discussed before, this is
the case for service discovery and notifications in Globus. Two common reasons behind
this are the following. First, the specification may be available but there are hardly
any reference implementations that can be used. Second, extensions to the specification
that are necessary for a particular implementation or in a specific environment such as

the grid are not covered by the standard.

Open Geospatial Consortium The specifications by the Open Geospatial Consor-
tium are often complex and there is significant development effort necessary to imple-
ment the elements, interfaces and functionality they define. Automatic code generation
as described section 6.1.1.4 and used by the Transportation Security SensorNet can

facilitate their implementations but is not used very often.

Sensor Networks The implications on communication models that sensor networks
have, in particular asynchronous message exchanges, are often ignored in web service
architectures. As seen in NOSA, the focus is on the implementation of a subset of OGC
standards for a particular sensor network, but the link to an overall Service Oriented

Architecture seems to be missing.

It is evident that current systems seem to lack the combination of SOA, OGC specifi-
cations and sensor networks. The Transportation Security SensorNet combines all these
technologies and bridges the gap between implementations that just deal with SOA and

OGC specifications and systems that use OGC standards in sensor networks.

79

Chapter 6

Design & Architecture

6.1 Overview

This chapter describes the architecture of the Transportation Security SensorNet

(TSSN). It provides an in-depth discussion of design aspects and the implementation.

6.1.1 Service Oriented Architecture

“Service Oriented Architecture (SOA) is a paradigm for organizing and uti-
lizing distributed capabilities that may be under the control of different

ownership domains.” MacKenzie et al. [55]

Building a “Service Oriented Architecture for Monitoring Cargo in Motion Along
Trusted Corridors” makes sense. According to a study by the Delphi Group [36], com-
panies that collaborate usually request compliance for the following standards: XML
74%, J2EE (Java) 44% and SOAP 35%. The architecture used for the implementation
of the Transportation Security SensorNet utilizes all three technologies by separating
functionality into web services. This allows for high flexibility and is very cost effective
(see chapter 4).

Haas et al. [40] early on proposed various models for web service architectures. The

Message Oriented Model focuses on message relations and how they are processed. An

80

approach that centers around resources and ownership is the so-called Resource Ori-
ented Model. The Policy Oriented Model defines constraints and focuses on security
and quality of service. Ideas from all these models have been combined with the Ser-
vice Oriented Model into what has become the Service Oriented Architecture. Of the
proposed models it has been the most widely implemented.

A book that provides an excellent overview of Java and web services is written by
Kalin [45]. Note that the Service Oriented Architecture by definition is programming
language and platform independent. It is built on the basis of requests and responses
and the independence of so-called web services. The choice to use Java for the imple-
mentation was made because the Transportation Security SensorNet is built on top of
previous research on the Ambient Computing Environment for SOA by Searl [76] which

is written in Java.

MRN

TradeDataExchange

Alert
SensorNodeEvent

-

AlarmProcessor SensorNode

ValidatedAlarm
ShipmentQuery

ValidatedAlarmResponse
ShipmentQueryResponse

StartMonitorSensors
StopMonitorSensg

SetMonitoringState ensorNodeStatus

Location

AlarmProcessor

SensorManagement o
startMonitoring

stopMonitoring
getLocation
setAlarmSecure

NOC_Alarm

getAllContacts
getAllAlarmContactMappings
getAllSmsProviders
getAllAlarms

Status

Location

startMonitoring
ServiceException

A

AlarmReporting

»

Contacts
AlarmContactMappings
SmsProviders

Alarms

VNOC

~@#—P Subscription

Figure 6.1. Service message overview

81

The main components of the Transportation Security SensorNet are sensor man-
agement and alarm notifications. An overview of the services and relevant message
exchanges is shown in figure 6.1.

The so-called Trade Data Exchange (TDE) (see section 6.5) provides shipment,
route, logistics and relevant cargo information. It is managed externally and used by
the system only through its specified interface. The Virtual Network Operation Center
(VNOC) (see section 6.4) is responsible for the processing of sensor data and alarms.
One of the major capabilities that it provides is alarm notification. The Mobile Rail
Network (MRN) (see section 6.3) deals with the actual management of sensors. Web
services at the Mobile Rail Network capture sensor data from the sensors and “prepro-
cess” that data. A detailed description of each individual service is provided later in
this chapter.

The architecture consists of web services that are separated into so-called service
clouds. These service clouds represent the different geographically distributed locations
(e.g. Overland Park, KS; Lawrence, KS and on a moving train) where services are

deployed and are shown in figure 6.2.

Y]\/ D
)

[AlarmReporting

[AlarmProcessor [AlarmProcessor

[TradeDataExchange] [SensorManagement] [SensorNode

]
]
TDE \ VNOC / \ MRN /

Figure 6.2. Service cloud

The web services are developed according to the web service specifications and the
standards provided by the Open Geospatial Consortium. This means that they aim
to be standards compliant. Since the OGC specifications are at times very complex,

the Geography Markup Language for example defines over 1000 elements, the basis for

82

the framework was implemented using custom interface definitions first and adding the
OGC ones later. This enabled fast prototyping and testing of the system.

An analysis of geospatial problems and their potential solutions is done by de Smith
et al. [24]. Among other things it is pointed out that using standards, in particular the
specifications provided by the Open Geospatial Consortium, greatly increases interop-
erability and allows for the development of distributed systems that are more flexible
than commonly used Geographic Information Systems.

The following sections explain in-depth the approaches and technologies used in the
implementation of the Transportation Security SensorNet that represents a “Service

Oriented Architecture for Monitoring Cargo in Motion Along Trusted Corridors”.

6.1.1.1 Ambient Computing Environment for SOA

The infrastructure described by Searl [76] called Ambient Computing Environment
for SOA forms the basis of the implementation of the Transportation Security SensorNet.
It provides a complete SOAP stack using Apache Axis2 and a variety of other useful
programs that assist in the development of a Service Oriented Architecture.

The Ambient Computing Environment for SOA [76] deals with multiple ownerships
and federations that provide web services. In particular it covers the following aspects:

e Service Discovery across different federations

o Authentication of clients and services

e Authorization of clients and services

o Subscriptions

The implementation of the capabilities provided is based on Apache Azis2 and the

web service specifications. It is explained in detail in the following sections.

83

6.1.1.2 Apache Axis2

Apache Axis2 is a software stack that allows the development and running of web
services and clients. Its architecture as described by Chinthaka [16] consists of the

following main components:

AXIs Object Model (AXIOM) AXIOM is an XML object model that aims for
high performance while requiring low amounts of memory. The idea behind it is the
application of a so-called pull parser. This allows objects to be built from XML only up
to the information that is needed by the user while the rest of it is deferred.

The advantage of this is that the memory that an object requires is significantly
reduced. Furthermore, since the entire object model does not have to be constructed
before information can be retrieved, which is the case in the DOM parser, this approach

also increases performance.

Extensible Messaging Engine As can be seen in figure 6.3, Axis2 provides a very
modular architecture that allows for a variety of different implementations of web ser-

vices as long as they adhere to certain specifications.

Engine

A IO

Figure 6.3. Axis2 extensibility from [16]

A variety of transports such as HTTP, SMTP, JMS and TCP can be used for mes-
sage exchanges. Inside the engine each message goes through so-called phases that are
part of the piping model which is used to implement Message FEzchange Patterns (see
section 4.6). Inside these phases messages can be modified, filtered or processed. The
advantage of doing this inside a phase is that it applies to all messages. This allows for

service independent processing implementations. The message receiver will then be re-

84

sponsible for handing over the actual message to the service implementation accordingly.

They also take care of synchronous and asynchronous message communication.

Context Model Axis2 provides a hierarchical context model that distinguishes be-

tween the following levels:

e Configuration of Axis2

Service Group which is a collection of services

Service which contains several operations

Operation that consists of messages

Message that is sent or received

These contexts are important in the implementation of web service specifications
such as WS-Security and WS-Policy. It means that these specifications can be applied

on a level basis which provides great flexibility.

Pluggable Modules In order to provide even more flexibility and to make the imple-

mentation of web service specifications easier to use, Axis2 provides so-called modules:

10 I N N I I

—

Modules

Figure 6.4. Axis2 modules from [16]

85

These allow an implementation of message processing that is common and useful
for many web services to be shared. Modules can also be engaged or disengaged on the
following levels:

e System which means that every service makes use of the module such as WS-

Addressing
e Service which useful for WS-FEventing

e Operation that for example allows fine grained security using WS-Security

More information about the modules that are used in the Transportation Security

SensorNet see section 6.1.4.

Data Binding Since a majority of data processing, element definitions and interface
specifications are in XML, Axis2 provides a variety of so-called data binding frameworks
such as XMLBeans [33], Java Architecture for XML Binding (JAXB) [29] and JiBX
[80]. In addition, the Azis2 Data Binding (ADB) can be used, which due to its tight
integration with Axis2 is highly performant. For instance, every object contains a so-
called factory that is able to transform XML into the specific object and vice versa.
As part of this thesis further development was done by the author on this data
binding to support a full range of Open Geospatial Consortium specifications such as
the Sensor Observation Service, Sensor Alert Service and most notably the Geography

Markup Language.

Several changes to the initial version of Axis2 were made in order to either fix bugs
or support more functionality. In particular the build structure was adapted to work
better with the Transportation Security SensorNet development. It makes extensive
use of Apache Ant for the automatic generation of elements from their respective XML
schema definitions, the compilation of Java classes and the deployment of web services

and clients

86

6.1.1.3 SOAP

Service Oriented Architectures make use of SOAP as a flexible message format. The
Transportation Security SensorNet does the same since web service specifications can
easily be integrated and applied to SOAP messages.

An in-depth discussion of SOAP can be found in section 4.2.

6.1.1.4 WSDL

All services in the Transportation Security SensorNet are defined using the Web Ser-
vices Description Language (WSDL) version 2.0. An in-depth introduction is provided
in section 4.5. This section explains how the combination of WSDL files and XML

schemas make up the foundation of a web service.

Service External
sk XML Schema XML Schemas
WSDL2Java

Service Java Classes

Schema I Service . Etermal ibrary A
Elements Skeleton xternal library
i ; .
External S External S _
‘ . ergﬁjb Emce ‘ ‘ X erg&b srwce ‘ ‘ External library B ‘

Service Implementation

-

[Service

Figure 6.5. Service composition

Utilizing the automatic code generator of Axis2 called WSDL2Java, all elements
defined in the XML schemas are available as Java classes. Furthermore a skeleton is

created that contains the operations of the web service as methods. Interaction with

87

other services is achieved using their respective stubs which provide methods for each
of its defined operations. They allow clients to perform requests directly using Java.
This is because Axis2 provides the entire SOAP stack from the message format to the
parsing into elements all the way up to the invocation of a method that represents a
service operation.

The composition of the generated parts, data and external libraries then forms the

actual service implementation.

6.1.2 Services

The services that are implemented in the Transportation Security SensorNet make
use of a variety of components. For long term information storage, a MySQL database
is used. A so-called object-relational mapping tool called Hibernate [41] enables objects
to be stored and retrieved transparently without the need of complicated database
interactions.

Esper [27] provides complex event and alarm processing and is used at the Virtual
Network Operation Center. The Alarm Processor at the Mobile Rail Network currently
uses a less complex approach.

The Sensor Node is responsible for the actual communication with the sensors. It
makes use of the so-called Hi-G-Tek (HGT) [42] protocol and a serial connection library
for Java called RXTX.

FEach component and its particular use is explained in the later sections when each
individual service is described. At a high level, one of the main aspects when dealing

with web services is the definition of whether they are stateless or stateful:

6.1.2.1 Stateless

By default web services are meant to be stateless. This is because most message
exchanges are completely independent of each other. Web services usually offer calcu-

lations, information or capabilities that only require the service to perform a specific

88

action and give a response. This is part of the autonomy approach of web services (see
chapter 4).

Even in the case where a web services provides data, the service is still considered
stateless since the retrieval of the data at any given time is not dependent on the internal
state of the service but only on the underlying data. If the data changes there is no

state change in the web service and it still provides the same functionality.

6.1.2.2 Stateful

The need for stateful web services has been identified for the Transportation Security
SensorNet because there are certain limitations in just using stateless web services.
Given a so-called online data processor that analyzes sensor data; using a stateless web
service, it is impossible to react to trends and complex events because the service is
limited to single data objects that it receives.

Let us say that a web service is monitoring whether seals that lock cargo containers
are broken and is supposed send out warning messages whenever they are. The service
has limited capacity in terms of storing historic data but should still be able to intelli-
gently determine if a sensor reading that shows that a seal is broken is just a misreading
or a real threat. This is only possible if the service keeps track of previous states. In
contrast, a stateless service would only be able to react to the current reading and is
forced to make decisions based on this single piece of data.

Another example is the Alarm Processor service (see section 6.3.2) at the Mobile
Rail Network that is used in the Transportation Security SensorNet implementation.
It classifies sensor data from containers either as information or security depending on

whether one is currently allowed to open the container or not.

6.1.3 Clients

Clients are able to make use of the operations provided by the web services. They

usually utilize the same modules as the service. This means that in theory all web

89

services could have clients. Since a lot of the services in the Transportation Security
SensorNet interact independently from users, the number of clients that are available
to users is actually smaller.

One of the aspects of clients in the Transportation Security SensorNet is the man-
agement of the sensors. The Sensor Management service (see section 6.4.1) provides
this among other things like retrieving the location of a particular Sensor Node.

Another aspect is the management of alarm notifications. For this purpose the Alarm
Reporting service (see figure 6.13) defines various management operations for clients.

In order to facilitate the use of those clients, a so-called Command Center Graphical
User Interface was implemented that works just like a desktop application. This is
in addition to the command line interface that every client provides using the Apache

Commons Command Line Interface (CLI) library.

6.1.4 Modules

Axis2 provides the possibility to “plug in” so-called modules that add functionality
or change the way a service behaves. This allows a specific capability to be shared
among different services without having to implement it in each of them. In general,
the web service specifications that are used in Axis2 are implemented as modules. For

more information see section 6.1.1.2.

6.1.4.1 Ping

In order to check the status of a particular service Axis2 provides a module that
adds an operation called pingService to a service. This can be used to check the status
of either a specific operation or all operations that the service defines. The client part
that actually uses this operation was not part of Axis2 and had to be implemented by

the author.

90

6.1.4.2 Logging

Especially for debugging purposes and performance evaluations, it is of great benefit
to be able to see the raw SOAP messages that are sent and received. The so-called
logging module that was implemented provides this functionality. In particular the
following information is captured:

e Time when the message was sent or received

e Service which is used

e Operation that is being executed

e Direction of the message, which can be either incoming or outgoing. Note that

there are special directions that deal with incoming and outgoing faults.
e From address of the message
e Reply to address that may differ from the From address
e To address of the message

e Schema element that is being “transported” as part of the operation containing

the request parameters or the response elements
e Size of the message in bytes
e Message which represents the entire SOAP message in a readable form
In terms of analyzing the Transportation Security SensorNet and its performance

the logging module was engaged in all services. More information on the findings can

be found in chapter 7.

6.1.4.3 Addressing

An implementation of the WS-Addressing specification as described in section 4.3.1
comes as part of the addressing module in the Axis2 core. It fully supports all compo-
nents of the standard and its ReplyTo and RelatesTo fields are used among other things

to allow for asynchronous communication (see section 6.1.6) in the TSSN.

91

6.1.4.4 Savan

The Savan module enables web services and clients in Axis2 to make use of various
forms of subscription mechanisms as defined by the WS-Eventing specification (see

section 4.3.2).

6.1.4.5 Rampart

In order to provide security according to the WS-Security specification (see sec-
tion 4.3.3) for the TSSN the Rampart module was developed by Axis2. It makes exten-

sive use of the WS-SecurityPolicy standard described by Lawrence et al. [50].

6.1.5 Subscriptions

Subscriptions are a fundamental part of the overall architecture of the Transportation
Security SensorNet. They are used by the Alarm Processor at the Virtual Network
Operation Center as well as in the Mobile Rail Network. These web services, that act
as information publishers, utilize the Savan module to provide the operations defined

in WS-Eventing.

6.1.6 Synchronous and asynchronous communication

By default Axis2 uses request-response in a synchronous manner. This means that
the client has to wait and is therefore blocking until it receives the response from the
service. In certain scenarios, for instance when the service needs a large amount of
processing time, the client can experience timeouts. Furthermore, in the Transportation
Security SensorNet where the Mobile Rail Network is only intermittently connected to
the Virtual Network Operation Center, synchronous communication shows its limita-
tions.

A better option is to make the communication between services asynchronous. This

resolves timeout issues and deals with connections that are only temporary. The follow-

92

ing aspects need to be taken into consideration when using asynchronous communica-

tion:

6.1.6.1 Client

The client needs to make cha