
Final Report: Advancing SensorNet
Technologies to Monitor Trusted Corridors

University of Kansas
Information and Telecommunication Technology Center

D.D. Deavours, J.B. Evans, V.S. Frost, G.J. Minden,
D.W. Petr, D. DePardo, E. Komp, L. Searl,

S. Aroor, D.T. Fokum, M. Kuehnhausen, P. Mani,
S. Muralidharan, A.N. Oguna, and M. Zeets

EDS/HP Enterprise
M. Gatewood, S. Hill, L. Sackman, J. Spector, J. Strand,

T. Terrell and J. Walther

ITTC-FY2010-TR-41420-26
June 2010

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory (ORNL)

Award Number 4000043403

Technical Report

The University of Kansas

Abstract

This effort demonstrated an integrated data-oriented methodology that can increase efficiency
and security by monitoring cargo movements along a trusted corridor, and especially rail facilities.
This was achieved by developing, analyzing, and evaluating the Transportation Security SensorNet
(TSSN) for rail transportation, and by demonstrating its feasibility in two field trials. These results
have laid the foundation for increased private sector efficiency through close collaboration with
Kansas City SmartPort’s Trade Data Exchange system, and the increased security benefits law
enforcement and national security. The project culminated with a “long haul test” that monitored rail-
based cargo in central Mexico, combining real-time sensing and trade data.

1

Table of Contents

Abstract ...1
Table of Contents..2
List of Figures ...2
List of Tables ..3
1. Introduction...4
2. Background...4
3. Completed Tasks...5

3.1. Task 1: Intermodal Technology Proof of Concept and Integration of the SmartPort Trade
Data Exchange architecture and SensorNet technologies.. 5
3.2. Task 2: System architecture development, design, measurement and modeling for the
SmartPort intelligent transportation systems, with a focus on identification of bottlenecks and
scaling issues.. 9

3.2.1. Transportation Security SensorNet Architecture ... 9
3.2.2. Transportation Security SensorNet Measurement and Modeling.................................. 10

3.3. Task 3: Data integration and processing, e.g., controlling the storing and access of
information in the SmartPort data clearinghouse... 15
3.4. Task 4: Communications technologies to enable continuous monitoring 16
3.5. Task 5: RFID applications ... 17

4. Description of Student Activities..18
5. Conclusions..19
6. References...20
List of Appendices ..23

List of Figures

Figure 3: Image of the short haul test. The small box attached to the top-front of the locomotive contains the
external electronics box (described below). ..7

Figure 4: Electronics box outside of locomotive during long haul test. ..7
Figure 5: Placement of sensor on container. ...7
Figure 6: Train passing through central Mexico during long haul test..8
Figure 7: Partial route of long haul test northbound from San Louis Potosi. ...8
Figure 9: High-level architecture of the TSSN. ..9
Figure 10: Architecture of the MRN Sensor Node. ..10
Figure 11: Architecture of the Virtual Network Operations Center (VNOC)...12
Figure 12: Typical sequence of events that take place from a tamper event to notification of a decision-maker.......13
Figure 13: Optimal sensor locations (a), where Unit ID 0 is the locomotive and slot represents elevation of double-

stacked containers, and visibility vs. cost (b) obtained by varying the number of sensors.13
Figure 14: Cost of track-side system varying the required response time (a) and both the trackside reader cost and

response deadline (b). ...14
Figure 15: Comparison of train-mounted and trackside communication systems..14
Figure 16: Security architecture used between TSSN and TDE. ..15
Figure 17: Distributed shared queue model of message exchanges for unreliable communications channel.16
Figure 18: Measured results of message dwell times during the long haul trial..17

2

List of Tables

Table I: Summary of time statistics for decision-maker notification. ..13
Table II: List of students and their participation on the project. ...18

3

1. Introduction
Exports from Asia have increased creating bottlenecks at key US ports. Conterminously, a

Kansas City group, known as SmartPort, recognized the strategic position of Kansas City and has
actively worked to expand its role in distribution to increase traffic through the Kansas City area.
SmartPort is developing a US export capability and has the only Mexican Customs clearance
capability that is not at the border. One of the key goals to expanding this program is the creation of
trusted corridors. In support of that goal, the purpose of this research effort has been to develop and
integrate systems that provide the ability to track and monitor the security of cargo in transit. This
tracking serves two purposes: it provides greater visibility to stakeholders, and it provides sensor-
based security to enable corridors to be trusted.

These goals were met through the execution of five tasks.
1. Integration of a distributed sensor system, known as SensorNet, with the SmartPort architecture.
2. Development of the system engineering models and approaches required to support the design

optimization and lifecycle operation to the SensorNet-enabled trusted corridor.
3. Development of information systems required for the SmartPort data clearinghouse.
4. Development of the communication system required for monitoring cargo in transit.
5. Examination of the role of RFID in trusted corridors.

The project has come to a successful completion with numerous publications describing the
results of the research activities. The following sections contain a summary to those activities and
references to details where appropriate.

2. Background
The US economic security is based in part by the efficient transportation of goods. The key

ports of entry on the US West Coast are Los Angeles/Long Beach, Seattle/Tacoma, Oakland, and
Portland, with LA/Long Beach being the largest. Recent events on the west coast, e.g., the
Longshoreman’s Strike, Union Pacific track problems, noise and environmental concerns, limitations
of the Alameda corridor, etc., highlight the vulnerability of that port. Further, any disaster, including
terrorist attacks, will hypothetically shut down the targeted port. As a consequence, a number of
companies are developing backup plans utilizing other ports. Some companies are moving their
businesses to less busy ports; others are now splitting their cargos between ports. A number of
companies are looking to the West-coast Mexican ports for relief. The three principal West-coast
Mexican ports are Ensenada, Manzanillo, and Lazaro Cardenas. Kansas City-based Kansas City
Southern Railway has the ability to land cargo at Lazaro Cardenas and carry it all the way to the center
of the US, i.e., terminating in Kansas City. In a related move, Mexican Customs recognized the
strategic location of Kansas City and is now building its first Customs office outside Mexico. Thus, an
integrated SensorNet-based system is useful to secure these trusted corridors.

Additionally, industry associations including KC SmartPort have indicated the industry’s need
for visibility into freight and cargo movement. There are intermodal “black holes” when freight
changes hands across modes and carriers. Visibility will only be possible through the integration of
carrier, shipper, broker, importer, exporter, and forwarder information. Currently, industry is
demonstrating that it is possible to integrate disparate transportation information. The SmartPort
Trade Data Exchange (TDE) was contemporaneously developed to address this need, which has laid
the foundation for large-scale information integration. The successful technology demonstration of
SensorNet’s Transportation Security SensorNet (TSSN) has demonstrated the successful integration of
the TSSN and TDE. This integration has enhanced value to SmartPort’s TDE by providing greater
visibility into these “black holes” and securing trade lanes.

4

This effort focused on use cases centered on monitoring and tracking containers with the goals
of proving that a container breach did not occur during the stakeholder’s custody and providing time
and location of a container intrusion to enable the stakeholder’s response and reduce successful
intrusions. These were selected in collaboration with our rail stakeholder, Kansas City Southern
(KCS). Figure 1 shows the test environment. Figure 2 shows the selected proof of concept
technologies. The associated equipment has been acquired and integrated into a complete system.
This includes servers to host the TDE at HP (formerly EDS) in Overland Park, KS, and the seals, tags,
reader, vehicle mounted TSSN collector (laptop), and a virtual network operations center (VNOC)
functionality at ITTC/KU in Lawrence, KS. Experiments have been conducted with the Hi-G-Tek
seals, tags, reader, and software developed to integrate them into this system. Initial communications
and interactions have been established between the TDE at EDS and the VNOC in the TSSN at
ITTC/KU.

3. Completed Tasks
The project was divided into five tasks. Below, we discuss each of the tasks, give summary of

the results, and reference the corresponding appendix for more detailed information.

3.1. Task 1: Intermodal Technology Proof of Concept and Integration of the
SmartPort Trade Data Exchange architecture and SensorNet technologies

This task produced and demonstrated an integrated SensorNet Transportation Security
SensorNet (TSSN) and SmartPort Trade Data Exchange (TDE) architecture and a field sensing
prototype for intermodal transport. The system architecture is described in greater detail in the
following section (Section 3.2). This task was performed in a number of phases, including: 1) truck-
based trials, 2) a “short haul” trial, and 3) a “long haul” trial. Each of those is described briefly below.

We performed a number of trials using trucks to simulate a number of scenarios without
interfering with rail operations. Truck trials were used to validate the technology, take measurements,
and test boundary conditions.

In January of 2009, we performed an integrated test on the TDE and TSSN to rail-based
monitoring of containers in a short, cross-city rail trial with the invaluable assistance of Kansas City
Southern, a key stakeholder. Figure 3 shows one of the images of the instrumented train in progress.
The results were successful and are documented in [11, 16].

The third phase involved monitoring of a cargo container from San Louis Potosi in the center
of Mexico (originally planned for Lazaro Cardenas, but changed due to scheduling difficulties with
key partners) through Nuevo Laredo and into the US. The results are summarized in numerous
publications, including [10, 15, 16, 17, 18, 20, 21, 22]. Figure 4 shows the external instrumentation of
the locomotive, and Figure 5 shows one of the monitored cargo containers with an attached seal.
Figure 6 was a picture taken from the train as it was moving through central Mexico, and various GPS
measurements taken from the route are shown in Figure 7.

Figure 8 shows a sample email alert that was sent when the TSSN detected an alarm, in this
case, an Open event (one seal had been intentionally opened). An associated GPS reading was taken,
and the TSSN sent the alarm with a Google Maps link. Before the alarm was sent, the TSSN queried
the TDE for shipment data, which is also presented in the alarm. This particular event took place
where there was virtually no cell coverage, and thus relied on satellite communication for
communication between the train and a virtual network operations center, which for this
demonstration, was on University of Kansas campus in Lawrence, KS. The TDE database was in the
HP/EDS facilities in Overland Park, KS.

5

Figure 1: System overview.

IEEE
1451

IP
Internet

SOA

Vehicle
Mounted
Seal/Tag
Reader/
Writer

Cable
Seal

Additional Sensor

Addtional Sensor

Data Tag

Magnetic
Seal

Vehicle
Mounted

SensorNet
Collector

TDE
Applications

Other
Applications

IP
Internet

Command &
Control

Other UsersTrade Data
Exchange

Satellite/
Cellular

Communications

Active tags, seals and reader
from Hig-G-Tek

Iridium Satellite
Communications

GSM/HSDPA
Terrestrial

Comms

IEEE
1451

IP
Internet

SOA

Vehicle
Mounted
Seal/Tag
Reader/
Writer

Cable
Seal

Additional Sensor

Addtional Sensor

Data Tag

Magnetic
Seal

Vehicle
Mounted

SensorNet
Collector

TDE
Applications

Other
Applications

IP
Internet

Command &
Control

Other UsersTrade Data
Exchange

Satellite/
Cellular

Communications

IEEE
1451

IP
Internet

SOA

Vehicle
Mounted
Seal/Tag
Reader/
Writer

Cable
Seal

Additional Sensor

Addtional Sensor

Data Tag

Magnetic
Seal

Vehicle
Mounted

SensorNet
Collector

IEEE
1451

IP
Internet

SOA

Vehicle
Mounted
Seal/Tag
Reader/
Writer

Cable
Seal

Additional Sensor

Addtional Sensor

Data Tag

Magnetic
Seal

Vehicle
Mounted

SensorNet
Collector

TDE
Applications

Other
Applications

IP
Internet

Command &
Control

Other UsersTrade Data
Exchange

Satellite/
Cellular

Communications

Active tags, seals and reader
from Hig-G-Tek

Iridium Satellite
Communications

GSM/HSDPA
Terrestrial

Comms

Figure 2: Selected technologies used for proof-of-concept.

6

Figure 3: Image of the short haul test. The small box attached to the top-front of the locomotive contains the

external electronics box (described below).

Figure 4: Electronics box outside of locomotive during

long haul test.
Figure 5: Placement of sensor on container.

7

Figure 6: Train passing through central Mexico during

long haul test.
Figure 7: Partial route of long haul test northbound

from San Louis Potosi.

NOC_AlarmReportingService:
 Date-Time: 2009.07.30 10:33:48 CDT / 2009.07.30 15:33:48 UTC
 Lat/Lon: 25.12046/-101.10943, Quality: Good
 http://maps.google.com/maps?q=25.12046,-101.10943
 TrainId=LngHaulMx
 Severity: Information
 Type: SensorLimitReached
 Message: SensorType=Seal SensorID=IAHA01054318 Event=Open Msg=
 NOC Host: laredo.ittc.ku.edu

Shipment Data:
 Car Pos: 4
 Equipment Id: EDS 53403
 BIC Code: ITTC746485
 STCC: 2643137

Figure 8: Sample report sent by the TSSN showing integration of TDE and sensor information.

The trials demonstrated a successful technology integration and achieved all of the major

goals, as well as validating the overall architecture. Sensors were used to sense container safety on a
moving train, reliably communicated by satellite to a virtual network operations center (VNOC), the
VNOC demonstrated secure communications with the TDE and fuse sensor and manifest data to
deliver near-real-time alerts to decision-makers.

8

3.2. Task 2: System architecture development, design, measurement and modeling for
the SmartPort intelligent transportation systems, with a focus on identification of
bottlenecks and scaling issues

In this section, we present a description of this task. For clarity, we present separate sections
for the architecture, and for modeling and evaluation.

3.2.1. Transportation Security SensorNet Architecture
The system architecture was designed after careful consideration of existing technologies and

architectures [3, 4, 6, 8, 9]. The developed architecture is described in detail [13]. They are briefly
summarized here.

Figure 8 gives a high-level overview of the TSSN architecture. The sensors are deployed
within a Mobile Rail Network (MRN), which directly communicates with the container sensors and
through back-haul communications to the Virtual Network Operations Center (VNOC). The primary
task of the MRN is to monitor the sensors on the train and securely communicate important events to
the VNOC. The prototype MRN has the capability of using cellular networks when available, and
satellite communications otherwise, and thus can be used anywhere in the world. The MRN is
discussed in more detail below. The Virtual Network Operations Center (VNOC) is responsible for
communicating with the MRN, collecting manifest and other information from the Trade Data
Exchange (TDE), processing the information, and sending alarms to the appropriate stakeholder.

Figure 9: High-level architecture of the TSSN.

The architecture of the MRN is further refined in Figure 10. Here, we can see that the MRN

includes a considerable amount of decision-making capability. The TSSN architecture is developed
nearly completely around the Services Oriented Architecture (SOA), and Web Services in particular,
and thus conforms to open standard interfaces.

9

Figure 10: Architecture of the MRN Sensor Node.

The VNOC is expanded in Figure 11. The VNOC is the primary “hub” of communications

within the TSSN, and contains most of the decision-making intelligence. The VNOC is comprised of
a number of services and interfaces. Essentially, the VNOC receives events from the mobile rail
network (MRN), processes those events, obtains manifest and other information from the TDE if
necessary, and sends alerts to decision-makers. The VNOC uses rules, historical data, and complex
event processing to make real-time decisions. The goal is for the decision-maker to get relevant data
and only relevant data in a timely way. The system evaluation is given in more detail in the following
section.

3.2.2. Transportation Security SensorNet Measurement and Modeling
An additional goal of the system was to better understand the performance characteristics of

the deployed system, to determine how to scale the technology, to evaluate alternative systems and
optimize the system design. The first goal was met through extensive system instrumentation
primarily through data logging. The second two goals were met using analytical models. We begin
this section with an overview of the measured results of the TSSN.

To support measurement, data was collected over all the truck trials, and both short- and long-
haul trail. Detailed measurements were taken during both trials, and are reported in detail in [11, 21].
Through private communication, we learned that rail carriers desire a response to a tamper event
within 15 minutes, which was taken to be a critical deadline.

To assess performance, consider the sequence of events shown in Figure 12. This shows the
typical sequence of messages that flow between services within the TSSN, grouped into epochs. For
all trials, including preliminary truck trials and the two rail trials, we kept detailed logs of events,
which are summarized in Table I. Considering worst-case times for each epoch, only Epoch 5 took a
significant amount of time (less than one minute). The source of that delay was sending an SMS
message over a provider network. While the number of observations was not sufficient to make an

10

accurate estimate of the probability of meeting the 15 minute requirement, the data suggests that the
probability is very high.

Based on our experience, we have found a critical system bottleneck. The chosen sensors have
limited range when attached to containers. Through testing, we found that we could only monitor
about five rail cars reliably, though it was possible to unreliably monitor cars seven to eight cars away.
Also, the sensors have essentially no peer-to-peer capability. This is unsuitable for complete rail
coverage on long trains. While more capable networking systems are available, such as 802.15.4 and
Zigbee, those systems are likely not sufficiently power-efficient nor do they scale sufficiently well in
transportation environments. Thus, we believe that there is a need to develop wireless sensor systems
capable of peer-to-peer networking using lightweight routing protocols. We are currently
collaborating with partners to investigate ways to do that.

While measurement was important and insightful to gain a better understanding of the system
on a detailed level, it leaves open critical system-level questions. For example, would a rack-side
communication system work better than train-based? To answer this question, we constructed
analytical models, which allowed us to model and evaluate various system-level tradeoffs and
optimize the system. The models were based on integer linear programming. The critical result of
these models is that under realistic conditions, the models strongly indicate that sensor networks such
as the TSSN significantly lower transportation costs. The details of this work is reported in [25] and
summarized below.

First, we say that a container is visible if a sensor is able to correctly report a critical sensor
event within sufficient time. Thus, if a container is visible, then a response team will be able to arrest
or deter a container breach. We considered a number of specific system trade-offs, and for clarity we
present a few representative experimental results.

First, we consider optimal sensor placement on a train. The objective was maximum visibility,
that is, events are detected with a certain probability and reported in a timely manner, and the
probability of a false alarm is kept below a specified threshold. Because the sensors have a limited
communication distance, we assume that every third car has a repeater. We assume 66 containers are
placed on a 30-car train (due to memory constraints of some of the algorithms and tools used). Here,
we assume we are constrained by having only 12 sensors to place on containers. Under these and
other conditions detailed in [25], we were able to find an optimal sensor placement. The optimal
arrangement of sensors is plotted in Figure 13a.

Next, consider the same scenario except that we now vary the number of sensors available and
compute the expected system cost. Here, cost includes all costs, including the cost of sensors,
communication system, the cost of theft, false alarms, etc. (Again, the details are presented in [25].)
That result is shown in Figure 13b. That result clearly shows that costs reduce when visibility
increases, i.e., as the number of containers that have sensors increases. While these models include
cost and probability estimates, since in many cases actual costs and probabilities are not known, the
results show that under assumptions we believe are reasonable, there is significant economic value to
using sensor networks to secure cargo.

Next, we examined how track-side communications affected the price and performance of the
system. Obviously, with track-side communication, the spacing between track-side readers is directly
proportional to the expected delay between an event and the ability to report that event. As the
expected time to report the event, or the expected reporting deadline, increases, the number of track-
side readers decrease, and thus the system costs also decrease, which is verified by the results shown
in Figure 14a. A trackside system is also highly sensitive to the cost of the reader, which was explored
and evaluated, and some results are presented in Figure 14b.

11

(a) VNOC message overview.

(b) VNOC Sensor Management service. (c) VNOC Alarm Processor service

(d) VNOC Alarm Reporting service. (e) TDE interface from VNOC

Figure 11: Architecture of the Virtual Network Operations Center (VNOC).

12

Figure 12: Typical sequence of events that take place from a tamper event to notification of a decision-maker.

Table I: Summary of time statistics for decision-maker notification.

Epoch Description Min (s) Mean (s) Max (s)
1 Event occurrence to Alert generation 0.81 2.70 8.75
2 Alert generation to MRN AlarmProcessor service 0.01 0.02 0.08
3 One-way delay from MRN AlarmProcessor to VNOC AlarmProcessor 0.45 1.89 2.90
4 MRN Alarm arrival at VNOC AlarmProcessor to AlarmReporting

service
0.01 0.17 3.01

5 Elapsed time from VNOC AlarmReporting service to mobile phone 5.2 11.9 58.7

(a) (b)

Figure 13: Optimal sensor locations (a), where Unit ID 0 is the locomotive and slot represents elevation of double-
stacked containers, and visibility vs. cost (b) obtained by varying the number of sensors.

13

(a) (b)

Figure 14: Cost of track-side system varying the required response time (a) and both the trackside reader cost and
response deadline (b).

Finally, we compare the economics of a train-mounted communication system vs. a track-side

communication system. The results in Figure 15 clearly show the advantage of the track-side reader
system. This is because a single reader is able to serve on average 14 trains per week, while a train-
mounted system serves only one train. Here, we assume a track-side reader costs approximately 1,000
units (with a unit as roughly equivalent to one US dollar). Obviously, if track-side readers are
substantially more expensive, then the outcome would be different.

(a) (b)

Figure 15: Comparison of train-mounted and trackside communication systems.

 From these data, we conclude that we have a robust cost model that can be used to evaluate
numerous system tradeoffs. Based on current estimates, a track-side communications system may be
more cost-effective than a train-mounted communications system. However, based on our estimated

14

costs and probabilities (detailed in [25]), it is always economically advantageous to use sensor
networks to monitor cargo shipments.

3.3. Task 3: Data integration and processing, e.g., controlling the storing and access
of information in the SmartPort data clearinghouse

The trusted corridor concept relies on a clearinghouse that integrates information from both the
sensors via a Web services interface and related databases, e.g., external logistical and intelligent
transportation systems such as the TDE. Secure communication between the TSSN and TDE has been
designed and implemented using well-established standards. Thus, the architecture is standards-based
and open. The overall system architecture is described in [13]. An overview of the security aspects is
given in Figure 16. The TDE–TSSN security relies on three layers: 1) firewalls to let traffic in only to
and from certain computers and port numbers, 2) HTTPS (secure sockets) encryption layer for
privacy, and 3) the use of username and password tokens for authentication. This approach was taken
given practical considerations of interfacing with legacy software, and provides adequate security. In
a related project, this feature has been tested with multiple TSSNs communicating with the TDE,
illustrating the security and scalability of the system.

Figure 16: Security architecture used between TSSN and TDE.

One of the notable outcomes of this effort was that we found a possible architectural flaw with

the Web Services Architecture (WSA). The conflict arises when one uses the Publish / Subscribe
paradigm, a preferred method for efficient data exchange (as opposed to polling) and publishing the
policy of a security service. The details are found in [19], but essentially there is no mechanism for
discovering the security policy of a service when using the publish / subscribe paradigm. What can be
done is “hard code” the security policy within the two communicating services, which was done for
this project, but that is obviously not ideal, and contrary to the spirit of the Web Services architecture.
We believe that this is a significant finding and an architectural flaw that needs to be addressed by the
Web Services community.

15

3.4. Task 4: Communications technologies to enable continuous monitoring
One of the unique challenges for communication in this environment is that most web services

implementations assume connection-oriented services. Due to economics and other practical
limitations, we can not assure continuous connection to rail, especially in parts of the world with no
wireless coverage and in mountainous regions where satellite communications can be sporadic. We
extensively surveyed technologies that would be useful for continuous monitoring of cargo on rail.
The results are summarized in [3, 8, 9].

We determined the need to develop a messaging service that would seamlessly integrate into
the Web Services paradigm. This is documented in detail in [22], and described briefly below. The
affected clients and servers were modified to communicate through asynchronous messaging services,
which is possible through the Axis2 implementations using callbacks. Then, the transport mechanism
(normally HTTP or HTTPS) was replaced with a Java Messaging Service (JMS), using the ActiveMQ
implementation of JMS. JMS is an asynchronous message passing service that is robust under
sporadic connections. When JMS detects a connection, it exchanges messages through a shared queue
paradigm. Figure 17 illustrates the distributed queuing model used to exchange messages.

Figure 17: Distributed shared queue model of message exchanges for unreliable communications channel.

 During the long haul test in Mexico, we recorded data from the JMS service. The results are
shown in Figure 18, where the dwell time of each message in the queue is plotted vs. time. At the
bottom, a line shows when the satellite communications channel was connected. As the figure clearly
shows, messages were usually exchanged rather quickly when the communications channel was
established, and buffered, sometimes for considerable time, when the channel was down or busy.

16

Figure 18: Measured results of message dwell times during the long haul trial.

3.5. Task 5: RFID applications
We studied the use of RFID technologies for cargo applications. This resulted in the

development of a long-range passive UHF RFID tag that was capable of identification at long
distances [23], and a survey of commercially-available location-positioning technologies [14]: RF
Controls [26] and Mojix [27]. We summarize our findings below.

• As claimed, Mojix system is extremely sensitive. It was able to detect the developed long-
range passive UHF RFID tag at nearly 130 feet away when the Star was pointing away
from the tag (an adverse condition).

• We observed location-positioning capabilities that were not highly refined and took some
time to settle on an accurate location. Regardless, it showed location positioning accuracy
sufficient to one to two meters, which is sufficient for an intermodal facility.

• Systems continue to improve since the writing of [23], including the use of wireless nodes
in the Mojix system. A mobile eNode could be used to inventory and determine location of
containers within the yard periodically.

• The developed RFID tag provided excellent long-distance performance. Improvement in
the integrated circuit (IC) has been growing steadily so that read distances double every
two to three years. While current IC design is meeting fundamental limits in passive
design, low-cost battery technology continues to develop and may provide continued
performance gains.

We conclude that the use of passive RFID in intermodal facilities is possible given existing
technology, but would require extensive deployment of infrastructure and a community-wide
commitment.

17

4. Description of Student Activities
This project used students extensively in the design, development, and testing of the system.

The following table shows students who were funded by the project and made contributions to the
project as shown by their participation in the following technical reports.

Table II: List of students and their participation on the project.

Student Title Reference
Daniel T. Fokum A Taxonomy of Sensor Network Architectures [8]
 A Survey on Methods for Broadband Internet Access on

Trains
[9]

 Status Update: A Unified Architecture for SensorNet with
Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors

[10]

 Experiences from a Transportation Security Sensor
Network Field Trial

[11]

 Service Oriented Architecture for Monitoring Cargo in
Motion Along Trusted Corridors

[13]

 Service Oriented Architecture for Monitoring Cargo in
Motion Along Trusted Corridors

[13]

 Summary of Status: A Unified Architecture for SensorNet
with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors

[14]

 An Open System Transportation Security Sensor Network:
Field Trial Experiences

[21]

Martin Kuehnhausen Experiences from a Transportation Security Sensor
Network Field Trial

[11]

 Service Oriented Architecture for Monitoring Cargo in
Motion Along Trusted Corridors

[13]

 Summary of Status: A Unified Architecture for SensorNet
with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors

[14]

 Application of the Java Message Service in Mobile
Monitoring Environments

[18]

 Implementing Web Services: Conflicts Between Security
Features and Publish/Subscribe Communication Protocols

[19]

 Framework for Analyzing SOAP Messages in Web Service
Environments

[20]

 An Open System Transportation Security Sensor Network:
Field Trial Experiences

[21]

Pradeepkumar Mani A Taxonomy of Sensor Network Architectures [8]
Satyasree Muralidharan A Taxonomy of Sensor Network Architectures [8]
Angela N. Oguna Experiences from a Transportation Security Sensor

Network Field Trial
[11]

18

 Service Oriented Architecture for Monitoring Cargo in
Motion Along Trusted Corridors

[13]

 Summary of Status: A Unified Architecture for SensorNet
with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors

[14]

 Transportation security Sensor Network: Sensor Selection
and Signal Strength Analysis

[17]

 An Open System Transportation Security Sensor Network:
Field Trial Experiences

[21]

Matthew Zeets Experiences from a Transportation Security Sensor
Network Field Trial

[11]

 Service Oriented Architecture for Monitoring Cargo in
Motion Along Trusted Corridors

[13]

 Summary of Status: A Unified Architecture for SensorNet
with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors

[14]

 An Open System Transportation Security Sensor Network:
Field Trial Experiences

[21]

5. Conclusions
The goal of the project was to develop and integrate systems that provide the ability to track

and monitor the security of cargo in transit. To achieve the goal, we developed the Transportation
Security SensorNet (TSSN) to monitor rail cargo with the SmartPort Trade Data Exchange (TDE)
system. The system was demonstrated in both a “short haul” and “long haul” (international) shipping
scenario. Data from the tests were taken and extensively analyzed, identifying bottlenecks and new
research directions, including the use of security and notification events in Web Services, and the need
for efficient, long-range wireless sensors appropriate for the rail environment.

SmartPort continues to develop and commercialize the TDE, and has funded additional activity
to further integrate TSSN and the TDE to support the exchange of custody through sensors and mobile
communication systems, as well as continue to look for opportunities to collaborate on developing the
necessary technologies to enable full coverage of a train, container yard, and other intermodal facilities
and transports.

19

6. References

[1] Pradeepkumar Mani, David W. Petr, “Clique Number vs. Chromatic Number in Wireless

Interference Graphs: Simulation Results,” University of Kansas, Lawrence, KS, Tech. Rep.
ITTC-FY2007-TR41420-01, October 2007.

[3] S Muralidharan,V. S. Frost, and G. J. Minden , “A Framework for Sensor Networks with

Multiple Owners,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2008-TR-41420-
03; December 2007.

[4] Daniel T. Fokum, Dr. Victor S. Frost, and Dr. Gary J. Minden, “An Evaluation of Sensing

Platforms Used for Sensor Network Research,” University of Kansas, Lawrence, KS, Tech.
Rep. ITTC-FY2008-TR-41420-04, December 2007.

[5] Andrew Boie and Douglas Niehaus, “Performance Constraints of Distributed Control Loops on

Linux Systems,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2008-TR-41420-
05, December 2007.

[6] Gary Minden, Victor Frost, David Petr, Douglas Niehaus, Ed Komp, Daniel Fokum,

Pradeepkumar Mani, Andrew Boie, Satyasree Muralidharan, and James Stevens, “Phase One
Report: A Unified Architecture for SensorNet with Multiple Owners,” University of Kansas,
Lawrence, KS, Tech. Rep. ITTC-FY2008-TR-41420-06; December 2007.

[7] Leon S. Searl, “Service Oriented Architecture for Sensor Networks Based on the Ambient

Computing Environment,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2008-
TR-41420-07; February 2008.

[8] D.T. Fokum, V.S. Frost, P. Mani, G.J. Minden, J.B. Evans, and S. Muralidharan, “A

Taxonomy of Sensor Network Architectures,” University of Kansas, Lawrence, KS, Tech. Rep.
ITTC-FY-2009-TR-41420-08, July 2008.

[9] Daniel T. Fokum and Victor S. Frost, “A Survey on Methods for Broadband Internet Access on

Trains,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY-2009-TR-41420-09,
August 2008.

[10] Victor S. Frost, Gary J. Minden, Joseph B. Evans, Daniel T. Fokum, “Status Update: A

Unified Architecture for SensorNet with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors,” University of Kansas, Lawrence, KS, Tech. Rep.
ITTC-FY2009-TR-41420-10, August, 2008.

[11] Daniel T. Fokum, Victor S. Frost, Daniel DePardo, Martin Kuehnhausen, Angela N. Oguna,

Leon S. Searl, Edward Komp, Matthew Zeets, Joseph B. Evans, Gary J. Minden, “Experiences
from a Transportation Security Sensor Network Field Trial,” University of Kansas, Lawrence,
KS, Tech. Rep. ITTC-FY2009-TR-41420-11, June 2009.

20

[12] Victor S. Frost, Gary J. Minden, and Joseph B Evans, “Summary of Status: A Unified
Architecture for SensorNet with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors,” University of Kansas, Lawrence, KS, Tech. Rep.
ITTC-FY-2009-TR-41420-12, December 2008.

[13] Martin Kuehnhausen, Daniel T. Fokum, Victor S. Frost, Daniel DePardo, Angela N. Oguna,

Leon Searl, Edward Komp, Matthew Zeets, Daniel D. Deavours, Joseph B. Evans, and Gary J.
Minden, “Service Oriented Architecture for Monitoring Cargo in Motion Along Trusted
Corridors,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-13,
July 2009.

[14] Daniel D. Deavours, “Application of Passive UHF RFID in Intermodal Facilities,” University

of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-14; July 2009.

[15] V.S. Frost, G.J. Minden, J.B. Evans, L. Searl, D.T. Fokum, D. Deavours, E. Komp, A. Oguna

M. Zeets, M. Kuehnhausen, D. Depardo, “Summary of Status: A Unified Architecture for
SensorNet with Multiple Owners: Supplement to Advance SensorNet Technologies to Monitor
Trusted Corridors,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-
41420-15; July 2009.

[16] EDS, an HP Company, J. Walther, L. Sackman, M. Gatewood, J. Spector, S. Hill, J. Strand,

“EDS HP Final Report,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-
41420-16; December 2009.

[17] Angela Oguna, “Transportation Security Sensor Network: Sensor Selection and Signal

Strength Analysis,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-
41420-17; December 2009.

[18] M. Kuehnhausen and V. S. Frost, “Application of the Java Message Service in Mobile

Monitoring Environments,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-
TR-41420-18; December 2009.

[19] E. Komp, V. Frost, and M. Kuehnhausen, “Implementing Web Services: Conflicts Between

Security Features and Publish/Subscribe Communication Protocols,” University of Kansas,
Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-19; February 2010.

[20] M. Kuehnhausen and V. S. Frost, “Framework for Analyzing SOAP Messages in Web Service

Environments,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-20,
March, 2010.

[21] D. T. Fokum, V. S. Frost, D. DePardo, M. Kuehnhausen, A. N. Oguna,

L. S. Searl, E. Komp, M. Zeets, D. D. Deavours, J. B. Evans, and G. J. Minden, “An Open
System Transportation Security Sensor Network: Field Trial Experiences,” University of
Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-21; March 2010.

21

[22] M. Kuehnhausen and V. S. Frost, “Transportation Security SensorNet: A Service Oriented
Architecture for Cargo Monitoring,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-
FY2010-TR-41420-22; April, 2010.

[23] S. Aroor and D. D. Deavours, “A Dual-Resonant Microstrip-Based UHF RFID ‘Cargo’ Tag,”

University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-23; March, 2008.

[24] Pradeepkumar Mani, Satyasree Muralidharan, Victor S. Frost, Gary J. Minden, and David W.

Petr, “Unified SensorNet Architecture with Multiple Owners: An Implementation
Report,” University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-24; May,
2010.

[25] Daniel T. Fokum and Victor S. Frost, “Modeling for Analysis and Design of Communications

Systems and Networks for Monitoring Cargo in Motion Along Trusted Corridors,” University
of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-41420-25; May, 2010.

[26] RF Controls, LLC., “Welcome to RF Controls!”, available http://www.rfctrls.com/index.html,

accessed June 16, 2010.

[27] “Mojix Star System Brochure,” Mojix, 2008, available

http://www.mojix.com/products/documents/Mojix_STAR_System.pdf, accessed June 16,
2010.

22

http://www.rfctrls.com/index.html
http://www.mojix.com/products/documents/Mojix_STAR_System.pdf

List of Appendices
The following is a list of the appendices for this report. Each appendix is also a technical report.

Appendix
Number ITTC TR # Title

A.1 ITTC-FY2008-TR41420-07 Service Oriented Architecture for Sensor Networks Based on the Ambient
Computing Environment

A.2 ITTC-FY2009-TR41420-08 A Taxonomy of Sensor Network Architectures
A.3 ITTC-FY2009-TR41420-09 A Survey on Methods for Broadband Internet Access on Trains

A.4 ITTC-FY2009-TR41420-10
Status Update: A Unified Architecture for SensorNet with Multiple
Owners: Supplement to Advance SensorNet Technologies to Monitor
Trusted Corridors

A.5 ITTC-FY2009-TR41420-11 Experiences from a Transportation Security Sensor Network Field Trial

A.6 ITTC-FY2009-TR41420-12
Summary of Status: A Unified Architecture for SensorNet with Multiple
Owners: Supplement to Advance SensorNet Technologies to Monitor
Trusted Corridors

A.7 ITTC-FY2010-TR41420-13 Service Oriented Architecture for Monitoring Cargo in Motion Along
Trusted Corridors

A.8 ITTC-FY2010-TR41420-14 Application of Passive UHF RFID in Intermodal Facilities

A.9 ITTC-FY2010-TR41420-15
Summary of Status: A Unified Architecture for SensorNet with Multiple
Owners: Supplement to Advance SensorNet Technologies to Monitor
Trusted Corridors

A.10 ITTC-FY2010-TR41420-16 EDS HP Final Report

A.11 ITTC-FY2010-TR41420-17 Transportation Security Sensor Network: Sensor Selection and Signal
Strength Analysis

A.12 ITTC-FY2010-TR41420-18 Application of the Java Message Service in Mobile Monitoring
Environments

A.13 ITTC-FY2010-TR41420-19 Implementing Web Services: Conflicts Between
Security Features and Publish/Subscribe Communication Protocols

A.14 ITTC-FY2010-TR41420-20 Framework for Analyzing SOAP Messages in Web Service Environments

A.15 ITTC-FY2010-TR41420-21 An Open System Transportation Security Sensor Network: Field Trial
Experiences

A.16 ITTC-FY2010-TR41420-22 Transportation Security SensorNet: A Service Oriented Architecture for
Cargo Monitoring

A.17 ITTC-FY2010-TR41420-23 A Dual-Resonant Microstrip-Based UHF RFID ‘Cargo’ Tag

A.18 ITTC-FY2010-TR41420-24 Unified SensorNet Architecture with Multiple Owners: An
Implementation Report

A.19 ITTC-FY2010-TR41420-25 Modeling for Analysis and Design of Communications Systems and
Networks for Monitoring Cargo in Motion Along Trusted Corridors

23

Service Oriented Architecture for Sensor Networks
Based on the Ambient Computing Environment

Leon S. Searl

ITTC-FY2008-TR-41420-07

February 2008

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Technical Report

The University of Kansas

i

1 Overview... 1

2 ACE SOA Infrastructure... 1

2.1 Client/Service Communication... 3

2.1.1 Client SOAP Stack.. 4

2.1.2 Service SOAP Stack ... 5

2.1.3 Event Notification... 5

2.2 Service Directory Service ... 6

2.2.1 Service Publication ... 7

2.2.1.1 ASD Service Alive Status... 8

2.2.2 Service Discovery by Client ... 8

2.3 Authentication Service.. 9

2.4 Authorization Service ... 9

2.5 Remote Services.. 9

3 Client and Service Development .. 10

4 Scenario Examples.. 10

4.1 Client/Service Messaging Example plus Remote Service Example................. 10

4.2 ACESOA Federation Example ... 24

4.3 Event Notification Examples .. 35

4.3.1 Service – Service Notification .. 35

4.3.2 Client - Service – Service Notification ... 36

4.3.3 Client – Service Notification .. 37

1

1 Overview
ACE SOA (Ambient Computing Environment)(Service Oriented Architecture) is the
forth generation ACE implementation for providing distributed computing, media and
sensing services to service consumers (clients) in a dispersed environment. ACE SOA is
the infrastructure providing message and data communication, confidentiality,
authenticity and permissions plus service discovery within an enterprise and between
enterprises. ACE also provides a framework for developing new services and clients of
services.

ACE SOA is a reimplementation of the original ideas of ACE but utilizing current
technology and widely accepted Web Service specifications and publicly available
implementations which are suitable for Sensor Networks. Some of the Web Service
specifications in use are SOAP, the WS-X specifications and UDDIv3.

2 ACE SOA Infrastructure
ACE SOA is an infrastructure to allow Web Service based clients and services of one or
more enterprises to interact using the following features:

• Provide means for service to publish its URL location and Web Service Interface for
discovery by clients.

• Allow clients to discover service’s URL location and Web Service Interface.

• Provide a secure communication channel between clients and services.

• Provide mechanism for clients to subscribe to service ‘events’ or ‘alarms’.

• Authenticate a client to a service.

• Provide fine grain authorization of a client’s use of a service.

• Provide a framework for development of new clients and services.

• Establish a trust relationship between enterprises.

2

Authenticate

Authorize

Sense
Proxy

Service Dir

Authenticate

Client

Service Dir

Enterprise A Enterprise B

RemoteSense
DB

Sense
Filter

Authenticate
Authorize

Sensor

Figure 1 Federation of Services Overview

Figure 1 illustrates a simplified federation of clients and services. The client in this
example is in ‘red’. The services are in blue. The ACE infrastructure provided services
are the ‘Service Directory’, ‘Authenticate’ and ‘Authorize’ services. The remaining
services have been developed by the enterprise.

Each federation has its own Service Directory (UDDI), Authentication service and
Authorization service (although this example does not show an authorization service for
enterprise A).

When a service starts up it publishes its location URL (host and port) and its Web Service
interface (operations and operation arguments and argument types) to its Service
Directory so that clients are able to find it. In Figure 1 the ‘Sense DB’ service of
Enterprise B has published its information to the ‘Service Directory’ service.

Service Directories subscribe with each other for new inter-service publications. When a
new service that can be used from outside the enterprise publishes with its Service
Directory, the Service Directory then notifies any other subscribed Service Directories
about the new service. In Figure 1 the Service Directory of Enterprise B has notified the
Service Directory of Enterprise A of the service ‘Sense DB’ from Enterprise B.

A client can discover a service by querying its own Service Directory (query can be by
service type or by some other distinguishing category published by a service). The
service directory tells the client where the service(s) is and the interface (operations and
arguments to the operations) needed to communication with the service. The service may
be in the client’s own enterprise or it may be in another enterprise. In Figure 1 the Client
has queried for a service that is in the ‘Sensor Database’ category and its Service

3

Directory has returned the location URL and interface for the ‘Sense DB’ from Enterprise
B.

Services may also be clients of other services. In Figure 1 ‘Sense Proxy’ is a client of
‘Sensor’. Service ‘Sense Filter’ is a client of service ‘Sense Proxy’. Service ‘Sense DB’ is
a client of ‘Sense Filter’, ‘Authorize’, ‘Authenticate’ and ‘Service Dir’.

The Enterprise A client communicates with the Sense DB service using encrypted
messages. The ‘user’ of the client will be authenticated by ‘Sense DB’ using a certificate
that the client obtained from its Authenticate service and passed along it’s message.

The service determines if a client/user is authorized to perform the requested operation in
the message by querying its Authorize service.

In Figure 1 there is a remote service that is connected by a slow or intermittent
connection so instead of communicating with Service Dir, Authenticate and Authorize
services it has a ‘Sense Proxy’ service that handles that communication. Only the ‘Sense
Proxy’ service is allowed to communicate with the remote service so the remote service
can have its authentication and authorization information in local files.

2.1 Client/Service Communication

ACESOA clients communicate with ACESOA services utilizing the open web service
standard SOAP (Service Operation Access Protocol) specification. ACESOA only uses
version 1.2 of the SOAP specification. The implementation of SOAP used by ACESOA
is the Apache Axis2 package.

Transport (HTTP, SMTP, TCP)

Ethernet, GSM

WS-Security (Encryption)

WS-Addressing (ID, Routing)

Authentication

WS-Authorization

XML

Serialize

Client

Soap

ACE Infra

Transport (HTTP, SMTP, TCP)

WS-Security (Encryption)

WS-Addressing (ID, Routing)

Authentication

WS-Authorization

XML

Serialize

Server

Soap

ACE Infra

Authen Token

Author Cert

Authen Token

Figure 2 ACESOA Message Stack

4

Figure 2 shows the SOAP message stack utilized by ACESOA. A message originates
with the client application code, passes down through the SOAP layers to the underlying
network. The network routes the message to the proper host and port. The message then
passes up through the soap layers for the service until it reaches the service application
code.

Each client and each service has ACESOA specific code that is used to interface with
portions of the SOAP stack (labeled as ‘ACE Infra’).

The Serialize and XML layers adhere to the SOAP 1.2 specification for the message
body. This is integral to Apache Axis2.

The WS-Authorization specification has not been written yet. Until the WS-
Authorization is written ACESOA will utilize xACML (extendable Access Control
Markup Language) to specify credentials and will make a best guess for the protocol for
placing xACML into SOAP messages based a working draft WS-Authorization XML
schema found on the web.

The Authentication layer uses the WS-Security mechanism for signing headers and
messages. This is implemented by the Apache Rampart module.

The Encryption layer uses the WS-SecureConversation specification. This is
implemented by the Apache Rampart module.

WS-Addressing layer follows the like named specification. This is integral to Apache
Axis2.

2.1.1 Client SOAP Stack

To invoke a procedure on a service the client must first create the message body. Since
ACESOA utilizes the Axis Axiom Object Model the client must create the message as an
Axiom Object Model. The Object Model has the procedure name and procedure
argument names and argument values placed in it.

The client passes the OM (message object model) to SOAP which then serializes the OM.
The serialized object model is placed in XML in the SOAP schema.

On the client side WS-Authorization is skipped.

On the client side the Authentication layer (which is really a part of WS-Security) is
given a certificate or token that has been provided by an enterprise authentication
Certificate Authority (CA) through the ‘Ace Infra’ layer. The ‘Ace Infra’ layer handles
this automatically for the client. The token or certificate identifying the user is placed in
the message.

The message head and body is encrypted by WS-SecureConversation which is part of
WS-Security. WS-Security in Axis2 to is provided by the Rampart module.

5

SOAP routing information (service being called, session in the service to use and the
procedure being called) is placed in the message at the WS-Address layer.

The message is encapsulated and network routing information is added by the transport
layer then the message is placed on the network.

2.1.2 Service SOAP Stack

A message from an ACESOA client, destined for an ACESOA service is first received by
the transport layer from the network. The SOAP message is extracted from the transport
message and delivered to the WS-Addressing layer.

The WS-Addressing layer determines from the message which service the message is for,
which session within the service to deliver the message to and which procedure in the
service session to invoke.

The header and body of the message are decrypted by WS-SecureConversation in the
WS-Security layer. WS-Security is implemented by the Rampart package from Apache.

The authentication of the client user is determined by extracting the token or certificate
from the message and verifying the token or certificate with the CA of the service’s
enterprise. The communication with the CA (Authenticate service) is handled by the ‘Ace
Infra’ layer. To reduce communication overhead with the Authenticate service the token
or certificate is cached in the service with a limited cache lifetime. The service also has
subscribed to the Authenticate service to be notified if the validity of the user’s token or
certificate changes. Any failed authentication results in an error message back to the
client.

The WS-Authorization layer determines which procedure and the arguments of the
procedure that the client is trying to use. To determine if the client is authorized to invoke
the procedure with the specified arguments the service’s Authorize service is queried. To
reduce communication overhead with the Authorize service the user’s authorization
credential is cached in the service with a limited cache lifetime. The service also has
subscribed to the Authorize service to be notified if the validity of the user’s credential
changes. Any failed authorization results in an error message back to the client.

The message is extracted from the XML and placed in an Axiom Object Model by the
XML and serialize layers.

The appropriate method for invoking the procedure is called with the Axiom Object
Model as the argument.

2.1.3 Event Notification

An Event is the asynchronous generation of data by a service (an event). Event
Notification is the sending of Event data by asynchronous message (publishing) from a
service to an event subscriber. An event generating service allows clients to send

6

subscription messages to it specifying the desired event and the destination for the event
notification (publishing).

Event notification in ACE_SOA is based on the WS-Eventing specification and
implemented by the Apache Savan module for Apache Axis2.

In Web based SOA, messages are either one way or in-out exchange. An in-out exchange
is one message into a service and a single response to the client that originated the
message. Clients must always initiate a message exchange. Clients may never receive a
one way message nor be the recipient of the first message of an in-out exchange. Because
of this Web Service restriction a client can not receive an Event Notification directly.

For a standalone client to receive an Event Notification it is necessary to embed a service
server within the client. The service server then starts up a service that can receive Event
Notifications. The client must register a callback class/method with the embedded service
to be called when the embedded service receives an Event Notification. When the client
sends a subscription request to an Event Notice generating service it includes in the
request the URI of the embedded service as the delivery endpoint of the Event
Notification.

When a ‘normal’ service wants to receive Event Notifications the above described
scenario is not require. A ‘normal’ service runs within a server (such as Axis2 within
Apache Tomcat) so all that is required of the service is to subscribe to the event with the
delivery URI is its own endpoint.

The Saven module intercepts subscription messages for a service so it is not necessary to
add anything to a service to handle subscriptions. When a service wishes to publish an
event it makes a Savan API call with the event data as an argument. The Savan core code
takes care of determining which subscribes are to be notified of the event and sends the
event message to those subscribers.

2.2 Service Directory Service

The ACE Service Directory Service (ASD) stores location URL and interface
information about currently running ACESOA services. Without the Service Directory,
clients would have to ‘know’ the location (host, port and service name) and the interface
(procedures and their arguments) of its desired services. This information would have to
be hard coded or stored in configuration files for the client. If the interface or location of
a service were to change the client code would have to be changed or the configuration
file of the client would have to be changed. Changing client code would be impractical.
Changing a configuration file would be cumbersome. With many different clients using
the same service any service change would prohibitively difficult to manage.

ACESOA uses the Web Service specification UDDI (Universal Description Discovery
and Integration) version 3 for a standard interface to service discovery. The
implementation used is the OpenUDDI Server which is based on the Novell UDDI

7

Server. With UDDI v3, UDDI servers may be replicated and UDDI has the ability to
register subscriptions for events.

The UDDI differs from the WFS (Web Features Service). The UDDI is intended to only
store programmatic interface information about a service. The WFS is intended to store
geographic features. The UDDI and WFS can be used together to locate and interface to a
service in a specified geographic area. The UDDI can also be used to find the URL to the
WFS.

Although there may be more than one Service Directory (UDDI) in an enterprise,
generally a client or service will only use one Service Directory. There is no mechanism
to ‘search’ for a Service Directory so the network location of an ASD for a client or
service must be stored in a configuration file.

2.2.1 Service Publication

When an ACE service is starting up it must register its location and interface with the
ASD. The Web Service specification for describing a service location URL and interface
is WSDL (Web Services Description Language). In ACESOA WSDL v2.0 is used.
Information from the WSDL for the service is stored in the UDDI server (ASD) as
described in the OASIS Technical Note “Using WSDL in a UDDI Registry”.

In addition to the ‘standard’ WSDL information for a service the ACESOA infrastructure
uses Java’s introspection to travel the service’s Java class hierarchy to find each inherited
class and each implemented interface. The name of each inherited class, interface and the
class’s name are stored in UDDI as added category values for the service’s interface
under the category key named ‘acesoa:service-intf’. These categories are used by clients
to search for services with a desired interface implementation. Example: All services that
provide a temperature measurement implement the “org.tssn.service.sensor.temperature”
interface. This interface name is stored in the ASD as a ‘acesoa:service-intf’ category for
each service that implements it when the service is published by the ACE infrastructure
as the service starts up. A client can ask the ASD for all services that have the
‘acesoa:service-intf’ category value of ‘org.tssn.service.sensor.temperature’.

The mechanism for a service to register with the ASD is automatic and does not have to
be considered by a service developer. ACESOA utilizes the Apache Axis2
implementation of SOAP with its AxisObserver interface. When Axis2 deploys a service
the ACESOA implementation of an AxisObserver, named AceServiceEventListener, is
invoked. The ‘serviceUpdate’ method of the AceServiceEventListner extracts the WSDL
from the service and information from the service’s configuration file and publishes the
service’s location URL and interface to the ASD(UDDI).

All of the information needed by the service to locate and communicate with the UDDI
(username, password) is stored in the service’s Axis2 service configuration ‘service.xml’
file. It is up to the administrator of the host running the service to ensure that the
‘service.xml’ file can not be read by unauthorized users of the host.

8

Since OpenUDDI (the implementation used for the ASD) utilizes Axis2 for its SOAP
implementation, the SOAP message authentication and authorization mechanism used by
ACE clients and services would be used with the UDDI. To avoid a chicken and egg
problem the certificates for authentication signing of headers and messages are stored in a
configuration file for the UDDI1..

2.2.1.1 ASD Service Alive Status2

Previous version of ACE had a mechanism in the ASD and in the service infrastructure
that provided a means of determining if a service that was registered with the ASD was
still alive. The service would send a keep-alive message to the ASD periodically to tell
the ASD that it was alive. The ASD had a timeout for each service. If the service did not
send its keep-alive message to the ASD within the timeout period the ASD would remove
the service information.

The UDDI has no ‘active service’ mechanism similar to past ACE ASDs. To have the
UDDI only have published information of active services a ‘Active Status’ service is
required. An Active Status service ‘pings’ each service listed in the ASD periodically to
determine if it is alive. If the service fails to respond to N successive pings the Active
Status service would un-publish the no longer responding service.

2.2.2 Service Discovery by Client

An ACESOA client uses the Service Directory service to discover the location URL and
interface of one or more desired services. The ACESOA infrastructure provides an API
for the client to call to perform the search. The method ‘ACEClient.findServices’ takes as
an argument a string that is the name of a service interface that a service must implement
in the UDDI search.The client must be coded to “know” how to interact with any service
that implements the specified service interface. The ‘findServices’ method queries the
UDDI (ASD) to search for all services that have published interfaces with categories that
include the key name ‘acesao:service-intf’ and the category value as the specified service
interface name. The UDDI returns the information it has on each service that matches the
search.

The information returned by the ‘findServices’ method for each service found that
matches the specified service interface includes:

- URL of the service

- Name of the service

- Namespace of the service (needed to create SOAP messages to the service).

1 The mechanism for Authorization is has yet to be determined

2 This service has not yet been implemented (November 7, 2007).

9

In a near future version of ACESOA, extended data stored in the UDDI for the service
shall also be returned.

2.3 Authentication Service

NOTE: This infrastructure item is currently being integrated (November 7, 2007).

- Authentication service exists in each enterprise to provide certificates to clients to
prove who the client user is.

- The authentication service verifies for a service the authentication certificates
received by a service from a client.

- A trust relationship has to be established between enterprises so that Enterprise A
will accept certificates issued by the authentication service of Enterprise B and
visa-versa.

2.4 Authorization Service

NOTE: This infrastructure item has not yet been integrated (November 7, 2007).

- Services use authorization service to verify that the user specified in the client’s
message authentication certificate has the authority to invoke the procedure
specified in the message

- The WS-Authorization specification has not been written yet.

- Items used to determine authorization include:

o Time of day

o Service name

o Host name

o GEO Location of service

o Name of user

o Procedure Argument values

2.5 Remote Services

NOTE: This infrastructure item has not yet been integrated (November 7, 2007).

- Remote services are not directly connected to the internet.

- Frequently have limited bandwidth and limited duration connections to the home
office. (examples: GSM, Satellite Phone).

10

- Because of limited connections it is not practical to have remote services use the
ASD, Authorization and Authentication services (too much communication
overhead and out of date information).

- Use a service proxy that is connected to the internet and the wireless comm Link
to the remote service.

o Proxy is responsible for handling ASD publishing, authentication and
authorization of clients.

o Proxy communicates with remote service using single/fixed authentication
and authorization. Remote service compares authentication and
authorization with local files instead of using ‘normal’ authentication and
authorization services.

o Comm link between proxy and remote service is only ‘up’ during message
exchange.

3 Client and Service Development3
- The Apache Axis2 package is written in Java and thus clients and services developed
for ACESOA are written in Java.

- Embedded services can use gSOAP and be written in C++.

- ACESOA has client and service Java code templates to ease development of new clients
and services.

4 Scenario Examples
This section contains examples of how the ACESOA infrastructure, clients and services
fit together.

4.1 Client/Service Messaging Example plus Remote Service
Example

In this example an ACESOA client discovers a desired service that has published itself
with the ASD. The service happens to be a Service Proxy for a remote service so the
mechanism for communicating with a remote service is also shown in the example. The
following interactions are described:

- Service publication

3 The content of this section will be written one the client/service authentication and authorization
mechanisms have been implemented.

11

- Client search for a service via Service Directory (UDDI).

- Client user authentication.

- Client user authorization

- Client/Server communication

- Client/Remote Service communication

- Remote Service authentication

- Remote Service authorization

In this example the communication between a remote service proxy and a remote service
is shown. This is different than ‘normal’ ACESOA communication since the assumption
is that the communication link with the remote service is over a slow and time limited
wireless link (example: GSM mobile phone).

Because of the limitations of the communication link the remote service keeps a local
authentication file of trusted Certificate Authorities (CAs) and a local authorization file of
credentials for a single user or only a very few users.

 All communication with the remote service by clients must pass through the proxy
service. The proxy service is the only entity that knows how to connect to the remote
service and is the only user authorized to use the remote service (via the remote services
authorization file).

In Figure 3 the initial state of the system is with the 3 ACESOA infrastructure services
“Service Directory”, “Authenticate” and “Authorize” and the remote service “Sensor”
running.

12

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Figure 3 Client/Service Messaging Initial State

In Figure 4 the Sensor Proxy service starts up and is automatically published to the ASD
by the ACESOA infrastructure. The service’s location URL and interface information
(WSDL information) is stored in the ASD UDDI database for later query by a client
looking for the service.

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

servicePuplication

Remote Ph#

Figure 4 Service Publication

13

When starting up the Sensor Proxy Service obtains the information it needs about its
remote service from its configuration file as show Figure 5. Included in the information is
the remote service GSM phone number.

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#
remoteInformation

Figure 5 Proxy Service Configuration Info

In order to communicate with the remote service the Sensor Proxy service must act as a
client and obtain the remote service client authentication token/certificate as shown in
Figure 6. To simply the remote service, the token/certification for only Sensor Proxy user
is stored in the Authentication file.

14

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Service Dir

getAuthentToken

Figure 6 Remote Service Proxy Authentication Token

A client that intends to us use the “Sensor Proxy” service starts up as shown in Figure 7.
The name of the client is “Sensor Filter”.

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter

Figure 7 Client Startup

15

The client “Sensor Filter” wants to find the “Sensor Proxy” service as shown in Figure 8.
The client knows the location of the ASD from an entry in its configuration file. An ACE
API call is used by the client to perform the search query. The client specifies that it
wants a service that implements the interface named “Sensor Proxy”. There could also be
more query information such as the senor type desired4.

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter

serviceQuery

Figure 8 Client Query for Service

The ASD returns to the client those services that match the service query. In this
example, shown in Figure 9, the service information returned to the client contains the
WSDL information such as location (URL) and interface for the “Sensor Proxy” service.

4 The additional query information needed shall be reevaluated as more experience is gained with the
sensor network.

16

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter

serviceInformation

Figure 9 Client Query Return

In order for the service to recognize the client user the client must obtain an
authentication token/certificate from a Certification Authority that the service trusts. In
this case, as shown in Figure 10, the client queries the Enterprise A Authenticate service
with a username and password for the client user. The message to the Authenticate
service is encrypted by the ACESOA/Axis2 Rampart infrastructure so that the username
and password are not easily seen on the network.

17

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter

getAuthentToken

Figure 10 Client gets Authentication Token

Figure 11 shows the Authenticate service returning an authentication token/certificate
after it has verified that the username and password provided by the client is valid.

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter

rtnAuthentToken

Figure 11 Client Authenticate Token Return

18

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter
getData

Figure 12 Client Request of Data from Service

The client, using the WSDL information obtained about the service from the ASD,
composes and sends a data request to the service. The ACESOA/Axis2 infrastructure
handles signing the message (authentication info) and encrypting the message before it is
sent to the service. See Figure 12.

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter
getData

chkAuthentToken

Figure 13 Service Authentication Check

19

The ACESOA/Axis2 infrastructure checks the authentication token/certificate (signature)
of the message to determine if it is authentic and from a trusted Certificate Authority.
First the service infrastructure looks to see if the information for this user is already in the
service authentication cache. If it is not then its sends a request to the ACESOA
Authenticate service to verify the users certificate/token. See Figure 13.

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter
getData

okAuthentToken

Figure 14 Verified Authentication

If the authentication token/certificate that the “Sensor Proxy” sent to the Authenticate
service was valid then the Authenticate service returns an “OK” to the “Sensor Proxy”
service. To save time in the future the ACESOA infrastructure saves the client user’s
authentication token/certificate in a local authentication cache so that the Authenticate
service will not have to be queried for the next message from the same user. The
authentication entry in the cache is given a timeout period. The entry in the cache is
removed if the timeout occurs.

Note shown in Figure 14 is that the ACESOA infrastructure for the “Sensor Proxy”
service subscribes to the Authenticate service so that the “Sensor Proxy” service is
notified if the trustworthiness of a Certificate Authority changes.

20

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter
getData

getAuthorizationCertificate

Figure 15 Service Authorization of User

In Figure 15 the ACESOA is querying the Authorize service to determine if the user that
has just been authenticated is authorized to invoke the procedure specified in the
message. To save time the infrastructure provides an authorization cache. The
authorization cache is first examined for a certificate/credential for the client user before
trying the Authorize service.

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter
getData

rtnAuthorizationCertificate

Figure 16 Authorization Certificate/Credential

21

An authorization certificate/credential is returned by the Authorize service to the
requesting service as shown in Figure 16. This certificate/credential is stored in a local
cache by the ACESOA infrastructure so that the Authorize service will not have to be
queried for the next message from the same client user. A timeout period is set for the
cache entry. At the end of the timeout period the entry is removed from the cache.

Not shown in the figure is the subscription of the “Sensor Proxy” service to the Authorize
service by the ACESOA infrastructure so that the service can be notified of any change in
the authorization certificate/credential of the client user.

In Figure 17 the remote service Sensor is the service that does the actual measurements
so the Sensor Proxy must connect to the remote service. The Sensor Proxy uses the phone
number it obtained from its configuration to call the remote sensor using its attached
GSM phone (not shown).

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter
getData

[GSM]

Figure 17 Remote Service Connection

The Sensor Proxy service sends the request message ‘getData’ to the remote Sensor
service. The ACESOA/Axis2 infrastructure includes the Sensor Proxy user’s
authentication token/certificate in the message and encrypts the message. This is shown
in Figure 18.

The remote service compares the certificate authority in the message’s authentication
certificate/token and compares it with the trusted CA in its local Authenticate file. If the
CA is trusted then the remote service checks to see if the Sensor Proxy user is allowed to
invoke the ‘getData’ procedure by evaluating the credentials in the local Authorize file. If
the user is authorized then the remote Sensor service obtains the measurement data.

22

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter
getData

[GSM]

getData

Figure 18 Remote Service Data Request

The remote service returns the data as shown in Figure 19. The ACESOA infrastructure
encrypts the message. The Sensor Proxy service then passes the data on to the client that
originally requested the data.

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter
getData

[GSM]

rtnData

Figure 19 Remote Service Data Return

23

The Sensor Proxy tears down the GSM connection once the message transaction has
completed as shown in Figure 20.

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter
getData

Figure 20 Remote Service Connection Termination

In Figure 21 the measurement data is finally returned to the client.

Authenticate

Sensor

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Proxy

Remote Ph#

Sensor
Filter

rtnData

Figure 21 Client Data Return

24

4.2 ACESOA Federation Example

In this example a client in Enterprise B wants to query a Sensor DB service in Enterprise
A. The majority of the interactions of clients and services are shown in this example. The
following interactions are described:

- Inter-Enterprise authentication trust.

- Inter-Enterprise service publication subscription

- Service publication

- Client search for a service via Service Directory (UDDI).

- Client user authentication.

- Client user authorization

- Client/Server communication

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Sensor
DB

Figure 22 Federation Initial State

In Figure 22 Enterprise A has its ACE Service Directory, Authenticate and Authorize
service running. It also has a remote sensor that only communicates with the Sensor
Proxy Service. The sensor data from the Sensor Proxy service is manipulated by the
Sensor Filter service to be more useable by sensor clients.

For this scenario the service Sensor DB start up is shown. The purpose of the service is to
store sensor data in a database and provide the sensor database data to clients inside and

25

outside Enterprise A. It will obtain its sensor data from the Sensor Filter service although
the “Sensor DB”-“Sensor Filter” interaction is not shown in the example.

At some point in the future the client in Enterprise B will want to obtain data from the
database in the Sensor DB service of Enterprise A.

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Trust

Figure 23 Federation Authentication Trust

In order for a client in Enterprise B to authenticate itself to Enterprise A there must be a
trust relationship between the Authenticate services of enterprise A and B (see Figure
23). This must be done by humans in the two enterprises by exchanging Certificate
Authority signatures over a secure communication mechanism (example: encrypted and
digitally signed email). In this example an administrator in Enterprise A takes the
Certificate Authority signature that it has received from an administrator in Enterprise B
and stores it in a database of trusted Certificate Authorities for the Authenticate service of
Enterprise A.

In Figure 24 the ASD of Enterprise A is sending a subscription request to the ASD of
Enterprise A. This subscription request tells the ASD of Enterprise A that the ASD of
Enterprise B should be notified of any services that publish with Enterprise A’s ASD.
This reduces internet traffic since clients query their own ASD to find services in other
enterprises.

The ASD of Enterprise A may also subscribe to the ASD of enterprise B but that is now
shown in this example.

An enterprise will want to keep some services private (intra-enterprise). In this case there
would be two ADSs in the enterprise. One ASD would be for services that allow inter-

26

enterprise usage. The other ASD would be for service with intra-enterprise usage only
(not shown).

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Trust

subscribe

Figure 24 Federation ASD subscription

In Figure 25 the Federation A service ‘Sensor DB’ has been started. The startup could
have been initiated by a host computer booting up or a human could have started it
manually.

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Sensor
DB

Trust

Figure 25 Federation Sensor DB Service Startup

27

In Figure 26 the service Sensor DB publishes is internet location information and
interface to the public (inter-enterprise) ASD so that clients outside Enterprise A are able
to find it.

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

servicePuplication

Sensor
DB

Trust

Figure 26 Federation Service Publication

In Figure 27 the ASD of Enterprise A has received the publication of the Sensor DB
service. For each ASD that has subscribed to it, Enterprise A’s ASD publishes the
information for the Sensor DB service. In this example it publishes the service
information to Enterprise B’s ASD since it had previously subscribed to Enterprise A’s
ASD.

Although not shown in the figures, service Sensor DB queries the ASD of Enterprise A
for the Sensor Filter service. The ASD returns the location and interface information for
the Sensor Filter service and the Sensor DB service connects as a client to the Sensor
Filter service to obtain sensor readings to store in the Sensor DB database.

28

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Sensor
DB

Trust

publicize

Figure 27 Federation Inter-Enterprise Publication

The client in Enterprise B wants to find and query the Sensor DB service in Enterprise A
as shown in Figure 28. The client sends a service query request to its Enterprise B ASD
looking for services that implement the Sensor DB interface.

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

serviceQuery

Sensor
DB

Trust

Figure 28 Federation Client Query for Service

29

In response to the clients query for service information, Enterprise B’s ASD returns the
location URL and interface information for the Sensor DB service that it knows about in
Enterprise A. This is illustrated in Figure 29.

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

serviceInformation

Sensor
DB

Trust

Figure 29 Federation Client Query Service Information

The client must authenticate itself with the Sensor DB service in Enterprise A. To do this
it must have a certificate or token that will be accepted by Enterprise A. Since the trust
relationship has been established between the Authenticate services of Enterprise A and
Enterprise B, the client can request its certificate/token from its Authenticate service as
shown in Figure 30. In the token request to the Authenticate service, the client provides a
username and encrypted password for identification of the client user.

30

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Sensor
DB

Trust

getAuthentToken

Figure 30 Federation Client Authenticate Request

The Authenticate service, once it verifies the validity of the username and password,
returns a certificate/token to the client to use to authenticate itself with services. This is
shown in Figure 31.

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Sensor
DB

Trust

rtnAuthentToken

Figure 31 Federation Client Authenticate Return

As shown in Figure 32, using the network location information returned by the ASD, the
client creates a message containing the location URL and name of the service and adds
the procedure request ‘getData’. The authenticate token is automatically added to the

31

message and the header and body of the message are encrypted by the ACESOA
infrastructure and Apache Rampart Axis2 module.

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Sensor
DB

Trust

getData

Figure 32 Federation Client Request of Service

The service Sensor DB has received the ‘getData’ request from the client as shown in
Figure 33. The ACESOA infrastructure first checks the local authentication cache in the
service to see if the client user is already known, if the user is not known then the
Enterprise A Authenticate service is queried to authenticate the client user by checking
the user’s token/certificate to see if it was issued by a trusted Certificate Authority.

32

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Sensor
DB

Trust

getData

chkAuthentToken

Figure 33 Federation Authenticate Client

For this scenario, as shown in Figure 34, the Authenticate service tells the Sensor DB
service that the user is really who he/she claims to be. The Sensor DB stores the user’s
authentication information in a cache to be used for future queries by the same user to
save time by skipping the authentication with the Authenticate service. The entry in the
cache is given a limited lifetime and then removed from the cache at the end of the
lifetime.

Not shown in the figure is that the Sensor DB has subscribed with the Authenticate
service to be notified if a Certificate Authority is no longer trusted. When this notification
happens all certificates/tokens cached by the service that were issued by the no longer
trusted CA are removed from the cache.

33

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Sensor
DB

Trust

getData

okAuthentToken

Figure 34 Federation Authenticate OK Result

Once the client user has been authenticated the service has to determine if the user is
allowed to invoke the requested operation ‘getData’. The Sensor DB sends a query to the
Authorize service to get the authorization credentials/certificate of the user if the service
does not already have the credential in a local credential cache. This request is shown in
Figure 35.

Note shown in the figure is that the Sensor DB has subscribed to the Authorize service to
be notified when credentials change.

The credentials in the Authorize service have to have been setup by an administrator
some time in the past.

34

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Sensor
DB

Trust

getData
getAuthorizationCertificate

Figure 35 Federation Get Authorization

Figure 36 shows the returned of a user’s authorization certificate/credential by the
Authorize service to the Sensor DB service. The Sensor DB service caches the
certificate/credential to use with future requests by the users until the cache entry times-
out or the Authorize service notifies the service of a change in authorization
certificate/credential.

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Sensor
DB

Trust

getData rtnAuthorizationCertificate

Figure 36 Federation Returned Authorization

35

The final act in a client from Enterprise B requesting data from a service in Enterprise A
is for the service to return the requested data as shown in Figure 37. The ACESOA/Axis2
infrastructure encrypts the return message and sends it to the client then it is decrypted
and given to the client code.

Authenticate

Client

Service Dir

Enterprise B

Authenticate

SensorSensor
Proxy

Authenticate
Authorize

Enterprise A

Remote

Log
Proxy Ph#

Authorize

Service Dir

Sensor
Filter

Sensor
DB

Trust

rtnData

Figure 37 Federation Service Data Return to Client

4.3 Event Notification Examples

The following examples illustrate the messaging that occurs to subscribe to, publish and
consume Event Notifications. Note that in these examples it is assumed that service
discovery, authentication and authorization are occurring but is not shown.

The WS-Event specification implementation used in the ACE environment is Savan.
Savan provides and API for clients to send subscription messages to an eventing service.
Savan intercepts subscription messages coming into an eventing service so not external
API is needed to receive subscriptions. Services use a Savan API to publish events. There
is no API to receive published event notification messages.

4.3.1 Service – Service Notification

In Figure 38 the messages involved with having one service subscribe to and be the
consumer of Event Notifications of another service are shown. This is the simplest Event
Notification scenario.

Message 1 is the Sensor Filter Service using the client Savan API to send an Event
Notification subscription to the service Sensor. Included in the subscription is a filter to
determine which events the consumer is interested in. Also included is the ReplyTo: field

36

which is the URI of the endpoint to send Event Notifications to for this subscription. In
this case the ReplyTo is the Sensor Filter service endpoint.

 The Savan WS-Eventing Axis2 module intercepts the subscription in the Sensor service
and stores the subscription information (hidden from the service Sensor business
implementation).

When an event occurs (message 2 originating from some other source) the service Sensor
business implementation places the event data into a data binding (class) and then calls
the Savan PublishEvent API with the event data. The Savan implementation then handles
checking each subscription filter to determine which consumers are to be sent Event
Notifications. The subscriptions that pass the filter check then have the event data sent
(published) to the ReplyTo: found in the subscriptions (message 3 in Figure 38).

Sensor Filter receives the event notification as a ‘normal’ operation message.

SensorSensor
Filter

2:Event
1:eventSubscription

3:eventNotification

SensorSensor
Filter

2:Event
1:eventSubscription

3:eventNotification

Figure 38 Service - Service Event Notification

4.3.2 Client - Service – Service Notification

This scenario (Figure 39) involves a client subscribing to events in a service on behalf of
another service. This is a common scenario where a user is using a client application to
tell a service where to send Event Notifications.

In this case the eventSubscription message ReplyTo field from the client contains the
URI of the Sensor Filter service. See section 4.3.1 for more details of the messages and
the implementation tasks of the remainder of the messaging.

SensorSensor
Filter

2:Event1:eventSubscription

3:eventNotification

Client

SensorSensor
Filter

2:Event1:eventSubscription

3:eventNotification

Client

Figure 39Client - Service - Client Notification

37

4.3.3 Client – Service Notification

In the scenario shown in Figure 40 the desire is to have Event Notifications delivered to a
client. Clients can not receive notifications directly (as discussed in section 2.1.3). This
restriction requires a service to be embedded in the client to receive the notifications. The
embedded service then passes the notification data to the client.

In order for a service to run it must be handled by a server. In this scenario the client
starts an embedded server (1: in the figure), specifying the name of a desired service to
start. The server then starts the specified embedded service.

The client registers a callback class (usually itself) with the embedded service to be used
when a notification is received by the embedded service (2: in the figure).

Messages 3:, 4: and 5: in the figure are the same as described in section 4.3.2 except that
the ReplyTo: field of the subscription message is the URI endpoint of the embedded
service. The client obtains the embedded service endpoint from from the server.

When the Embedded Service receives the notification it looks up the callback class
(previously registered by the client) associated with the type of notification data received.
It then calls the callback method of the callback class with the notification data as the
argument (6: in the figure). If the callback class was the client class then the client
directly receives the notification data.

Sensor

3:eventSubscription

5:eventNotification

Embed
Service

ServerClient

1:startServer

2:regCallback

6:callback

4:Event
Sensor

3:eventSubscription

5:eventNotification

Embed
Service

ServerClient

1:startServer

2:regCallback

6:callback

Sensor

3:eventSubscription

5:eventNotification

Embed
Service

Server
Embed
Service

ServerClient

1:startServer

2:regCallback

6:callback

4:Event

Figure 40 Client - Server Notification

A Taxonomy of Sensor Network Architectures

D.T. Fokum, V.S. Frost, P. Mani, G.J. Minden,
J.B. Evans, and S. Muralidharan

ITTC-FY2009-TR-41420-08

July 2008

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Technical Report

The University of Kansas

A Taxonomy of Sensor Network Architectures

D.T. Fokum a,∗,2, V.S. Frost a,∗,2, P. Mani a,2, G.J. Minden a,2,

J.B. Evans a, S. Muralidharan b,1,2

aUniversity of Kansas, Information and Telecommunication Technology Center,

Lawrence, Kansas 66049, USA

bCerner Corporation, Kansas City, Missouri USA

Abstract

Several architectures have been proposed for sensor networks. However, there is a

lack of an over-arching sensor network architecture. Here we present some of the

issues associated with existing sensor network architectures. Next we present several

sensor network architectures, including one suitable for a multi-owner environment,

classifying these architectures in terms of function and compositional elements. We

also highlight each architecture’s key attributes in order to identify their common-

alities. In making our arguments we refer to the concept of invariants, which are

components of a system that cannot be changed without losing backward compat-

ibility [1]. Our results show that while several sensor network architectures exist,

each with different attributes, these architectures share several invariants.

Key words:

Sensor Networks; Taxonomy; Sensor network architecture; Invariant

Preprint submitted to Elsevier 15 May 2008

1 Introduction

Sensor networks are an emerging application of advanced wireless networking

and computer technology. Sensor networks typically consist of a set of small

resource-constrained computers, called sensor nodes that collect data from

their environments and then transmit that data on to a base station, or other

central site. In general a wireless sensor node (WSN) would consist of a sensing

device, e.g., an electronic nose, a temperature sensor or a motion detector, a

small microprocessor, a radio and a limited energy source. It should be noted

that when a sensor node is connected to just one sensor, the sensor node is

sometimes called a sensor, which causes some confusion [2]. Base stations,

unlike wireless sensor nodes, will generally have radios, but will have available

more computing resources and a larger energy source. The base stations will

generally aggregate information from the nodes and then pass them on to

other computers for presentation [2].

Sensor networks have been identified as being key technology in monitoring

and detecting threats. These systems face critical technical challenges in pro-

viding a security and management architecture in scenarios representative of

a large class of applications. The design and architecture of sensor networks

∗ Corresponding author.
Email addresses: fokumdt@ittc.ku.edu (D.T. Fokum), frost@ittc.ku.edu

(V.S. Frost), mpradeep@ittc.ku.edu (P. Mani), gminden@ittc.ku.edu (G.J.

Minden), evans@ittc.ku.edu (J.B. Evans), satyam@ittc.ku.edu (S.

Muralidharan).
1 Present address: Cerner Corporation, Kansas City, MO USA
2 This work was supported in part by Oak Ridge National Laboratory under award

number 4000043403 as part of the ORNL-SensorNet Initiative.

2

has been studied in [3, 4] and [5], while deployment experiences are recorded

in [5–10]. However, a taxonomy for sensor network architectures still needs to

be defined. This paper makes some steps to address this deficiency; here we

classify sensor network architectures in terms of function and compositional

elements. In addition we show that these sensor network architectures all pos-

sess invariants [1], which are system elements that cannot be changed without

losing backward compatibility.

The rest of this paper is laid out as follows: In section 2 we define the at-

tributes used in our architecture comparison. Section 2 also lists some of the

issues with existing sensor networks. Section 3 presents several sensor net-

work architectures, and highlights their attributes and invariants. Included in

section 3 is a discussion of a new sensor network architecture focused on a

multi-owner environment. Section 4 summarizes the findings from Section 3.

We conclude the paper in section 5.

2 Related Work and Context for Discussion

An architecture decomposes a system into component parts. Additionally an

architecture may also define structures and functions (interfaces) to its com-

ponents. At its lowest level an architecture may define protocols and state

machines for communications [11].

A new method for designing and evaluating networking protocols and archi-

tectures is proposed in [1]. It states that all systems contain invariants, i.e.,

components that cannot be changed without losing backward compatibility;

for example IP addresses are an invariant in the current Internet. Explicit

3

invariants result from deliberate decisions to limit the flexibility of a system,

while implicit invariants are the unplanned result of deliberate design deci-

sions. A set of invariants may be evaluated using the following questions:

(1) Is the set complete?

(2) Is the set independent?

With individual invariants we also have to ask these questions:

(1) Does an invariant affect many components or just a few?

(2) Does an invariant affect many aspects of an architecture or just a few?

(3) Does an invariant affect hardware or just software?

(4) Does an invariant have security or privacy implications?

(5) Does an invariant have internal flexibility?

Evaluation on these characteristics should help us determine the quality of the

given architecture [1].

Some of the attributes that we will be using to characterize sensor networks

include whether or not the architecture is agent-based, delay-tolerant or fault-

tolerant. Whether or not the architecture supports data fusion, Internet con-

nectivity, location encoding, metadata communications, or has support for

security mechanisms. Finally, we will also evaluate architectures to see if they

are context-aware, based on standards, or have tiered architectures. We define

each of these attributes below to give some context to this discussion.

Agent-Based Incorporate an agent (piece of software) that travels between

the nodes of an architecture to perform some task autonomously, while

fulfilling the goals of the program that dispatched the agent [12].

Delay-Tolerant Used in instances where an end-to-end path may not be as-

4

sumed to exist between two nodes. Delay-tolerant networks can be concep-

tually partitioned into two parts, with a gateway serving as a link between

both parts. The gateway node is assumed to have significant storage ca-

pabilities so that data may be buffered when an end-to-end path does not

exist, and transmitted when a path becomes available [13].

Fault-tolerant Fault tolerant architectures are those which have the ability

to deal with system faults such that service failures do not result [14] and

[15].

Data Fusion Architectures that support data fusion have certain intermedi-

ate nodes within the architecture that process data from several sensors into

a more concise representation, which is then retransmitted to the sink [16].

Internet Connectivity Support This attribute is used to characterize ar-

chitectures that contain a node, or several nodes, that can be used to bridge

the connection between the global Internet and the sensor network. Justifi-

cation and examples for this architecture may be found in [6, 13,17].

Location Encoding Sensor networks supporting this attribute have the abil-

ity to store sensor readings with location information so that the two may

be correlated.

Metadata communications In sensor networks that support this attribute

data is read and stored on sensors, and the sensors forward messages (meta-

data) describing the data that was read to the sink. The metadata is then

used to query the sensor network [18].

Security Support Sensor networks supporting this attribute should provide

the following services: data confidentiality (data should not be leaked to

unauthorized users), data authentication (proof that a message was actually

sent by a given user), data integrity (proof that a given message is the same

as that which was sent), and data freshness (ensures that data is recent,

5

and could not be a replayed copy of a message) [19].

Context awareness Context-aware sensor networks are cognizant of their

environments. Applications running in context-aware sensor networks would

typically have sensors for collecting context information, a set of rules on

how to act given context, as well as a set of actuators to carry out actions

[20].

Standards Based This attribute is used to describe sensor networks that

are based on some standard, such as the Open Geospatial Consortium’s

(OGC) Sensor Web Enablement standards, or the IEEE 1451 standard. It is

important to identify this attribute, as we shall see in the following sections

that sensor networks have evolved largely free of any standardization.

Tiered architectures These architectures consist of different layers of sensor

nodes (as in [5, 9, 10,18,21,22]) or different layers of programs (as in [23]).

In this paper we will be classifying sensor networks in terms of the above

attributes, and determining which of those attributes are invariants. How-

ever, others (References [24] and [25]) have suggested alternate approaches for

evaluating sensor network architectures. In particular [24] states that sensor

network architectures be evaluated in terms of the design objectives for sen-

sor nodes. Reference [24] suggests the following architectural design attributes

for sensor nodes: small physical size, low power consumption, concurrency-

intensive operation (that is acquisition of sensor data, local processing of data

followed by simultaneous transmission of data from several nodes to a base

station), diversity in design and usage, robust operation, security and pri-

vacy, compatibility, and flexibility. Tilak et al. [25] suggest another approach

for classifying sensor networks. They state that sensor networks may also

be classified by communication models, data delivery models, and network

6

dynamics models. In making their arguments, Tilak et al. suggest that en-

ergy efficiency/system lifetime, latency, accuracy, fault-tolerance and scala-

bility metrics be used to evaluate sensor network protocols. Next they state

that sensor networks may be viewed in terms of infrastructure, network pro-

tocol and application/observer interests. Communication in a sensor network

may be classified as either application or infrastructure. Application commu-

nications arise from informing the observer about sensed data. Application

communications may be further characterized as either cooperative or non-

cooperative. With cooperative communications, sensors cooperate with other

sensors to fulfill the observer’s need; non-cooperative sensors do not cooperate.

Infrastructure communications on the other hand relate to the communica-

tions needed to configure, maintain and optimize the network. Sensor networks

can be classified by application requirements for data delivery as continuous,

event-driven, observer-initiated or hybrid. Sensor networks can also be clas-

sified in terms of network dynamics models. They may be classified either as

static sensor networks or dynamic sensor networks. In this paper we do not

classify sensor networks by any of these criteria. Instead we classify sensor

networks by the attributes defined above, while indicating which of these at-

tributes are invariants for the given architecture. In the next subsection we

begin our examination by identifying some of the problems with current sensor

network architectures.

2.1 Issues with Existing Architectures

The reader may conclude that only a limited number of sensor network ar-

chitectures exist. In fact [26] distinguishes just two possible architectures for

7

wireless sensor and actuator networks — namely semi-automated and auto-

mated architectures. In semi-automated architectures a central base station

coordinates the activities of the sensor nodes and the actuator nodes. In au-

tomated architectures a base station is not required, instead the actuators

are programmed to operate and respond to events autonomously. Rather than

limit ourselves only to two types of sensor network architectures, we contend

that the number of sensor network architectures is much richer. In this paper

we present a number of these architectures classified by function. Prior to pre-

senting these architectures we argue that there is no overall sensor network

architecture.

References [11] and [27] observe that sensor networking research is fragmented.

In particular [11] argues that research into sensor networks is impeded by “the

lack of an overall sensor network architecture” and not by any specific technical

challenge. Moreover, it argues that while complex systems have been built

by ignoring boundaries between subsystems, a sensor network architecture

should be developed to allow others to extend previous work. This sensor

network architecture will be akin to the architecture that has facilitated the

growth of the Internet. The claim is that sensor networks will thrive if there

is “a narrow waist in the architecture,” called the Sensor-net Protocol (SP) to

allow protocols to evolve. SP will be a single hop protocol, but is analogous to

IP. Below SP will be different link, MAC and physical layers, whereas above

SP will be different sensor-application protocols. It should be noted that this

sensor network architecture is slightly different from the OSI and Internet

architectures since sensor networks mainly collect, aggregate and disseminate

data, while the Internet is mainly concerned with end-to-end communication.

One final requirement of the proposed sensor network architecture is that it

8

must allow cross-layer interactions between layers for more efficient sensor

network operation [11].

Reference [27] also observes that sensor networking research is fragmented;

however, it does not go as far as reference [11]. Instead it argues that better

integration in sensor networks research may be achieved by using the following:

a “hardware abstraction for new sensor node prototypes,” “abstract model of

power consumption,” and a “protocol architecture scheme” for wireless sensor

networks. The benefits of a protocol architecture include the following: it may

facilitate the passing of packets between different layers of a protocol stack,

and it may also help organize how information should be exchanged between

different layers of the protocol stack [27].

From the discussion above it is evident that there is a lack of consensus on an

over-arching sensor network architecture. The examples that we will present

in section 3 will go towards highlighting the lack of an over-arching architec-

ture. However, we argue that while there is a lack of an architecture, some

similarities exist in sensor network architectures, in terms of their invariants

and their functions.

3 Architecture Taxonomy

In this section we present a number of sensor network architectures and classify

those architectures in terms of the attributes presented in Section 2. For each

architecture we will also classify each of its attributes in terms of invariants,

as introduced in Section 2.

9

3.1 Architecture Classification

In section 2 we discussed some issues with sensor networks and sensor net-

work research. In this subsection we classify some successful sensor network

architectures by decomposing each architecture into components.

Sensor networks have been successfully deployed to study birds on Grand Duck

Island, Maine [5,9,10]. This sensor network used a multi-level architecture with

sensor nodes performing computation and networking at its lowest level. The

sensor nodes are grouped into a sensor patch, which is linked to a gateway

node at the next level. The gateway transmits packets from the sensor patch

to one or more base stations. These base stations provide database services as

well as Internet connectivity. Finally, the last level consists of remote servers

to support analysis, visualization and web content [5]. The reader may consult

Fig. 2 in [5], Fig. 1 in [9], or Figure 1 in [10] for a system architecture diagram.

Reference [10] goes beyond the simple architecture presented in [5] to present

an architecture that organizes all the sensor nodes within a sensor patch into

a routing tree. In addition computation located within the sensor network so

as to reduce the energy consumption of the individual nodes as well as reduce

the volume of data being transmitted. Here the sensor network also has an in-

dependent verification network whose sole purpose is to generate independent

data that can be used to corroborate readings from the sensor network. The

verification network will consist of fewer, but more established sensor nodes.

In addition to presenting the basic architecture discussed above, [10] also gives

examples of sensor networks whose architectures are extensions of the basic ar-

chitecture presented in [5, 9, 10]. One of these extensions uses Tiny Diffusion,

10

a routing protocol to establish communications between sources and sinks.

With this architecture the network is aware of data naming and can apply fil-

ters. Another extension of the architecture uses the Tiny Application Sensor

Kit (TASK) with a TinyDB database. With this architecture the sensor nodes

have an SQL-variant query interpreter running on each node, and sensor nodes

receive queries in an epidemic fashion [10]. The key attribute for this family

of architectures is the tiered architecture. The Tiny Diffusion architecture has

the additional attribute of supporting data diffusion, but we deal with this

attribute at the end of the next paragraph. The tiered architecture may be

seen as an explicit invariant since it results from a decision to limit the amount

of processing that is done on the end nodes of this sensor network due to their

limited computing power.

A slightly more complex architecture uses Directed Diffusion, which estab-

lishes n-way communications between one or more data sources and sinks [28].

The communications architecture is based on directed diffusion, matching rules

and filters. Directed diffusion disseminates information in the distributed sys-

tem, while matching rules identify when data has reached its destination.

Finally filters process the data while it is en-route. This architecture can be

seen as a method for performing in-network aggregation of data in a sensor

network, thereby leading to a reduction of traffic in the sensor network [28].

The key attribute for this architecture is the support for data fusion, which

is an implicit invariant since it results from the deliberate decision made to

support communications between n sources and one sink. The task-awareness

of sensor nodes is another attribute of this architecture, where task-awareness

means sensor nodes store and interpret the data interests of other nodes.

Reference [29] can be viewed as an extension of Directed Diffusion [28]. It as-

11

sumes that nodes within a sensor network are named, and each node is within

radio range of several nodes. Communication from the sensor network to the

outside world is assumed to take place through some key nodes. Observations

refer to readings from sensors, while certain collections of observations consti-

tute an event, e.g., elephant-sighting event. Upon detection of an event data

is sent to external storage for further processing. In addition data is stored

by name within the sensor network, i.e., data-centric storage. Data-centric

storage is preferable if the sensor network is large, i.e., contains many nodes,

or if the sensor network detects many events, but not all the event types

are queried. The data centric storage is supported by a geographic hash ta-

ble (GHT), which provides a (key, value)-based memory. GHT uses Greedy

Perimeter Stateless Routing (GPSR) for routing [29]. The key attribute for

this scheme is the location encoding scheme. The implementation of the lo-

cation encoding scheme, the GHT, constitutes an explicit invariant since the

memory is deliberately limited to the (key, value) pair. Another invariant for

this architecture is connectivity with the outside world through a limited set

of nodes, which may be seen as an explicit invariant since the network is being

deliberately limited.

Wireless sensor networks are typically composed of resource-limited nodes. As

a result we need efficient algorithms to communicate in this environment. One

suggestion is to use a data handling architecture that will support efficient

spatio-temporal querying of data [30]. The design goals for this architecture

include: multi-resolution data storage, distributed communication and com-

putation load, and adaptability to correlations in sensor data. Temporal data

reduction is only done at a single node, and has no communication overhead;

once this data reduction is performed, only potentially interesting events are

12

reported to the rest of the sensor network. The DIMENSIONS architecture

assumes a clustered sensor network with location encoding; as a result some

of its attributes include a tiered architecture with location encoding support.

The invariant for this architecture would be the implementation of the location

encoding scheme.

A two-tier storage architecture (TSAR) for sensor networks, is yet another

proposed sensor network architecture. With TSAR sensors transmit metadata

rather than send actual sensor readings, since the metadata which may be a lot

smaller than the actual data itself. Design of TSAR is based on the following

principles: 1) Store locally, access globally; 2) Distinguish data from metadata;

and 3) provide data-centric query support. At each proxy tier TSAR uses an

Interval Skip Graph for storing data (The interval skip graph is an ordered,

distributed structure that allows one to locate all intervals containing a par-

ticular value or range of values.) At the sensor level TSAR implements a local

archival store and a mechanism to allow sensors to adapt to changing data

and query characteristics. The TSAR scheme was field-tested, and experimen-

tal results show that TSAR displays good performance in a multi-tier sensor

network [18]. The key attributes of this scheme are the metadata communica-

tions and the tiered architecture. The invariant for this architecture is limited

to the Interval Skip Graph, which can be seen as an implicit invariant since

the coarseness of the data intervals influences the resolution of query results.

Related to this invariant is the adaptive summarization scheme, which allows

sensor nodes to adjust the frequency of sending data updates with the proba-

bility of not being able to fulfill a query. Please consult Figure 1 in [18] for a

logical view of the TSAR architecture.

Middleware can also be incorporated into a sensor network architecture. Römer

13

et al. [31] state that sensor network middleware should be geared to support

the development, maintenance, deployment, and execution of sensing appli-

cations. In addition, they [31] state that sensor network middleware should

possess the following attributes:

• It must provide ways of putting application knowledge into the sensor net-

work,

• It should integrate communication and application-specific data processing

closely,

• Provide ways to support automatic configuration and error handling.

• Support for time and location management.

Shen et al. [32] introduce middleware called Sensor Information and Network-

ing Architecture (SINA). SINA allows sensor applications to issue queries and

commands, collect query results and monitor the sensor network. The SINA

architecture consists of hierarchical clustering — allows sensor nodes to aggre-

gate into clusters, — attribute-based naming — which allows users to query

the sensor network by some attribute, e.g., what is the average temperature

in a given quadrant, — and location awareness, which requires sensor nodes

to know their physical location, for example by using GPS. SINA [32] also

provides the following attributes:

Information abstraction , that is the sensor network is conceptually seen

as a collection of attributes of each sensor node.

Sensor Query and Tasking Language (SQTL) , which serves as an in-

terface between sensor applications and the SINA middleware.

Sensor Execution Environment (SEE) , which runs on each sensor node

and dispatches all incoming messages, examines all incoming SQTL mes-

14

sages, and performs the operations specified by each message. SEE also

handles outgoing messages.

Built-in Declarative Query Language to give users the ability to submit

a query directly instead of submitting an SQTL script.

Dyo [22] suggests middleware that can be used in sensor networks to support

data retrieval applications with mobile data collectors. This paper observes

that not very much research has been done on data collection using mobile

sinks. Consequently the paper develops a scalable, energy-efficient, distributed

spatial index that adapts to the sensor network query and data update rates.

The proposed index uses a static clustering algorithm and proactive and reac-

tive modes for index updates [22]. The key attributes of this architecture are

the tiered network architecture and the distributed spatial index for querying

of the network. The spatial index can be seen as an explicit invariant since

it now requires all queries submitted to the sensor network to now contain

information about the area of interest for the query.

Another application for sensor networks is to fuse data from several sources

using a fusion application, and present the fused data to a user. A fusion

application is continuous in nature, requires efficient transport of data from

sources to sinks, and it also requires efficient in-network processing of applica-

tion fusion functions. Ramachandran et al. [33] present a fusion architecture

for sensor networks called DFuse in [33]. Informally, the DFuse architecture

consists of the following: an application task graph — showing the data flows

and relationships amongst the fusion functions, — code for the fusion func-

tions, and a cost function that formalizes some metric for the sensor network.

Note that the fusion functions may be placed anywhere in the sensor network,

subject to the cost function being satisfied. In addition every node in the WSN

15

has a network layer that allows it to reach any node within the WSN [33]. More

formally, the two main parts of the DFuse architecture are the Fusion Module

and the Placement Module. The Fusion module performs the following tasks:

• Structure management (handles the channels used for fusion functions -

fusion channels. This management includes migrating the channels to other

nodes)

• Correlation control (handles specification and collection of data supplied to

the fusion code)

• Computation management (handles specification, application and migration

of fusion functions)

• Memory management (handles caching, prefetching and buffer manage-

ment)

• Failure and latency handling (deals with sensor failure and communication

latency. It also allows fusion functions to operate on partial data sets.)

• Status and feedback handling (handles interaction between data sources and

fusion functions.)

The main responsibility of the Placement module is to create an overlay of

the application task graph onto the physical network that best satisfies an

application-defined cost function [33]. The key attribute of this architecture is

support for data fusion, including the code that performs the fusion functions.

Thus fusion support may be seen as an explicit invariant since it deliberately

limits the user from getting fine-grained data from a sensor network. Related

to this invariant, is the fusion channel, which is itself an explicit invariant. The

fusion channel is an invariant since it provides interconnection between differ-

ent parts of the system. For a diagram summarizing the DFuse architecture,

please consult Fig. 2 in [33].

16

The last major class of sensor network architectures is based on databases.

Yao and Gehrke [34] advocate a database approach to sensor networks, since

declarative queries are suited for sensor networks. They propose using a query

proxy on each sensor node that lies between the network layer and the ap-

plication layer on that sensor node. Another reason for advocating the use of

databases is that communication is more expensive that computation in sensor

networks. Databases allow computation to be moved from nodes outside of the

network to nodes within the network. With this approach, a query optimizer

located on the sensor network’s gateway node. The query optimizer generates

a distributed query processing plan for queries generated from outside of the

network. The query plan is sent to all nodes, and the gateway node responds

to the query with the records coming back to the gateway node [34]. The key

attribute for this architecture is the tiered network architecture. In particular

the query proxy layer constitutes an invariant for this architecture. The query

proxy layer may be viewed as an implicit invariant, since all queries are now

required to be submitted to the query optimizer node in a network.

3.2 Standards-Based Sensor Networks

In the previous subsection we saw that many previous sensor networks have

been marked as one-off designs generally devoid of any standardization. Recall

from section 2.1 that there is no protocol akin to IP for sensor networks.

Recently we have seen an emerging class of sensor networks that include open

standards in their development, for example architectures based on the Open

Geospatial Consortium (OGC) Sensor Web Enablement standard [35,36].

Reference [37] makes the case for the use of standards in sensor networks, par-

17

ticularly those used for homeland security purposes. This paper states that

open, standardized sensor interfaces and sensor data formats are needed to ef-

fectively integrate, access, fuse and use sensor-derived data for homeland secu-

rity applications. The paper goes on to argue that without open, standardized

interfaces and data encoding schemes it will be impossible to integrate a wide

variety of sensors and networks. Open sensor interface standards such as the

IEEE 1451 [38] and Universal Plug and Play (UPnP) [39] standards provide

ways to interface transducers to networks. Meanwhile, Sensor Web Enable-

ment (SWE) standards offer methods for sensor system discovery and control

based on the Internet and the OGC’s geo-processing framework. In summary,

reference [37] states that the following standards are necessary for the devel-

opment of a homeland security sensor network: transducer interface standards

based on IEEE 1451 and web-based application interfaces. The key attributes

of the sensor network proposed for homeland security include hardware-based

fault tolerance [40], Internet connectivity support, location encoding, secu-

rity support, and a standards-based architecture. Of these attributes location

encoding and the standards-based architecture may be considered implicit in-

variants, since the location encoding scheme requires that data be stored with

locations encoded in a specific format, while the standards-based architecture

deliberately requires all sensor interfaces to comply with a given standard.

The OGC Sensor Web Enablement standard addresses the problem of having

isolated, custom-designed sensor networks with incompatible sensor standards.

Reference [36] introduces the sensor web enablement (SWE) specifications.

These specifications include:

• Standard constructs for accessing and exchanging observations and mea-

surements.

18

• Sensor Model Language (SensorML) Implementation, which provides an

information model that enables the discovery and tasking of sensors.

• Transducer Markup Language (TML) Implementation, which provides a

method for describing information about transducers.

• Sensor Observation Service (SOS) Implementation, which allows standard

access to observations from sensors and sensor systems.

• Sensor Planning Service (SPS) Implementation, which specifies interfaces

for a service to participate in collection feasibility plans.

• OpenGIS Sensor Alert Service, which allows users to subscribe to specific

alerts, and determines the nature of offered alerts, and the protocols used

for those alerts.

• OpenGIS Web Notification Service (WNS) Interface, which allows a client

to have asynchronous communication with other services.

• A universal method for connecting transducer interfaces and application

interfaces, such as the IEEE 1451 for smart transducers. The IEEE 1451

standard is an object-based protocol that allows sensors to be made acces-

sible to clients over a network. The IEEE 1451 standard allows sensors to

be accessible to clients across a network using Network Capable Application

Processor (NCAP), which is the point of interface between the application

and transducer interfaces.

An example of an architecture that uses the SWE standards is SensorNet [35].

This architecture uses standards from the OGC to learn the location of every

sensor and measurement and help with interoperability. Interoperability is

enhanced in this architecture by making use of web services for application

interfaces. In particular this architecture uses the ORNL SensorNet node to

host middleware that interfaces between the sensors and remote users and

19

applications. The ORNL SensorNet node is directly connected to the Internet,

and it also hosts a web server to allow for intelligent processing, as well as

any local processing of data. Another way in which this architecture tries to

facilitate interoperability is by representing sensor data using “features,” which

is an XML-like representation of data and sensor entities [35]. The key features

of a sensor network based on the OGC Sensor Web Enablement standard are

summarized in Figure 2 in [35].

The key attributes of the SensorNet architecture include fault-tolerance (each

SensorNet node is equipped with two communication links for redundancy

purposes), Internet connectivity support, location encoding, security support,

a standards-based architecture that is also tiered. Of these attributes the

location-encoding scheme is an implicit invariant, since locations must be en-

coded with a certain format. Recall that this architecture also has Internet

connectivity support; therefore, extending the argument from section 2 we

can also conclude that IP is an invariant for this architecture.

3.3 Internet-Connected Sensor Networks

While some sensor networks have possessed the ability to connect to the global

Internet, in general, Internet connectivity support has not been a major con-

sideration for sensor networks. One of the earliest references on sensor net-

works [41] argues for the use of multi-hop communications in sensor networks.

These authors go on to state that work needs to be done to investigate how

to link sensor networks to the global Internet. This statement is motivated by

the fact that many current Internet protocols do not take the need to con-

serve energy very seriously. In addition this paper states that work needs to be

20

done on evaluating where processing and storage should take place in a sensor

network [41]. For a logical view of this architecture, please consult Figure 2

in [41]. The attributes for this architecture include the tiered network archi-

tecture as well as support for conventional network services. The invariant in

this architecture appears in the gateway that serves as the interface between

the sensor network and the conventional network service. In general removal

of any functionality from the gateway node will lead to a loss in backward

compatibility of that node.

One example of a sensor network that has Internet connectivity is IrisNet

(Internet-scale Resource-Intensive Sensor Network services), which aims to

provide software components for a world-wide sensor network [6,7]. These au-

thors state that their sensor network is broader than the traditional definition

of sensor networks, and includes Internet-connected, dispersed PC-class nodes.

Such a sensor network must provide the following services:

• Planet-wide local data collection and storage.

• Real-time adaptation of collection and processing

• Data as a single queriable unit

• Support for queries posed anywhere on the Internet

• Data integrity and privacy

• Robustness

• Ease of service authorship

Under IrisNet service authors will have to figure out how to collect data, as

well as how to query the collected data. IrisNet uses a two-tier architecture

consisting of sensing agents and organizing agents. Sensing agents provide a

generic data acquisition interface for sensors, while organizing agents collect

21

and organize data to respond to a query. Each sensor agent controls one or

more senselets. Each senselet allows one to upload and control the execution

of code in a sensor. As was the case with the OGC’s Sensor Web Enablement

standards, sensor-derived data is represented in XML in IrisNet. It should

be noted that IrisNet has been deployed to monitor the Oregon coastline [6].

Please consult Figure 1 in [6] for an IrisNet architecture diagram, showing the

organizing agents and the sensing agents.

The attributes for the IrisNet architecture include the agent-based architec-

ture, Internet connectivity support, and the tiered network architecture. More-

over the invariants for this architecture include the agents, which may be seen

as explicit invariants, and IP addresses, if we extend the example on invari-

ants from section 2 to this architecture. The requirement to represent sensor-

derived data in XML may also be seen as an explicit invariant.

Another architecture that allows access to sensor networks from Internet-type

networks is the Janus architecture [17]. A prototype of the Janus architecture

has been used to connect a sensor network with hosts on a network LAN.

Janus uses an engine (This is a program running on the sink that provides an

interface to sensor network functionality. The agent uses the engine to discover

resources and functionality provided by the sensor network) running on the

sensor network’s sink as well as an agent that communicates with the engine.

The engine and the agent communicate using eXtensible Resolution Protocol

(XRP). The agent and engine exchange XRP messages to:

• Discover which sensor network resources are available;

• Send queries from the agent to the sink node on sensor network state; and

• Send information from the sink to the agent concerning the sensor network

22

state.

Janus also supports multiple access applications for sensor networks. All XRP

messages are transported between the agent and the sink node using UDP.

The use of XRP allows for expressive messages – that is XRP queries may be

interpreted – to be exchanged between agent and sink. Use of XRP also allows

for modularity in network design [17]. Figure 2 in [17] shows the extended

architecture for sensor networks that use Janus for Internet access.

The attributes for Janus include the agent-based architecture as well as the

support for Internet connectivity. The invariants for this architecture com-

prises of the agent and the engine. These components are considered invari-

ants since they enable communications between the sensor network and the

Internet. Adding functionality to one of these components without adding to

the other will result in the loss of backward compatibility.

By no means do we claim that the two examples of Internet-connected sensor

networks constitute an exhaustive list. More recently a group of researchers

has come formed an Internet Engineering Task Force (IETF) working group to

study routing over low-power and lossy networks, such as sensor networks [42].

3.4 Context-Aware Sensor Networks

A novel class of sensor networks is the group of context-aware sensor net-

works. Incorporating context into a network can have implications for energy

efficiency. For example suppose sensors are equipped with light sensors, and

it is known that temperature changes less frequently after dark. Sensors in

this sensor network can then wake up and make temperature readings less

23

frequently once night falls.

An argument for building a context aware sensor network is presented in [43].

Reference [43] argues that if each sensor node is context-aware, then the en-

tire network will be context-aware. In making this argument, these authors

assume that a context-aware sensor network (CASN) is node-centric. They

state that the goal of designing a context-aware sensor network is to prolong

the life of the network. The CASN is composed of middleware running on

sensor nodes. The middleware is composed of the following components: con-

text representation (CRP), context interpretation (CI), context aware services

(CAS), and a sensor society kernel (SSK). The CRP provides context avail-

ability, the CI interprets the context, the CAS manages services, and the SSK

allows each sensor node to act as a member of a larger society — the sensor

network. Finally, these authors suggest using a role-based local storage scheme

(RBLS) to store contexts on a sensor node [43]. Figure 2 in [43] summarizes

the architecture for a context-aware sensor network.

The key attribute for this architecture is context awareness. The middleware

on sensor nodes also hints to the fact that this architecture is tiered or layered.

The invariant in this architecture is the middleware. If any of its components

is changed, we can lose backward compatibility. For example if the context in-

terpretation module is changed it may return states that the other middleware

components do not know how to handle.

24

3.5 Agent-Based Sensor Networks

Agents can also be used in designing sensor networks, as we have already seen

from [6]. The use of agents in a sensor network architecture allows for flexibility

in that architecture since the sensor network can be quickly reprogrammed to

perform a different task.

Reference [12] makes the case for the use of mobile agents in sensor networks.

This paper observes that sensor networks are moving towards a single deploy-

ment, multiple applications paradigm; however, sensor nodes may not neces-

sarily have the capability to store all the programs needed for the different

applications. Mobile agents can be used as an option for dynamically deploying

applications to sensor networks. Some examples of use might include:

• Deploying mobile agents to a visual sensor network to collect reduced data

from some region of the WSN and query the data set for some information.

• Using mobile agents for target tracking and object recognition in a sensor

network.

According to [12], two types of sensor networks — hierarchical or flat — may

be distinguished. In hierarchical (clustered) sensor networks mobile agents

may be either deployed by a cluster head to visit all nodes within the cluster,

known as the intra-cluster method, or they may be deployed by the sink node

of a sensor network to visit all the cluster heads, known as the inter-cluster

method. In flat sensor networks the sink node can dispatch a “mother agent,”

which visits a target region of the sensor networks. Once in the sensor network

the mother agent will dispatch child agents to visit the nodes in the target

region and collect information that will either be carried directly to the sink

25

or to the mother agent.

It should be noted that mobile agents are frequently implemented in middle-

ware. This middleware may be either coarse-grained or fine-grained, where

coarse-grained agents typically have smaller code sizes with lower re-tasking

flexibility while fine-grained agents have larger code sizes with higher re-

tasking capability. In addition, having multiple agents cooperate can actually

lead to an improvement in performance of the entire WSN [12]. Figure 4 in [12]

summarizes the architecture of one type of mobile agent-based sensor network

architecture. Note that the battleship in the figure represents the mother agent

deployed by the sink node, and the arrows represent data flow to and from

the mother agent.

The agent-based architecture and support for data fusion, particularly in sen-

sor networks with mobile agents, form the set of attributes for this family

of sensor network architectures. The invariants for this architecture are the

agents.

3.6 Service-Oriented Sensor Networks

An emerging trend in sensor network architectures is the deployment of service-

oriented sensor network architectures. Architectures such as these permit the

incorporation of a diverse set of platforms and allow sensor nodes to discover

the capabilities of other nodes by querying a service repository.

Rezgui and Eltoweissy [44] introduce a service-oriented architecture for sensor-

actuator networks, called SOSANET. In proposing their architecture Rezgui

and Eltoweissy [44] argue that existing sensor network architectures are application-

26

specific. Service-oriented network architectures can address this issue by allow-

ing future sensor network designers to pick components from different sensor

networks and integrate these into a new sensor network application. Sensor-

actuator networks (SANETs) are different from ordinary sensor networks in

that they include actuators that are able to change the environment of a sensor

network. One example of a SANET can include a sensor network that has heat

sensors and fire sprinklers. If the heat sensors detect combustion, the sensors

will notify the sink, and the sprinklers can be triggered to douse the flames.

SANETs may be classified as either generic or customizable. Service-oriented

sensor-actuator networks are a type of customizable SANET.

Each node in a SOSANET exposes its capabilities as services. Each node in the

SOSANET has a service directory showing the capabilities provided by reach-

able nodes. The service directories are used to perform service-driven routing

in the SOSANET. Users get information from the SOSANET by submitting

queries to either the base station or one of the nodes in the SOSANET. The

queries may be either classified as task queries or event queries. Queries spec-

ify an event, condition, action, spatial scope, and temporal scope (ECAST)

when invoked [44].

The architecture for the SOSANET consists of a service-oriented query (SOQ)

layer, which receives queries from the service-driven routing layer, interprets

them, invokes the services necessary for the query, collects the service results,

packages the services’ results into query results, and submits the query re-

sults to the query issuer. This layer consists of a service invocation scheduling

module and an event detection module. When a query is received at a node

it is submitted to the event detection module, which checks for the existence

of a given condition. When the condition is detected, the query is submitted

27

to the service invocation scheduling module. Above the service-oriented query

layer is the service layer, which contains the implementation of all services

in the SOSANET. The architecture also includes a routing layer that delivers

queries to the SOQ layer, sends out query results from the SOQ layer, and for-

wards received queries and query results. The routing layer is composed of the

service-driven routing protocol (SDRP) and the trust-aware routing protocol

(TARP). The former routes queries from the base station to sensor network

nodes, while the latter forwards results from sensor network nodes back to the

base station [44].

It should be noted that the proposed architecture has been implemented in

TinySOA. Simulation results show that SDRP is an energy-efficient routing

protocol. TinySOA is also shown to be more energy efficient than TinyDB. In

addition TinySOA queries have a shorter response time than TinyDB queries.

Finally SANETs based on TinySOA can be more deployed more rapidly than

sensor networks based on TinyDB, since queries are automatically discov-

ered under TinySOA. Figure 1 in [44] summarizes the key components of a

SOSANET node.

The attributes for SOSANET include the service-oriented architecture as well

as the layered, or tiered, architecture. The invariant for this architecture is the

service-oriented query layer, which performs a lot of the processing necessary

to receive query results. Improper changes to this layer can result, for example,

in the query issuer not being able to interpret the query results.

Another service-oriented sensor network architecture is found in [45]. This

three-tiered service-oriented sensor network architecture has been used to in-

tegrate with RFID and monitor hazardous chemicals for a petroleum company.

28

The tiered architecture allows sensor nodes with a range of capabilities to be

integrated into a large-scale sensor network. The layers of the architecture

consist of the backend, gateway, and front-end. The back-end (application)

layer consists of the following:

• Service repository, which contains a database of all services available in the

sensor network,

• System state manager, which keeps track of the states of the sensor nodes

• Service mapper, which maps the services to different nodes

• Service invocation manager, which contacts all the nodes running a given

service and returns the results of that service invocation to the application,

and the

• Notification manager, which uses a web service to distribute event messages.

The gateway (platform abstraction) layer facilitates interoperability between

sensor platforms. In particular this architecture uses Universal Plug and Play

(UPnP) [39] as the interface between the application layer and the sensor net-

work. The gateway layer performs the following functions: message transforma-

tion — translating between packet-level proprietary sensor network messages

and UPnP arguments, — and assisting in the deployment of services to the

sensor network. One key feature of the gateway layer is the dynamic instantia-

tion of service proxies. The service proxies — which are virtual representations

of the service interfaces — are instantiated whenever a service is provided by

the sensor network and destroyed whenever the service becomes unavailable.

The front-end (device) layer incorporates the multitude of sensor networking

and RFID devices. Some of the functions provided by this layer include:

• Reliable dissemination of messages to nodes — this allows new service exe-

29

cutables to be transferred reliably to nodes

• Platform-dependent service executables

• Event detection and alarms — this allows timely detection and reporting

of special conditions to a central node, – and platform-specific networking

protocols.

This architecture was successfully deployed in a trial with an oil company,

and the architecture was shown to be feasible; however, more work needs to

be done to make the architecture more scalable. Figure 3 from [45] summarizes

the key features of this architecture.

The attributes for this architecture include the tiered architecture, which is

also service-oriented. On the other hand the invariants for this architecture

include the gateway layer and the service repository layer. For example, im-

proper changes in the service repository layer can prevent other nodes from

knowing the locations of other services, while changes in the gateway layer can

prevent the correct translation of network messages and UPnP arguments.

3.7 Secure and Fault-Tolerant Sensor Networks

Another emerging trend is sensor networks that include security and fault-

tolerance from the time of design [46] and [47]. No architecture is presented

in [47], but this paper presents a scheme for enhancing the reliability of sensor

networks. When a sink has little energy left, the sink is relocated to another

sensor node [47].

Reference [46] presents an architecture for a secure and survivable wireless sen-

sor network with heterogeneous nodes. The architecture will provide security

30

and survivability mechanisms and techniques, and security and survivabil-

ity requirements and services. Since sensor networking applications need to

be able to run continuously and reliably without interruption, survivability

needs to be factored into the development of a WSN. The security require-

ments for a sensor network are: confidentiality, authentication, integrity, and

secure management, while the survivability requirements include: reliability,

availability, and energy efficiency.

The reader is referred to [46] to obtain more details on the architecture.

It should be noted that [46] provides simulation results to show that if a

small number of powerful sensor nodes have reasonable storage, processing

and transmission capabilities when using the proposed scheme, then the WSN

can have good key connectivity, reliability and resilience. In addition the sim-

ulation results show that there is a trade off between security and survivability

in some scenarios. Figure 1 from [46] summarizes the key components of the

secure and survivable sensor network architecture.

The key attribute for the secure and survivable sensor network architecture is

security support. On the other hand the invariant here is the key management

scheme. If a new key management scheme is chosen for a set of sensor nodes

these sensor nodes can lose the ability to communicate with other sensor nodes.

3.8 Vehicle-Based Sensor Networks

In the near future, we will begin to see sensor networks deployed to vehicles

to enhance driver safety, and allow drivers to pick the best route between two

points based on road conditions. Reference [48] describes an architecture for a

31

vehicular ad hoc network that is safety-oriented. In this architecture vehicles

and roadside entities are seen as peers. The peers are organized in zones called

peer spaces, while nodes in a peer space share a common interest. Peers may

be organized into either cluster-based or peer-centered structures [48].

One protocol for vehicular ad hoc networks is Vehicular Information Trans-

fer Protocol (VITP), which is an application-layer, stateless communication

protocol analogous to HTTP [21]. The VITP architecture (infrastructure) con-

sists of VITP peers (software components running on vehicle computers), a

location encoding scheme, and additional protocol features for performance

optimization, quality assurance and privacy protection. VITP stores location

information as two-value tuples. When a vehicle needs some information, it

formulates a query and broadcasts it. The dynamic collection of VITP peers

that responds to a query is called a virtual ad hoc server (VAHS), in other

words the VAHS is based on a query and target-location area. Simulation re-

sults for VITP performance show that the Return Condition for VITP requests

is very important, since it affects the dropping rate of VITP transactions as

well as the accuracy of VITP query results [21]. Figure 3 from [21] shows how

protocols are layered in VITP.

The attributes for VITP include the tiered architecture and VITP’s support

for location encoding. The latter may be seen as an implicit invariant since all

nodes must now use the same format for representing location information.

Another example of a mobile sensor network is found in [8]. This paper dis-

cusses a mobile sensor network composed of CarTel nodes that processes het-

erogeneous data. In general mobile sensor networks allow one to cover a larger

surface area with fewer sensors. Each CarTel node consists of a mobile, embed-

32

ded computer connected to several sensors. The node runs software that func-

tions as a gateway between the node and the rest of the sensor network. The

architecture consists of a portal, which hosts CarTel applications and serves as

a sink for data sent from the mobile nodes. There is also an ICEDB (Intermit-

tently connected database), which is a delay-tolerant query processor. Finally,

there is a CafNet (Carry and forward network), which is a delay-tolerant net-

work stack. Unlike TCP, CafNet uses a message-oriented data transmission

and reception API. This allows CafNet to be used in delay-tolerant networks.

CafNet informs the sensor network applications when network connectivity

is available, then the application decides which sensor network information

needs to be sent. The CafNet communication stack consists of a Transport

Layer, a Network layer and a Mule Adaptation Layer. The CafNet network

layer supports buffering of some data [8]. Figure 2 in [8] shows the software

architecture for CarTel.

The main attributes for CarTel include the delay-tolerant network architecture

as well as the location encoding scheme. The invariant in this architecture is

CafNet, the delay-tolerant network stack, which must continue to expose the

same interfaces and services after any changes if backward compatibility is to

be maintained.

Reference [49] discusses a network in which cars communicate with each other

using TrafficView nodes to exchange data on the state of the road. According

to [49] this form of inter-vehicle communication is different from traditional

MANETs because of rapid changes in link topology, a frequently disconnected

network, data compression/aggregation, prediction of vehicle’s positions, and

energy consumption not being an issue. A TrafficView node consists of the fol-

lowing modules: a GPS/OBD module, a receive module, a validation module,

33

an aggregation module, a send module, and a display module. Two algorithms

that may be used for aggregating data (cost-based and ratio-based) in a ve-

hicular network are discussed and evaluated in [49]. The results indicate that

ratio-based aggregation works well in actual test conditions [49]. The compo-

nents of a node architecture for TrafficView are found in Figure 4 in [49].

TrafficView’s set of key attributes includes location encoding and data fusion

support. As was the case for VITP, the location encoding scheme can be seen

as an implicit invariant since all nodes must now use the same format for

representing location information.

The last class of vehicle-based sensor networks uses a system of train-based

sensors to monitor wheel bearing temperatures [50]. This sensor network uses

IEEE 802.11b for inter-car train communications, GPS information to provide

location information. Backhaul communications are provided by a 1xRTT

radio, and the train data is uploaded to a web server. Beyond the system

specifications provided above, the architectural details of this sensor network

are not available.

3.9 Habitat Monitoring Sensor Networks

As we observed in section 3.1, some of the earliest sensor networks were used

for monitoring seabirds on Grand Duck Island in Maine [5], [9] and [10]. Refer-

ence [9] indicates that a tiered architecture was developed for this monitoring.

At its lowest level are sensor nodes, which collect environmental data. The next

tier consists of a sensor network gateway, which communicates with the sensor

network and the transit network. At the next tier is the “remote base station

34

that provides WAN connectivity and data logging.” In order to provide some

degree of fault-tolerance, each tier of the sensor architecture provides persis-

tent data storage to guard against data loss. The architecture also provides

data management services ranging from simple data logging to a full-fledged

relational database service running on the base station. It is worth noting that

the habitat monitoring sensor network also includes iPaqs (known as gizmo in

the paper) to allow for remote management of the sensor network [9].

3.10 Multi-owner Sensor Network Architecture (MOSN)

There is growing literature concerning the architecture and design of sen-

sor networks [2–4], as well as the Open Geospatial Consortium Sensor Web

Enablement efforts [51] and Oak Ridge National Laboratory’s SensorNet In-

formation Architecture [52]. Several of these types of sensor networks have

already been deployed [5].

A premise of this discussion is that elements of the sensor network will be

owned by multiple organizations and communicate across administrative do-

mains. Thus, there is a need for mechanisms that facilitate access to and con-

trol of sensors across multiple organizations as well as a requirement for rapid

deployment. Ownership by a wide variety of administrative domains is briefly

mentioned in [53]. While SensorML [35] has sensor schemas that include se-

curity, user limitations and access constraints (like documentConstrainedBy),

and schemas that identify the responsible party (like operatedBy), the inte-

gration of these into an overall system remains to be explored.

The MOSN architecture extends ORNL’s SensorNet Information Architec-

35

ture and has been built upon the existing sensor network architectures (e.g.,

[6, 51, 53, 54]), to create a system based on the above concepts that facili-

tate the participation of multiple organizations in supplying needed compo-

nent/subsystem functionality. A model of MOSN has been implemented and

evaluated.

The objective of the MOSN is to develop a unified architecture that has ele-

ments owned/controlled by a variety of organizations which can communicate

across administrative domains. The MOSN architecture is general, scalable (in

size and evolution of technologies), flexible (able to mix and match technologies

based on the venue requirements), economical (based on COTS technologies),

and leverages standards where possible. The MOSN approach facilitates mul-

tiple organizations providing different services, enabling the development of a

business model based on sensor network technologies.

MOSN components are divided into three layers, as shown in Fig. 1 in [23].

These layers include the following:

• The device layer, which is composed of all the sensor nodes, as well as the

data access and management endpoints for the entire architecture.

• The repository layer, which forms a link between the lower device and the

upper application layers to allow for information dissemination. This layer

is composed of databases that store sensor data as well as databases that

store information needed to support the system.

• The application layer, which presents a unified view of the different compo-

nents of the architecture to the user.

Communication between the layers in the MOSN architecture is done by ex-

tending the Ambient Computing Environments (ACE) architecture [52, 55].

36

The device control and data flow mechanisms developed for ACE are used to

manage connections between applications and sensor nodes. The ACE control

mechanisms allow devices to be authenticated by a controlling application. In

addition ACE allows access and control of devices to be based on an estab-

lished security policy. Finally, the ACE data flow mechanism supports real

time exchange of data between applications and devices that is private and

checked for integrity. ACE supports establishing services within the environ-

ment to archive data flows, replicate data flows to multiple receivers, and play

back archived data.

We conclude this section by observing that the key attributes of the multi-

owner sensor network architecture include: Internet connectivity support, se-

curity support, a standards-based architecture that is also tiered and service-

oriented. On the other hand the invariants include the service-oriented archi-

tecture, and the standards-based architecture. Due to Internet connectivity

support, IP addresses may also be seen as an invariant for this architecture.

4 Architecture Comparison Summary

In the previous section we presented the key elements of different classes of

sensor networks, including a new sensor network architecture suitable for a

multi-owner environment. Those architectures were compared in terms of cer-

tain attributes. Table 1 summarizes the key features, while Table 2 summarizes

the invariants of the architectures presented in Section 3.

37

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

H
ab

it
at

m
on

-

it
or

in
g

sy
s-

te
m

[5
,9

,1
0]

x
x

D
ir

ec
te

d
D

if
-

fu
si

on
[2

8]

x

D
at

a-
ce

n
tr

ic

S
to

ra
ge

[2
9]

x

co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

38

co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

T
S
A

R
[1

8]
x

x

M
id

d
le

w
ar

e

D
es

ig
n

fo
r

In
te

gr
at

io
n

of
S
en

so
r

N
et

w
or

k
s

an
d

M
ob

il
e

D
ev

ic
es

[2
2]

x

co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

39

co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

D
IM

E
N

S
IO

N
S

[3
0]

x
x

D
F
u
se

[3
3]

x

C
ou

ga
r

[3
4]

x
x

O
R

N
L

S
en

-

so
rN

et
[3

5,
37

]

x
x

x
x

x
x

W
IN

S
[4

1]
x

x

co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

40

co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

Ir
is

N
et

[6
,7

]
x

x
x

J
an

u
s

[1
7]

x
x

C
A

S
N

[4
3]

x
x

M
A

D
S
N

an
d

M
A
W

S
N

[1
2]

x
x

S
O

S
A

N
E

T

[4
4]

x

co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

41

co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

M
u
lt

ip
la

tf
or

m

W
ir

el
es

s

S
en

so
r

N
et

-

w
or

k
[4

5]

x
x

S
ec

u
re

an
d

S
u
rv

iv
ab

le

W
ir

el
es

s

S
en

so
r

N
et

-

w
or

k
s

[4
5]

x co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

42

co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

V
IT

P
[2

1]
x

x

C
ar

T
el

[8
]

x
x

T
ra

ffi
cV

ie
w

[4
9]

x

M
u
lt

i-
ow

n
er

se
n
so

r
n
et

-

w
or

k
ar

ch
i-

te
ct

u
re

[2
3]

x
x

x
x

x

co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

43

co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

T
ab

le
1.

Su
m

m
ar

y
of

A
rc

hi
te

ct
ur

e
Fe

at
ur

es

44

Architecture Classification Invariants

Explicit Implicit

Habitat monitoring system [5, 9,

10]

Tiered architecture IP

Directed Diffusion [28] Data fusion

Data-centric Storage [29] Location encoding

scheme (GHT), Out-

side world connectivity

support

TSAR [18] Interval skip graph, in-

cluding adaptive summa-

rization scheme

Middleware Design for Integra-

tion of Sensor Networks and Mo-

bile Devices [22]

Distributed spatial index

continued on next page

45

continued from previous page

Architecture Classification Invariants

Explicit Implicit

DIMENSIONS [30] Location encoding

scheme

DFuse [33] Data fusion support, in-

cluding fusion channels

Cougar [34] Query proxy layer

ORNL SensorNet [35,37] Location encoding

scheme, IP

WINS [41] Interface code in WINS

gateway, IP

IrisNet [6, 7] Agents, XML representa-

tion of data

IP

Janus [17] XRP agent and XRP en-

gine

IP

CASN [43] CASN middleware

MADSN and MAWSN [12] Agents

SOSANET [44] Service-oriented query

layer

continued on next page46

continued from previous page

Architecture Classification Invariants

Explicit Implicit

Multiplatform Wireless Sensor

Network [45]

Gateway layer and ser-

vice repository layer

Secure and Survivable Wireless

Sensor Networks [45]

Key management scheme

VITP [21] Location encoding

scheme

CarTel [8] CafNet

TrafficView [49] Location encoding

scheme

Multi-owner sensor network ar-

chitecture [23]

Service-oriented archi-

tecture, standards-based

architecture, and IP

Table 2. Summary of Architecture Invariants

5 Conclusion

In this paper we have presented a discussion of several sensor networks. From

our discussion we have seen that there is no over-arching sensor network ar-

47

chitecture, as was previously argued in [11, 27]. However, from our review of

sensor network architectures, we see that sensor networks share many features.

In addition by examining their invariants (where invariants are components

that cannot be changed without losing backward compatibility [1]) we also see

that many architectures have several invariants in common, even if they are

quite different.

Another contribution of this paper has been a discussion of an architecture,

suitable for a multi-owner sensor network, developed at the University of

Kansas. Unlike many of the other architectures presented in this paper, this

architecture is not limited to low-powered sensor nodes, and in fact it has been

used in conjunction with devices such as motes, Sun SPOTs, gumstix comput-

ers, and full-fledged PCs. However, it lacks certain features that some of the

other architectures possessed, such as delay tolerance and context-awareness.

Sensor networks are increasingly being used to instrument our world. However,

there is no single sensor network architecture, as one might find for the Inter-

net. As was argued in [11] we conclude that sensor networks would be better

able to fulfill their purpose if there is a single over-arching architecture. Some

suggestions for developing such an architecture would be to identify and build

physical, MAC, link and network layer protocols suitable for sensor networks.

Above these layers we can build location-encoding schemes or any other ap-

plications or functionality needed by sensor network designers. Such a design

might allow better portability of code and ideas from one sensor network to

the next.

48

References

[1] B. Ahlgren, M. Brunner, L. Eggert, R. Hancock, S. Schmid, Invariants: a New

Design Methodology for Network Architectures, in: FDNA ’04: Proceedings of

the ACM SIGCOMM Workshop on Future Directions in Network Architecture,

ACM Press, New York, NY, USA, 2004, pp. 65–70.

[2] F. Zhao, L. Guibas, Wireless Sensor Networks: An Information Processing

Approach, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[3] D. Estrin, D. Culler, K. Pister, G. Sukhatme, Connecting the Physical World

with Pervasive Networks, IEEE Pervasive Computing 1 (1) (2002) 59–69.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless Sensor

Networks: a Survey, Computer Networks 38 (4) (2002) 393–422.

[5] R. Szewczyk, J. Polastre, A. Mainwaring, D. Culler, Lessons From a Sensor

Network Expedition, in: EWSN 2004: Proceedings of the First European

Workshop on Sensor Networks, 2004.

[6] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, S. Seshan, IrisNet: an Architecture for

a Worldwide Sensor Web, IEEE Pervasive Computing 2 (4) (2003) 22–33.

[7] J. Campbell, P. B.

Gibbons, S. Nath, P. Pillai, S. Seshan, R. Sukthankar, IrisNet: an Internet-

scale Architecture for Multimedia Sensors, in: MULTIMEDIA ’05: Proceedings

of the 13th Annual ACM International Conference on Multimedia, ACM, New

York, NY, USA, 2005, pp. 81–88.

[8] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih,

H. Balakrishnan, S. Madden, CarTel: a Distributed Mobile Sensor Computing

System, in: SenSys ’06: Proceedings of the 4th International Conference on

49

Embedded Networked Sensor Systems, ACM Press, New York, NY, USA, 2006,

pp. 125–138.

[9] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson, Wireless

Sensor Networks for Habitat Monitoring, in: WSNA ’02: Proceedings of the 1st

ACM international workshop on Wireless Sensor Networks and Applications,

ACM Press, New York, NY, USA, 2002, pp. 88–97.

[10] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, D. Estrin,

Habitat Monitoring with Sensor Networks, Commun. ACM 47 (6) (2004) 34–40.

[11] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre,

S. Shenker, I. Stoica, G. Tolle, J. Zhao, Towards a Sensor Network Architecture:

Lowering the Waistline, in: HOTOS’05: Proceedings of the 10th conference on

Hot Topics in Operating Systems, USENIX Association, USENIX Association,

Berkeley, CA, USA, 2005, pp. 24–30.

[12] M. Chen, S. Gonzalez, V. C. M. Leung, Applications and Design Issues for

Mobile Agents in Wireless Sensor Networks, IEEE Wireless Communications

[see also IEEE Personal Communications] 14 (6) (2007) 20–26.

[13] K. Fall, A delay-tolerant network architecture for challenged internets,

in: SIGCOMM ’03: Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer communications, ACM,

New York, NY, USA, 2003, pp. 27–34.

[14] D. Hutchison, J. P. G. Sterbenz, Resilinets architecture definitions, Wiki (Feb.

6 2007).

URL http://wiki.ittc.ku.edu/resilinets wiki/index.php/Definitions

[15] R. J. Abbott, Resourceful systems for fault tolerance, reliability, and safety,

ACM Comput. Surv. 22 (1) (1990) 35–68.

50

[16] W. Chen, J. C. Hou, Handbook of Sensor Networks: Algorithms and

Architectures, John Wiley & Sons, 2005, Ch. Data Gathering and Fusion in

Sensor Networks, p. 495.

[17] A. Dunkels, R. Gold, S. A. Marti, A. Pears, M. Uddenfeldt, Janus: an

Architecture for Flexible Access to Sensor Networks, in: DIN ’05: Proceedings of

the 1st ACM Workshop on Dynamic Interconnection of Networks, ACM Press,

New York, NY, USA, 2005, pp. 48–52.

[18] P. Desnoyers, D. Ganesan, P. Shenoy, TSAR: a Two Tier Sensor Storage

Architecture Using Interval Skip Graphs, in: SenSys ’05: Proceedings of the

3rd International Conference on Embedded Networked Sensor Systems, ACM

Press, New York, NY, USA, 2005, pp. 39–50.

[19] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J. D. Tygar, SPINS: Security

Protocols for Sensor Networks, in: MobiCom ’01: Proceedings of the 7th Annual

International Conference on Mobile Computing and Networking, ACM, New

York, NY, USA, 2001, pp. 189–199.

[20] G. Biegel, V. Cahill, A Framework for Developing Mobile, Context-aware

Applications, in: PerCom 2004: Proceedings of the Second IEEE Annual

Conference on Pervasive Computing and Communications, IEEE Computer

Society, 2004, pp. 361–365.

[21] M. D. Dikaiakos, S. Iqbal, T. Nadeem, L. Iftode, VITP: an Information Transfer

Protocol for Vehicular Computing, in: VANET ’05: Proceedings of the 2nd ACM

International Workshop on Vehicular Ad Hoc Networks, ACM Press, New York,

NY, USA, 2005, pp. 30–39.

[22] V. Dyo, Middleware Design for Integration of Sensor Network and Mobile

Devices, in: DSM ’05: Proceedings of the 2nd International Doctoral Symposium

on Middleware, ACM Press, New York, NY, USA, 2005, pp. 1–5.

51

[23] P. Mani, S. Muralidharan, V. Frost, G. Minden, D. Petr, A Unified Architecture

for Sensor Networks with Multiple Owners, in: ACM SenSys 2008, Submitted.

[24] J. Feng, F. Koushanfar, M. Potkonjak, System-Architectures for Sensor

Networks Issues, Alternatives, and Directions, in: ICCD’02: IEEE International

Conference on Computer Design, IEEE, IEEE Computer Society, Los Alamitos,

CA, USA, 2002, pp. 226–231.

[25] S. Tilak, N. B. Abu-Ghazaleh, W. Heinzelman, A Taxonomy of Wireless Micro-

sensor Network Models, SIGMOBILE Mobile Computing and Communications

Review 6 (2) (2002) 28–36.

[26] F. Martincic, L. Schwiebert, Handbook of Sensor Networks: Algorithms and

Architectures, John Wiley & Sons, Hoboken, NJ, 2005, Ch. Introduction to

Wireless Sensor Networking, pp. 25–26.

[27] V. Handziski, A. Kopke, H. Karl, A. Wolisz, A Common Wireless Sensor

Network Architecture, in: Proc. 1. GI/ITG Fachgesprach ”Sensornetze”

(Technical Report TKN-03-012 of the Telecommunications Networks Group,

Technische Universitat Berlin), Technische Universitat Berlin, Berlin, Germany,

2003, pp. 10–17.

[28] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin,

D. Ganesan, Building Efficient Wireless Sensor Networks with Low-level

Naming, in: SOSP ’01: Proceedings of the 18th ACM Symposium on Operating

Systems Principles, ACM, New York, NY, USA, 2001, pp. 146–159.

[29] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, D. Estrin, Data-centric

Storage in Sensornets, SIGCOMM Computer Communications Review 33 (1)

(2003) 137–142.

[30] D. Ganesan, D. Estrin, J. Heidemann, DIMENSIONS: Why Do we Need a

New Data Handling Architecture for Sensor Networks?, SIGCOMM Computer

52

Communication Review 33 (1) (2003) 143–148.

[31] K. Römer, O. Kasten, F. Mattern, Middleware Challenges for Wireless Sensor

Networks, SIGMOBILE Mob. Comput. Commun. Rev. 6 (4) (2002) 59–61.

[32] C.-C. Shen, C. Srisathapornphat, C. Jaikaeo, Sensor Information Networking

Architecture and Applications, IEEE Personal Communications, [see also IEEE

Wireless Communications] 8 (4) (2001) 52–59.

[33] U. Ramachandran, R. Kumar, M. Wolenetz, B. Cooper, B. Agarwalla, J. Shin,

P. Hutto, A. Paul, Dynamic Data Fusion for Future Sensor Networks, ACM

Transactions on Sensor Networks (TOSN) 2 (3) (2006) 404–443.

[34] Y. Yao, J. Gehrke, The Cougar Approach to in-network Query Processing in

Sensor Networks, SIGMOD Rec. 31 (3) (2002) 9–18.

[35] B. L. Gorman, M. Shankar, C. M. Smith, Advancing Sensor Web

Interoperability, Sensors Magazine 22 (4) (2005) 14–18.

URL http://www.sensorsmag.com/sensors/article/articleDetail.jsp?

id=185897

[36] G. Percivall, C. Reed, OGC Sensor Web Enablement Standards, Sensors and

Transducers 9 (9) (2006) 698–706.

[37] K. B. Lee, M. E. Reichardt, Open Standards for Homeland Security Sensor

Networks, IEEE Instrumentation & Measurement Magazine 8 (5) (2005) 14–

21.

[38] A Smart Transducer Interface for Sensors and Actuators, IEEE Draft Std.

(2007).

[39] UPnP Device Architecture (2006).

[40] Computational Sciences and Engineering Division, SensorNet: Concept

Definition Document, Tech. report, Oak Ridge National Laboratory (2004).

53

[41] G. J. Pottie, W. J. Kaiser, Wireless Integrated Network Sensors,

Communications of the ACM 43 (5) (2000) 51–58.

[42] J. P. Vasseur, Routing Over Low Power and Lossy Networks (roll), IETF

Working Group (Dec. 17 2007).

URL http://www.ietf.org/html.charters/roll-charter.html

[43] Q. Huaifeng, Z. Xingshe, Context Aware Sensornet, in: MPAC ’05: Proceedings

of the 3rd International Workshop on Middleware for Pervasive and Ad-hoc

Computing, ACM Press, New York, NY, USA, 2005, pp. 1–7.

[44] A. Rezgui, M. Eltoweissy, Service-Oriented Sensor-Actuator Networks, IEEE

Communications Magazine 45 (12) (2007) 92–100.

[45] M. Marin-Perianu, N. Meratnia, P. Havinga, L. M. S. D. Souza, J. Mller,

P. Spiess, S. Haller, T. Riedel, C. Decker, G. Stromberg, Decentralized

Enterprise Systems: a Multiplatform Wireless Sensor Network Approach, IEEE

Wireless Communications [see also IEEE Personal Communications] 14 (6)

(2007) 57–66.

[46] Y. Qian, K. Lu, D. Tipper, A Design for Secure and Survivable Wireless

Sensor Networks, IEEE Wireless Communications [see also IEEE Personal

Communications] 14 (5) (2007) 30–37.

[47] I. Saleh, A. Agbaria, M. Eltoweissy, In-network Fault Tolerance in Networked

Sensor Systems, in: DIWANS ’06: Proceedings of the 2006 Workshop on

Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks, ACM,

New York, NY, USA, 2006, pp. 47–54.

[48] I. Chisalita, N. Shahmehri, A Peer-to-peer Approach to Vehicular

Communication for the Support of Traffic Safety Applications, in: Proceedings

of the IEEE 5th International Conference on Intelligent Transportation

Systems, 2002, pp. 336–341.

54

[49] T. Nadeem, S. Dashtinezhad, C. Liao, L. Iftode, TrafficView: Traffic

Data Dissemination Using Car-to-Car Communication, SIGMOBILE Mobile

Computing and Communications Review 8 (3) (2004) 6–19.

[50] M. C. Edwards, J. Donefson, W. M. Zavis, A. Prabhakaran, D. C. Brabb, A. S.

Jackson, Improving Freight Rail Safety with on-board Monitoring and Control

Systems, in: Proceedings of the 2005 ASME/IEEE Joint Rail Conference, 2005,

pp. 117–122.

[51] S. Muralidharan, V. Frost, G. J. Minden, SensorNet Architecture with Multiple

Owners, Tech. Report ITTC-FY2008-TR-41420-02, University of Kansas,

Lawrence, Kansas (July 2007).

[52] G. J. Minden, J. B. Evans, A. Agah, J. W. James, L. Searl, Architecture and

Prototype of an Ambient Computational Environment: Final Report, Tech.

Report ITTC-FY2004-TR-23150-09, University of Kansas, Lawrence, Kansas

(July 2003).

[53] M. Botts, G. Percival, C. Reed, J. Davidson, OGC Sensor Web Enablement:

Overview and High Level Architecture, OGC 06-050r2, Architecture (2006).

URL http://www.opengeospatial.org/pt/06-046r2

[54] M. Botts, OpenGIS Sensor Model Language (SensorML) Implementation

Specification, Specification (2005).

URL http://portal.opengeospatial.org/files/?artifact id=13879

[55] J. Mauro, Security Model in the Ambient Computational Environment,

Master’s thesis, University of Kansas (2002).

55

A Survey on Methods for Broadband Internet
Access on Trains

Daniel T. Fokum and Victor S. Frost

ITTC-FY2009-TR-41420-09

August 2008

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Technical Report

The University of Kansas

1

A Survey on Methods for Broadband Internet Access on
Trains

Daniel T. Fokum, Student Member, IEEE

Victor S. Frost, Fellow, IEEE

Abstract
Interest in broadband Internet access on trains has been increasing. Here a survey of approaches
for providing broadband Internet access to trains is presented. In this paper we examine some of
the factors that hinder the use of broadband Internet on trains, and then examine some of the
opportunities for broadband deployment on trains. This survey examines some of the basic
concepts for providing broadband Internet access and then reviews associated network
architectures. The review of network architectures shows that we can subdivide networks for
providing broadband Internet access on trains into the train-based network, the access network —
for connecting the train to the service provider(s), — and the aggregation network for collecting
user packets generated in the access network for transmission to the Internet. Furthermore, our
review shows that the current trend is to provide Internet access to passengers on trains using
IEEE 802.11x; however, a clear method for how to connect trains to the global Internet has yet to
emerge. A summary of implementation efforts in Europe and North America serves to highlight
some of the schemes that have been used thus far to connect trains to the Internet. This paper
concludes by discussing some of the models developed, from a technical perspective, to test the
viability of deploying Internet access to trains.

1 Introduction
With the explosion in growth of the Internet in the last 20 years, people have a much higher
expectation of being able to get on the Internet independent of location. Until recently trains and
airplanes have been two locations where passengers have not necessarily been able to achieve
high-speed Internet connections. In the particular case of trains, providing Internet access to
passengers on board trains makes good business sense; Internet access for passengers can provide
a revenue stream for the train company while attracting more travelers. For example, a 2004
study in the United Kingdom found that 72% of business travelers were more likely to use trains
than cars or airplanes if Wi-Fi access was available on trains. This study also found that 78% of
business travelers would use Wi-Fi access if it was made available on trains [1]. In the case of
freight trains Internet access can allow for real-time or near-real-time tracking of freight-related
events on board the train, and potentially resulting in a decrease in insurance charges to the
freight carrier. In addition to these benefits, on-board Internet access on trains can also enhance
the safety of the train, by allowing an operations center to monitor, in real-time, train-related
data, as in [2].

2

Internet access on board trains is already available today in parts of Europe. For example,
beginning in July 2004 a British train operator, GNER1, began offering Internet access on some
of its trains [3]. In 2005 another British company, Nomad Digital, claimed to have addressed the
problem of providing high-speed Internet access to passengers on Southern Trains’ London to
Brighton route using WiMax [4]. In what follows we provide an overview of communications on
board trains, beginning with some of the earliest papers on providing high-speed Internet access
to users on the move.
The main contribution of this paper is to provide a survey of work done on providing Internet
access to trains. The conditions of a rail environment that make communications from trains
difficult are highlighted. Another contribution of this paper is to summarize projects that seek to
provide Internet connectivity on board trains. For reasons that shall become apparent later, we
make a distinction between work done in Europe, and work done in North America due to the
different characteristics of rail transportation on those continents. The rest of this paper is laid out
as follows: Section 2 lists the issues hindering high-speed communications from trains. In
Section 3 we present a reference architecture for the deployment of broadband Internet access to
trains. Section 3 also presents the initial concepts for broadband Internet access on trains. In
Section 4 we present the efforts made, or those efforts underway to carry out high-speed
communications from trains. Section 4 is further subdivided into examining implementation
efforts underway in Europe and in North America. Section 4 concludes by presenting business
models developed to determine the viability of providing broadband Internet access on trains. In
Section 5 we provide concluding remarks.

2 Difficulties and Opportunities

2.1 Difficulties
Communications on board trains are complicated by several factors. Lannoo et al. [5] state that
railcars have Faraday cage like characteristics which can lead to high penetration losses for
signals. Beeby [6] adds that some other complicating factors include:

• A high vibration environment that may require mechanical isolation of communication
devices

• A thermally challenging environment, since heat may be a significant issue in certain parts
of the train

• A harsh electrical environment due to:
• The proximity of high voltages, as in electrical trains
• High magnetic fields, as in magnetic levitation (Maglev) trains
• Trains are not designed to provide a ‘clean’ electrical supply for computers

• The need to have equipment with minimal maintenance schedules – this may result in
equipment with near military-grade specifications

• The presence of track-side features, such as railway signaling equipment
Some other factors hindering communications on trains include:

1GNER subsequently lost its license to operate the East Coast Mainline, where the Wi-Fi-enabled trains
were deployed. National Express replaced GNER on the East Coast Mainline, and they offer free wireless
(Wi-Fi) Internet access on all trains on the East Coast line.

3

• Railway companies constantly add or remove rail cars from trains. As a result it is
necessary for the communications network to discover these changes automatically [7].

• Poor coupler contacts on rail vehicles, which may introduce communications failures [7].
• Tunnels may limit visibility to wireless communication infrastructure.
• Frequent handoffs in the cellular network. To see why this might be a problem, consider a

train travelling at 60 m/s (216 km/h) through an environment with cell sizes of the order of
3 km, then we would have handoffs every 50 s. Assuming that it takes about 1 s to
complete a handoff the handover time is 2% of the dwell time in the cell, which is high.

In spite of these difficulties, there are several opportunities to provide Internet access on trains
using a variety of technologies, including Wi-Fi, WiMax, satellite technologies, and radio-over-
fiber. In Section 2.2 we discuss some of these opportunities.

2.2 Opportunities
The growth in wireless communication technologies over the last two decades opens up several
opportunities for supporting communication on board trains. For example, customers in a
stationary train can have Internet access through the existing cellular infrastructure without many
modifications, except for an antenna on the outside of the train. Issues only arise when the train
begins to move, particularly at high speeds and requires several handoffs in a short period of
time. Beeby [8] argues that communications capabilities on mobile terminals is constantly
improving, with some phones now having multiband and Wi-Fi capabilities. Currently it is
standard to have Wi-Fi integrated on laptops, and eventually WiMax might also be commonly
available. These factors, especially the latter, have the potential to drive Internet usage higher,
particularly because as connectivity becomes more prevalent usage increases [8]. Beeby goes on
to argue that there are significant opportunities available for Internet access on trains if [8]:

• access to the technology can be made simple,
• ubiquitous (as in not requiring any special software or terminal), and
• useable, i.e., acceptable throughput and delay with few service interruptions.

In this respect, Fourth Generation (4G) communications technologies, such as WiMax, offer the
best potential for offering Internet access on trains. In fact, WiMax is already being used in the
UK to provide Internet access on trains [4, 9-11]. We expect further growth in broadband Internet
access availability on trains as more train operators are convinced of the business viability of
negotiating for Internet access along their tracks using WiMax or some other 4G technology.

3 Reference Architecture and Initial Concepts
In this section we present a reference architecture to guide our discussion of broadband Internet
access on trains. Next we examine some initial ideas related to broadband Internet deployment on
trains.

4

3.1 Reference Architecture

Rail car

Access
 point

PDA
Laptop

Rail car

Gateway

Access
point

GatewayGateway

Coach level network Coach level network

Train level network

Train
Access

Terminal
(TAT)

Access Network
Technologies:

GPRS/UMTS/HSDPA
WiMax
WiFi

Flash-OFDM
IEEE 802.20
Satellite links

Access Network

Figure 1: Architecture for Internet Connectivity between Rail Cars

Fig. 1 shows a logical architecture for the computer networks on a train, i.e., the networks aboard
the trains used to provide access to passengers. This architecture, which incorporates aspects of
the Train Management System [12], uses gateways in each train car to build a train level network.
Broadband Internet access on the train is provided through the Train Access Terminal (TAT).
This terminal, which can support one or many technology types, connects to the access network
using an antenna mounted on the outside of one train car. The incoming signal from the train
access terminal is then fed to gateways and wireless access points in all the rail cars in the train.
Within each rail car IEEE 802.11 is commonly proposed to provide connectivity to passengers;
however, passengers may also connect to a wired network in the railcar, if one is available. The
benefit of using an architecture such as the one described above include the following:

1. The cellular network system is not put under strain attempting to make handovers for
several fast moving users simultaneously [13].

2. The train access terminal can combine different access technologies for network
redundancy. In addition, the train access terminal can also implement some “intelligence”
to select the best means of communication between the train and the access network, as in
[13].

5

Figure 2: Reference Architecture for Internet Access on Trains

The entire train is connected to the Internet using the reference architecture shown in Fig. 2. The
reference architecture for Internet access on trains is layered and consists of the access network,
aggregation network, and the service providers’ networks. The access network is close to the
train tracks, and it provides the last hop communications for the train access terminal. The
aggregation network lies between the access network and the service providers’ networks, and it
forwards data from the access network to the global Internet. The access gateway in the
architecture combines the data from a group of users into a tunnel and forwards that data to the
service gateway. The service gateway serves as an interface between the aggregation network and
service providers’ networks. Van Quickenborne et al. [14] argue that aggregated tunnels per train
are ideal for this architecture since they are more manageable and efficient than a per user
connection scheme. From the reference architecture diagram, we can also see that there are
different technology options, including satellite technologies, for the access and aggregation
networks. This observation is in agreement with Conti [10], who states that currently there is
general agreement on how to provide Internet access to passengers aboard trains. A disagreement
arises on the best method to connect moving trains to the Internet backbone, i.e., how to connect
the antenna on the train access terminal to the access network. However, we expect that the

6

widespread deployment of 4G technologies may lead to some consensus on the best way to
connect trains to the Internet.

It should be noted that Fig. 2 combines features of several proposed architectures, including
the FAMOUS2 architecture [15] that we will see later in this paper. Some other features of this
architecture include:

• The access network is a wireless network with base stations along the train tracks. The
access network can use either GPRS/UMTS/HSDPA [9, 10], WiMax [4, 9-11], WiFi [16],
Flash-OFDM [17], satellite links [10], or IEEE 802.20 [18].

• The aggregation network can use the following technologies for forwarding data: IEEE
802.11 [19, 20], Ethernet [14, 21-24] and Radio-over-fiber [5, 25].

• Virtual Local Area Networks (VLANs) are preferred in Ethernet-based aggregation
networks to carry aggregated traffic flows from the access gateway to the service gateway
[15]. In other words, VLANs are used in the aggregation network to group the different
base stations in an access network that satisfy a given train’s traffic demands.

• Satellite links3 can be used to provide Internet access to trains; however, they do not fit this
architecture neatly, since the satellite ground station cannot be easily classified as either a
service gateway or an access gateway. Consequently the satellite links in Fig. 2 are shown
straddling the different networks.

3.2 Initial Concepts
Efforts to deploy broadband Internet access on board trains are constantly evolving. In this
subsection we provide an overview of some of the initial concepts that have guided the
deployment of broadband Internet access on trains.

Due to their mobility, Internet access can be provided on trains only by use of a wireless link.
Correia and Prasad [26] present some of the technical challenges involved in providing wireless
broadband services. The reader is referred to [26] for a more complete treatment of the important
attributes of a wireless broadband system. The problem of providing broadband communications
to fast moving users was addressed in [27] and [28]. In 2001 Gavrilovich [27] argued that a large
number of small cells operating at high frequencies was the most economical and practical
infrastructure for providing wireless broadband access to many users. In Gavrilovich’s model
these small cells were provided by moving base stations that travel along a track beside the
roadway. The moving base stations were then linked to fixed base stations using wireless links.
The fixed base stations were uniformly distributed along the roadway and were also interspersed
with the mobile base stations. This combination of mobile and stationary base stations allowed
the realization of broadband wireless communications while also yielding fewer handoffs due to
the mobile base stations [27]. However, a moving base station may not be practical.

An architecture for providing communications and entertainment aboard a high-speed public
transport system is proposed in [28]. This architecture is composed of the following components:

• A mobile subsystem that consists of mobile subnetwork, access to an infrastructure
network, and a mobility management component. This mobile subsystem is analogous to
the access network in this paper; however it does not include any of the wireless
communication technologies incorporated at the access network in our architecture.

2The FAMOUS architecture was developed to provide Internet access to FAst MOving USers
3 Lannoo et al. [5] state that satellite communications are not ideal for high-speed access to trains since
satellite links have limited bandwidth and long round trip times (RTT).

7

• A wireless transport subsystem that handles radio transmission between the mobile
subsystem and the infrastructure network. This subsystem is analogous to the wireless
communication technologies found in the access network of our reference architecture.

• A land subsystem consisting of an infrastructure network and a network management
component. This would be analogous to the aggregation network and the service providers’
core networks.

In addition Lin and Chang [28] argue that the link between the passenger device and the base
station can be provided by IEEE 802.11, Bluetooth, or one of the Third Generation (3G) wireless
standards. As we have seen already, WiMax — which is one of the 4G wireless standards — has
been chosen in [4, 9] to provide the link between the train and a terrestrial network, while Wi-Fi
has been chosen to provide the link between the passenger terminal and the train network.
Finally, [28] also notes that for a train moving along a track, the cell planning problem reduces to
a one-dimensional problem, which should greatly facilitate frequency planning.

Next we examine work done on the FAMOUS architecture; an architecture designed to
support broadband Internet access for FAst MOving USers. All of this work ([5, 12-15, 19-25,
29-34]) was conducted by researchers in Belgium.

3.2.1 FAMOUS Architecture and Its Extensions
In 2003 it was observed that popular Internet applications may not be available at high-speeds
due to lack of bandwidth, poor quality of service, and frequent hand-offs [29]. These problems
could be partially addressed by: increasing network bandwidth using smart antenna systems and
MIMO technologies, as well as improved handoff protocols that prevent connection loss when
moving from one base station to another. Van Leeuwen et al. [29] state that the technologies
discussed above are not sufficient to support broadband communications at high speeds; new
modulation schemes and context-aware applications are also needed to achieve high data rates in
fast moving vehicles.

Other ideas for supporting broadband communications from trains divide such a network into
an access network and an aggregation network [15] and [21]. Each of these networks performs
the functions that were discussed in Section 3.1. Furthermore, each network is located as
previously described. In the FAMOUS architecture users do not connect directly to the base
stations in the access network; instead the entire train has a single connection to the access
network. This connection is then shared amongst all the users on the train. The FAMOUS
architecture assumes that seamless connectivity is not guaranteed for users in fast moving
vehicles; instead they will hop from one access gateway (AGW) to the next [24]. Within the
aggregation network VLANs are used to group the different base stations in an access network
that satisfy a given train’s traffic demands [15]. Another component of this network architecture
is the service gateway, where connections between service providers and the aggregation network
are made. The FAMOUS architecture is summarized in Fig. 3.

8

Access
gateway

(Ethernet switch)
Access
Network

Access
gateway

(Ethernet switch)

Service
gateway

(Ethernet switch)

Aggregation
Network

Internet
Service

Providers’
Networks/

Network Core

VLAN Tunnel VLAN Tunnel

Ethernet
links

TAT

Figure 3: FAMOUS Architecture for providing broadband Internet access to FAst MOving USers
based on [15, 23]

In [15, 21] and subsequent papers [14, 22-24, 31, 32], Ethernet is chosen for the aggregation
network since it is simple, cost-effective and bandwidth flexible. In spite of Ethernet’s
advantages, it requires some modifications to support fast moving users. One of Ethernet’s issues
is the rapid depletion of VLAN databases in Ethernet switches. In fact, Ethernet already has an
extension, called GVRP4 [21], that can register VLANs automatically in a consistent and reliable
manner; however, standard GVRP distributes VLAN IDs of all tunnels to all the switches in the
network, thereby flooding the VLAN databases. This issue is resolved by developing a “scoped
refresh” of GVRP, such that Ethernet switches determine whether or not they are part of a given
tunnel. If they are, then the switch will issue de-registration messages on all its interfaces that do
not have the VLAN registered, otherwise the switch would attempt to register the VLAN. GVRP
needs a mechanism to configure Ethernet switch hardware to meet the QoS-parameters associated
with each tunnel. As a result G2RP5 has been developed to support fast moving users by allowing
for the separate distribution of traffic reservation parameters and VLANs. When combined
GVRP and G2RP allow switched Ethernet to be used as a transport technology for an aggregation
network.

4GARP VLAN Registration Protocol, where GARP is Generic Attribute Registration Protocol
5GARP Reservation Parameters Registration Protocol

9

The same architecture used in developing G2RP is also found in [15]; however, [15] focuses
on handoff strategies in a network with fast moving users found in cars or trains. In 2005 De
Greve et al. [15] stated that high link speeds for end users could only be achieved in cellular
networks by reducing the cell size to efficiently reuse spectrum. However, small cells also mean
more handoffs between cells. Furthermore, Mobile IP is not a good protocol for delivering high
link speeds to fast moving users since Mobile IP does not work well with frequent handoffs due
to handoff latency, handoff packet loss and control message load. As a result, [15] stated that
higher link speeds could be given to fast moving users on a train by using small cells operating in
the millimeter wave band. In addition these authors suggest using radio-over-fiber with moveable
cells to reduce handoff times, an idea that is an extension of Gavrilovich’s moving base stations
model [27]. We will revisit this concept later in this subsection.

Handoffs may result in packet loss, consequently handoffs, i.e., when the train access terminal
hops from one base station in the access network to the next, must be tackled satisfactorily to
provide broadband communications to fast moving users. De Greve et al. [23] presents the
Motion-aware Capacity and Flow Assignment (MCFA) algorithm to optimize the use of network
resources, determine paths for dynamic tunnels in an aggregation network, and minimize the
impact of packet loss and packet reordering when designing an aggregation network to support
fast moving users. The schemes presented include:

• An ideal routing algorithm for minimal network cost, which does not take any additional
constraints into account when solving the MCFA problem.

• A limited Hop Count Variations routing scheme, which guarantees maximum delay by
limiting the variation in hop counts between two different paths.

• A shared routing algorithm, which requires the paths assigned to a given connection
between the node and the aggregation network to share some nodes in common.

• An incremental routing method, which is an even stricter form of shared routing in which
the different paths share even more nodes in common.

Of the schemes presented in [23], incremental routing exhibits excellent packet loss features but
poor scalability while Limited Hop Count Variations (LHCV) routing yields a network that has a
slightly higher network cost than if ideal routing was used. However, LHCV routing shows better
congestion performance. De Greve et al. [23] also presents a heuristic, called Subpath
Assignment (SpA), for mapping aggregation network routes onto a minimal set of spanning tree
instances. When this heuristic is compared with other path aggregation schemes it is seen that
SpA can perform the path mapping in the shortest amount of time.

Recall that in the aggregation network in the FAMOUS architecture is built on switched
Ethernet. Furthermore, dynamic tunnels are used in the aggregation network to support the traffic
demand from a given set of trains. For switched Ethernet to be used in a carrier-grade network,
Ethernet must provide a mechanism for fast recovery from link failures in the aggregation
network. De Greve et al. [24] present an extension to Ethernet’s Rapid Spanning Tree Protocol
(RSTP) that uses a fast detection mechanism for link and node failures. This mechanism, which
is resilient to node or link failures, bypasses the RSTP failure detection process and monitors
links by examining incoming and outgoing packets at a given switch. De Greve et al. [24] show
that if reliability constraints are added to the MCFA optimization problem, then it is possible to
have good recovery times in the aggregation network, even when there are dynamic VLANs
present.

De Greve et al. [22] argue that aggregation networks are not optimally designed for
broadband services from fast moving vehicles, e.g., trains; therefore, it develops an integer linear

10

program (ILP) to calculate the exact dimensioning and tunnel paths needed to satisfy traffic
demands from a train to the global Internet. For large network cases, the ILP can take several
days or weeks to solve; therefore, De Greve et al. [22] develop and apply a heuristic — which
achieves low congestion and optimizes the use of network resources — to solve the problem, i.e.,
meeting the traffic demands of fast moving users in the FAMOUS architecture. In the ILP model
each train is assumed to generate a certain amount of traffic, where these traffic demands can be
defined as either:

• Exact, which would require optimization of network resources with knowledge of the exact
access gateway (AGW) where two trains cross each other, and the exact instant when the
crossing occurs.

• Static, which results from exact demands by neglecting all time-related aspects of the
demand. This is required if a network lacks a dynamic reservation mechanism; however, it
results in over-dimensioning of resources.

• Train delay insensitive (TDI), which results from neglecting the exact time-position
between multiple trains, i.e., we neglect the information of exact point when and where the
trains cross each other. This implies the network is dimensioned to allow for trains to cross
at any AGW along their respective paths.

It is shown in [22] that using TDI demand results in a more complex optimization problem;
however, if traffic demands are defined as train delay insensitive, the QoS guarantees of
passengers can be fulfilled always. In addition [22] concludes that for optimal network design the
links that need to be considered for connecting the service gateway to the access gateway are
those closest to the rail line end terminuses6

Van Quickenborne et al. combines the findings from [21] and [22] in [31]. Reference [31]
deals with designing an aggregation network that combines data from several users as they move
from one access network to the next. The access network traffic is aggregated into tunnels in the
aggregation network, and these tunnels have to move with the users from one access network to
the next. In designing the aggregation network Van Quickenborne et al. [31] relies on an
objective function that minimizes the number of hops between the train and the service gateways.
The objective function’s constraints include link capacity constraints and ensuring that only one
path is needed from source to destination. Using this optimization model it can be shown that if
each train requires two dynamic tunnels — one for basic demand and the other tunnel for
transient spikes in traffic demand — then the solution to the optimization problem can be
obtained quickly. On the other hand, this problem takes longer to solve if we seek to minimize
the cost of the network interface card and routing costs subject to the same constraints. Another
result from this paper shows that dynamic tunnel configuration and activation reduces network
cost, since the basic traffic demand is routed over a shorter path, while the transient spikes in
traffic demand are routed over longer paths [31].

The FAMOUS architecture has also been used in [14] to show that a hierarchical wired
Ethernet aggregation network in combination with Ethernet-based7 wireless access networks

6In this problem assume that the different towns/stations in the rail network represent the vertices of a
graph, while the rail lines represent the edges of the graph. Then, only links between the service gateway
and the access gateways closest to the vertices need to be considered when using the heuristic approach.
For more details please consult [22].
7Reference [14] presents an example of an Ethernet-based wireless access network that has a single
WiMax station per access network. Each base station is linked to the aggregation network via an Ethernet
link.

11

between trackside antennas and the train access terminal may be used for providing broadband
Internet access to fast moving users. Reference [14] assumes the use of dynamic tunnels, as
proposed in [31]. Here the dynamic tunnel management takes one of three forms:

• Management-based approach, that uses location information, e.g., from GPS to set up
tunnels to a train. When the train arrives at an access gateway, the train’s location
information is sent to a management platform that sets up the train’s tunnels. When the
train moves to another access gateway the previous tunnel is torn down.

• Signaling-based approach, in which a train announces its presence at a given access
gateway, resulting in tunnel setup for the train. After a timer expires the tunnels are torn
down.

• Hybrid approach, which incorporates portions of the schemes described above, i.e., a
signaling-based approach in the tunnels nearer the train, and a management-based approach
in the higher parts of the network.

Simulation results from [14] show that the signaling-based approach is hard to use in aggregation
networks, since tunnel-setup times increase with tunnel length — number of hops in the
aggregation network. As a result, the hybrid approach is recommended. This approach has the
added benefit of reducing packet loss while providing accurate tunnel-setup triggers.

The FAMOUS architecture is also extended in [19] and [20] to support the case where several
leaf nodes (trains) require connectivity with a limited set of service gateways through a wireless
mesh network, i.e., the aggregation network is built using wireless mesh networks. De Greve et
al. [19] say this is possible because wireless mesh networks are cheaper to deploy than their
wired equivalents. In [19, 20] the access gateways are replaced by wireless gateways. In addition
the underlying aggregation network technology is replaced with IEEE 802.11e instead of
switched Ethernet [19]; in the future we expect that such a wireless aggregation network can also
be provided by emerging Ethernet-based gigabit radios. Wireless networks can sometimes be
subject to reduced throughput due to interference from neighboring stations. Therefore, De Greve
et al. [20] suggest wireless throughput may be improved in mesh networks by intelligent
distribution of neighbour mesh nodes and minimising link interference levels by assigning
different channels to the different interfaces of the wireless gateways. These objectives can be
achieved by using a distributed channel assignment module that tries to minimise interference
levels on links by assigning different channels to various interfaces on the wireless gateways.
Fast moving users can then be supported by using a wireless mesh node placement algorithm that
minimizes the hop count of the service gateway-wireless gateway paths [20].

In [32] the FAMOUS architecture is used to provide high-bandwidth and low latency traffic
to fast moving users. In this case the MCFA optimization problem from [24] is used to determine
optimal aggregation gateway location, the number and speeds of interface cards, and traffic
tunnel set-up. The routes computed by MCFA are then mapped onto VLANs and spanning tree
instances for routing in the FAMOUS architecture. Results from a testbed show that low latency
high bandwidth links can be provided to fast moving users, and that rapid recovery with spanning
trees is feasible without a centralized system [32].

In 2005 and 2007 Lannoo et al. ([5] and [25]) proposed extensions to Gavrilovich’s [27]
moving base stations model. Lannoo et al. [5] argue, just as in [15], that frequent handovers
greatly reduce the bandwidth available to fast moving users. Consequently they propose using
radio-over-fiber, as suggested in [15], to feed base stations along the rail track. Unlike in
Gavrilovich’s model there are no moving moving base stations; instead there is a fiber-fed
distributed antenna network. These distributed antennas are located along the railroad tracks, and

12

they are called remote antenna units (RAU) (these correspond to the base stations in Fig. 2). The
remote antenna units are supervised by one control station via an optical ring network. For
communications from the access network to the train, data is modulated at the control station and
sent optically to each remote antenna unit using wavelength division multiplexing, i.e., each
RAU has a unique wavelength for communications. The remote antenna unit will convert the
optical signal to radio waves and transmit to the train. For communications from the train to the
access network the data will typically be captured by the remote antenna unit closest to the train.
In order to reduce handover times for the train access terminal, Lannoo et al. propose using
“moving cells”, i.e., a cell pattern that is constantly reconfigured at the same speed as the train so
that the train access terminal communicates on the same frequency during a trip. For a more
complete treatment of Lannoo’s moving cell concept, please consult [5]. Fig. 4 presents a
reference architecture for the radio-over-fiber deployment.

Figure 4: Reference Architecture for Internet Access on Trains using Radio-over-Fiber, based on
[5]

3.2.2 Other Architectures, Handoff and Addressing Issues
An architecture similar to the FAMOUS architecture is found in [35]. This architecture divides
train communications into backhaul connections, Ground-to-vehicle communications (GVC) and
on-board vehicle communications (OVC). The GVC is analogous to the access network in our
reference architecture in Fig. 2, while the OVC network consists of customer devices as well as
other networking devices, such as a train server, placed in the train. The OVC network is similar
to the train-based network shown in Fig. 1. On board each train the OVC and GVC are connected
through a connection manager (CM), which is analogous to our train access terminal in Fig. 1
[35].

13

In 2003 Bianchi et al. [36] thought that it may be expensive to wire a train for network access.
In addition [36] stated that rewiring may be needed every time the train is reconfigured.
Therefore, they proposed using IEEE 802.11 to construct a wireless network between the train
cars. In their basic architecture, the train is connected to the Internet through a “train server”
using satellite links. The train server here is analogous to the train access terminal in Fig. 1.
Aboard the train IEEE 802.11 is used to perform the following tasks:

1. To link all the railcars on the train into a computer network,
2. To provide Internet access to passengers, and
3. To connect the train to the Internet when the satellite links become too expensive. For

example, if a given train station has IEEE 802.11 access points, the train can be connected
to the Internet through those access points instead of through the train server.

Bianchi et al. proposed two topologies, based on IEEE 802.11 for constructing the computer
network aboard the train. In their first topology the railcars are linked into a network using IEEE
802.11 access points whose antennas are on the outside of each railcar, i.e., in this case the
gateways shown in Fig. 1 are IEEE 802.11 access points. In order to minimize interference
between adjacent access points, Bianchi et al. state that directional antennas should be used in
this deployment. Furthermore, channels should be chosen on each access point, such that
neighboring access points do not interfere with each other. Additional gains in performance may
be achieved by using IEEE 802.11a for the wireless network between railcars, and IEEE 802.11b
within the rail car. These technology choices imply that the computer network on the outside of
the train would not interfere with that inside the railcars. An alternative topology for the network
aboard the train arranges the access points in each railcar such that each access point serves as a
client station for the access point in the previous car, while also serving as an access point for all
the stations within its car. In other words, given train cars 1 and 2; the access point in car 2 serves
as a client (station) of the access point in car 1 while also serving as the host (access point) for all
stations within car 2. Since an access point may not transmit and receive simultaneously, this
topology requires that each access point possess two interface cards – one for transmitting and
the other for receiving. Bianchi et al. conclude by noting that their proposed topologies need to
be tested in a real-world deployment to assess the impact of interference [36].

References [12, 13, 33] come from the same group that developed the FAMOUS architecture,
but these papers do not use that architecture directly. Jooris et al. [33] studies seamless handover,
roaming, Quality of Service (QoS), and connections between heterogeneous wireless networks,
such as the on-board network and the track-side network. On each train the Mobile Access
Router (MAR) — for connecting the train to the outside Internet — will have one interface for
each type of technology, and it will constantly choose the best link from the train to the outside
world. It should be observed that the mobile access router is analogous to the train access
terminal (TAT) in Fig. 1. Aboard a train handoffs can occur when a mobile device is either
unplugged from the train’s wired network or when a mobile user moves from one Wi-Fi hotspot
on the train to another. In each case the user’s session must be protected. Jooris et al. [33]
proposes carrying out this protection by creating a convergence layer that hides the Ethernet and
WLAN interfaces, and instead creates a single virtual interface and assigning a single IP (CL-IP8)
and a single MAC (CL-MAC9) address to it. Outgoing packets will be encapsulated with the CL-
IP and CL-MAC, while devices connected to the train LAN will only see one device and one

8Convergence Layer IP
9Convergence Layer MAC

14

MAC address. In Jooris et al.’s implementation [33] every wireless user device is associated with
a unique software object, which they call the access point. This software object is installed on the
nearest base station (BS) on the train, but it is moved from one WLAN base station to the next as
the user moves. In this architecture each base station is configured with two interfaces, but the BS
operates on a fixed frequency. The first interface runs an access point for all WLAN stations —
for example, wireless user devices — within range of the BS, whereas the second interface listens
to neighboring base stations’ frequencies and measures the signal strengths of the broadcast
messages. If the second interface detects a stronger signal from a station than the signal measured
by the station’s current base station, then the station’s access point is changed to that of the
measuring interface. The station is also informed that its access point has changed frequency.
This handover mechanism has been simulated successfully, and it should allow passengers to be
mobile while using the networks on board trains.

Pareit et al. [13] assumes that one would need to combine different technologies to provide
broadband Internet access on trains. As a result, they tackle the issue of handoffs as the train
moves from the coverage area of one access technology to another in [13]. To prevent the cell
system from having to make several simultaneous handoffs, it is proposed that train passengers
connect to the Internet via on-board Wi-Fi access points that are connected to the local train
network. The architecture proposed in [13] places a Policy Decision Function (PDF) on the
gateway, i.e., the train access terminal, between the train’s network and the outside world. The
PDF decides which interface should be used to provide the connection between the train and the
access network. This decision is based on link quality, train location and speed, and possibly cost
or load balancing. The Mobility Management modules are the other key part of the architecture.
They reside partly on the train and partly on the Central Management System. These modules
take input from the PDF to make handovers as smooth as possible. Pareit et al. [13] evaluates the
feasibility of using either Mobile IP or MMP-SCTP10 for a mobility management handoff
protocol. Recall that Mobile IP allows nodes to change their point of attachment to the Internet
without changing their IP address [13], while Stream Control Transport Protocol (SCTP) is a
reliable transport protocol that resides above an unreliable connectionless packet service [13].
SCTP allows for the detection and retransmission of packets that might be lost during a handover.
In addition SCTP endpoints allow for multihoming. In [13] it is shown that MMP-SCTP displays
better performance than Mobile IP after a slow start for TCP performance without a handoff.
Pareit et al. emulate the case where a train passenger gets Internet access using a satellite link and
an HSDPA link. Reference [13] shows that for a satellite link Mobile IP exhibits better
performance than MMP-SCTP (also after the slow start). When there is a handoff between
satellite and HSDPA11 we see that Mobile IP does not require any retransmissions, and all packets
arrive in order. Very similar results were obtained when the same test was performed using
MMP-SCTP [13]. Pareit et al. [13] concludes by noting that MMP-SCTP and Mobile IP are able
to handle handoffs seamlessly when handoffs can be predicted. In spite of its overhead, MMP-
SCTP can be a better choice for a mobility management protocol since it does automatic
retransmissions. Pareit et al. [13] defer to future work how to decide the optimal instant to make
a handoff in order to minimize handoff delay, packet loss and network load.

The possibility of providing Internet access on inter-city trains in California is studied by
Kanafani et al. in [37]. These researchers propose an architecture for Internet access on trains that

10Mobile Multi-Path Stream Control Transport Protocol
11Note that [13] only studied handoffs between satellite and HSDPA; however, we expect similar results
for other cellular-based systems.

15

is based on open standard radio technologies, such as IEEE 802.11 and IEEE 802.16, Mobile IP,
in-train network components, train to backhaul architecture components, a track-side
communication system, a homeland security surveillance system, and command and control
centers. In addition this architecture also has a subsystem that would handle handoffs as the train
moves from the coverage area of one trackside unit to the next [37]. The train to backhaul
architecture component in Kanafani’s architecture is analogous to the train access terminal in
Fig. 1. The track-side communication system is the access network, while the in-train network is
the same as the network shown in Fig. 1.

Most of the papers that we have seen thus far use existing radio technologies, such as IEEE
802.16 [38] or cellular technologies. In [18] Zou et al. deviates from most of the previous work,
and calls for using IEEE 802.2012 [39], which is technology under development, to provide
broadband Internet access for trains. IEEE 802.20 is chosen because existing 3G technologies do
not offer sufficiently high data rates to support many users on a high-speed train. IEEE 802.20,
on the other hand, is being designed to support data delivery at high bit rates to vehicles
travelling at up to 250 km/h, while using the wireless spectrum efficiently [39]. As in many of the
other systems that we have reviewed thus far, Zou et al. uses an IEEE 802.11x WLAN on board
the train to provide Internet access to passengers. In other words their architecture for the
network on-board the train does not deviate significantly from Fig. 1. In order to allow for
smooth handoffs between base stations, they call for the train to make two IEEE 802.20
connections to base stations, i.e., the train access terminal in Fig. 1 will make connections to two
separate base stations in the access network. However, the train would maintain a single IP
address, using Mobile IP, throughout its journey. Furthermore, they argue that since the train’s
schedule is known, handoff instances should be handled by a Predictive Pre-handover (PPH)
algorithm that would pre-compute the routes needed after a handoff. The access node on the train
would actively monitor the received signal strength from IEEE 802.20 stations, and it would
trigger a handoff whenever the received signal strength from the new station exceeds that of its
current base station [18].

With the exception of the system proposing the radio-over-fiber methods for Internet access
on trains, hitherto all the systems that we have studied examine communication protocols for
providing Internet access. White and Zakharov [40], on the other hand, deal strictly with physical
layer issues. They argue that high-altitude platforms, such as airplanes and airships at
stratospheric altitudes, are a less costly yet feasible method of providing Internet access to trains.
Digital Signal Processing (DSP) algorithms for tracking high-altitude platforms are presented in
[40]. The algorithms’ purpose is to estimate the direction of arrival (DOA) for signals transmitted
from a high altitude platform (HAP) to a train. Some of the methods applied for DOA estimation
include Spectral-based [40] and Polynomial-based [40] techniques. An Extended Kalman Filter
(EKF) is used to track the train location while beam forming is used on the satellite uplink.
Finally the paper shows that EKF can track slow variations in train velocity and account for
sudden HAP motion. Null steering (beam steering) is also shown to be advantageous in HAP-
train data communications.

Thus far we have covered getting Internet access onto trains; however, we also need to
account for the network topology and addresses on the train-based network. Network topology on
board the train changes constantly [12], hence there is a need to create a robust management
infrastructure that will establish and maintain connectivity on the train while providing logical
and IP addressing services [12]. This can be achieved by using the Train Management System

12IEEE 802.20 can be seen as the access network technology.

16

(TMS) architecture, which consists of a network13 layer, middleware infrastructure layer, and the
user layer. Verstichel et al.’s [12] network layer is further subdivided into: the subsystems and
components layer (which controls components found throughout the train such as doors, lighting
and air conditioning), vehicle layer (which includes all subsystems and services on board of a
single car), and the train layer (which results from communications between all the cars on a
train). All of these layers are connected by gateways, for example, all of the gateways located in
coaches are interconnected using a train-level network, as shown in Fig. 1. The Train
Management Scheme uses IP addressing to link the devices in a coach-level network into one
network across the entire train. This IP addressing can be done using either IPv4 or IPv6. A
summary of the TMS architecture is shown in Fig. 5. Refer to Fig.1 to review the relationship
between the train-level network and the coach-level network.

Subsystems and components layer

Train layer

User Layer

Physical
Network

Layer
Vehicle layer

Middleware Infrastructure Layer

Figure 5: Reference architecture for Train Management System based on [12]

3.2.3 Discussion of Testbed Results and a Feasibility Study
References [41] and [42] begin the transition from the more theoretical to prototypes and
deployment. In [41] Sivchenko et al. presents simulation results that show that Internet traffic
performance on high-speed trains decreases as the number of users increase, which is an expected
result. The performance of several existing radio technologies with respect to data rates
experienced on fast moving trains is investigated in [42]. Gaspard and Zimmerman [42] evaluate
the relationship between throughput as a function of Doppler shift (speed). This investigation was
carried out in two phases; in the first stage a channel sounder was used to take channel
measurements for different placements of a mobile receiver, while the mobile transmitter was
moved along the track. In the next stage different radio technologies were evaluated using a
hardware emulation of the channel characteristics. The experiments evaluated how throughput

13It should be noted that the network layer in [12] is different from that in the OSI model

17

would vary for a channel between a trackside transmitter and a receiver on board a train.
Experimental results indicate that:

• TCP/IP throughput of a UMTS/FDD downlink does not vary much with receiver input
power; however, it is relatively low, i.e., ~0.06–0.35 Mbps.

• At 300 km/h TCP/IP throughput of an IEEE 802.11b link between a trackside transmitter
and a receiver on the train varies with receiver input power due to multipath channels. It
should be noted that IEEE 802.11b provides high data rates under the measurement
conditions. In addition the authors state that one would need several access points along the
track to have good coverage.

• The IEEE 802.16 system evaluated in [42] was not suited for high-speed trains since
TCP/IP throughput decreased sharply with increasing speed. However, the authors note
that the amendments to the IEEE 802.16e standard for mobility should enhance the
performance of the IEEE 802.16 system.

Lundberg and Gunningberg [43] study the feasibility of using IEEE 802.11x networking
equipment to provide Internet access for a train traveling at 200 km/h between Uppsala and
Stockholm. Here they observe that commercial solutions for providing Internet access on trains
are available, but note that they are either limited or expensive. Furthermore, they observe that if
IEEE 802.11x technology is used, the technology choice will depend on the possible impact of
fading and related problems, such as the Doppler effect due to the train’s motion [43].

4 Implementation Efforts and Business Models
In the previous section we reviewed the reference architecture and initial concepts underpinning
broadband Internet deployment on trains. In this section we look at how those ideas have been
implemented in Europe and North America. As we mentioned in Section 1 broadband Internet
access is increasingly becoming available on trains in Europe. In Europe the preponderant
demand for Internet access is from passengers, while in North America most train traffic is
dominated by freight [44]. As a result efforts to carry out communications from trains have
evolved in slightly different directions on these two continents due to market forces. We review
the implementation efforts in Europe and North America separately, since conclusions drawn
from one continent might not necessarily apply to the other. Furthermore, implementation efforts
in Europe are much more advanced than those in North America. This section concludes with a
look at some of the business models developed, from a technical perspective, to evaluate the
viability of broadband Internet access on trains.

4.1 Implementation in Europe
One of the earliest accounts of Internet access on trains comes from the Railway Open System
Interconnection Network (ROSIN) project. In 1999 Fabri et al. [45] presented a report on a web-
based tool deployed to a train to allow maintenance staff to supervise railroad equipment using a
GSM connection between the train and an operations center. Aboard the train the railcars were
linked into a network using the Train Communication Network (TCN14) standard. Unfortunately,

14The TCN specification consists of a train bus and a vehicle bus. The train bus can self-configure itself by
connecting a new node (railcar) to the network and dynamically assigning it a new address The vehicle
bus is optimized to handle small packets originating from a large number of devices. The train bus and the
vehicle bus are connected through a gateway, which allows for exchange of data between devices in the

18

reference [45] does not provide any additional details on the bit rates seen during the trial or the
network topology.

Ceprani and Schena [46] present implementation details on their Fast Internet for Fast Train
Hosts (FIFTH) project. The FIFTH architecture consists of Mobile Train Terminal Prototype
(MTTP) and FIFTH Access Network Infrastructure (FANI) modules. The MTTP is composed of
a Satellite Access Terminal (SAT), which uses the Ku band to provide satellite access for the
train, and the Train User-Local Area Network (TU-LAN) which constitutes the LAN onboard the
train. The satellite access terminal is analogous to the train access terminal in Fig. 1, while the
Train User-Local Area Network is akin to the rest of the computer network shown in Fig. 1. The
antenna for the SAT is adjusted by a Navigation and Tracking Unit during a trip to optimize
reception conditions. The TU-LAN consists of a coach LAN (within a train car) and a train LAN
(between cars on the train). The TU-LAN is implemented by using Ethernet connections between
train cars as well as Ethernet connections and IEEE 802.11 links for passengers to use.
Unfortunately, additional details are not available on what bit rates were seen during the trial.

Conti [10] provides a contemporary view of the implementation of Internet access on trains in
Europe. In his paper he argues that telecommunications operators have offered Internet access to
passengers using GPRS or 3G wireless cards; however, this is not sufficient for most users.
Furthermore he states that there is now agreement that Internet access should be provided on
board trains using IEEE 802.11 access points within the train; however, there is not much
agreement on how to connect moving trains to the Internet backbone. In the United Kingdom
GNER trains use a combination of satellite and cellular links to provide a backhaul link from the
train. Therefore, the train access terminal in this instance supports both satellite and cellular
technologies. The Internet connection is shared with all cars on the train using the train’s lighting
circuit, this implies that the topology of the computer network on the train is not radically
different from that shown in Fig. 1. Unfortunately additional details are not available on how the
wired portion of the network aboard the train operates. GNER’s system favours satellite access
for the backhaul link, but when the train enters a tunnel, the system automatically switches over
to GPRS (The technical details of how this switch is accomplished are not clear from [10];
however, it may be assumed that the GPRS signal is brought into the tunnel via a leaky cable, or
some similar mechanism). For redundancy purposes the train connects to base stations from two
different mobile carriers. In addition up to six parallel cellular phone links are established for
redundancy purposes when the train passes through a tunnel. It is worth noting that this same
technology is also used by the Swedish train operator, SJ, to provide Internet access [10].

Conti [10] also discusses Southern Trains’ efforts to provide Internet access on its trains using
WiMax [4]. It is interesting to note that this system does not use any of the enhancements found
in IEEE 802.16e, which is designed for mobile access. Instead, this system uses a draft
implementation of IEEE 802.16d [9]. Conti [10] adds that T-Mobile and Nomad Digital
collaborated on this venture, and that in addition to the pre-WiMax standard, GPRS and 3G
technologies are also used for robustness with each train having three GPRS modems for
robustness [9]. As of 2005 there were 37 WiMax base stations deployed along the 60 mile train
track, with plans to install up to 60 base stations [9]. Each of the base stations was equipped with
a 2 Mbps ADSL link to the Internet [9]; each base station in this system could achieve data rates
of up to 32 Mbps for both the uplink and the downlink wireless channels [10]. In Southern
Trains’ implementation the train access terminal consists of a server with support for WiMax and

same railcar, or in two different train cars. The TCN can also be linked to the Internet by means of a radio
link between the train and a ground station.

19

GPRS technologies. The architecture of the in-train network is akin to that shown in Fig. 1, with
passengers connecting to the in-train network using an IEEE 802.11b link [9]. Finally, the access
network in this case uses WiMax and GPRS [9], while the aggregation network uses ADSL [9].

Apart from WiMax and GPRS technologies, satellite technologies may also be used for
Internet access. For example, elsewhere in Europe, Thalys [10] uses a bi-directional satellite link
operating in the Ku-band to support link speeds of up to 2 Mbps, i.e., the train access terminal
only supports satellite links. The downside of relying on satellite links is that operational costs
are probably higher than for links that rely on either WiMax or 3G technologies [10].

Echensperger [17] discusses work done by T-Mobile in Germany to bring Internet access to
intercity trains. He discusses the Railnet effort, which aims to provide WLAN access on board
trains while also providing a broadband radio connection between the train and the land side. The
Railnet system uses a Central Train Unit to control traffic and store on-board content, several
antennas to maintain the train to base station link, an IEEE 802.11 network to link the rail cars
into a train level network, and IEEE 802.11 access points on-board the train for passenger access.
The on-board network for the Railnet effort is very similar to that shown in Fig. 1, except that
there are no wired links between the railcars. Instead this time we have IEEE 802.11x links
between the cars. The train access terminal in this case supports T-Mobile’s access technology15.
Since T-Mobile (the service provider) owns its network, and also provides service on board the
train, there is not much of a distinction between the access and aggregation networks in this case.
It is worth noting that Flash-OFDM has also been evaluated in the course of the Railnet effort,
and its throughput has been found to be nearly independent of velocity [17].

4.2 Implementation in North America
As previously mentioned rail transportation in North America and Europe have very different
characteristics. Consequently broadband Internet deployment to trains on those continents has
evolved differently. In fact, it could even be argued that these deployments are in their infancy in
North America. However, there are some efforts underway for North America. For example,
Conti [10] points out that PointShot Wireless has worked on initial deployments with Canada’s
VIA Rail and California’s Altamont Commuter Express and Capitol Corridor operators.

A lot of the work coming from North America is experimental, given the lack of widespread
Internet access on board trains. One example of some experimental work comes from the
University of Nebraska, where Hempel et al. [16] presents work done on a wireless testbed for
IEEE 802.11 deployed along a train track. In this testbed IEEE 802.11 access points were placed
along the tracks with line of sight paths to neighboring access points. This arrangement allowed
for seamless IEEE 802.11 coverage along the tracks. IEEE 802.11a channels were used to
provide backhaul links between the testbed access points, while IEEE 802.11b was used to
provide wireless Internet connectivity to the train car used in the tests. Results from the testbed
showed that IEEE 802.11b could support data rates data rates of up to 11 Mbps; however, IEEE
802.11b was also subject to interference from passing trains. Additional test results showed that
train velocity does not appear to have a significant effect on the throughput experienced by the
node on board the train. The conclusion from this paper is that while it is feasible to deploy IEEE
802.11 along the train track, IEEE 802.11 has a limited coverage area; therefore, such a
deployment would be expensive [16]. In addition we have already seen from [42] that the TCP/IP

15Unfortunately, technical details on the access technology are not available in [17].

20

throughput of an IEEE 802.11b link varies with receiver input power. Hence, IEEE 802.11x is
not suitable for providing Internet access to trains.

More recently Nomad Digital collaborated with the Utah Transit Authority (UTA) and
Wasatch Electric to provide a wireless broadband connection on a commuter line between Ogden
and Salt Lake City. In this case the access network consists of WiMax radios from Redline
Communications. On board the train passengers get Internet access from a free Wi-Fi connection
[11]. The on-board network for this rail deployment is very similar to that shown in Fig. 1, while
in this instance the train access terminal supports WiMax. Unlike in any of the examples seen
thus far, the aggregation network in this instance is composed of fiber optic links, some of which
run trackside [11].

Most of the work we have reviewed in this paper has discussed providing Internet access to
passengers on a train. However, a train operator might also like to collect operational data from
its trains. Edwards et al. [2] discuss just such a scheme that allows for controlling and monitoring
various sensors and supervision modules on a freight train. This scheme uses IEEE 802.11b for
intra-train communications to allow for braking, coupling and uncoupling, etc. This scheme uses
a Controller Area Network (CAN) bus to collect data from sensors on board the train. The data is
then coupled with GPS information and reported to a web server via a CDMA-based transmitter.
In this case the train access terminal is a 1xRTT radio, whereas the links between the cars are
IEEE 802.11b links; unlike the wired links shown in Fig. 1.

4.3 Business Models for Internet Service on Trains
As we have seen in previous sections broadband Internet access is increasingly being deployed to
trains. However, for us to see more widespread deployments, train operators would have to be
convinced of the business advantages of such a deployment. In this subsection we present
different business models for paying for Internet service on trains.

One of the earliest business models developed studied deploying Internet access to inter-city
trains in California [37]. In developing this model, the authors say that the provision of Internet
access on trains would likely lead to an increase in ridership on the inter-city trains. The train
operators on the other hand could collect revenue from this service either by applying “per use or
time charges, subscription fees,” or negotiating an arrangement with a third party to pay for the
service through advertising, or sponsorship, or an increase in ridership [37]. In the case of
California trains, the authors present two business models for providing Internet access:

• Option 1 is a conservative model that uses satellite and cellular networks for backhaul,
with an IEEE 802.11 access network on the train. This option has a low operational cost
with low bandwidth and a high operational cost with high bandwidth, but it generally
results in low revenue for the train operator. This option is aimed at capturing mobile
Internet users on trains in a conservative manner.

• Option 2, uses WiMax for backhaul access with an on-board Wi-Fi network, but it has a
high initial cost (due to the cost of deploying WiMax antennas) with low operational costs.
Kanafani et al. [37] state that this model should result in high revenue for the train
operator, and that it should help capture mobile Internet users as the market grows.

The next two business models were developed for use in Europe. Using data from Belgian
railways, Lannoo et al. [34] present business models that investigate the possibilities and
economic viability of providing Internet access on trains. Recall that these researchers are part of
the same group that proposed the FAMOUS architecture. As in previous work, they argue that

21

broadband Internet access on trains can be provided by using an in-train network, and a network
between the train and the service provider for Internet access. For the backhaul network trains
can use cellular networking technologies such as GPRS/UMTS/HSDPA, or wireless networking
technologies such as Wi-Fi, WiMax, Flash-OFDM, or even a satellite networking standard, such
as DVB-S/DVB-S2/DVB-RCS. These backhaul networks can be classified as either incumbent
networks, for example GPRS/UMTS/HSDPA, or dedicated networks, for example, WiMax or
Flash-OFDM, or satellite networks. With incumbent networks the goal would be to provide
Internet access on trains without making a major capital expenditure. The business model
presented in [34] considers using incumbent networks until their capacity requirements are
exceeded, then one can roll out a dedicated network. Satellite networks would only be used as
gap fillers, i.e., in areas where the other networking standards do not provide adequate coverage,
just as we saw in [10]. The analysis carried out in [34] assumes revenue schemes where:

1. every passenger pays for Internet service, or
2. only first class passengers get free Internet access, while all other passengers pay.

Their analysis also includes the capital expenses required for deploying Internet service, as well
as the operational costs required to maintain service. The model then presents results to show that
train operators would realize a net profit if only first class passengers get free Internet access.
Lannoo et al. [34] conclude by noting that using a combination of technologies is the best way to
provide broadband Internet access to trains, and that in the particular case of Belgian railways it
would be better to use a mix of WiMax and UMTS for Internet access [34].

More recently Riihimaki et al. [35] have studied Finnish railroads to determine the feasibility
of deploying broadband Internet to trains. They argue that revenue from providing Internet
service to train customers may come from the following sources:

1. An increase in passenger volume, if a train operator offers free Internet access for
passengers

2. An increase in the number of first class passengers, if first class passengers get free Internet
access.

3. Reduced personnel costs, if passengers who buy their tickets online get free on-board
Internet access.

4. Direct revenue, if train tickets and data connections are sold separately
From the standpoint of the train operator Internet access on trains could allow for more efficient
train operations, e.g., allowing real-time traffic control, or more efficient staff who can verify
passenger tickets in real-time.

Hitherto, we have focussed on Internet access to passengers, Riihimaki et al. state that train
operators shipping freight could use a broadband Internet connection to allow their customers to
perform accurate cargo monitoring. In the case of the Finnish railroads, it is argued that the cost
of building a network for Internet access from trains can be spread out over a period of time if the
network is built in two or more phases, for example by using GPRS or Flash-OFDM in the first
phase, and then using mobile WiMax in the second phase. Furthermore, in the case of WiMax
they show that the average revenue collected per user, and the cell range of the WiMax network
are the most critical parameters influencing this technology’s viability for Internet access on
trains [35]. For example, their analysis is based on an estimated WiMax cell size of 5 km.
However, if this cell size is decreased by 10% then it becomes unprofitable to provide Internet
access using WiMax [35].

22

Given that most of the train traffic in North America is freight traffic [44], possibly the best
avenue for getting broadband Internet access on trains would be to forge some kind of
partnership between the train companies and telecommunications companies. If the train
operators can see a reduction in their insurance payments by allowing freight customers to gain
visibility into their shipments or other gains in efficiency, then the long-term viability of
broadband Internet on trains may be achieved in North America. In the case of the United States,
Amtrak passengers can also benefit from a deployment of broadband Internet access to trains,
and perhaps even more people can be lured to riding trains in the United States resulting in lower
greenhouse emissions.

5 Conclusion
The availability of broadband Internet access on trains should prove to be a revenue source for
operators. Previous studies from the United Kingdom show that train companies can attract more
users if Wi-Fi access is made available [1]. In this paper we have presented some of the initial
approaches, current technologies, and future ideas, such as IEEE 802.20 and radio-over-fiber,
related to Internet access on trains. We have also provided an account of implementation efforts
for broadband Internet access on trains in Europe and North America. These efforts, particularly
from Europe, show that broadband Internet access on trains is realizable. Furthermore, business
models, developed to test the viability of Internet access on trains, show that broadband Internet
access on trains is best realized by using a combination of access technologies. However,
efficient operation requires proper system design. North America does not share the same rail
traffic characteristics as Europe [44], and so broadband Internet access on North American trains
is not as readily available. In North America broadband Internet access on trains may be used for
collecting operational data from trains, as well as freight monitoring. Future work could be to
develop a business model for broadband Internet access on North American trains that takes into
account the fact that North American rail traffic is dominated by freight. A good business model
might serve to accelerate the deployment of broadband Internet access in North America.

Acknowledgment
The author would like to thank Ms. Yewande Lewis for reading and commenting on a previous
version of this paper.

23

References
 [1] BBC News. (2004, May 20) Wi-Fi May Tempt Travellers. News. BBC News. London,

United Kingdom. [Online]. Available: http://news.bbc.co.uk/2/hi/technology/3729583.stm
[2] M. C. Edwards et al., “Improving Freight Rail Safety with on-board Monitoring and Control

Systems,” in Proceedings of the 2005 ASME/IEEE Joint Rail Conference, Pueblo, CO, USA,
Mar. 2005, pp. 117–122.

[3] BBC News. (2004, July 6) Rail Users Get Wi-Fi Net Access. News. BBC News. London,
United Kingdom. [Online]. Available:
http://news.bbc.co.uk/2/hi/uk_news/england/3868585.stm

[4] B. Wilson. (2005, Oct. 26) Rail Internet Access Picks Up Speed. News. BBC News. London,
United Kingdom. [Online]. Available: http://news.bbc.co.uk/2/hi/business/4363196.stm

[5] B. Lannoo et al., “Radio-over-fiber-based Solution to Provide Broadband Internet Access to
Train Passengers,” IEEE Communications Magazine, vol. 45, no. 2, pp. 56–62, Feb. 2007.

[6] I. Beeby, “Demystifying Wireless Communications for Trains,” Presented at the BWCS
Train Communication Systems 2006, London, UK, June 2006.

[7] P. A. Laplante and F. C. Woolsey, “IEEE 1473: An Open-Source Communications Protocol
for Railway Vehicles,” IT Professional, vol. 5, no. 6, pp. 12–16, November/December 2003.

[8] I. Beeby, “The Future for Terrestrial Wireless Services for the next Five Years: Myths and
Realities for WiFi on Trains,” Presented at the BWCS Train Communication Systems 2007,
London, UK, June 2007.

[9] P. Judge. (2005, Apr. 3) 100 mph WiMax hits the rails to Brighton. News. TechWorld.
United Kingdom. [Online]. Available:
http://www.techworld.com/mobility/features/index.cfm?FeatureID=1351

[10] J. P. Conti, “Hot Spots on Rails,” Communications Engineer, vol. 3, no. 5, pp. 18–21,
Oct./Nov. 2005.

[11] Nomad Digital. (2008, May 21) U.S. First for Nomad Digital: WiFi provided free for all rail
passengers. Press Release. Nomad Digital. Newcastle, United Kingdom. [Online]. Available:
http://www.uknomad.com/news_details19.html

[12] S. Verstichel, K. Lamont, F. De Turck, B. Dhoedt, P. Demeester, and F. Vermeulen, “On the
Design of a Train Communication Management Platform,” in Symposium on
Communications and Vehicular Technology, Liège, Belgium, Nov. 2006, pp. 29–34.

[13] D. Pareit et al., “QoS-enabled Internet-on-train network architecture: inter-working by
MMP-SCTP versus MIP,” in 7th International Conference on ITS Telecommunications
(ITST ’07), Sophia Antipolis, France, June 2007, pp. 1–6.

[14] F. Van Quickenborne et al., “Managing Ethernet Aggregation Networks for Fast Moving
Users,” IEEE Communications Magazine, vol. 44, no. 10, pp. 78–85, Oct. 2006.

[15] F. De Greve et al., “FAMOUS: A Network Architecture for Delivering Multimedia Services
to FAst MOving USers,” Wireless Personal Communications, vol. 33, no. 3-4, pp. 281–304,
2005.

[16] M. Hempel et al., “A Wireless Test Bed for Mobile 802.11 and Beyond,” in IWCMC ’06:
Proceedings of the 2006 International Conference on Wireless Communications and Mobile
Computing. Vancouver, BC, Canada: ACM, 2006, pp. 1003–1008.

[17] H. Echensperger, “Railnet: High-Speed Internet on High-Speed Trains,” Presented at the
IET Seminar: Broadband on Trains, London, United Kingdom, Feb. 2007.

24

[18] F. Zou, X. Jiang, and Z. Lin, “IEEE 802.20 Based Broadband Railroad Digital Network -
The Infrastructure for M-Commerce on the Train,” in The Fourth International Conference
on Electronic Business - Shaping Business Strategy in a Networked World (ICEB), Beijing,
China, 2004, pp. 771–776.

[19] F. De Greve et al., “Towards Ethernet-Based Wireless Mesh Networks for Fast Moving
Users,” in EUROMICRO ’06: Proceedings of the 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications. Dubrovnik, Croatia: IEEE Computer
Society, Aug. 2006, pp. 387–397.

[20] F. De Greve et al., “Design of Wireless Mesh Networks for Aggregating Traffic of Fast
Moving Users,” in MobiWac ’06: Proceedings of the 4th ACM International Workshop on
Mobility Management and Wireless Access. Terromolinos, Spain: ACM Press, Oct. 2006,
pp. 35–44.

[21] F. Van Quickenborne et al., “Tunnel Set-up Mechanisms in Ethernet Networks for Fast
Moving Users,” in 11th International Telecommunications Network Strategy and Planning
Symposium (NETWORKS 2004), Vienna, Austria, June 2004, pp. 303–308.

[22] F. De Greve et al., “Aggregation Network Design for Offering Multimedia Services to Fast
Moving Users,” in Quality of Service in Multiservice IP Networks: Third International
Workshop, (QoS-IP 2005), M. A. Marsan, G. Bianchi, M. Listanti, and M. Meo, Eds., vol.
LNCS 3375/2005. Catania, Italy: Springer-Verlag New York, Inc., Feb. 2005, pp. 235–248.

[23] ------, “Cost-effective Ethernet Routing Schemes for Dynamic Environments,” in
GLOBECOM’05: IEEE Global Telecommunications Conference, vol. 2. St. Louis, MO,
USA: IEEE, Nov. 2005, pp. 1023–1028.

[24] ------, “Rapidly Recovering Ethernet Networks for Delivering Broadband Services on the
Train,” in LCN’05: The 30th IEEE Conference on Local Computer Networks. Sydney,
Australia: IEEE Computer Society, Nov. 2005, pp. 294–302.

[25] B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Extension of the Optical Switching
Architecture to Implement the Moveable Cell Concept,” Presented at the ECOC
2005:Proceedings 31st European Conference on Optical Communication, vol. 4, Glasgow,
United Kingdom, Sep. 2005, paper Th 1.4.3, pp. 807–808.

[26] L. M. Correia and R. Prasad, “An Overview of Wireless Broadband Communications,”
IEEE Communications Magazine, vol. 35, no. 1, pp. 28–33, Jan. 1997.

[27] C. D. Gavrilovich, “Broadband Communication on the Highways of Tomorrow,” IEEE
Communications Magazine, vol. 39, no. 4, pp. 146–154, Apr. 2001.

[28] K. D. Lin and J. F. Chang, “Communications and Entertainment Onboard a High-speed
Public Transport System,” IEEE Wireless Communications Magazine, vol. 9, no. 1, pp. 84–
89, Feb. 2002.

[29] T. Van Leeuwen et al., “Broadband Wireless Communication in Vehicles,” in FITCE 2003:
42nd European Telecommunications Congress, Berlin, Germany, Sep. 2003, pp. 77–82.

[30] F. De Greve et al., “Evaluation of a Tunnel Set-up Mechanism in QoS-aware Ethernet
Access Networks,” in LANMAN 2004: The 13th IEEE Workshop on Local and Metropolitan
Area Networks, San Francisco, CA, USA, April 2004, pp. 247–252.

[31] F. Van Quickenborne et al., “Optimization Models for Designing Aggregation Networks to
Support Fast Moving Users,” in Proceedings 1st Int. Workshop of the EURO-NGI Network
of Excellence on Wireless Systems and Mobility in Next Generation Internet, G. Kotsis and
O. Spaniol, Eds., vol. LNCS 3427. Dagstuhl, Germany: Springer, June 2005, pp. 66–81.

25

[32] F. De Greve et al., “A New Carrier Grade Aggregation Network Model for Delivering
Broadband Services to Fast Moving Users,” International Journal of Communication
Systems, vol. 20, no. 3, pp. 335–364, Mar. 2007.

[33] B. Jooris et al., “Mobile Communication and Service Continuity in a Train Scenario,”
Presented at the Proceedings of the 12th Symposium on Communications and Vehicular
Technology in the BENELUX, Enschede, Netherlands, Nov. 2005.

[34] B. Lannoo et al., “Business Model for Broadband Internet on the Train,” in Proceedings of
the 46th Federation of Telecommunications Engineers of the European Community
Congress (FITCE 2007), Warsaw, Poland, Aug. 2007, pp. 60–66.

[35] V. Riihimaki et al., “Techno-economical Inspection of High-speed Internet Connection for
Trains,” IET Intelligent Transport Systems, vol. 2, no. 1, pp. 27–37, Mar. 2008.

[36] G. Bianchi et al., “Internet Access on Fast Trains: 802.11-based on-board wireless
distribution network alternatives,” in 12th IST Mobile & Wireless Communications Summit,
Aveiro, Portugal, June 2003, pp. 15–18.

[37] A. Kanafani et al., “California Trains Connected,” University of California - Berkeley, Tech.
Report UCB-ITS-PRR-2006-4, Apr. 2006.

[38] Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std. 802.16, 2004.
[39] Draft Standard for Mobile Broadband Wireless Access (MBWA), IEEE Draft Standard

802.20-D1, 2006.
[40] G. P. White and Y. V. Zakharov, “Data Communications to Trains From High-Altitude

Platforms,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 2253–2266, July
2007.

[41] D. Sivchenko et al., “Internet Traffic Performance in High Speed Trains,” in HET-NETs ’04:
Second International Working Conference: Performance Modelling and Evaluation of
Heterogeneous Networks, Ilkley, United Kingdom, July 2004, pp. 26–31.

[42] I. Gaspard and G. Zimmermann, “Investigations for Broadband Internet within High-speed
Trains,” Advances in Radio Science, vol. 3, no. 13, pp. 247–252, May 2005.

[43] D. Lundberg and P. Gunningberg, “Feasibility Study of WLAN Technology for the Uppsala
- Stockholm Commuter Train,” Department of Information Technology, Uppsala University,
Tech. Rep., June 2004.

[44] J.-P. Rodrigue, C. Comtois, and B. Slack, The Geography of Transport Systems. New York,
NY USA: Routledge, 2006, ch. 3.Transportation Modes, p. 284.

[45] A. Fabri, T. Nieva, and P. Umiliacchi, “Use of the Internet for Remote Train Monitoring and
Control: the ROSIN Project,” Presented at the Rail Technology Conference, London, United
Kingdom, September 1999.

[46] F. Ceprani and V. Schena, “FIFTH Project Solutions Demonstrating New Satellite
Broadband Communication System for High Speed Train,” in VTC 2004: Proceedings of the
59th IEEE Vehicular Technology Conference, Spring, vol. 5, Milan, Italy, May 2004, pp.
2831–2835.

Status Update: A Unified Architecture for SensorNet
with Multiple Owners: Supplement to Advance

SensorNet Technologies to Monitor
Trusted Corridors

University of Kansas
Telecommunication Technology Center

V.S. Frost, G.J. Minden, J.B. Evans,
L. Searl and D.T. Fokum

EDS
T. Terrell, L. Sackman, M. Gatewood, J. Spector,

S. Hill, and J. Strand

ITTC-FY2009-TR-41420-10
August 2008

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory (ORNL)

Award Number 4000043403

Technical Report

The University of Kansas

i

Abstract

This effort is aimed at monitoring cargo movements along a trusted corridor, e.g., rail facilities,
in association with an integrated data-oriented methodology to increase efficiency and security. This
goal is being achieved by performing research and deployment of an associated testbed focused on rail
transportation issues. The results of this effort will lay the foundation for enhancing the ability of the
private sector to efficiently embed security that provides business value such as safety, faster transport
and reduced theft while supporting law enforcement and national security. In the end, the benefit of
the combination of real-time sensor date with trade data exchange information will be demonstrated
through field tests on a deployed rail testbed.

ii

Table of Contents

Abstract ... i
Table of Contents... ii
List of Figures .. ii
List of Tables ... ii
1.0 Introduction...1
2.0 Status on Technology Proof of Concept and Integration of the SmartPort Trade Data Exchange

and Transportation Security SensorNet Technologies..2
3.0 Status of the Development of Transportation Security SensorNet (TSSN) Technologies3
4.0 Status of System Architecture, Modeling, and Optimization ...9
5.0 Status of Communications System Evaluation ...11
6.0 Status RFID Technology Evaluation and Development...13
7.0 Associated Efforts...13
8.0 Project Timeline..15
9.0 References...16
10.0 Appendixes ...16

List of Figures

Figure 1: Field Trial ... 2
Figure 2: Selected Proof of Concept Technologies ... 3
Figure 3: TSSN Implementation.. 4
Figure 4: Mobile Rail Network.. 5
Figure 5: Virtual Network Operations Center ... 5
Figure 6: Example Train Configuration (red square indicates deployed sensor) 10
Figure 7: Relative System Cost vs Number of Sensors.. ... 11
Figure 8 (from7): Cost per Function Trend .. 11
Figure 9: Cost/Capability Trade-off for Communications Devices... 12
Figure 10: Future Trends in Sensor Technology (From [4]) ... 13
Figure 11 .. 14
Figure 12: Project Timeline ... 15

List of Tables

Table 1: ACE SOA Status.. 6
Table 2: TSSN Phase 1 Status ... 7
Table 3: TSSN Phase 2 Status ... 8

1

1.0 Introduction
This project is demonstrating the tracking and monitoring technologies needed to establish a trusted
corridor for international and domestic cargo movements along a path including inter-modal facilities.
The results of this effort will lay the foundation for enhancing the ability of the private sector to
efficiently embed security that provides business value, e.g., faster transport and reduced theft, while
supporting law enforcement and national security.

Exports from Asia have increased, creating bottlenecks at key US ports. A Kansas City (KC) group,
known as SmartPort, recognized the strategic position of KC and has actively worked to increase
shipments through the KC area. SmartPort is developing a US export capability and will have the only
Mexican Customs clearance capability that is not at the border. This project is aimed at improving the
efficiency and security of these trade lanes by combining monitoring, real-time tracking, and
associated sensor information with trade data exchange (TDE) information. The focus is on
technology development to address transportation issues, and validation of the concepts via the
deployment of a testbed.

KC SmartPort, through the Mid America Regional Council (MARC), is fostering the development of
several trade lane projects. SmartPort/MARC supported EDS to execute the International Corridor
Integration Project (ICIP), which demonstrated a reduction in international transport shipping time
from KC to Mexico from 10-14 days to 3 days. SmartPort/MARC through its Intelligent
Transportation Integration Project is supporting EDS to develop a Trade Data Exchange (TDE) that
captures commercial clearance and other data. The ORNL SensorNet initiative is aimed at developing
the technology, standards, and technical requirements for an integrated national warning and alert
system to provide an incident discovery, awareness, and response capability, addressing local,
regional, and national needs. Thus the ORNL SensorNet provides the basis for obtaining the real-time
tracking and associated sensor information. ITTC/KU has been focused on creating technologies that
will allow SensorNet to interact in an environment composed of multiple enterprises, owners, and
operators of the infrastructure, including sensors and TDE. ITTC/KU research has addressed assured
and controlled access to SensorNet assets, implying a focus on security and management mechanisms;
and archives and information dissemination, including interfaces/schemas. This effort is focused on
creating an interoperable TDE and SensorNet. A cost-effective communications system to facilitate
continuous monitoring of containers and communications is also under study as is the role of evolving
Radio Frequency Identification (RFID) technologies. In the end, the benefit of the combination of
SensorNet with TDE information will be demonstrated through field tests on a deployed testbed.

This effort is being executed by a team from EDS and ITTC/KU. There have been close interactions
between the EDS and ITTC/KU teams. There have been weekly conference calls to coordinate
activities. The project conference calls have involved Steve Peterson and Randy Walker from ORNL.

The next section addresses the integration of a distributed sensor system with the TDE, along with the
status of the proof of concept field trial. EDS is leading the TDE and field trial efforts. The status of
development of technologies effort to facilitate the participation of multiple organizations is described
next. This aspect of the effort addresses access/control/security mechanisms. The status of the system
architecture, modeling, and optimization will then be addressed. The communications system required
for monitoring will be addressed in the next section followed by the status on the associated RFID

2

efforts. We conclude by discussing the relationship of this effort to several aligned activities; a
timeline for the remainder of the project is then presented.

2.0 Status on Technology Proof of Concept and Integration of the
SmartPort Trade Data Exchange and Transportation Security
SensorNet Technologies

Here an integrated Transportation Security SensorNet (TSSN) and Trade Data Exchange environment
is under development where the prototype will be evaluated in a field trial. A requirement of the
prototype will be to create commercial value for a SmartPort stakeholder using the TSSN and TDE
technologies.

Though an extensive series of meetings and interactions, including trips to locations at the US/Mexico
boarder (Laredo, Texas), a SmartPort stakeholder has been identified and agreed to participate in the
field trial. This stakeholder will be providing access to their facilities in Kansas City and Mexico; they
will also allocate personnel time to support the field trial at no cost to this project. Three field trials
are planned; short haul tests as well as two trials in Mexico.

Specific use cases were identified in consultation with the SmartPort stakeholder. Interactions with the
SmartPort stakeholder combined with the use cases resulted in the selection of devices to be employed
for sensing, processing, and communications. The use cases center around monitoring and tracking
containers with the goals of proving that a container breach did not occur during the stakeholder’s
custody and providing time and location of a container intrusion to enable the stakeholder’s response
and reduce successful intrusions. Figure 1 shows the test environment.

Figure 1: Field Trial

Figure 2 shows the selected proof of concept technologies. The associated equipment has been
acquired and is being integrated into a complete system. This includes servers to host the TDE at EDS
and the seals, tags, reader, vehicle mounted TSSN collector (laptop), and a virtual network operations
center (VNOC) functionality at ITTC/KU. Experiments have been conducted with the Hi-G-Tek seals,

3

tags, reader, and software developed to integrate them into this system. Initial communications and
interactions have been established between the TDE at EDS and the VNOC in the TSSN at ITTC/KU.

Figure 2: Selected Proof of Concept Technologies

Integration with the TDE has been started. A test plan to describe how we will unit test, field test and
conduct integrated testing is under development.

3.0 Status of the Development of Transportation Security SensorNet
(TSSN) Technologies

The TSSN technologies are built upon the results of previous development efforts. The TSSN
technologies use the ACE SOA (Ambient Computing Environment) (Service Oriented Architecture)
which is the forth generation ACE implementation for providing distributed computing, media, and
sensing services to service consumers (clients) in a dispersed environment. ACE SOA is the
infrastructure providing message and data communication, confidentiality, authenticity, and
permissions plus service discovery within an enterprise and between enterprises. Also provided is a
framework for developing new services and clients of services. ACE concepts were use in developing
an initial prototype of a SensorNet with multiple owners [1]. This effort moves beyond the previous
work; the ACE SOA is a reimplementation of the original ideas of ACE but utilizing current
technology and widely accepted open Web Service specifications and publicly available
implementations which are suitable for Sensor Networks. Some of the Web Service specifications in
use are SOAP, the WS-X specifications, and UDDIv3. The ACE SOA infrastructure allows Web
Service based clients and services of one or more enterprises to interact using the following features:

IEEE
1451

IP
Internet

SOA

Vehicle
Mounted
Seal/Tag
Reader/
Writer

Cable
Seal

Additional Sensor

Addtional Sensor

Data Tag

Magnetic
Seal

Vehicle
Mounted

SensorNet
Collector

TDE
Applications

Other
Applications

IP
Internet

Command &
Control

Other UsersTrade Data
Exchange

Satellite/
Cellular

Communications

Active tags, seals and reader
from Hig-G-Tek

Iridium Satellite
Communications

GSM/HSDPA
Terrestrial

Comms

IEEE
1451

IP
Internet

SOA

Vehicle
Mounted
Seal/Tag
Reader/
Writer

Cable
Seal

Additional Sensor

Addtional Sensor

Data Tag

Magnetic
Seal

Vehicle
Mounted

SensorNet
Collector

TDE
Applications

Other
Applications

IP
Internet

Command &
Control

Other UsersTrade Data
Exchange

Satellite/
Cellular

Communications

IEEE
1451

IP
Internet

SOA

Vehicle
Mounted
Seal/Tag
Reader/
Writer

Cable
Seal

Additional Sensor

Addtional Sensor

Data Tag

Magnetic
Seal

Vehicle
Mounted

SensorNet
Collector

IEEE
1451

IP
Internet

SOA

Vehicle
Mounted
Seal/Tag
Reader/
Writer

Cable
Seal

Additional Sensor

Addtional Sensor

Data Tag

Magnetic
Seal

Vehicle
Mounted

SensorNet
Collector

TDE
Applications

Other
Applications

IP
Internet

Command &
Control

Other UsersTrade Data
Exchange

Satellite/
Cellular

Communications

Active tags, seals and reader
from Hig-G-Tek

Iridium Satellite
Communications

GSM/HSDPA
Terrestrial

Comms

4

• Provide means for service to publish its URL location and Web Service Interface for discovery
by clients.

• Allow clients to discover service’s URL location and Web Service Interface.
• Provide a secure communication channel between clients and services.
• Provide mechanism for clients to subscribe to service ‘events’ or ‘alarms’.
• Authenticate a client to a service.
• Provide fine grain authorization of a client’s use of a service.
• Provide a framework for development of new clients and services.
• Establish a trust relationship between enterprises

A detailed discussion of the ACE SOA is in Appendix A [2].

The TSSN using the ACE SOA is being implemented in three phases. The first phase will be used in
the field trials described above.

Phase1 – Simple service messages based on OGC specifications (used in trials)
Phase2 – Use full OGC specification interface messages.
Phase3 – Use lessons learned from Phase1 and 2 to make improvements

The TSSN implementation is composed of SOA Infrastructure for TSSN, the VNOC, and the Mobile
Rail Network (MRN) as shown in Figure 3. Some detail of the VNOC and MRN as well as the
interworking with the TDE is shown in Figure 4 and Figure 5. The status of SOA infrastructure for
TSSN as well as each phase is given below in Tables 1, 2, and 3.

Figure 3: TSSN Implementation

TDE

MRNInternet

Internet

Sat. Provider

ShipmentData
Train/Sensor Id’s
Alarms Location

Sensor Measurements
Sensor Alarms
Sensor Config
Location

VNOC

SMS Alarm
Display Alarm

TDE

MRNInternet

Internet

Sat. Provider

ShipmentData
Train/Sensor Id’s
Alarms Location

Sensor Measurements
Sensor Alarms
Sensor Config
Location

VNOC

SMS Alarm
Display Alarm

VNOC

SMS Alarm
Display Alarm

5

Figure 4: Mobile Rail Network

Figure 5: Virtual Network Operations Center

Sensor Alerting/ Web Notification
Service

Catalog
Service

Event Response & Rules

Sensor Management

UDDI Service
Directory

Authentication
Authorization

Web Feature
Service

Mobile
Rail

Net (MRN)

TDE

Alarm Subscr/Alarm Pub.

SensorML
Meas Req/Resp

Sensor Search/Resp

Train Subscr/Sn_train_data

SensorAlarm/ShipData

TrainPosReq/Resp

Alarm Subscr/Event

SetAlarmRules

SensorConfig

Event Data Rule Data

User Alarm
Client

SMTP/SMS
WebServer

TSSN Implementation
ACE Implementation
OGC Implementation/
Interface

Communications links not shown

Sensor Observation
Service

Sensor Data

Sensor Alerting/ Web Notification
Service

Catalog
Service

Event Response & Rules

Sensor Management

UDDI Service
Directory

Authentication
Authorization

Web Feature
Service

Mobile
Rail

Net (MRN)

TDE

Alarm Subscr/Alarm Pub.

SensorML
Meas Req/Resp

Sensor Search/Resp

Train Subscr/Sn_train_data

SensorAlarm/ShipData

TrainPosReq/Resp

Alarm Subscr/Event

SetAlarmRules

SensorConfig

Event Data Rule Data

User Alarm
Client

SMTP/SMSSMTP/SMS
WebServer

TSSN Implementation
ACE Implementation
OGC Implementation/
Interface

Communications links not shown

Sensor Observation
Service

Sensor Observation
Service

Sensor Data

Catalog
Service

Sensor Discovery

EdgeNode
GPS

Reader
EdgeNode Sensor
Measurement DB

GPS Device

Sensor Observation
Service

UDDI Service
Directory Authentication Authorization

SensorML
DB

High-G Tech
Tags/Seals

Sense Meas
DB

Web Feature
Service

VNOC

SensorNode
Service

Alarm Subscr/Event

SensorML

TSSN Implementation
ACE Implementation
OGC Implementation/
Interface

Meas Req/Resp

Lat/Lon

Lat/Lon
Req/Resp

SensorML

Sensor Measurements

Communications links not shown

Alarm Subscr/Alert Pub.
SetAlarmRules

SensorConfig

User Alarm
Client

ORNL Implementation

Event
DB

Sensor Alerting
Service

Catalog
Service

Sensor Discovery

EdgeNode
GPS

Reader
EdgeNode Sensor
Measurement DB

GPS Device

Sensor Observation
Service

UDDI Service
Directory Authentication Authorization

SensorML
DB

High-G Tech
Tags/Seals

Sense Meas
DB

Web Feature
Service

VNOC

SensorNode
Service

Alarm Subscr/Event

SensorML

TSSN Implementation
ACE Implementation
OGC Implementation/
Interface

Meas Req/Resp

Lat/Lon

Lat/Lon
Req/Resp

SensorML

Sensor Measurements

Communications links not shown

Alarm Subscr/Alert Pub.
SetAlarmRules

SensorConfig

User Alarm
Client

ORNL Implementation

Event
DB

Sensor Alerting
Service

6

Functionality % Complete, Tasks

Transport 100%
- SOAP/HTTP
- Apache Axis2 implementation (v1.4)

Confidential Data 100%
- WS-Security, HTTPS
- Axis2 implementation (Rampart)

Remote Exception 100%
- SOAP Fault
- Axis2 has extendable exception mechanism

Server Alert/Alarm 100%
- WS-Eventing
- Implemented mechanism for stand alone clients to receive events.
- TODO: Switch over to WS-BasicNotification

Authentication, Client-
Server

100%
- WS-Security
- Axis2 implementation (Rampart)

Intra-Enterprise
Authentication Service
(signed token)

80%
- Axis2 implementation (Rampart)
- Use Standard Token Service (STS)
- TODO: decide on token and signing mechanism/type
- Decision may be impacted by load data rate of Iridium

Inter-Enterprise
Authentication
Trust

20% Complete
- WS-Federation/WS-Trust specifies mechanism (Axis2 Rampart)
- Use Standard Token Service (STS)
- TODO: Verify that implementation provides required functionality

Intra-Enterprise
Authorization Service

0%
- WS-Authorization has not been written
- Can use xACML as language

TDE Integration 50%
- Testing with local TDE using EDS provided WSDL
- TODO: use EDS located TDE service.

Intra-Enterprise Service
Discovery

90%
- UDDI v3, OpenUDDI Implementation (v0.9.8)
- Implemented common service code for automatic publishing
- Implemented common client code for simplified service discovery.
- TODO: complete enterprise service to clean up stale UDDI info.

Inter-Enterprise Service
Discovery

50%
- UDDI v3, OpenUDDI Implementation replication
- Each enterprise has public UDDI for replication with other enterprise public
UDDIs

- TODO: Need enterprise service to publish public services to public UDDI.

Auditing/Monitoring 50%
- Implemented message logging module for Axis2
- Implemented GUI for message monitoring
- TODO: Evaluate current utility of module and GUI and make improvements.

Table 1: ACE SOA Status

7

Functionality % Complete, Tasks

MRN Communication
Service

50%
- Basics of setting up network connection over Iridium and GSM complete
- Can measure GSM signal strength for connection switch over decision
- TODO: write SOA service code

MRN Sensor Node Service 85%
- Can process all service operations (start, stop, GetCapabilities, etc)
- Can generate alert events based on simulated sensor events
- TODO: complete last HGT AVL Reader commands

MRN Alarm Processing
Service

70%
- Can receive Alerts from Sensor Node
- Can do simple if/then/else event processing and publish alarms to subscribers
- TODO: finish Complex Event Processing code using Esper.

MRN Alarm Reporting
Client

100%
- Subscribes to MRN Alarm Processing Service for Alarms
- Uses simple text output.

NOC Sensor Management
Service

100%
- Accepts TDE start operation
- Sends start operation to MRN Sensor Node

NOC Alarm Processor
Service

70%
- Subscribes to MRN Alarm Processor for Alarm events
- Can receive Alarms from MRN Alarm Processor
- Can do simple if/then/else event processing and publish alarms to subscribers
- TODO finish Complex Event Processing code using Esper.

NOC Alarm Reporting
Service

100%
- Subscribes to NOC Alarm Processor for Alarm Events
- Receives Alarm events and notifies users by SMS message and/or Email based in

information in user notification database

Table 2: TSSN Phase 1 Status

8

Functionality % Complete, Tasks

MRN Alarm Reporting
Client

0%
- TODO: Change to using a web browser interface

MRN Sensor Node Service 0%
- TODO: Use full OGC service interface (SOS, SAS, FaultReport)

MRN Alarm Processing
Service

0%
- TODO: Use full OGC SAS Alert and FaultReport
- TODO: Develop rules for Complex Event Processing based on GPS, Cargo Info

and Sensor Readings
NOC Sensor Management
Service

0%
- TODO: Use full OGC FaultReport

NOC Alarm Processing
Service

0%
- TODO: Use full OGC FaultReport
- TODO: Develop rules for Complex Event Processing Develop rules for Complex

Event Processing
NOC Alarm Reporting
Service

0%
- TODO: Publish user notifications to subscribed clients. This is really just for the

NOC Alarm Reporting Client

NOC Alarm Reporting
Client

0%
- TODO: Similar to MRN Alarm Reporting Client but also subscribes to NOC

Alarm Reporting Service

Table 3: TSSN Phase 2 Status

9

4.0 Status of System Architecture, Modeling, and Optimization

This task is focused on developing models of the system that can be used to articulate trade-offs and
enable optimization. To develop the understanding required for creating the models we first studied
the taxonomy of sensor network architectures, see Appendix B [3]. In [3] several proposed
architectures for sensor networks are reviewed. We observed that there is a lack of an over-arching
sensor network architecture. In [3] we present some of the issues associated with existing sensor
network architectures followed by a discussion of several specific cases, including the one for multi-
owner environment associated with this effort [1]. We also classify these architectures in terms of
function and compositional elements. We also highlight each architecture’s key attributes in order to
identify their commonalities. In making our arguments we refer to the concept of invariants, which are
components of a system that cannot be changed without losing backward compatibility. Our results
show that these architectures share several invariants.

Also as part of developing appropriate models, we conducted a survey on methods for broadband
internet access on trains, see Appendix C. Here we studied approaches for providing broadband
Internet access to trains and examined some of the factors that hinder their deployment. This survey
exposes some of the basic concepts for providing broadband Internet access and then reviews
associated network architectures. The review of network architectures shows that we can subdivide
networks for providing broadband Internet access on trains into the train-based network, the access
network — for connecting the train to the service provider(s), — and the aggregation network for
collecting user packets generated in the access network for transmission to the Internet. Furthermore,
our review shows that the current trend is to provide Internet access to passengers on trains using IEEE
802.11x; however, a clear method for how to connect trains to the global Internet has yet to emerge. A
summary of implementation efforts in Europe and North America serves to highlight some of the
schemes that have been used thus far to connect trains to the Internet.

There are many ways to deploy TSSN technology. At one extreme every container could be assigned
sensors and reach back communications capability, at another extreme only “valuable” containers
could be assigned a sensor and a low cost radio for communications to a single collector and reach
back communications system, and at another extreme there is no reach back communications
capability on the train and track side readers are deployed. There are trade-offs in all of these cases.
The model developed here is aimed at addressing these system trade-offs.

There are also several success metrics to consider, e.g.,

• System operational cost. This metric is computed per trip, and it consists of the system’s false alarm
cost, the cost of deploying the sensors, repeaters and readers, and the backhaul communications
device, as well as the cost of reporting events in a deployed cargo monitoring system. The costs of
missing an event at a given load (container) as well as the costs of a communications failure at a
sensor are also components of this metric.

• Weighted sum of probability of sensor detection. This metric is computed by adding the probabilities
of detection at each of the loads weighted by each load’s value. Ideally the goal would be to maximize

10

this metric, so that it is as close to 1 as much as possible. It should be observed that as this metric is
increased the cost of a missed detection is reduced leading to a decrease in the system operational cost.

• Weighted sum of probability of false alarm. This metric is computed by adding the probabilities of
false alarm at each load weighted by the loads’ values. Here the goal would be to minimize this metric,
so that it is as close to 0 as much as possible.

• Sensor network lifetime. It is assumed that all the sensors in the network would be battery powered.
Consequently we would strive to maximize the sensor network lifetime, while keeping the probability
of detection above some threshold value.

• Time taken for event to be successfully received at decision point. With this metric, lower values
would always be desirable. This metric would be computed on a per-load basis, and we assume that if
a load does not have a sensor, then an event can be detected at that load only when the train arrives at
its destination. If, on the other hand, the load carries a sensor, then this metric consists of the time
required to detect the event plus the time taken to report an event.

The model under development will enable the study of system trade-offs with respect to these metrics.
As an illustrative example suppose that the containers are in fixed positions on the train as shown in
Figure 6, and sensors are attached to selected loads (containers). Here the collector of sensor
information and the backhaul communications device is located in the locomotive. In this case we
evaluate how the system operational cost varies as sensors are added to the containers in order of
value.

Figure 6: Example Train Configuration (red square indicates deployed sensor)

We have developed an initial model and objective function that enables us to address this question.
The model when completed will provide a way to address complex system trade-offs. Under our
initial simplified assumptions (details of this analysis beyond the scope of this report) the system
operational cost as sensors are added to the containers in order of value is given in Figure 7. Note
deploying zero sensors means a system with no protection and has the highest relative system cost;
this reflects the high cost of missing an event.

Further work is needed on the model, objective function, and obtaining realistic model parameters.
Then the framework needs to be applied to study system trade-offs. A contribution of the effort will
be this complex system model.

11

System Cost

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5

Number of Deployed Sensors

Re
la

tiv
e

Sy
st

em
 C

os
t

Figure 7: Relative System Cost vs Number of Sensors. Relative system cost includes cost of missing an event,

deployment costs, cost of false alarms and communications costs.

5.0 Status of Communications System Evaluation

Providing visibility, accountability, efficiency, and security requires the coordinated application of
sensing, communications, and the integration of information. There are several trends that need to be
recognized.

a) Increased processing capabilities
The cost of memory and computing has been continually decreasing as a result of Moore’s law. This
trend is expected to continue, enabling new uses of embedded intelligence like those proposed here.
Figure 8 (from1) shows the cost per function trend and forecasts predict an additional two orders of
magnitude in cost/performance by 2010.

Figure 8 (from7): Cost per Function Trend

1 http://www.icknowledge.com/economics/productcosts2.html

12

b) Increased communications capabilities
The communications architecture is composed of: 1) local communications, e.g., using two-way
systems like the SunSpot2 or ZigBee3, 2) communications between groups of container, e.g., using
WiFi or Vehicle Infrastructure Integration-VII (see below for details), and 3) reach-back to backbone
networks, e.g., using, satellite, cellular technology or VII in some circumstances. Note that
communications “holes” are a property of cellular technology that can result in problems when applied
in the transportation domain, e.g., loss or mistaken tracking of containers. All of these elements of
wireless networking technology continue to advance, resulting in increased capability at lower costs.

The Vehicle Infrastructure Integration (VII) initiative4 aims to endow vehicles with the ability to
communicate to other vehicles and surface transportation infrastructure to promote public safety. The
system is intended to warn drivers of impending problems, as well as provide real-time data for the
transportation infrastructure to increase efficiency. Other applications are also envisioned, ranging
from in-vehicle entertainment to measuring weather and road conditions from information transmitted
and collected using the VII 5. The VII also specifies the use of Dedicated Short Range Communication
(DSRC) technology operating at a frequency band of 75 MHz centered at about 5.9 GHz; this band has
been allocated for this application by the FCC. The VII is in its early stages of development, however
1) it is clear that VII can play a role here and 2) the VII has not yet been applied in a freight security
environment.

Figure 9 shows the conceptual tradeoff between communications costs and capabilities. The trend is
that the cost of these devices will continually decrease, enabling new roles for each technology. This
trend will enable wider spread of two-way communications device.

Cost/Capability Trade-off for Communications
Devices

Hybrid Tag

Active Tag
Two-way radio

Passive Tag
0.1

1

10

100

Capability

C
os

t

Figure 9: Cost/Capability Trade-off for Communications Devices

2 http://www.sunspotworld.com/
3 http://www.zigbee.org/en/index.asp
4 Vehicle Infrastructure Integration (VII): VII Architecture and Functional Requirements-Version 1.1, FHWA, ITS Joint
Program Office, US Department of Transportation, July 20th, 2005.
http://www.ral.ucar.edu/projects/vii/docs/VIIArchandFuncRequirements.pdf
5 VII Weather Applications Workshop Boulder, Colorado, June 21, 2006.
http://www.ral.ucar.edu/projects/vii/PresWrkShop1/VII_Goals_Motivation_%20Petty.ppt

13

c) Improved sensing technologies
Sensors will continue to decrease in size and cost, increase in integrated signal processing, applied in
multisensor configurations, and be more closely integrated with wireless communications capabilities
[4]. These are summarized in Figure 10 [4]. Research will continue radio technologies for TSSN.

Figure 10: Future Trends in Sensor Technology (From [4])

6.0 Status RFID Technology Evaluation and Development

Knowledge of the identification and location of containers and other mobile elements of the system is
a key component of the trusted corridor concept. RFID technologies will play a major role in
providing this knowledge. RFID technology has the potential to determine fine scale location of
elements, e.g., containers. To be effectively deployed RFID technology, seals and/or readers must
account for multiple operating frequencies. The technology enabling operation on-metal, i.e., on a
container, of passive RFIDs at multiple frequencies (covering both Europe and the USA) has been
developed at ITTC/KU and is described in Appendix D [5]. Systems have begun to appear which
provide passive RFID based location-detection see [6]. The combination of the new ITTC/KU on-
metal RFID tag technology and the Mojix system offers a potential solution to the identification and
location of containers issues in intermodal facility, especially a train yard and train-to-truck
transportation.

The combination of the new ITTC/KU on-metal RFID tag technology and the Mojix system was
deployed and tested in a warehouse environment. While this initial testing focused on the suitability
of the system on a MES (manufacturing and execution system, i.e., an assembly line) and for scanning
entering and exiting a dock door, the results of this testing lead to conclusions concerning applicability
in an intermodal environment. Analysis of the results of those tests is under way. Additional
experiments are planned.

7.0 Associated Efforts

The current effort is aimed at monitoring cargo movements along a trusted corridor in association with
an integrated data-oriented methodology. This goal is being achieved by performing research and a
deployment of an associated testbed focused on rail transportation issues. A rail partner has been
identified and has agreed to participate in a field trial in the US and Mexico; the technology concepts

14

developed will be validated via deployment of this testbed. The field trial is currently planned for fall
of 2008. This effort is integrating TSSN with the TDE information for correlation between documents
and sensed environment, and integrating real-time tracking information for correlation between
documents and tracking data. The effort is standards-based, leverages the Service Oriented
Architecture (SOA), appropriate OGC efforts and web technologies. A unique partnership with
SmartPort/MARC and EDS (EDS is a subcontractor to KU/ITTC) has resulted from this effort. The
Kansas City SmartPort organization has recognized the strategic transportation position of Kansas
City. Kansas City SmartPort, through the Mid-America Regional Council (MARC), is encouraging
the development of several trade lane projects.

KC SmartPort/MARC is supporting the Cross Town Improvement Project (CTIP). The goal of CTIP
is to build a database application that supports basic rail and truck interchange information needs in
Kansas City. This capability will allow users to view all equipment available for return to the dray’s
origin terminal. The aim is to enable the seamless, efficient and safe movement of legitimate
intermodal freight between facilities in and around economically vital metropolitan areas. CTIP is
also standards based and uses a web-based SOA approach.

US-DoT is supporting Electronic Freight Management (EFM) initiative activities in association with
KC SmartPort/MARC in the Kansas City area. The EFM initiative is an effort aimed at improving
data and message transmissions between supply chain partners. Their goal is to provide a mechanism
for sharing supply chain freight information that is simpler, cheaper and more efficient than traditional
EDI, enabling supply chain partners to access the information, and make it easier to customize the
flow of information between partners. EFM is also standards based and uses a web-based SOA
approach.

KC SmartPort has recognized the potential of leveraging TSSN, CTIP and EFM to positively impact
the freight movement supply chain through logistics transactions (CTIP and EFM) and field sensing
(TSSN). TSSN is the critical element with respect to security and possible visibility by appropriate
government agencies. The combined vision is shown in Figure 11.

Purchasing
Systems SAP Oracle

Other
Enterprise
Systems

Trade
Documentation

Logistics
Visibility

Member
Management

Event
Management

GPS
RFID

Chem Rad
Temp

Seal

Web Services (EFM) EDI

Secure Internet Transactions

Stakeholder
Computer
Environments

Services
Architecture

SmartPort
Applications
Environment

Field Sensing
Environment

Sensors

SensorNet Cellular

Satellite

Wireless

Wired

Internet

Other Web Services

Purchasing
Systems SAP Oracle

Other
Enterprise
Systems

Trade
Documentation

Logistics
Visibility

Member
Management

Event
Management

GPS
RFID

Chem Rad
Temp

Seal

Web Services (EFM) EDI

Secure Internet Transactions

Stakeholder
Computer
Environments

Services
Architecture

SmartPort
Applications
Environment

Field Sensing
Environment

Sensors

SensorNet Cellular

Satellite

Wireless

Wired

Internet

Other Web Services

Figure 11

The combination of these efforts has significant potential. Recognizing this potential, in June 2008,
KC SmartPort started to coordinate monthly meetings for the groups involved in TSSN, CTIP and

15

EFM. The goal is to create a common, open environment with low entry barriers to enable broader
access by stakeholders while contributing a venue to commercialization. The KU/ITTC and EDS
teams are supporting the interactions between these efforts to realize the vision shown in Figure 11.
This activity will ensure issues associated with security and possible visibility by appropriate
government agencies are considered.

8.0 Project Timeline

Figure 12 is the current project time line. The field trial is target for completion by then end of 2008.
The efforts associated with the system modeling, communications, and RFID are planned to be
completed by about April 2009 and a report describing these activities delivered by mid-June 2009.
Activities associated with SmartPort, EFM, and CTIP will continue until June 2010.

Figure 12: Project Timeline

Aug 09
0 6 12 18 24 30 36

Month

Intermodal Technology Proof of Concept and Integration
Modeling-systems engineering capability

Data integration and processing
Communications Systems

RFID applications
Interim Report

EFM/CTIP/SmartPort Activities
Final Report

Project Timeline

Aug 07 Aug 08 Aug 09

Field Trials
Completed

Project
Complete

Aug 09
0 6 12 18 24 30 36

Month

Intermodal Technology Proof of Concept and Integration
Modeling-systems engineering capability

Data integration and processing
Communications Systems

RFID applications
Interim Report

EFM/CTIP/SmartPort Activities
Final Report

Project Timeline

Aug 07 Aug 08 Aug 09

Field Trials
Completed

Project
Complete

16

9.0 References

[1] Gary Minden, Victor Frost, David Petr, Douglas Niehaus, Ed Komp, Daniel Fokum, Pradeepkumar
Mani, Andrew Boie, Satyasree Muralidharan, and James Stevens, “Phase One Report: A Unified
Architecture for SensorNet with Multiple Owners,” Technical Report ITTC-FY2008-TR-41420-06;
December 2007.

[2] Leon S. Searl, “Service Oriented Architecture for Sensor Networks Based on the Ambient
Computing Environment,” Technical Report, ITTC-FY2008-TR-41420-07, February 2008.

[3] D.T. Fokum, V.S. Frost, P. Mani, G.J. Minden, J.B. Evans, and S. Muralidharan, “A Taxonomy of
Sensor Network Architectures,” ITTC-FY2009-TR-41420-08 July 2008.

[4] Kanoun, O. and H.-R. Tränkler, Sensor technology advances and future trends. IEEE Transactions
on Instrumentation and Measurement, 2004. 53(6): p. 1497-1501.

[5] Supreetha Aroor and Daniel D. Deavours, "A Dual-Resonant Microstrip-Based UHF RFID
“Cargo” Tag," Proc. International Microwave Symposium, June 15-20, 2008, Atlanta, GA, USA.

[6] http://www.mojix.com/

10.0 Appendixes

Appendix A. Leon S. Searl, “Service Oriented Architecture for Sensor Networks Based on the
Ambient Computing Environment,” Technical Report, ITTC-FY2008-TR-41420-07, February 2008

Appendix B. D.T. Fokum, V.S. Frost, P. Mani, G.J. Minden, J.B. Evans, and S. Muralidharan, “A
Taxonomy of Sensor Network Architectures,” ITTC-FY2009-TR-41420-08 July 2008.

Appendix C. Daniel T. Fokum, Victor S. Frost, “A Survey on Methods for Broadband Internet
Access on Trains” ITTC-FY2009-TR-41420-xx July 2008.

Appendix D. Supreetha Aroor and Daniel D. Deavours, "A Dual-Resonant Microstrip-Based UHF
RFID “Cargo” Tag," Proc. International Microwave Symposium, June 15-20, 2008, Atlanta, GA, USA

Experiences from a Transportation Security
Sensor Network Field Trial

Daniel T. Fokum, Victor S. Frost, Daniel DePardo,
Martin Kuehnhausen, Angela N. Oguna,

Leon S. Searl, Edward Komp, Matthew Zeets,
Daniel D. Deavours, Joseph B. Evans,

and Gary J. Minden

ITTC-FY2009-TR-41420-11

June 2009

Copyright © 2009:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

2

CONTENTS

I Introduction 4

II System Architecture 6

II-A Trade Data Exchange 7

II-B Virtual Network Operations Center 8

II-C Mobile Rail Network 9

II-C1 Mobile Rail Network Hardware .. 9

II-C2 Mobile Rail Network Software .. 11

III Experiments 12

III-A Road Test with Trucks 12

III-B Short-haul Rail Trial 14

IV Postprocessing of Experimental Data 15

V Results 17

V-A VNOC to MRN to VNOC Interaction 18

V-B Elapsed Time from Alert Generation to AlarmReporting Service 19

V-C End-to-end Time from Event Occurrence to Decision Maker Notification 21

V-D TDE to VNOC to TDE Interaction .. . 23

V-E VNOC to TDE to VNOC Interaction .. . 25

V-F Summary of Time Statistics 26

V-G Messages by Schema Element .. . 26

V-H Message Sizes .. 27

V-I Intercommand and Interalarm Times 29

V-J HSDPA Signal Strength .. 29

VI Impact on System Modeling 30

VII Refinements Based on Preliminary Results 32

VIII Conclusion 33

Acknowledgments 33

3

References 33

L IST OF FIGURES

1 Transportation Security Sensor Network (TSSN) Architecture 7

2 Virtual Network Operations Center Architecture 8

3 TSSN Collector Node Hardware Configuration 9

4 Container Seal 11

5 Mobile Rail Network Collector Node Architecture 11

6 Partial Map of Road Test with Event Annotations 13

7 Short-haul Rail Trial Configuration 14

8 Partial Screen Shot of e-mail Message Sent During Trial 15

9 LogParser Framework Showing Message Couples and Transmit/receive Pairs 16

10 Request/response and Network Times from VNOC→ MRN → VNOC 19

11 Processing Times at MRN 19

12 Sequence Diagram with Messages Involved in Decision MakerNotification 20

13 Elapsed Time from Alert Generation to VNOC AlarmReportingService 21

14 Elapsed Time from Event Occurrence to Alert Generation 22

15 Time Taken to Deliver SMS Messages for All Carriers 23

16 Request/response and Network Times from TDE→ VNOC → TDE 24

17 Processing Times at VNOC 24

18 Request/response and Network Times from VNOC→ TDE → VNOC 25

19 Processing Times at TDE 25

20 Component Interactions in the TSSN 27

21 Intercommand and Interalarm Times at MRN 29

22 HSDPA Signal Strength versus Time 30

23 HSDPA Signal Strength and Geographical Location 31

L IST OF TABLES

I Summary of Time Taken to Deliver SMS Messages 23

II Summary of Time Statistics 26

III Number of Messages Generated by Schema Element 28

IV Summary of Message Size Statistics 28

4

Abstract

Cargo shipments are subject to hijack, theft, or tampering.Furthermore, cargo shipments are at

risk of being used to transport contraband, potentially resulting in huge fines to shippers. We seek to

mitigate these risks through development of a Transportation Security Sensor Network (TSSN) based on

open software systems and Service Oriented Architecture (SOA) principles. The TSSN is composed

of three geographically distributed components: the Mobile Rail Network (MRN), Virtual Network

Operations Center (VNOC), and the Trade Data Exchange (TDE). Using commercial off-the-shelf (COTS)

sensors, the TSSN is able to detect events and report those relevant to appropriate decision makers. Two

experiments have been conducted to assess the TSSN’s suitability for monitoring rail-borne cargo. Log

files were collected from these experiments and postprocessed. In this paper we present empirical results

on the interaction between various components of the TSSN. These results show that the TSSN can be

used to monitor rail-borne cargo. We also discuss some of theresearch issues that must be addressed

before the TSSN can be deployed.

Index Terms

Service oriented architecture, Mobile Rail Network, TradeData Exchange, Virtual Network Opera-

tions Center

I. I NTRODUCTION

In 2006 the FBI estimated that cargo theft cost the US economy between 15 and 30 billion dollars per

year [1]. Cargo theft affects originators, shippers, and receivers as follows: originators need a reliable

supply chain in order to stay afloat, but cargo thefts adversely affect the reliability of the supply chain

(A receiver’s ability to receive goods in a timely manner affects the originator.). Shippers, on the other

hand, hold liability and insurance costs for shipments thus, they would like to maintain low costs due to

cargo theft. Finally, receivers are impacted by out-of-stock and scheduling issues due to cargo theft. Most

non-bulk cargo travels in shipping containers. Container transport is characterized by complex interactions

between shipping companies, industries, and liability regimes [2]. Stakeholders (originators, shippers, and

receivers) are looking for a higher degree of visibility, accountability, efficiency, and security in complex

container transport chains. Deficiencies in the container transport chain expose the system to attacks

such as the Trojan horse (the commandeering of a legitimate trading identity to ship an illegitimate or

dangerous consignment), hijack, or the theft of goods. Insufficiencies in these areas can be overcome by

creating secure trade lanes (or trusted corridors), especially at intermodal points, for example, at rail/truck

transitions. Research and development is underway to realize the vision of trusted corridors.

5

The work described here focuses on: advanced communications, networking, and information technol-

ogy applied to creating trusted corridors. The objective of the research is to provide the basis needed

to improve the efficiency and security of trade lanes by combining real-time tracking and associated

sensor information with shipment information. One crucialresearch question that must be answered in

order to attain this objective is how to create technologiesthat will allow continuous monitoring of

containers by leveraging communications networks, sensors as well as trade and logistics data within an

environment composed of multiple enterprises, owners, andoperators of the infrastructure. The resulting

technologies must be open and easy to use, enabling small andmedium sized enterprises (SMEs) to

obtain the associated economic and security benefits.

To achieve improved efficiency and security of trade lanes, wehave developed a Transportation Security

Sensor Network (TSSN), based on Service Oriented Architecture (SOA) [3] principles, for monitoring

the integrity of rail-borne cargo shipments. The TSSN is composed of a Trade Data Exchange (TDE) [4],

Virtual Network Operations Center (VNOC), and Mobile Rail Network (MRN). The functions of each

of these components are discussed in greater detail in Section II. The TSSN detects events and reports

those important to decision makers using commodity networks. For the TSSN to be deployed we need

to understand the timeliness of the system; however, we do not know a priori how the TSSN would

perform due to the unknown execution time of SOA-based programs ([5] and [6]), unpredictable packet

latency on commodity networks, and the slow and potentiallyunreliable nature of SMS (Short Message

Service) [7] for alarm notification. Thus, we have carried out two experiments to characterize the TSSN

system, particularly the end-to-end time between event occurrence and decision maker notification using

SMS. The data collected from these experiments will be used in models to investigate system trade-offs

and the design of communications systems and networks for monitoring rail-borne cargo.

In this paper we present a high-level description of our cargo monitoring system and experimental

results documenting the interactions between various components of the TSSN. These results indicate

that decision makers can be notified of events on the train in a timely manner using the TSSN. The rest of

this paper is laid out as follows: In Section II we present a description of the TSSN system architecture

including the components. Section II also discusses the hardware configuration used in the MRN. In

Section III we discuss two experiments conducted to assess the suitability of the TSSN system for cargo

monitoring. Section IV discusses the framework used to postprocess the log files from our experiments.

Section V presents empirical results showing the interaction between various components of the TSSN.

In Section VI we discuss how the empirical results can be used in a model to determine optimal or

near-optimal sensor placement. Section VII discusses some refinements to the TSSN architecture based

6

on preliminary results. Finally, we provide concluding remarks in Section VIII.

II. SYSTEM ARCHITECTURE

To achieve the objectives presented in Section I we have builta system called the Transportation

Security Sensor Network (TSSN). The SOA and web services used in the TSSNenable the integration

of different systems from multiple participating partners. Moreover, the use of SOA and web services

enable data to be entered once and used many times. Using commercial off-the-shelf (COTS) sensors,

the TSSN is able to detect events and report those relevant to shippers and other decision makers as

alarms. Furthermore, the TSSN supports multiple methods for notifying decision makers of alarms.

The TSSN uses open source implementations of Web service specification standards such as Apache

Axis2 [8] and OpenUDDI [9]. Axis2 is an implementation of theSimple Object Access Protocol (SOAP)

[8], where SOAP is used in Web services to exchange structuredinformation between a service provider

and a requester [10]. Universal Description Discovery Integration (UDDI), on the other hand, provides

a service directory and allows a “standard-based approach to locate and invoke a service, and manage

metadata relating to that service [10].” Support for multiple owners and users is done through use of

WS-Authorization, WS-Trust, and WS-Federation. Our current TSSN prototype uses sensors and readers

from Hi-G-Tek [11]. Moreover, the TSSN supports terrestrial communication technologies such as HSDPA

(High-Speed Downlink Packet Access) [12] and satellite communication technologies such as Iridium

[13]. The use of HSDPA and Iridium allows decision makers to be notified of alarms through SMS

(Short Message Service) and/or e-mail messages. There are costand performance benefits to using both

HSDPA and Iridium, including the following: it is cheaper andfaster to send messages over an HSDPA

link versus an Iridium link; on the other hand, a satellite link is needed as an access technology in those

parts of the countryside where an HSDPA connection is unavailable.

Since the TSSN system is currently a prototype, there is a need to gather log files that will allow for

system debugging as well as to capture metrics that can be used to evaluate system performance. Logging

is currently done at the MRN, VNOC, and TDE using Apache log4j [14]. Log4j enables “logging at

runtime without modifying the application binary [14].”

The TSSN system is composed of three major geographically distributed components: the Trade Data

Exchange (TDE), Virtual Network Operations Center (VNOC), andthe Mobile Rail Network (MRN), as

shown in Fig. 1. Each of these components is presented in greater detail in the following subsections.

7

Fig. 1. Transportation Security Sensor Network (TSSN) Architecture

A. Trade Data Exchange

The Trade Data Exchange (TDE) contains shipping data and it interconnects commercial, regulatory

and security stakeholders. The TDE is based on a “technology-neutral, standards-based, service-oriented

architecture [4].” The TDE is hosted on a server that is geographically separated from the VNOC, and it

responds to queries from the VNOC. The TDE also stores alarm messages sent by the VNOC. Finally,

the TDE sends startMonitoring, stopMonitoring, and getLocation messages to the VNOC.

In addition to the functions mentioned above, the TDE will monitor the progress of shipment and

other logistics information. The TDE captures commercial andclearance data including: the shipping

list, bill of lading, commercial invoice, Certificate of Origin (for example, NAFTA Letter), and shipper’s

export declaration. It also validates and verifies data to ensure accuracy, consistency, and completeness.

The TDE will monitor the progress of the documentation and notify responsible parties when errors or

incompleteness pose the threat of delaying a shipment. Finally, the TDE will also forward notification to

the customs broker to request verification of the trade origination documents. The customs broker accesses

the TDE via the same portal to review and verify the trade documentation. The TDE will also allow for

collaboration between participating shippers, third-party logistics providers, carriers and customs brokers

to define and document business requirements and risk assessment requirements.

8

Fig. 2. Virtual Network Operations Center Architecture

B. Virtual Network Operations Center

The Virtual Network Operations Center (VNOC) is the shipper’s interface to clients and services that

are outside the shipper’s network—the TDE. The VNOC is also the central decision and connection point

for all of a shipper’s MRNs. The VNOC performs the following functions:

• Receives messages from the MRN.

• Obtains event-associated cargo information from the TradeData Exchange (TDE).

• Makes decisions (using rules) on which MRN alarms are ignored or forwarded to decision makers,

for example, a low battery alarm is sent to technical staff while an open/close event is sent to

decision makers. These decisions are made using a complex event processor, Esper1 [15], which

takes into account shipping information as well as data (forexample, geographical location) from

current and past MRN alarms.

• Combines cargo information with an MRN alarm to form a VNOC alarm message that is sent (by

SMS and/or e-mail) to decision makers.

1Esper was chosen because of the flexibility that it offers in defining rules. Furthermore, Esper was designed to operate on

a stream of events, such as the set of incoming alarms from the MRN, andit has a rich syntax for specifying the relationship

between elements of the input stream.

9

Fig. 3. TSSN Collector Node Hardware Configuration

• Forwards startMonitoring, stopMonitoring and getLocationinstructions from a TDE client to the

TSSN collector node.

Fig. 2 summarizes the VNOC and its components.

C. Mobile Rail Network

1) Mobile Rail Network Hardware:The MRN subsystem hardware consists of a set of wireless

shipping container security seals and a TSSN collector node. Thecollector node is composed of two

major sections: an electronics suite mounted in the locomotive cab and a remote antenna assembly that

is magnetically attached to the exterior of the locomotive.Fig. 3 summarizes the key components of the

TSSN collector node.

The electronics suite contains a power inverter, a security seal interrogation transceiver, a computing

10

platform, wireless data modems, a three-axis accelerometer, and a GPS receiver. The antenna assembly

consists of three communications antennas, a GPS receiver antenna, and a bidirectional RF amplifier. A

bundle of four 5.5 m (≈ 18 ft.) lengths of low insertion loss RF coaxial cable connect electronics suite

devices to corresponding antennas.

Powering the TSSN collector node using the available 74 V dc locomotive power posed a challenge.

The devices that comprise the node require four different dc input voltage levels, which ideally would be

provided through the use of typical dc-to-dc conversion techniques, but in the interest of quickly deploying

a proof of concept system, a 74 V dc to 120 V ac conversion was selected. Inverting the available dc

power to 120 V ac allows plug-and-play use of the ac power converters provided with individual devices.

A modified sine wave power inverter mounted in the electronicssuite enclosure supplies 250 W of ac

power capacity to the collector node.

The TSSN is designed to monitor and report security seal events including seal opened, seal closed,

tampered seal, seal armed, and low battery warnings. Processing and storage of these events is tasked

to a ruggedized notebook computer, which also serves as a portal to wireless communications resources.

The three-axis accelerometer mounted in the electronics suite is monitored by the notebook computer,

which logs movement data.

Container physical security is monitored using a system that was originally designed for tanker truck

security [11]. The interrogation transceiver communicateswith active and battery-powered wireless data

seals over a wireless network using a 916.5 MHz signal. The interrogation transceiver communicates

with the notebook computer via a serial data connection. The container seals use a secondary 125 kHz

channel for communications with handheld programming equipment. The container seals are equipped

with flexible wire lanyards that are threaded through container keeper bar lock hasps. Fig. 4 shows a

container seal with a flexible wire lanyard.

Initial tests of the security seal and reader system revealed read ranges that were not adequate for

the needs of this project. A bidirectional RF amplifier added between the interrogation transceiver and

the antenna dramatically improved system performance, resulting in typical seal read ranges of several

freight car lengths during field tests. It is understood that even with this improvement in read ranges we

will not be able to monitor an entire train with our current technology choice. Different seal and/or mesh

networking technologies would be needed for monitoring theentire length of typical cargo trains.

Communication between the MRN and the VNOC is accomplished using a HSDPA cellular data

modem. An Iridium satellite modem is also available and is intended for use in remote locations that

lack cellular network coverage. System communications using the Iridium modem are in the process of

11

Fig. 4. Container Seal

Fig. 5. Mobile Rail Network Collector Node Architecture

being implemented. The Iridium modem is a combination unit that includes a GPS receiver, which is

used to provide the MRN position information.

2) Mobile Rail Network Software:The MRN software consists of a SensorNode service, an Alarm-

Processor service, and a Communications service. The SensorNode service finds and monitors sensors

which have been assigned to its control. The SensorNode service manages several sensor software plug-

12

ins, for example, a seal interrogation transceiver plug-inand a GPS device plug-in, that do all the work

on behalf of the SensorNode service. During typical operation each container seal listens for interrogation

command signals at three second intervals. The interrogation transceiver also queries the seals periodically

(This took place every two minutes in these experiments.). Inthe event of a seal being opened/closed

or tampered with, the seal immediately transmits a message to the SensorNode service running on the

Collector Node. The message contains the seal event, a uniqueseal ID, and event time. The SensorNode

service passes the seal message as an alert message to the service that has subscribed for this information.

The AlarmProcessor service determines messages from the SensorNode service that require transmis-

sion to the VNOC. Alarm messages include the seal event, event time, seal ID, and train’s GPS location.

The Communications service currently logs the HSDPA signal strength. In the future we plan to build

some intelligence into the Communication service so that itcan switch between an Iridium and an HSDPA

signal. Fig. 5 shows the key software functions of the MRN.

III. E XPERIMENTS

We have conducted two experiments to assess the suitabilityof the TSSN system for cargo monitoring

as well as to collect data that would be used to guide the design of future cargo monitoring systems. In

this section we present the experimental objectives and set-up, data collected during the tests, and issues

that were encountered during the tests.

A. Road Test with Trucks

The first experiment was conducted on the roads around Lawrence,Kansas to determine the following:

• Approximate communication distances between the Hi-G-Teksensors and the readers.

• Processing time through the system, including MRN, VNOC, andTDE, to SMS/e-mail messages to

decision makers.

• Correct information is reported by the TSSN collector node including valid GPS coordinates.

The test was carried out using two pickup trucks, one of which had the locomotive cab electronics

suite in the truck bed (The external antenna assembly was mounted to the tailgate of this truck.), while

the other had a laptop that was used to control and monitor theVNOC. The VNOC was located in

Lawrence, Kansas while the TDE was located in Overland Park, Kansas. Both trucks also had seals in

their truck cabins so that seal open and close events could besimulated and reported. The seals were

opened and closed at selected intersections along the test route that were easily identifiable on Google

Maps [16].

13

Fig. 6. Partial Map of Road Test with Event Annotations

Fig. 6 shows a trace of our route and the events overlaid on Google Maps. The pink tear drops indicate

an open event, green tear drops a close event, pink tacks indicate a GPS lost signal, green tacks indicate

where the GPS signal was regained, a red exclamation sign indicates where HSDPA connectivity was

lost, and a green arrow indicates where HSDPA connectivity was regained. In summary, the road tests

went well because open and close events were propagated correctly through our system. Furthermore,

the system was able to recover from a dropped HSDPA connection.

Our test results indicate that all open and close events werereported as expected. The sensors and

readers performed reliably. However, it is worth noting that the reader failed to read the sensors when the

trucks were over 400 m apart on a hilly road. Finally, in our experiment we were able to combine sensor

and shipment information to present reports to distributeddecision makers. As a result, we conclude that

the TSSN prototype worked in a mobile scenario.

During this experiment, system time on the TSSN Collector Node was maintained using the default

mechanism in the Linux kernel (Even though we had a GPS receiver in the MRN, it was not used to

maintain system time.). Analysis of event logs generated onthe MRN and VNOC revealed that there

was a significant amount of clock drift on the TSSN Collector Node during this relatively short (about

2.5 hours) trial. The time recorded at the VNOC for receipt of amessage, in some cases, was earlier

than the time recorded at the TSSN Collector Node for sending themessage. Since time at the VNOC is

controlled by a Network Time Protocol (NTP) [17] server, we conclude that the clock drift is occurring

on the TSSN Collector Node. Correcting, or at least minimizing,the clock drift at the TSSN Collector

Node is critical for evaluating overall TSSN performance, since the Collector Node is responsible for

14

Fig. 7. Short-haul Rail Trial Configuration

establishing the time at which seal events occur. In the nextversion of the TSSN we have resolved the

clock drift problem through a combination of software and hardware. It should be noted that in spite of

the clock drift in the TSSN collector node we were able to correctfor certain delays in our data. We

discuss these corrections in Section V.

B. Short-haul Rail Trial

Our next experiment was carried on a train making an approximately 35 km (22 miles) trip from an

intermodal facility to a rail yard. Our objectives in this experiment were the following:

• To determine the performance of the TSSN system when detecting events on intermodal containers

in a rail environment.

• To investigate if decision makers could be informed of events in a timely manner using SMS

messages and e-mails.

• To collect data that will be used in a model to investigate system trade-offs and the design of

communications systems and networks for monitoring rail-borne cargo.

Fig. 7 shows the configuration used in the short-haul rail trial. In this experiment the VNOC was

located in Lawrence, Kansas, the TDE was located in Overland Park, Kansas, while the TSSN collector

15

Fig. 8. Partial Screen Shot of e-mail Message Sent During Trial

node was placed in a locomotive and used to monitor five seals placed on intermodal shipping containers

and in the locomotive.

During the experiment, events were simulated by breaking and closing a seal (sensor) that was kept in

the locomotive. The VNOC reported these events to decision makers using e-mail and SMS messages.

Fig. 8 shows the content of one of the e-mail messages that was sent to the decision makers.

In Fig. 8, the sensor ID, latitude and longitude data, and event type come from the MRN, while the

shipment data comes from the TDE. The VNOC combines these piecesof information into an e-mail

message that also includes a link to Google Maps, so that the exact location of the incident can be

visualized. The ultimate value of the TSSN is getting this type ofmessage to the decision maker.

During the test the reader lost communication with the sealsfor a brief period along the route. Future

experiments will determine whether or not this loss of connectivity was due to RF interference. In spite

of this, the experiment was a success as events were detectedby the seals and reported to decision makers

using both e-mail and SMS messages. Extensive log files were collected during the test and they are

being postprocessed to obtain data on TSSN system performance.

IV. POSTPROCESSING OFEXPERIMENTAL DATA

In this section we discuss the framework for postprocessingthe results of our experiments. Following

the short-haul rail trial we collected log files from the VNOC,MRN, and TDE. These log files contain

data on message sizes, timestamps, event type, message type(incoming/outgoing) amongst other data

elements. Our objective was to postprocess these files to evaluate the performance of the TSSN system.

16

Fig. 9. LogParser Framework Showing Message Couples and Transmit/receive Pairs

Postprocessing of log files from geographically distributed computers was accomplished using a Java

library (LogParser) that was developed in-house. First, the library read in all available information in

each log file including time, message size, from and to addresses, as well as the original SOAP message.

Information from all (MRN, VNOC, and TDE) of the log files in an experiment was combined into a

single collection of log entries. We expect that every message transmitted in the TSSN should result in

at least two log entries—a transmit log entry (at the originating entity) and a received log entry (at the

receiving entity). The LogParser library identified log entries as:

• Transmit/receive pairs, that is, the outgoing and incominglog entries with the same SOAP WS-

Addressing (The SOAP WS-Addressing specification “provides transport-neutral mechanisms to

address Web services and messages [18].”), and

• Couples, that is, SOAP request/response message pairs.

Fig. 9 shows the relationship between log entry couples and transmit/receive pairs. Suppose the TDE

sends a message to the VNOC requesting the current MRN location. The circled “1” and “2” in Fig. 9

denote the log entries representing message transmission from the TDE and receipt of this same message

at the VNOC. Couples are a bit more involved; much of the communication between client/server is

based on a request/response model. As a result, there are tworelated messages which contain additional

information to establish their relationship:

17

1) REQUEST: from client to server asking for something; and

2) RESPONSE: from server back to the client with the response.

Log entry couples are marked by the records for the outgoing request and response messages. Conse-

quently, the circled “3” and “5” in Fig. 9 constitute the log entry couple for the VNOC forwarding the

location request message to the MRN and the MRN’s origination of a response respectively. Using the

receive pairs for records “3” and “5”, we can also identify entries “4” and “6.”

With this framework, programs were written against the log entry collection to extract the number of

messages sent by each service, request/response time for messages, processing time at either the MRN,

VNOC, or TDE, the time that messages were carried by the network, and message sizes. Additional

information, for example, latitude, longitude, sensor IDs, and event timestamps, could be extracted from

the SOAP message using XPath expressions. XML Path language (XPath) allows for addressing “parts

of an XML document [19].” XPath also provides “basic facilities for manipulation of strings, numbers

and booleans [19].”

V. RESULTS

In this section we discuss the results of the TSSN system evaluation based on the short-haul rail trial.

One objective of our experiments was to determine whether decision makers could be notified of events

in a timely manner. Due to significant clock drift in the TSSN collector node, we can only present an

estimate of the time taken for an event report to travel from the MRN to the VNOC. However, exact

time values can be computed for other TSSN component interactions.

In addition, we present time statistics on interactions between the TSSN component subsystems. These

statistics hint at how the aggregate time from event detection to decision maker notification is distributed

among the various services and communication links in the TSSN.With this information we will be able

to guide system refinements to further reduce the overall time. In our analysis we present results on the

following:

• Service request processing time.This is the time between when a service receives a request and

when a response message is composed. Using Fig. 9, this time can be computed as the time difference

between log entries “5” and “4.”

• Request/response time.This is the time taken to get a response from a remote service, including

the processing time. Using Fig. 9, this time can be computed asthe time difference between log

entries “6” and “3.”

18

• Network time. This is the time taken to get a response from a remote service, excluding the

processing time. This can be computed by subtracting the service request processing time from the

request/response time.

Our time analysis in this section will examine request/response messages going from the VNOC to the

MRN back to the VNOC, from the TDE to the VNOC back to the TDE, and from the VNOC to the

TDE back to the VNOC.

A second objective for the short-haul rail trial was to confirmthat messages were being passed correctly

between the different components of the TSSN. As a result, we provide a summary of the messages

exchanged between different parts of the TSSN system.

The last objective of the short-haul rail trial was to collectdata that will be used in a model [20] to

design systems for monitoring rail-borne cargo and determine trade-offs. Message sizes and interevent

times are two components of this model. As a result, we present a table summarizing the message size2

statistics between different components of the TSSN. We also present histograms summarizing message

intercommand and interalarm times at the MRN. Both of these times are needed, in conjunction with

message sizes, to compute the cost of reporting messages (Both the alarms and commands were simulated

in our experiment; deployed systems will show different statistics for intercommand and interalarm times.).

Finally, this section also presents results showing how HSDPAsignal strength varied with time during

the short-haul test. The HSDPA signal strength results may be used to help determine when to switch

between HSDPA and Iridium.

A. VNOC to MRN to VNOC Interaction

The statistics on VNOC to MRN to VNOC interaction allow us to draw conclusions on the time taken

to complete one component of processing startMonitoring, stopMonitoring, and getLocation messages. In

addition, these statistics allow us to gain insight into theone-way network delay from the TSSN collector

node to the VNOC—a delay that is one component of sending an event report from the MRN to the

VNOC. Fig. 10a is a histogram showing the request/response time for messages going from the VNOC to

the MRN and back to the VNOC. Using Figs. 10b and 11 we cannot conclude that the request/response

time is dominated by the processing time. In this instance the request/response time appears almost

equally split between the processing and network times. Note that in Fig. 11 our minimum is0 within

the resolution of the experiment.

2It should be noted that message sizes can be computeda priori; however, the distribution of these messages cannot be

determined beforehand.

19

0 2.5 5 7.5 10 12.5
0

5

10

15

Median = 3.95
Mean = 4.39
Std. Dev = 2.40
Min. = 0.90
Max. = 10.96

Request/response Time (s)

C
ou

nt

(a) Request/response times

0 1 2 3 4 5 6 7
0

2

4

6

8

10

Median = 3.88
Mean = 3.77
Std. Dev = 1.24
Min. = 0.89
Max. = 5.79

Network Time (s)

C
ou

nt

(b) Network times

Fig. 10. Request/response and Network Times from VNOC→ MRN → VNOC

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

Median = 0.01
Mean = 0.61
Std. Dev = 1.69
Min. = 0.00
Max. = 5.21

Processing Time (s)

C
ou

nt

Fig. 11. Processing Times at MRN

Due to clock drift in the TSSN collector node, we are unable to obtain statistics on the one-way

network delay for sending an MRNAlarm message—which indicates an event at a sensor—to the VNOC.

However, it is reasonable to assume that the MRN↔ VNOC links are symmetric thus, the one-way delay

from the MRN to the VNOC is approximately 1.89 s.

B. Elapsed Time from Alert Generation to AlarmReporting Service

The time taken for the TSSN to process an event report is an important metric in evaluating this

system. Furthermore, demonstrating that this metric is of the order of several seconds can help convince

decision makers of the TSSN’s utility. Due to clock drift in the MRN we cannot compute an exact value

20

Fig. 12. Sequence Diagram with Messages Involved in Decision Maker Notification

for time taken for an MRNAlarm to go from the MRN to the VNOC. However, we can use the 1.89 s

estimate from the previous subsection as a reasonable valuefor this network delay. Fig. 12 shows the

rest of the messages involved in notifying a decision maker of an event at a seal.

Given a system with no clock drift and an identifier that relates Alerts, MRN Alarms, and NOCAlarms,

we can easily compute the time taken to notify decision makers by subtracting the log entry timestamp

for the Alert message when it is generated at the SensorNode service from the log entry timestamp for

the NOC Alarm when it arrives at the VNOC AlarmReporting service. Unfortunately, we do not have

a unique identifier and there is clock drift in the MRN. As a result, we generated the results in this

subsection as follows: three sets were created comprising of all NOC Alarms, all MRN Alarms, and all

Alerts respectively. For each NOCAlarm, the set of MRNAlarms was scanned for a message having the

same seal ID and event timestamp without being a status message. The time difference between the log

entries for the incoming message at the VNOC AlarmProcessor and the VNOC AlarmReporting services

gives us the period taken for the VNOC AlarmProcessor to process any shipment queries, store alarms,

and transmit the message to the VNOC AlarmReporting service. To this value we add our estimated one-

way MRN Alarm network delay of 1.89 s. Next, we search the set of Alerts for a message having the

same seal ID and event timestamp without being a status message. The time difference between the log

entries for the outgoing Alert message at the MRN SensorNode service and the outgoing MRNAlarm

at the MRN AlarmProcessor service gives us the elapsed time between the two services as well as

21

2 3 4 5 6
0

20

40

60

80

100

Median = 1.97
Mean = 2.08
Std. Dev = 0.32
Min. = 1.92
Max. = 4.91

Elapsed Time (s)

C
ou

nt

Fig. 13. Elapsed Time from Alert Generation to VNOC AlarmReporting Service

the processing delay at the MRN AlarmProcessor service. This period is added to the two previously

calculated time periods.

Fig. 13 is a histogram showing the distribution of the elapsedtime from when the MRN SensorNode

generates an alert until the VNOC AlarmReporting service receives the notification. By performing this

analysis we see that on average it takes about 2 s for messagesto get from the MRN SensorNode service

to the VNOC AlarmReporting service. Thus, we conclude that the time taken to process events in the

TSSN is not an impediment to timely notification of decision makers.

C. End-to-end Time from Event Occurrence to Decision Maker Notification

An important metric for TSSN performance is the time between event occurrence until a decision

maker is notified using an SMS message. Since this time is a randomvariable, we can create other

metrics based on this time that return the probability that the TSSN can deliver notification within a

specified interval. The components of the end-to-end time include:

• Time between between event occurrence and when the MRN SensorNode service generates the

related event alert.

• Time from alert generation to the VNOC AlarmReporting service. Based on the previous subsection,

this is about 2.08 s on average, while the longest time observed was 4.91 s.

• Time taken for the VNOC AlarmReporting service to process and send an e-mail message to an

e-mail server.

• Time taken by the SMS vendor to get the message to a decision maker’s phone.

22

0 2 4 6 8 10
0

5

10

15

20

25

Median = 2.1
Mean = 2.7
Std. Dev = 1.9
Min. = 0.8
Max. = 8.8

Event Detection Time (s)

C
ou

nt

Fig. 14. Elapsed Time from Event Occurrence to Alert Generation

To overcome inaccurate clocks in the seals, we set up a lab experiment to determine the elapsed time

between event occurrence and the TSSN’s generation of the related event alert. In this experiment, a

stopwatch was started when a seal was either broken or closed; when the MRN SensorNode service

generated an event alert the stopwatch was stopped. Fig. 14 isa histogram showing the time distribution

between event occurrence and the MRN SensorNode service generating an alert. From Fig. 14 we see

that the longest observed time between event occurrence andthe MRN generating an Alert is about 8.8 s.

Furthermore, it takes about 2.7 s on average.

A second experiment was carried out to determine the elapsedtime between the VNOC AlarmReporting

service’s transmission of a VNOC alarm message and the decision maker receiving event notification.

In this experiment a client program was written to send messages to the VNOC alarm reporting service.

A stopwatch was started when the VNOC sent an alarm to a decision maker and the stopwatch was

stopped when the decision maker’s phone received an SMS message. Table I summarizes the statistics

for delivery of alarm messages for different carriers. Fig. 15 is a histogram showing the distribution of

the time taken to deliver alarm messages to decision makers.

From Table I we see that even though SMS was not designed as a real-time system, it provides excellent

notification for our purposes; since most of our messages weredelivered within a short time.

23

TABLE I

SUMMARY OF TIME TAKEN TO DELIVER SMS MESSAGES

Carrier Min./s Max./s Mean/s Median/s Std. Dev./s n

Telco 1 5.9 18.4 12.2 11.8 2.9 30

Telco 2 5.2 30.4 8.8 7.8 4.5 30

Telco 3 7.1 43.0 10.8 9.0 6.7 30

Telco 4 5.9 58.7 15.7 11.1 11.1 30

4 12 20 28 36 44 52 60
0

16

32

48

64

80

Delivery Time (s)

C
ou

nt

Median = 9.8
Mean = 11.9
Std. Dev = 7.4
Min. = 5.2
Max. = 58.7

20

69

18

6 4
1 1 1

Fig. 15. Time Taken to Deliver SMS Messages for All Carriers

Combining all of these experimental results, we see that in the longest observed case it can take just over

one minute3 to notify decision makers of events. Most of this time is spent delivering an SMS message

to the decision maker, so we conclude that the TSSN provides a mechanism for timely notification of

decision makers.

D. TDE to VNOC to TDE Interaction

The statistics on TDE to VNOC to TDE interactions allow us to drawconclusions on the time taken to

initiate and process startMonitoring, stopMonitoring, getLocation, and setAlarmSecure messages. These

messages are all forwarded to the MRN, and the VNOC returns the response that it receives from the

MRN. To the TDE, all the elapsed time from when the VNOC receivesa message from the TDE until

3This time is broken out as follows: in the longest observed times in our experiments it took approximately 8.8 s between

event occurrence and the TSSN generating an alert; 2) it took approximately 4.91 s for an alert message to go through the TSSN

until notification was sent to decision makers; and 3) it took up to 58.7 s to deliver an SMS message to decision makers.

24

0 2.5 5 7.5 10 12.5
0

2

4

6

8

10

12

Median = 3.94
Mean = 4.29
Std. Dev = 2.51
Min. = 0.34
Max. = 11.03

Request/response Time (s)

C
ou

nt

(a) Request/response times

0 1 2 3 4 5
0

10

20

30

40

Median = 0.04
Mean = 0.14
Std. Dev = 0.64
Min. = 0.00
Max. = 4.00

Network Time (s)

C
ou

nt

(b) Network times

Fig. 16. Request/response and Network Times from TDE→ VNOC → TDE

0 2.5 5 7.5 10 12.5
0

2

4

6

8

10

12

14

Median = 3.85
Mean = 4.15
Std. Dev = 2.45
Min. = 0.29
Max. = 10.98

Processing Time (s)

C
ou

nt

Fig. 17. Processing Times at VNOC

the VNOC sends a response is processing time at the VNOC, eventhough part of that time is spent

forwarding a response to the MRN and waiting for a response. Fig. 16a is a histogram showing the

request/response time distribution for messages going from the TDE to the VNOC and back to the TDE.

Using Figs. 16b and 17 we conclude that the request/response time is dominated by the processing time

at the VNOC. This conclusion is supported by the request/response time result from Section V-A, which

showed times of up to 10.96 s.

25

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35
Median = 0.07
Mean = 0.12
Std. Dev = 0.11
Min. = 0.02
Max. = 0.41

Request/response Time (s)

C
ou

nt

(a) Request/response times

0 0.025 0.05 0.075 0.1
0

5

10

15

20

25

30

35

Median = 0.07
Mean = 0.05
Std. Dev = 0.02
Min. = 0.01
Max. = 0.08

Network Time (s)

C
ou

nt

(b) Network times

Fig. 18. Request/response and Network Times from VNOC→ TDE → VNOC

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70
Median = 0.01
Mean = 0.07
Std. Dev = 0.10
Min. = 0.01
Max. = 0.38

Processing Time (s)

C
ou

nt

Fig. 19. Processing Times at TDE

E. VNOC to TDE to VNOC Interaction

The statistics on VNOC to TDE to VNOC interactions allow us to draw conclusions on the time taken

for the TDE to store alarm messages and execute shipment queries. Both of these actions are carried out

when the VNOC alarm processor service is about to send an alarm to the VNOC alarm reporting service.

Fig. 18a is a histogram showing the request/response times for messages going from the VNOC to the

TDE and back to the VNOC. From Fig. 18a we conclude that on averageit takes approximately 0.12 s

to either store an alarm message or get a shipment query response. Using Figs. 18b and 19 we find that

the request/response time is dominated by the processing time, just as we found in Section V-D.

26

TABLE II

SUMMARY OF TIME STATISTICS

Description Min./s Max./s Mean/s Median/s Std. Dev./s

Request/response times from VNOC→ MRN → VNOC 0.90 10.96 4.39 3.95 2.40

Network times from VNOC→ MRN → VNOC 0.89 5.79 3.77 3.88 1.24

Processing times from VNOC→ MRN → VNOC 0.00 5.21 0.61 0.01 1.69

Event occurrence to alert generation 0.81 8.75 2.70 2.13 1.86

Alert generation to VNOC AlarmReporting Service 1.92 4.91 2.08 1.97 0.32

Request/response times from TDE→ VNOC → TDE 0.34 11.03 4.29 3.94 2.51

Network times from TDE→ VNOC → TDE 0.00 4.00 0.14 0.04 0.64

Processing times from TDE→ VNOC → TDE 0.29 10.98 4.15 3.85 2.45

Request/response times from VNOC→ TDE → VNOC 0.02 0.41 0.12 0.07 0.11

Network times from VNOC→ TDE → VNOC 0.01 0.08 0.05 0.07 0.02

Processing times from VNOC→ TDE → VNOC 0.01 0.38 0.07 0.01 0.10

F. Summary of Time Statistics

Table II summarizes the statistics shown in each of the time histograms in this section. Note that there

are no results for the MRN to VNOC to MRN interaction. This is due to two reasons: first, clock drift

in the MRN prevents us from computing a one-way network delay. Secondly, the MRN only generates

response messages. There are no request messages originating from the MRN that could be used in a

log entry couple to calculate request/response or processing times.

G. Messages by Schema Element

One objective of our postprocessing was to determine if messages were being passed correctly between

the TSSN components. Fig. 20 shows the messages exchanged by various components of the TSSN

system. From Table III we see that all messages are logged correctly in the log files. For example,

the VNOC sent 63 shipment query requests (TDEService/ShipmentQuery) to the TDE and received 63

shipment query responses (TDEService/ShipmentQueryResponse). Similarly, the VNOC sent 33 validated

alarms to the TDE and got 33 validated alarm responses from theTDE. From Table III we also see that

some of the messages are being filtered by the system. For example, the MRN SensorNode service reports

546 alerts to the MRN Alarm Processor. Only 131 alerts met the MRN subsystem’s rules and these were

forwarded to the VNOC’s Alarm Processor. All of the alarms received by the VNOC alarm processor

met the necessary rules so that they could be forwarded to decision makers as SMS or e-mail messages.

27

Fig. 20. Component Interactions in the TSSN

H. Message Sizes

A model [20] is under development to determine system trade-offs as well as optimal or near-optimal

sensor locations when using a rail-borne cargo monitoring system. The cost of transmitting a message from

the train to an operations center is one component of this model. This transmission cost, in turn, depends

on the average message length transmitted from the train andthe frequency at which these messages

are generated. This section presents results on message sizes between the MRN and the VNOC, while

Section V-I presents results on intercommand and interalarmtimes for messages exchanged between the

MRN and the VNOC.

Table IV summarizes the message size statistics for all the messages exchanged in the TSSN. Additional

analysis (which is omitted here) showed that the message size groupings typically coincided with the

number of message types exchanged on each link. For example,the MRN sent three different message

types to the VNOC, and review of message size data between theMRN and VNOC confirmed three

distinct message types.

28

TABLE III

NUMBER OF MESSAGESGENERATED BY SCHEMA ELEMENT

Schema Element Nbr of Messages

Subscribe 1

SubscribeResponse 1

ns:startMonitoring 1

ns:stopMonitoring 2

ns:setAlarmSecure 4

tssn:Status 8

ns:getLocation 30

tns:Location 30

tns:SetMode 1

mrnsnx:StartMonitorSensors 2

mrnsnx:StopMonitorSensors 2

mrnsnx:SensorNodeStatus 4

urn:startMonitoringServiceException 1

mrnsnx:getLocation 30

mrnsnx:Location 30

ns:SetMonitoringState 4

sas:Alert 546

mrnpub:MRN Alarm 131

TDEService/ValidatedAlarm 33

TDEService/ValidatedAlarmResponse 33

TDEService/ShipmentQuery 63

TDEService/ShipmentQueryResponse 63

nocpub:NOCAlarm 131

TABLE IV

SUMMARY OF MESSAGESIZE STATISTICS

Description Min./bytes Max./bytes Mean/bytes Median/bytes Std. Dev./bytes

TDE → VNOC 846 1278 874.7 848 96.8

VNOC → TDE 968 975 971.5 971 2.6

VNOC → MRN 650 1036 690.8 650 101.5

MRN → VNOC 799 1560 1419.2 1536 237.1

29

0 1000 2000 3000 4000 5000
0

5

10

15

20

Median = 555.13
Mean = 517.53
Std. Dev = 662.83
Min. = 23.86
Max. = 3965.67

Intercommand Time (s)

C
ou

nt

(a) Intercommand

0 500 1000 1500 2000 2500
0

25

50

75

100

125

150

Median = 9.70
Mean = 131.37
Std. Dev = 342.12
Min. = 1.08
Max. = 2363.20

Interalarm Time (s)

C
ou

nt

(b) Interalarm

Fig. 21. Intercommand and Interalarm Times at MRN

I. Intercommand and Interalarm Times

The data collected from these experiments will be used in a model to determine system trade-offs when

using a rail-borne cargo monitoring system. Communicationcosts in this model depend on the frequency

(interalarm time) with which messages need to be reported, the mode of communications, as well as the

message length in bytes. The intercommand time is included inthis analysis because incoming messages

may also be billed. Figs. 21a and 21b summarize the inter-command and inter-alarm times respectively

at the MRN. The data presented here can be used as a starting point for adaptive MRN Communications

service algorithms that “call” the VNOC periodically.

J. HSDPA Signal Strength

In later iterations of the TSSN we plan to switch between HSDPA andIridium signals. HSDPA signal

strength traces can help us tune algorithms that determine when to make the signal switch. Work still

needs to be done to develop these algorithms. In this subsection we show how HSDPA signal strength

varied with time during the short-haul rail trial.

During the short-haul rail trial, HSDPA was used to transmit messages from the MRN to the VNOC.

As a result, the HSDPA signal strength was also recorded in theMRN log file. The LogParser library

was used to extract this information, and HSDPA signal strength was plotted against the number of

seconds from the start of the experiment in Fig. 22. The signal strength trace shown in Fig. 22 reflects

our observations from the trial. During the first 80 minutes ofthe experiment the HSDPA signal trace

remains fairly constant, since the train is stationary. Once the train begins to move the HSDPA signal

30

0 100 200 300
0

5

10

15

20

25

30

35

Time/ Minutes Since 06:25:20

S
ig

na
l S

tr
en

gt
h/

 U
ni

ts

Fig. 22. HSDPA Signal Strength versus Time

strength varies with time. We notice two other flat portions onthe trace at about 220 and 240 minutes. As

before, the train was stationary at these points. Fig. 23 shows how the HSDPA signal strength varied with

location over the duration of our experiment. The placemarks(colored tear drops) in Fig. 23 represent

the HSDPA signal strength, which is given in a 0–30 scale with 0representing no signal and 30 showing

maximum signal strength. A red placemark denotes a signal strength of less than 10, a yellow placemark

denotes a signal strength between 10 and 14, a blue placemarkdenotes signal strength between 15 and

19, a green placemark denotes a signal strength between 20 and 24, and a purple placemark denotes a

signal strength of over 25.

VI. I MPACT ON SYSTEM MODELING

New models are needed to characterize rail-based cargo monitoring systems. These models can be

applied, along with optimization theory, to determine system trade-offs when monitoring cargo in motion.

The models can also be used to find the best locations for sensorsin a rail-based sensor network as well

as to guide the design of future cargo monitoring systems. InSection V we presented experimental

results from a short-haul rail trial of the TSSN. There is ongoingwork [20] to determine optimal or

near-optimal placement of sensors for monitoring rail-borne cargo. Our objective in this research is to

develop extensible models that can give the best (cheapest)system design while preserving the shipper’s

desired level of security. Given a set,C, of containers to be placed on a train, a set,L, of possible

locations for the containers on the train, a set,S, of sensors, and a set,R, of network elements, we can

create a mapping,MC , using Lai et al.’s [21] approach, that maps containers to locations on a train.

We can also create mappings,MR, and MS , that map network elements and sensors, respectively, to

31

Fig. 23. HSDPA Signal Strength and Geographical Location

locations on the train; alternatively,MS may map sensors to containers. Given these mappings we can

create a function,f , that takes as input the sets of containers, locations, sensors, and network elements,

as well as the mappings described above and returns a system cost metric. The goal of this research

is to develop such a function, use the results from Section V inmaking the model more realistic, and

determine if this function can be minimized in polynomial time.

To this end two models have been built to compute the cost metric of a cargo monitoring system.

The models have the following general format: Given a list of parameter valuesp1, p2, . . . , pn (such

as the container values, savings resulting from detecting events at containers, request/response times

32

from VNOC → MRN → VNOC, and message sizes on the VNOC↔ MRN link), we define variables

x1, x2, . . . , xn (such as a variable that indicates if a sensor is placed on a certain container). We also

define a functionfo(x̄; p̄) that depends on the parameters and variables to return the system cost. (One

of the components offo includes the cost of transmitting event reports from the MRNto the VNOC.)

Our goal in this research is to minimize this objective function subject to the constraints4 specified by

the system designer. These models will be used to determine system trade-offs, such as a rail-mounted

or trackside deployment of network elements.

VII. R EFINEMENTSBASED ON PRELIMINARY RESULTS

In preparation for additional rail trials, a GPS receiver change has been implemented and other MRN

hardware system upgrades have been planned. To avoid conflicts between GPS receiver operation and

Iridium modem use, a high performance GPS receiver has been installed on the External Antenna

Assembly to replace the Iridium modem GPS functionality. The time drift issue mentioned in Section III-A

will be resolved by using the high performance GPS receiver toget high quality local time. Pulse per

second (PPS) output from the GPS receiver will be used as an input to the NTP server running on the

TSSN collector node.

In addition to a new GPS receiver, proposed enhancements to the MRN hardware prototype include

moving communications devices from the Electronics Suite to the External Antenna Assembly. The current

hardware configuration suffers from the insertion loss of thelong RF cable connections. Collector node

interconnections between the locomotive cab and the external assembly would change from an RF signal

connection to a DC power and data bus connection for each device. Moving the wireless modems and

interrogation transceiver as close as possible to the corresponding antennas is expected to provide very

significant performance improvements.

Postprocessing of the log files also indicated that a unique identifier—perhaps composed of a timestamp

and counter—is needed in the Alert, MRNAlarm, and NOCAlarm messages to trace an Alert message

through the TSSN. This identifier can also be used in the future to locate MRN Alarm messages that

need to be retransmitted to the VNOC following a loss of connectivity. Finally, the identifier can be used

to mark previously processed messages so that the VNOC does not process the same message more than

once.

4Some of these constraints specify valid placements for sensors and associated communications infrastructure. The constraints

might also require that events at certain containers be detected with a certain probability and reported within a given time interval

with specified probability.

33

Prior to deploying the TSSN system, further research is needed toaddress issues including:

• Communications infrastructure for whole train monitoring.

• Backhaul communications, including choosing when to switch between HSDPA and Iridium con-

nections.

• Development and use of a model to seek trade-offs when monitoring rail-borne cargo.

The desired result of our research is a standards-based open environment for cargo monitoring with low

entry barriers to enable broader access by stakeholders while showing a path to commercialization.

VIII. C ONCLUSION

In this paper we have presented results from preliminary fieldtrials of the TSSN (Transportation

Security Sensor Network). Within the TSSN framework we have successfully combined sensor and

shipment information to provide event notification to distributed decision makers. This paper has shown

results documenting the interactions between the different components of the TSSN. Based on our

experiments and evaluations we believe that the TSSN is viable for monitoring rail-borne cargo. These

beliefs are based on the following: first, we have successfully demonstrated that alert messages can be

sent from a moving train to geographically distributed decision makers using either SMS or e-mail.

Second, based on the experiments reported here, we are able todetect events and notify decision makers

in just over one minute. Thus, we conclude that the TSSN provides amechanism for timely notification

of decision makers.

ACKNOWLEDGMENTS

The authors would like to thank Ann Francis and Daniel Deavoursfor reading and commenting on

previous versions of this paper. We would also like to acknowledge the support of EDS, an HP company,

one of our partners on this project. Finally, we like to thank Larry Sackman of EDS, an HP company,

for assisting with the short-haul rail trial.

REFERENCES

[1] Federal Bureau of Investigation. (2006, July 21) Cargo Theft’sHigh Cost. Headline. Federal Bureau of Investigation.

[Online]. Available: http://www.fbi.gov/page2/july06/cargotheft072106.htm

[2] European Conference of Ministers of Transport,Container Transport Security Across Modes. Paris, France: Organisation

for Economic Co-operation and Development, 2005.

[3] OASIS. (2006, Oct 12) Reference Model for Service Oriented Architecture 1.0. OASIS Standard. [Online]. Available:

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

34

[4] KC SmartPort. (2008, Nov 10) Trade Data Exchange—Nothing short of a logistics revolution. Digital magazine. [Online].

Available: http://www.joc-digital.com/joc/20081110/?pg=29

[5] J. Martin et al., “Web services: Promises and compromises,”Queue, vol. 1, no. 1, pp. 48–58, Mar 2003.

[6] H. Saiedian and S. Mulkey, “Performance evaluation of eventing web services in real-time applications,”Communications

Magazine, IEEE, vol. 46, no. 3, pp. 106–111, Mar 2008.

[7] J. Brown et al., “SMS: The Short Message Service,”Computer, vol. 40, no. 12, pp. 106–110, Dec. 2007.

[8] The Apache Software Foundation. (2008, Aug 24) Apache Axis2.Project documentation. The Apache Software

Foundation. [Online]. Available: http://ws.apache.org/axis2/

[9] OpenUDDI. (2008, Mar 7) Open UDDI. Project webpage. [Online]. Available: http://openuddi.sourceforge.net/

[10] D. Griffin and D. Pesch, “A Survey on Web Services in Telecommunications,”Communications Magazine, IEEE, vol. 45,

no. 7, pp. 28–35, July 2007.

[11] Hi-G-Tek. (2009, Mar 17) Hi-G-Tek—Company. Corporate website. Hi-G-Tek. [Online]. Available: http://www.higtek.com/

[12] D. Mulvey, “HSPA,” Communications Engineer, vol. 5, no. 1, pp. 38–41, February-March 2007.

[13] C. E. Fossaet al., “An overview of the IRIDIUM (R) low Earth orbit (LEO) satellite system,”in Proc. IEEE 1998 National

Aerospace and Electronics Conference, (NAECON 1998), Dayton, OH, USA, Jul 1998, pp. 152–159.

[14] The Apache Software Foundation. (2007, Sep 1) Apache log4j. Project documentation. The Apache Software Foundation.

[Online]. Available: http://logging.apache.org/log4j/

[15] EsperTech. (2009, Feb 11) Esper – Complex Event Processing. Project documentation. EsperTech. [Online]. Available:

http://esper.codehaus.org/

[16] Google. (2009, May 6) Google Maps. Web mapping service. [Online]. Available: http://maps.google.com

[17] D. L. Mills, “Internet Time Synchronization: the Network Time Protocol,” Communications, IEEE Transactions on, vol. 39,

no. 10, pp. 1482–1493, Oct 1991.

[18] D. Box et al. (2004, Aug 10) Web Services Addressing (WS-Addressing). Member submission. W3C. [Online]. Available:

http://www.w3.org/Submission/ws-addressing/

[19] J. Clark and S. DeRose. (1999, Nov 16) XML Path Language (XPath). W3C Recommendation. W3C. [Online]. Available:

http://www.w3.org/TR/xpath

[20] D. T. Fokum, “Optimal Communications Systems and Network Designfor Cargo Monitoring,” To appear in Proc. Tenth

Workshop Mobile Computing Systems and Applications (HOTMOBILE 2009). Santa Cruz, CA: ACM Press, Feb 2009.

[21] Y.-C. Lai et al., “Optimizing the Aerodynamic Efficiency of Intermodal Freight Trains,” Transportation Research Part E:

Logistics and Transportation Review, vol. 44, no. 5, pp. 820–834, Sep 2008.

Summary of Status:
A Unified Architecture for SensorNet with Multiple

Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors

University of Kansas, ITTC
V.S. Frost, G.J. Minden,J.B. Evans, L. Searl,

D.T. Fokum, D. Deavours, E. Komp, A. Oguna,
M. Zeets, M. Kuehnhausen, D. Depardo

EDS
J. Walther, L. Sackman, M. Gatewood,

J. Spector, S. Hill, J. Strand

ITTC-FY2010-TR-41420-12

December 2008

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

 i

Abstract

This effort is aimed at monitoring cargo movements along a trusted corridor, e.g.,
rail facilities, in association with an integrated data-oriented methodology to increase
efficiency and security. This goal is being achieved by performing research and
deployment of an associated testbed focused on rail transportation issues. The results of
this effort will lay the foundation for enhancing the ability of the private sector to
efficiently embed security that provides business value such as safety, faster transport and
reduced theft while supporting law enforcement and national security. In the end, the
benefit of the combination of real-time sensor data with trade data exchange information
will be demonstrated through field tests on a deployed rail testbed. (For background and
definition of terms see [1] V.S. Frost, G.J. Minden, J.B. Evans, L. Searl and D.T. Fokum,
T. Terrell, L. Sackman, M. Gatewood, J. Spector, S. Hill, and J. Strand, “Status Update :
A Unified Architecture for SensorNet with Multiple Owners: Supplement to Advance
Sensor Technologies to Monitor Trusted Corridors”, ITTC-FY2009-TR-41420-10
August 2008).

 ii

Table of Contents

Abstract .. i
Table of Contents.. ii
List of Figures ... ii
List of Tables .. ii
1.0 Introduction... 1
2.0 Status on Technology Proof of Concept and Integration of the SmartPort Trade
Data Exchange and Transportation Security SensorNet Technologies 1
3.0 Status of the Development of Transportation Security SensorNet (TSSN)
Technologies ... 2
4.0 Status of System Architecture, Modeling, and Optimization 2
5.0 Status of Communications System Evaluation ... 3
6.0 Status RFID Technology Evaluation and Development ... 3
7.0 Associated Efforts... 4
8.0 Project Timeline.. 4
9.0 References... 5

List of Figures

Figure 1: Project Timeline .. 4

List of Tables

Table 1: Example results from system trade-off study ... 3

 1

1.0 Introduction

This effort is aimed at monitoring cargo movements along a trusted corridor, e.g.,
rail facilities, in association with an integrated data-oriented methodology to increase
efficiency and security. This goal is being achieved by performing research and
deployment of an associated testbed focused on rail transportation issues. The results of
this effort will lay the foundation for enhancing the ability of the private sector to
efficiently embed security that provides business value such as safety, faster transport and
reduced theft while supporting law enforcement and national security. In the end, the
benefit of the combination of real-time sensor data with trade data exchange information
will be demonstrated through field tests on a deployed rail testbed. (For background and
definition of terms see [1] V.S. Frost, G.J. Minden, J.B. Evans, L. Searl and D.T. Fokum,
T. Terrell, L. Sackman, M. Gatewood, J. Spector, S. Hill, and J. Strand, “Status Update :
A Unified Architecture for SensorNet with Multiple Owners: Supplement to Advance
Sensor Technologies to Monitor Trusted Corridors”, ITTC-FY2009-TR-41420-10
August 2008).

2.0 Status on Technology Proof of Concept and Integration of the SmartPort Trade
Data Exchange and Transportation Security SensorNet Technologies

In preparation for rail trials of the integration of the Smartport trade data exchange

and transportation security sensornet technologies, trains at a rail yard in Kansas City,
Mo. were visited on August 27, 2008. Initially a short haul rail trial will be conducted
which will run from the rail yards in downtown Kansas City, Mo. to the intermodal
facility in south Kansas City. Information gathered from this visit lead to the construction
of the hardware required for the trail trials. The construction and testing of the required
hardware has been completed.

A mobile integration test of the communications and interactions between the TDE at
EDS, MRN, and the VNOC has been successfully completed (December 4, 2008). This
mobile integration test was conducted using two pickup trucks to emulate the train. The
mobile component (the MRN) of the integration test was conducted in driving around
Lawrence, Ks.; the VNOC was located in ITTC on the KU campus, and the TDE was
located at the EDS facilities in Overland Park, Ks.. This successful mobile integration
test was preceded by several field experiments of components of the system.

With the successful completion of the mobile integration test, the short haul rail test is
being scheduled with a target of before the end of 2008.

 2

3.0 Status of the Development of Transportation Security SensorNet (TSSN)
Technologies

The development of the TSSN takes an SOA approach, building upon the original

ideas of ACE but utilizing current technology and widely accepted open Web Service
specifications and publicly available implementations which are suitable for Sensor
Networks. Some of the Web Service specifications in use are SOAP, the WS-X
specifications, and UDDIv3.

The TSSN is being implemented in three phases. The first phase will be used in the
field trials described above.

Phase 1 – Simple service messages based on OGC specifications (used in trials).
Phase 2 – Use full OGC specification interface messages.
Phase 3 – Use lessons learned from Phases 1 and 2 to make improvements.

Phase 1 is now complete.

4.0 Status of System Architecture, Modeling, and Optimization

This task is focused on developing models of the Transportation Security SensorNet
(TSSN) and Trade Data Exchange environment that can be used to articulate trade-offs
and enable system optimization. In order to model the container placement and sensor
assignment problem efficiently a new method has been devised for indexing the
containers and the locations (slots) that they occupy on the train as well as the location of
sensors and elements of the communication network. We developed a new concept of
object visibility and defined a visibility space as the set of system costs such that
customer requirements for probability of detection, probability of false alarm and event
reporting deadlines are met. The problem can now be formally stated as: Given a
collection of objects with different values and end-to-end information systems (including
sensors, seals, readers, and networks) with different capabilities: how do we design a
system that allows “visibility” (meeting given constraints) while minimizing overall
system cost? Small train based and trackside systems have been analyzed to confirm our
approach. Sample results are given below (Table 1). (A full description of the current
system model is in [2] Daniel T. Fokum, “Optimal Communications Systems and
Network Design for Cargo Monitoring” Proposal for Ph.D. dissertation research
Department of Electrical Engineering & Computer Science, University of Kansas,
December 2008.)

 3

Case Number of Sensors Normalized Cost
Metric

Average Time to
Record Event/s

5 1,555 6

4 1,581 49,685

3 3,145 99,363

2 4,795 149,042

1 7,300 198,721

Rail-mounted
Scenario

0 11,400 248,400

Trackside Case 5 1,895 556

Table 1 Example results from system trade-off study

Further work is needed on the model, objective function, and obtaining realistic model
parameters. The framework will then be applied to study system trade-offs.

5.0 Status of Communications System Evaluation

Research is continuing on radio technologies for TSSN. As part of evaluating the
current active container seal technology, it was discovered that the communication range
for the devices selected for this research was more limited than expected. The active
seals we are using operate in the 916 MHz band. A vendor of bidirection RF amplifiers in
the 916 MHz band made custom modifications to their device based on our specification.
With those modifications we were able to expand the communications range of the
system. In the course of conducting the mobile integration tests we determined that the
communications range is now on the order of a quarter of a mile. This expanded range
will enhance the rail field tests. Note with all the elements (MRN, VNOC, and TDE) of
the system in operation in a mobile environment exact range measurements are difficult
to obtain.

6.0 Status RFID Technology Evaluation and Development

The combination of the new ITTC/KU on-metal RFID tag technology and the Mojix
system was deployed and tested in a warehouse environment. While this initial testing
focused on the suitability of the system on an MES (manufacturing and execution system,
i.e., an assembly line) and for scanning entering and exiting a dock door, the results of
this testing lead to conclusions concerning applicability in an intermodal environment.
Additional experiments have been conducted and a technical report is in preparation.

 4

7.0 Associated Efforts

KC SmartPort has continued to coordinate meetings for the groups involved in TSSN,
CTIP and EFM. These meeting are creating a common, open environment with low entry
barriers to enable broader access by stakeholders while contributing a venue to
commercialization. The KU/ITTC and EDS teams are supporting the interactions
between these efforts. KU/ITTC and EDS teams participated in KC SmartPort
coordination meetings on August 27, September 30 and October 28, 2008. The next
meeting is scheduled for December 16, 2008.

8.0 Project Timeline

Figure 1 is the current project timeline. The short haul field trial is targeted for
completion by the end of 2008; a long haul field trial in Mexico is anticipated in spring
2009. The efforts associated with the system modeling, communications, and RFID are
planned to be completed by the end of spring 2009 and an interim report describing these
activities delivered by end of summer 2009. Activities associated with SmartPort, EFM,
and CTIP will continue until June 2010. The current date of completion for the effort is
June 15, 2010.

Figure 1 Project Timeline

0 3 6 9 12 15 18 21 24 27 30 33 36
Month

Intermodal Technology Proof of Concept and Integration
Modeling-systems engineering capability

Data integration and processing
Communications Systems

RFID applications
Interim Report

EFM/CTIP/SmartPort Activities
Final Report

Project Timeline

Aug 07 June 10Aug 09Aug 08
0 3 6 9 12 15 18 21 24 27 30 33 36

Month

Intermodal Technology Proof of Concept and Integration
Modeling-systems engineering capability

Data integration and processing
Communications Systems

RFID applications
Interim Report

EFM/CTIP/SmartPort Activities
Final Report

Project Timeline

Aug 07 June 10Aug 09Aug 08

 5

9.0 References

[1] V.S. Frost, G.J. Minden, J.B. Evans, L. Searl and D.T. Fokum, T. Terrell, L.
Sackman, M. Gatewood, J. Spector, S. Hill, and J. Strand, “Status Update : A Unified
Architecture for SensorNet with Multiple Owners: Supplement to Advance Sensor
Technologies to Monitor Trusted Corridors”, ITTC-FY2009-TR-41420-10 August 2008.

[2] Daniel T. Fokum “Optimal Communications Systems and Network Design for Cargo
Monitoring”, Proposal for Ph.D. dissertation research, Department of Electrical
Engineering & Computer Science, University of Kansas, December 2008.

Service Oriented Architecture for Monitoring Cargo
in Motion Along Trusted Corridors

M. Kuehnhausen, D. T. Fokum, V. S. Frost,
D. DePardo, A. N. Oguna, L. S. Searl, E. Komp,

M. Zeets, D. D. Deavours, J. B. Evans,
and G. J. Minden

ITTC-FY2010-TR-41420-13

July 2009

Copyright © 2009:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Technical Report

The University of Kansas

Abstract

This thesis describes a system called the Transportation Security SensorNet that

can be used to perform extensive cargo monitoring. It is built as a Service Oriented

Architecture (SOA) using open web service specifications and Open Geospatial Consor-

tium (OGC) standards. This allows for compatibility, interoperability and integration

with other web services and Geographical Information Systems (GIS).

The two main capabilities that the Transportation Security SensorNet provides are

remote sensor management and alarm notification. The architecture and the design of

its components are described throughout this thesis. Furthermore, the specifications

used and the fundamental ideas behind a Service Oriented Architecture are explained

in detail.

The system was evaluated in real world scenarios and performed as specified. The

alarm notification performance throughout the system, from the initial detection at the

Sensor Node service to the Alarm Reporting service, is on average 2.1 seconds. Location

inquiries took 4.4 seconds on average. Note that the majority of the time, around 85%

for most of the messages sent, is spent on the transmission of the message while the rest

is used on processing inside the web services.

Finally the lessons learned are discussed as well as directions for future enhancements

to the Transportation Security SensorNet, in particular to security, complex manage-

ment and asynchronous communication.

i

Table of Contents

Abstract i

Table of Contents ii

List of Figures vi

List of Listings viii

List of Tables ix

1 Introduction 1

2 Statement of Problem 3
2.1 Proprietary Solutions . 3
2.2 Variety of Open Standards . 6
2.3 Service Oriented Architecture . 9
2.4 Summary . 12

3 Background 13
3.1 Extensible Markup Language . 13

3.1.1 Overview . 14
3.1.2 Descriptive power . 19
3.1.3 Ease of transformation . 19
3.1.4 Information storage and retrieval 21
3.1.5 Flexible transmission . 22

3.2 Open Geospatial Consortium . 22
3.2.1 Sensor Web Enablement (SWE) 24
3.2.2 Geography Markup Language (GML) 26
3.2.3 Catalogue Service for Web (CSW) 28
3.2.4 Observations & Measurements (O&M) 29

ii

3.2.5 Sensor Observation Service (SOS) 31
3.2.6 Sensor Alert Service (SAS) . 33

4 Service Oriented Architecture 36
4.1 Representational State Transfer (REST) 39

4.1.1 Traditional Definition . 40
4.1.2 Current Use . 40
4.1.3 Further Development . 42

4.2 SOAP . 42
4.2.1 Message format . 43
4.2.2 Faults . 44
4.2.3 Further development . 45

4.3 Web Service Specifications . 46
4.3.1 WS-Addressing . 46
4.3.2 WS-Eventing . 47
4.3.3 WS-Security . 48

4.4 Service Directory . 51
4.5 Web Services Description Language (WSDL) 53

4.5.1 Description . 55
4.5.2 Types . 56
4.5.3 Interface . 57
4.5.4 Binding . 57
4.5.5 Service . 58

4.6 Message Exchange Patterns . 58
4.6.1 In-Only . 59
4.6.2 Robust In-Only . 60
4.6.3 In-Out . 60
4.6.4 In-Optional-Out . 61
4.6.5 Out-Only . 61
4.6.6 Robust Out-Only . 62
4.6.7 Out-In . 62
4.6.8 Out-Optional-In . 62

5 Related Work 64
5.1 Microsoft - An Introduction to Web Service Architecture 64
5.2 Adobe - Service Oriented Architecture 66

5.2.1 Request-Response via Service Registry (or Directory) 67
5.2.2 Subscribe-Push . 67

5.2.3 Probe and Match . 68
5.3 Open Sensor Web Architecture . 69
5.4 Globus - Open Grid Services Architecture 71
5.5 Service Architectures for Distributed Geoprocessing 74
5.6 Web Services Orchestration . 77
5.7 Summary . 78

6 Design & Architecture 80
6.1 Overview . 80

6.1.1 Service Oriented Architecture . 80
6.1.2 Services . 88
6.1.3 Clients . 89
6.1.4 Modules . 90
6.1.5 Subscriptions . 92
6.1.6 Synchronous and asynchronous communication 92

6.2 TSSN Common Namespace . 94
6.3 Mobile Rail Network . 97

6.3.1 Sensor Node . 97
6.3.2 Alarm Processor . 102

6.4 Virtual Network Operation Center . 104
6.4.1 Sensor Management . 105
6.4.2 Alarm Processor . 109
6.4.3 Alarm Reporting . 111

6.5 Trade Data Exchange . 119
6.5.1 Trade Data Exchange Service . 119

6.6 Open Geospatial Consortium Specifications 122

7 Implementation Results 123
7.1 Logging Module . 123
7.2 Log Parser . 124

7.2.1 Abstraction Layer Model . 124
7.2.2 Message Types . 125

7.3 Visualization . 127
7.4 Performance and Statistics . 128

7.4.1 Road Tests with Trucks . 128
7.4.2 Short Haul Rail Trial . 130

8 Conclusion 134
8.1 Current Implementation . 134
8.2 Future work . 135
8.3 Acknowledgment . 137

References 138

List of Figures

3.1 OGC standardization framework as described in [74] 23
3.2 Sensor Web Concept from [10] . 25
3.3 Catalogue Service reference model architecture from [63] 28
3.4 Observation process as described in [20] 29
3.5 SOS data publishing process as described in [60] 32
3.6 SOS data consumption process as described in [60] 32
3.7 SAS advertising process described in [78] 33
3.8 SAS notification process described in [78] 34

4.1 Service overview . 36
4.2 Traditional web applications and AJAX from Garrett [35] 41
4.3 SOAP message format . 44
4.4 WSDL 2.0 overview . 54
4.5 In-Only message exchange pattern . 59
4.6 Robust In-Only message exchange pattern 60
4.7 In-Out message exchange pattern . 60
4.8 In-Optional-Out message exchange pattern 61
4.9 Out-Only message exchange pattern . 61
4.10 Robust Out-only message exchange pattern 62
4.11 Out-In message exchange pattern . 62
4.12 Out-Optional-In message exchange pattern 63

5.1 Request-Response via Service Registry (or Directory) message exchange
pattern from [65] . 67

5.2 Subscribe-Push message exchange pattern from [65] 68
5.3 Probe and Match message exchange pattern from [65] 68
5.4 NOSA layer overview from [19] . 69
5.5 Globus Toolkit overview from http://www.globus.org/toolkit/about.

html . 72

vi

http://www.globus.org/toolkit/about.html
http://www.globus.org/toolkit/about.html

5.6 Forest fire application from [34] . 75
5.7 Forest fire web services architecture from [34] 75
5.8 Web orchestration framework from [47] 78

6.1 Service message overview . 81
6.2 Service cloud . 82
6.3 Axis2 extensibility from [16] . 84
6.4 Axis2 modules from [16] . 85
6.5 Service composition . 87
6.6 Mobile Rail Network message overview 97
6.7 Mobile Rail Network Sensor Node . 98
6.8 Mobile Rail Network Alarm Processor 102
6.9 Virtual Network Operation Center message overview 105
6.10 Virtual Network Operation Center Sensor Management 106
6.11 Virtual Network Operation Center Alarm Processor 109
6.12 Esper architecture from [27] . 109
6.13 Virtual Network Operation Center Alarm Reporting 111
6.14 Trade Data Exchange message overview 119
6.15 Trade Data Exchange Service . 120

7.1 SOAP message (left) to Log parser classes (right) comparison 124
7.2 Two transmit-receive pairs (red and green) 126
7.3 A message couple (red) . 126
7.4 Log file and service interaction visualization 127
7.5 Request performance from [31] . 131
7.6 Network transmission and processing performance from [31] 131
7.7 System alarm notification performance from [31] 132

List of Code Listings

3.1 Simple XML book description . 14
3.2 Library of books . 15
3.3 Library of books using attributes . 15
3.4 Extended library of books . 16
3.5 Element book format . 16
3.6 Element book format with type (elementBook.xsd) 17
3.7 Attribute book format with type (attributeBook.xsd) 18
3.8 Library schema (library.xsd) . 18
3.9 Library stylesheet (library.xsl) . 20
3.10 Library of books in HTML (library.html) 20
4.1 SOAP message format example . 44
4.2 SOAP Fault message example . 44
4.3 WSDL Description example . 55
4.4 WSDL Types example . 56
4.5 WSDL Interface example . 57
4.6 WSDL Binding example . 57
4.7 WSDL Service example . 58

viii

List of Tables

3.1 Example XPath expressions . 21
3.2 Collection types from [20] . 30

6.1 Sensor Node StartMonitorSensors operation 99
6.2 Sensor Node StopMonitorSensors operation 99
6.3 Sensor Node setSensors operation . 99
6.4 Sensor Node AddSeals operation . 100
6.5 Sensor Node getLocation operation . 100
6.6 Sensor Node GetCapabilities operation 101
6.7 Sensor Node GetObservation operation 101
6.8 Alarm Processor Alert operation . 103
6.9 Alarm Processor SensorNodeEvent operation 103
6.10 Alarm Processor SetMonitoringState operation 104
6.11 Sensor Management startMonitoring operation 106
6.12 Sensor Management stopMonitoring operation 107
6.13 Sensor Management getLocation operation 107
6.14 Sensor Management setAlarmSecure operation 108
6.15 Sensor Management setAlarmProcessorMonitoringState operation . . . 108
6.16 Alarm Processor MRN Alarm operation 110
6.17 Alarm Reporting addSmsProvider operation 112
6.18 Alarm Reporting updateSmsProvider operation 113
6.19 Alarm Reporting removeSmsProvider operation 113
6.20 Alarm Reporting removeSmsProviderById operation 113
6.21 Alarm Reporting getAllSmsProviders operation 114
6.22 Alarm Reporting addContact operation 114
6.23 Alarm Reporting updateContact operation 115
6.24 Alarm Reporting removeContact operation 115
6.25 Alarm Reporting removeContactById operation 115
6.26 Alarm Reporting getAllContacts operation 116

ix

6.27 Alarm Reporting addAlarmContactMapping operation 116
6.28 Alarm Reporting updateAlarmContactMapping operation 117
6.29 Alarm Reporting removeAlarmContactMapping operation 117
6.30 Alarm Reporting removeAlarmContactMappingById operation 117
6.31 Alarm Reporting getAllAlarmContactMappings operation 118
6.32 Alarm Reporting NOC Alarm operation 118
6.33 Alarm Reporting getAllAlarms operation 118
6.34 TradeDataExchange ShipmentQuery operation 121
6.35 TradeDataExchange ValidatedAlarm operation 121

7.1 XPath expressions for WS-Addressing 125

Chapter 1

Introduction

Cargo theft and tampering are common problems in the transportation industry.

According to Wolfe [85] the “FBI estimates cargo theft in the U.S. to be $18 billion”

and the Department of Transportation “estimated that the annual cargo loss in the U.S.

might be $20 billion to $60 billion”. Wolfe [85] also gives good reason to believe that

the actual number may be even higher than $100 billion because of two reasons. First

it is assumed that about 60 percent of all thefts go unreported and second the indirect

costs associated with a loss are said to be three to five times the direct costs.

With the advances in technology, this problem has evolved into a cat-and-mouse

game where thieves constantly try to outsmart the newest cutting edge security systems.

In terms of securing cargo, there are usually two aspects: first ensuring the physical

safety of the cargo and second monitoring and tracking it. The latter especially has

become of more interest as of late because many shipments cross national borders and

cargo may be handled by a multitude of carriers. All of this leads to a huge demand for

tracking and monitoring systems by the cargo owners, carriers, insurance companies,

customs and many others.

In this thesis, a framework is introduced which builds on open standards and software

components to allow “monitoring cargo in motion along trusted corridors”. The focus

lies on the use of a Service Oriented Architecture and Geographical Information System

1

specifications in order to allow an industry wide adoption of this open framework.

A formal description of the problem to be analyzed can be found in chapter 2. In

particular, it discusses the problems of proprietary systems, the advantages of open stan-

dards and the approach of using a Service Oriented Architecture in the transportation

industry.

Chapter 3 gives an in-depth introduction to the Extensible Markup Language that is

used as the foundation of the framework. Furthermore the specifications provided by the

Open Geospatial Consortium that define the elements and interfaces for Geographical

Information Systems are described.

The formal representation of the framework is a Service Oriented Architecture which

is described in chapter 4 along with the components that it uses.

Chapter 5 refers to related work and focuses on the topics that either deal with the

Service Oriented Architecture or the Open Geospatial Consortium specifications.

The main part of this thesis that details the design and architecture of the framework

can be found in chapter 6. It explains the individual components as well as the software

parts and specifications that are used in the implementation.

Chapter 7 gives test and performance results and describes the tools that have been

developed for that particular purpose.

The thesis concludes with chapter 8 that also provides an outlook for future work.

2

Chapter 2

Statement of Problem

In order to address the problem of cargo theft, the Transportation Security Sen-

sorNet project has been created. Its goal is to promote the use of open standards and

specifications in combination with web services to provide cargo monitoring capabilities.

The main question is the following:

“How can a Service Oriented Architecture, open standards and specifications

be used to overcome the problems of proprietary systems that are currently

in place and provide a reusable framework that can be implemented across

the entire transportation industry?”

The three main aspects of this question are discussed next.

2.1 Proprietary Solutions

Current commercial systems in the transportation industry are often proprietary.

This is because a lot of effort is spent on research and development in order to create

what is called intellectual property. The assumption is then that as long as the com-

petitors do not have access to the system and its protocols that intellectual property is

safe and provides a competitive advantage. Another common “benefit” of keeping the

3

systems closed is the perceived additional security since in order to successfully attack

the system its implementation and protocols have to be reverse engineered.

The problem with this is that these advantages are often one-sided and favor ven-

dors. Once a proprietary system has been implemented it has to be maintained. What

happens if a customer that uses the system invested a lot of money into a its infras-

tructure and the training of its employees and the company that provides the system

releases a new version of it which of course costs money again. The customer has several

choices:

Upgrade Throughout the literature this is often considered the most expensive option

because of the cost for the upgrade to the new version and the additional training to

the employees that has to be provided. The benefits of upgrading are the use of new

technology, potential gains in efficiency through new features and the latest bug fixes.

Do Not Upgrade By many regarded as the most cost efficient solution, choosing

not to upgrade compromises new features and updates for the ability to save costs. An

approach that is taken by some companies is the so-called skip a version technique.

This allows companies to plan better as internal processes and systems often have to

interoperate and need to remain compatible to each other.

Change Vendor In this situation, the new version of the system that is provided

by company A does not provide the necessary features or is simply too expensive.

Furthermore, a different company B offers a similar product with more features or

for less money. The move to the new system is now dependent on the following things:

How big are the estimated savings and what are the direct and indirect costs of the

transition? It often happens that after careful consideration the costs outweigh the

estimated gains and the customer goes back to considering whether or not to simply

upgrade. If a transition is made, the process could be time consuming and turn out to

be more complicated than expected.

4

Picture this extreme case as well. What happens if the vendor goes out of business?

All of the sudden, the short-term goal is to maintain support for the system and to

keep it running while in the long-term to look for a suitable replacement and be forced

to transition. Even if this case does not happen the dependency on the vendor can be

crucial. If the system has errors or a particular enhancement is desperately needed, the

vendor decides what to do about it. For big companies that are major customers this

may not be such a big problem because they often get preferential treatment. But for

small and medium businesses the wait might be too long and lose them customers and

revenue.

The main point here is that many customers are locked into proprietary solutions

that are incompatible with similar solutions offered by competitors. In a 2003 survey

by the Delphi Group [36] it was found that 52% of developers and 42% of consumers

see standards enabling the “approval of projects otherwise threatened by concerns over

proprietary system lock-in”. Furthermore, an overwhelming 71% of developers and 65%

of consumers feel that the use of open standards “increases the value of existing and

future investments in information systems”.

The problem of non-interoperability with regard to geospatial processing is the topic

of a paper by Reichardt [75]. Because Geographical Information Systems are often

immensely complex, companies that invest heavily into this area often only support their

product. As described in the sample scenario, this leads to a lack of coordination among

entities such as the Federal Emergency Management Agency (FEMA), the National

Transportation Safety Board (NTSB) and the Environmental Protection Agency (EPA)

because of the inability to share vital information which is the key to fast decision

making and data analysis

5

2.2 Variety of Open Standards

The idea of open standards and specifications is to define so-called interfaces and

protocols that can be used as references for the implementation of a system. There are

many standards committees and industry groups that aim to define them, most often

focused on a particular area. Some of the most well-known ones include the World

Wide Web consortium (W3C), the Organization for the Advancement of Structured

Information Standards (OASIS), the International Telecommunication Union (ITU) and

the International Organization for Standardization (ISO).

The main principles that govern the development of standards are usually the same

across all organizations. The following is an overview according to ISO:

Consensus All parties that are affected by the proposed standard get the chance

to voice their opinions. This includes initial ideas and continues with feedback and

comments during the standardization process.

Industrywide The idea is to develop global standards that can be used worldwide

by entire industries.

Voluntary The standardization process is driven by the people that are interested

in it and that see its future benefits across a particular industry. It is often based on

so-called best practices that are already commonly in use.

The importance of open standards is emphasized in a paper by McKee [56]. It pro-

vides the evolution and success of the Internet as the “perfect example” for the use of

open standards. In particular it explains that since the Internet is based upon com-

munication and communication means “transmitting or exchanging through a common

system of symbols, signs or behavior”, the process of standardization can basically be

seen as “agreeing on a common system”. The other parts of the paper are focused on

6

how so-called openness can help Geographical Information Systems (GIS) but many of

the points mentioned apply to open standards in general.

In particular the following aspects are associated with open standards:

Compatibility This includes the ability to share data across vendors and systems

in a uniform and non-proprietary form. It allows processes to use essentially the same

data in order to perform their specific task without the need of costly conversions or

interpretation errors. Most common formats are also backward compatible which means

that no particular version of the system is needed to interpret the data. Only a certain

subset of functionality might be provided when using in older versions though. Another

advantage of open formats is the fact that even if a particular version of a format is

completely outdated and only used in legacy systems, its specification is still accessible

to everyone. Hence systems can still be designed to use the format.

Freedom of Choice A major problem of proprietary solutions that was described

earlier was the so-called vendor lock. Once a customer implements a proprietary system

and builds its infrastructure around it, choices in the future are limited. Open standards

by definition are vendor independent. Furthermore many of them support a broad

variety of implementation scenarios. These implementations often are not even limited

to a particular platform, operation system or programming language. This is especially

true for most of the web standards.

Interoperability Through the use of clearly defined interfaces, standards dramati-

cally enhance interoperability. The standards that define interface specifications do not

provide a specific implementation but provide references to best practices and imple-

mentation patterns instead. Companies choose what kind of system implementation

they prefer. This allows them to make use of existing infrastructure and capabilities

that might otherwise have to be changed when using a proprietary system. The uniform

access to functionality and data enables companies to connect a multitude of systems

7

and make more use of them. Also, in case one part of the system has to be replaced,

another one that simply provides the same interface can take its place. This allows great

flexibility in terms of the overall system design.

Leverage For companies the standardization of concepts, frameworks and common

approaches provides a number of benefits. Since research and development can be

extremely cost intensive, companies want to make sure there is a guaranteed return on

investment for them. Open standards do not necessarily lead to increased revenue but

they do provide insurance to the companies that they are on the “right” track and what

they implement is actually used industrywide. This is very important because customers

are aware that when they purchase a system from company A that uses a proprietary

or non-standard implementation they might become a victim of vendor lock. Acquiring

a system that is build on open standards allows them to choose the best and most cost

effective solution from a variety of independent implementations. Another advantage is

that once different implementations by the main vendors have been established, there is

room for custom solutions by smaller vendors, often in the form of extensions or plugins.

Open Source The biggest benefit of using open standards is that fact it leads to

innovation. This is because everybody can contribute, suggest enhancements, outline

best practices and address mistakes. In terms of software this approach is often referred

to as open source.

However, there are several problems that can be associated with non-proprietary

systems. Implementations are based upon the interpretation of the standards which

may differ significantly. Furthermore, some implementations only support a subset of the

original specification, are slower than the reference implementation or use incompatible

sub systems.

8

2.3 Service Oriented Architecture

The concept of information processing and sharing across various applications using

so-called web services is the main focus of this thesis. The basic idea is to define

components of a system as services and users as clients that can retrieve data from them.

Note that interaction between services is done using so-called embedded clients. The

services take care of things such as information processing, data analysis and storage.

With all business logic embedded into services and interaction between them clearly

defined using open standards an infrastructure is built that is called the Service Oriented

Architecture (SOA).

The Internet allows the following two things that are relevant to geospatial pro-

cessing: a common means of communication and the ability for efficient information

sharing. There exist many standards on how to transmit, receive, encode and decode

data. SOA builds on top of them to provide new specifications that enable the design,

implementation and use of web services. Through these web services companies, govern-

ment agencies and others have the ability to share and process information in a uniform

manner which cuts costs, time and resources and improves efficiency. More information

on the Service Oriented Architecture can be found in chapter 4.

Now why is the SOA such an “enabler”? What is possible now that was not possible

before? According to Irmen [44] automation and efficient communication with partners

are the two most important things in supply chain management which represents the

core of the transportation industry. Let us take a look at how the Service Oriented

Architecture addresses both of them in regard to the individual topics outlined in the

paper.

Automation A vital part in transportation is the so-called screening process. Com-

panies that transport goods must ensure safety and therefore check all parties involved

in the trade. An important aspect of this is the use of a so-called denied trade list

9

which lists items and companies that are not allowed to import or export into specific

countries. With the reduction in manual labor and transition to a web services based

system that automatically performs these checks, efficiency could be greatly increased.

A closely related topic is accountability. Who is responsible if something goes wrong

during the trade process? Since goods are often handled by many different parties,

it must be possible to monitor the location of cargo and handovers tightly. This is

especially important in cases of tampering or even theft of the cargo.

Furthermore, agencies and customs more and more require electronic trade informa-

tion instead of paper documents in order to track trade. Because of different formats

and legacy applications that are often unable to provide this information in its entirety,

additional resources have to be allocated in order to remain compliant with current

practices. Web services and open standards can overcome this problem with uniform

interfaces and common data formats.

Having the ability to monitor the location not just for perishable goods but also

for high value goods is of great importance in the transport chain. Current processes

should be able to automatically route cargo based on its needs and cost effectiveness.

Irmen [44] also points out that“the lack of integration between products causes users

to deal with multiple systems having disparate data and non-uniform input and output”

and calls for the use of a single platform. Using the Service Oriented Architecture this

“call” becomes less necessary because it is platform independent and at the same time

able to provide integration of multiple systems and standardized data formats.

Efficient Communication Building a virtual network among the parties involved in

the trade process establishes efficient means of communication. It allows the coordina-

tion between otherwise disparate entities that is essential to provide cost effective and

reliable shipping of cargo. The Internet provides the communication layer but it is the

standards of web services that enable the integration of different systems.

10

Irmen [44] mentions the so-called Software-as-a-Service (SaaS) approach which al-

lows software to run on a per-use basis without the costs of complex hardware infras-

tructure. This works very well with SOA as the interfaces defined by those services are

often web services interfaces that are essentially part of SOA.

Security within the transportation industry plays a big role because trade data is

to be kept confidential at all times and only distributed on a need-to-known basis.

This puts an additional burden on the parties that are involved, as the parties must

exchange data confidentially at each point of interaction. If open standards are used for

this, security is implemented based on interfaces and policies that are easy to manage.

In order to manage the transportation chain in its entirety, a global view is often

needed. This is problematic since individual parties often only deal with their respective

neighbors. Using open standards and the Service Oriented Architecture approach each

party could provide an uniform information interface that is accessible to other parties

in the chain. This allows consistent reporting, monitoring and analysis at each step

during the shipping process.

The reporting part especially has gained more attention over the past years as the

focus has shifted towards more ethical and socially responsible business practices. Ac-

countability coincides with this social visibility and therefore improvements in moni-

toring cargo not only lead to increased revenue on the business side but better public

relations as well.

Overall the paper by Irmen [44] gives excellent reasons for open systems in terms

of accountability, coordination, scalability and cost. It outlines important aspects that

need to be taken into consideration when designing an architecture such as the Trans-

portation Security SensorNet.

11

2.4 Summary

The following chapters describe how open specifications for Geographical Informa-

tion Systems in combination with web services can be used to address the problems

of proprietary systems that were outlined in section 2.1. In the Transportation Secu-

rity SensorNet (TSSN) this is achieved by using a variety of open standards primarily

because of the aforementioned interoperability and freedom of choice (see section 2.2).

The use of a Service Oriented Architecture for the TSSN allows the creation of the ap-

plications needed for efficient and cost effective transportation chains (see section 2.3).

12

Chapter 3

Background

3.1 Extensible Markup Language

The Extensible Markup Language (XML) is a specification by the World Wide Web

Consortium (W3C) that is used to describe data in a highly flexible but also concise

way. It serves as the basis for most of the specifications that are referenced in this thesis.

As described by Sperberg-McQueen et al. [81] one of the main goals of the specifica-

tion is interoperability and support for a multitude of applications. This is emphasized

by the fact that XML should be human-readable and easy to process by computers.

XML can be used to describe, filter and format data while providing storage function-

ality as well.

In the Transportation Security SensorNet it is utilized in a variety of ways. The

web services and the Open Geospatial Consortium standards define their interfaces and

data elements using XML. SOAP, as described in section 4.2, is a XML message format

that is used as the basis for the transmission of data in the framework. Furthermore,

many configuration files for the web services and clients in the Transportation Security

SensorNet are in XML. The use of the Extensible Markup Language is one of the main

reasons for the flexibility and reusability of the framework

13

3.1.1 Overview

In the following sections some basic principles of XML are introduced. Let us start

by describing a simple book using XML.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <book>
3 < !−− e n g l i s h t i t l e −−>
4 < t i t l e>Hamlet</ t i t l e>

5 < !−− author name −−>
6 <author>William Shakespeare</ author>
7 </book>

Listing 3.1 Simple XML book description

The first line is the XML declaration. It specifies that the described document uses

version 1.0 of the XML specification and UTF-8 encoding. Line two starts with the

definition of a book that contains a title (line four) and an author (line six). Note that

line three and five are comments that are not part of the actual data but can be used

to further describe it to humans. This example shows that XML can be as descriptive

to humans as it is to computers.

Looking at the XML we can see multiple things. The element book has a so-called

start-tag (line two) and an end-tag (line seven). Information about the specific book

is kept in between these tags. As for the title and author information the actual data

is also contained within their start-tag and end-tags. This demonstrates one basic type

that is used most frequently in XML, an element. An element consists of a start-tag

and an end-tag with either content or other elements in between. Note that there are

also so-called empty-element-tags that look like <empty-element/>. They contain no

further content or elements.

One of the requirements of using XML in applications is that one needs to define

one specific root element. Therefore if we wanted to define more books let us put them

into a library root element.

14

1 <?xml version="1.0" encoding="UTF-8" ?>
2 < l i b r a r y>

3 <book>
4 < t i t l e>Hamlet</ t i t l e>

5 <author>William Shakespeare</ author>
6 </book>
7 <book>
8 < t i t l e>Great Expectat ions</ t i t l e>

9 <author>Char les Dickens</ author>
10 </book>
11 . . .
12 </ l i b r a r y>

Listing 3.2 Library of books

XML is flexible enough to use different descriptions of essentially the same data.

The following example represents the same library using attributes for title and author

information instead of elements. Attributes are basically name-value pairs that contain

information about the element that they are a part of.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 < l i b r a r y>

3 <book t i t l e="Hamlet" author="William Shakespeare" />
4 <book t i t l e="Great Expectations" author="Charles Dickens"

/>
5 . . .
6 </ l i b r a r y>

Listing 3.3 Library of books using attributes

The “problem” with this is that if one application uses elements and the other ap-

plication uses attributes to describe books in their libraries they seem incompatible.

In order to solve this we need to make sure that each description is uniquely identi-

fiable. This can be done declaring so-called namespaces as described by Bray et al.

[13]. The idea is to attach a specific Uniform Resource Identifier (URI) (see Berners-

Lee et al. [6]) to the document or element definitions. For example, this would re-

sult in <a:book xmlns:a="http://www.sample.com/elementBook"> for listing 3.2 and

<b:book xmlns:b="http://www.sample.com/attributeBook"> for listing 3.3. Using

15

these namespaces we have the ability to mix different descriptions in a single document.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 < l i b r a r y xmlns="http://www.sample.com/library">

3 <a:book xmlns:a="http://www.sample.com/elementBook">

4 <a : t i t l e>Hamlet</ a : t i t l e>

5 <a :author>William Shakespeare</ a :author>
6 </ a:book>

7 <b:book xmlns:b="http://www.sample.com/attributeBook"

t i t l e="Great Expectations" author="Charles Dickens" />
8 . . .
9 </ l i b r a r y>

Listing 3.4 Extended library of books

We can also use namespaces to uniquely identify document descriptions. The default

description in listing 3.4 is <library xmlns="http://www.sample.com/library"> and

more specific descriptions are in place for each book.

So what do these descriptions actually look like? They are written in XML as well

and called XML Schema Definitions (XSD). An overview is provided by Fallside and

Walmsley [28] and the exact structure by Mendelsohn et al. [57]. While there are other

standards in place for describing XML documents, XML schemas are the most common.

Let us describe the first book format.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 targetNamespace="http://www.sample.com/elementBook"

4 xmlns="http://www.sample.com/elementBook">

5 <xsd :e l ement name="book">

6 <xsd:complexType>
7 <xsd : s equence>
8 <xs : e l ement name="title" type="xsd:string"/>
9 <xs : e l ement name="author" type="xsd:string"/>

10 </ xsd : s equence>
11 </ xsd:complexType>
12 </ xsd :e l ement>
13 </ xsd:schema>

Listing 3.5 Element book format

16

We defined an element called book that contains two elements called title and author.

Both of them are of type string which is a predefined data type. For ease of use and

compatibility reasons the specification defines a set of standard data types. The type

of book is so-called complex since it is the parent of other elements. Because this type

is defined implicitly it is called anonymous typing. If one wanted to reuse the book type

in some other element definition it makes more sense create a complex book type and

define an element that is of this type. The XML schema would then take the following

form:

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 targetNamespace="http://www.sample.com/elementBook"

4 xmlns="http://www.sample.com/elementBook">

5 <xsd :e l ement name="book" type="BookType"/>
6 <xsd:complexType name="BookType">

7 <xsd : s equence>
8 <xs : e l ement name="title" type="xsd:string"/>
9 <xs : e l ement name="author" type="xsd:string"/>

10 </ xsd : s equence>
11 </ xsd:complexType>
12 </ xsd:schema>

Listing 3.6 Element book format with type (elementBook.xsd)

Line three defines the so-called target namespace of the schema. When the schema

is used in a document, elements from it will automatically have this namespace. Line

four specifies the default namespace for the schema so that elements and types in the

schema are able to reference each other. The sequence tag at line seven specifies that the

elements are to be in order, first title and then author. Other common options include

all for random order and choice for the exclusive selection of elements.

The second book format could be defined by the following schema:

17

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 targetNamespace="http://www.sample.com/attributeBook"

4 xmlns="http://www.sample.com/attributeBook">

5 <xsd :e l ement name="book" type="BookType"/>
6 <xsd:complexType name="BookType">

7 <x s d : a t t r i b u t e name="title" type="xsd:string"/>
8 <x s d : a t t r i b u t e name="author" type="xsd:string"/>
9 </ xsd:complexType>

10 </ xsd:schema>

Listing 3.7 Attribute book format with type (attributeBook.xsd)

The only major difference in listing 3.7 is using an attribute instead of an element

for the book information. Since our library should be able to use both descriptions let

us define a schema that will allow this.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 xmlns:a="http://www.sample.com/elementBook"

4 xmlns:b="http://www.sample.com/attributeBook"

5 targetNamespace="http://www.sample.com/library"

6 xmlns="http://www.sample.com/library">

7 <xsd : import namespace="http://www.sample.com/elementBook"

schemaLocation="elementBook.xsd"/>
8 <xsd : import namespace="http://www.sample.com/

attributeBook" schemaLocation="attributeBook.xsd"/>
9 <xsd :e l ement name="library">

10 <xsd:complexType>
11 <x s d : c h o i c e minOccurs="0" maxOccurs="unbounded">

12 <xs : e l ement r e f="a:book"/>
13 <xs : e l ement r e f="b:book"/>
14 </ x s d : c h o i c e>
15 </ xsd:complexType>
16 </ xsd :e l ement>
17 </ xsd:schema>

Listing 3.8 Library schema (library.xsd)

The two previously defined schemas are imported in lines seven and eight. Line

twelve and thirteen use so-called references to these defined elements. In this case we

define the number of occurrences of each element explicitly. This is because by default

18

all elements have a minOccurs=1 and a maxOccurs=1, meaning that they are required

but may appear only exactly once. Hence, the library consists of books either in element

or attribute format and the possible number of books ranges from none to infinite.

The examples that were covered illustrate how XML can be used to describe and

store data. But what are the advantages of using XML over other technologies that can

essentially do the same? One of the main reasons why the use of XML has grown in

recent years is because of the impact of the Internet. Applications and data that were

previously stored internally, often in proprietary formats, are now made accessible to

remote locations and users. The need to deal with data in a more open and flexible way

became apparent especially for web applications and services. The following sections

describe the different ways of how web applications and applications in general can

utilize and benefit from XML.

3.1.2 Descriptive power

The description of data using XML enables applications to be very flexible and

modular. New fields or attributes of data can be added using schema extensions and

applications can choose either to use the extension or the original XML schema defi-

nition. Data can even be entirely rearranged using new or modified element and type

definitions. This allows different views of the same data which decreases conversion

costs and increases reusability and interoperability. In essence the data stays the same,

the only thing that changes is its interpretation.

This aspect is essential in a Service Oriented Architecture like the Transportation

Security SensorNet because clients and web services are highly dynamic. Using XML

allows the entire framework to be implemented in a flexible, modular and reusable way.

3.1.3 Ease of transformation

Data often needs to be transformed or converted from one format into the other.

Since XML only describes the data we can transform it easily into whatever is needed.

19

For this reason Extensible Stylesheet Language Transformations (XSLT) as described by

Kay [46] have been introduced. They enable automatic conversion of XML documents

using so-called stylesheets that are defined in XML. Let us take the initial library in

listing 3.2 and transform it into a simple HTML web page.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xsl :stylesheet xmlns :x s l="http://www.w3.org/1999/XSL/

Transform" version="2.0" >

3 <xsl:template match="/">

4 <html>
5 <body>
6 <h1>Library books</h1>
7 <xsl:for−each s e l e c t="library/book">

8 <div><xsl:value−of s e l e c t="title"/> by <xsl:value−of
s e l e c t="author"/></ div>

9 </xsl:for−each>

10 </body>
11 </html>
12 </xsl:template>
13 </ xsl :stylesheet>

Listing 3.9 Library stylesheet (library.xsl)

In listing 3.9 a header is specified that displays “Library books”. For each book in

the library the title and author are then extracted and put into a relationship sentence.

Hence, the resulting output would look like the following:

1 <html>
2 <body>
3 <h1>Library books</h1>
4 <div>Hamlet by William Shakespeare</div>

5 <div>Great Expectat ions by Char les Dickens</div>

6 . . .
7 </body>
8 </html>

Listing 3.10 Library of books in HTML (library.html)

Note that this is just one of the many possibilities of converting an existing XML

document into a different format. Within the Transportation Security SensorNet these

Extensible Stylesheet Language Transformations are used by Apache Axis2 to create

20

Java classes from XML Schema Definitions and Web Services Description Language

files so that they can be used by clients and web services (see 6.1.1.2 and section 6.1.1.4).

3.1.4 Information storage and retrieval

Storing data in an XML format makes the data and relations between data more

flexible. Databases often face the problem of sparsity where when a new column is

added to a table all entries must have this new column. XML works in a different way.

Additional information fields can be added just to the elements that need them while for

all other elements the XML schema would simply define the field as optional. This can

potentially save a lot of space when compared to storing the same data in traditional

databases. In the Transportation Security SensorNet this “cost saving” approach is

utilized by SOAP during the message transmission (see section 4.2).

In order to retrieve information efficiently from XML several specifications have

been designed. Boag et al. [8] describes XPath which is a query language specifically

designed for XML. It works on the basis of a document tree, the so-called data model,

that it creates from the original XML. Elements are nodes in the tree and attributes

so-called attribute nodes. Information can then be retrieved using path expressions.

Table 3.1 shows some examples of the information that we are able to retrieve and the

path expressions that were used for the library in listing 3.2. XPath is used by the Log

Parser extract information from log files (see section 7.2).

XPath expression Result
library all books of the library
library/book[1] first book
//author all authors
//author/text() all author names
//book[title=”Hamlet”]/author/text() author name of Hamlet

Table 3.1. Example XPath expressions

Another specification that is used for XML data information retrieval is called

XQuery which was defined by Siméon et al. [77]. It is more complex and builds on

21

top of XPath 2.0. Immediate result computations and transformations are possible

using a so-called FLOWR expressions. Where Xpath simply extracted information,

XQuery enables applications and users to directly modify or change the appearance of

the information.

3.1.5 Flexible transmission

Since there is a significant overhead associated with conversion, standards have been

defined that allow various forms of XML to be transmitted with little or no modification.

The simplest form is just to send an XML document from sender to receiver using HTTP

which is known as Representational State Transfer (REST) (see section 4.1). In that

case both parties have the schema information. This is not a lot different than using a

binary format since the communication is useless for anybody that does not understand

the format. The advantage though would be that there is no conversion from XML

into another format necessary. For more advanced scenarios it becomes more feasible

to wrap the document that is being transmitted into a standardized transport package

or message. The most common way to achieve this for XML is by using SOAP which

is the case in the Transportation Security SensorNet and described in section 4.2.

3.2 Open Geospatial Consortium

The Open Geospatial Consortium (OGC) is the de facto authority on open standards

for Geographical Information Systems (GIS). Its members develop interface specifica-

tions for geographical applications. One of the primary goals is interoperability: research

and development costs are later diminished by the fact that if one application imple-

ments an OGC standard other applications can use it through the predefined interfaces

that the standard provides. Furthermore, there is a higher interest in the actual im-

plementation of standards since a majority of the industry agreed upon them. This

mitigates one of the main risks that proprietary applications otherwise face, the lack of

22

user and industry acceptance.

Some of the industry needs cover a wide area of topics whereas others are very

specific. For example, there needs to be a standard for dealing with times, locations

and their formats which is something that almost all geographical applications face at

some point. On the other hand, the format for requesting live feeds from a sensor is

of interest only to a smaller group. The OGC tries to cover everything from simple to

complex that could enhance the development of spatial information applications and

services.

The way it is able to achieve this is by not actually implementing the standards but

only providing the framework, the specification and schemas. The usual development

framework looks as follows.

Compliance
Testing

Abstract
Specification

Implementation
Specification

White
Papers

Discussion
Papers

Best
Practices

Paper

Implementation A

Implementation B

Implementation C

Figure 3.1. OGC standardization framework as described in [74]

First, abstract specifications are written that describe the goal and primary concepts

of a proposed standard. This is explained in detail by Reed [74]. Second, the abstract

version of a standard leads to an implementation specification which eventually be-

comes a standard after it has been accepted by the OGC members. Third, the industry

23

in terms of application and service developers implements the specification and provides

feedback to the consortium. Furthermore the OGC releases white papers that provide

high-level overviews of the concepts of a standard and a best practices paper that de-

scribes implementation specific development patterns. So-called discussion papers are

usually written by developers talking about the technologies and approaches used in

their implementations. Finally, the OGC encourages implementations to be tested and

marked as compliant using their test suites.

An overview of the procedures and the approaches taken are described in the OGC

Reference Model (ORM) by Percivall et al. [71]. It explains the concepts behind storing

geospatial information, referencing locations and times, and creating maps or so-called

geometries from the available data. The reference model refers to several abstract spec-

ifications in order to establish a connection between them and reiterate the goal of

developing open interoperable standards. Apart from talking about the approaches be-

hind geospatial information processing, the concepts of geospatial services and reusable

patterns are introduced.

The Transportation Security SensorNet aims to be open and interoperable. It uses

the interfaces and elements defined in the specifications of the Open Geospatial Con-

sortium and provides concrete implementations, for example the Sensor Observation

Service and the Sensor Alert Service. In terms of web services within a Service Ori-

ented Architecture the following standards are of importance.

3.2.1 Sensor Web Enablement (SWE)

One of the main focuses of the OGC in recent years has been the development of

concept called Sensor Web. In the Sensor Web Enablement (SWE) architecture and

overview document by Botts et al. [10] it is described as follows:

“A Sensor Web refers to web accessible sensor networks and archived sen-

sor data that can be discovered and accessed using standard protocols and

24

application program interfaces (APIs).”

This is best visualized by the concept figure 3.2 from the document.

Figure 3.2. Sensor Web Concept from [10]

The idea is to combine various information modeling specifications with the appro-

priate services that provide the data processing for them. According to Botts et al. [10]

the following specifications make up the Sensor Web:

• Observations & Measurements (O&M) specifies the representation of sensor mea-
surements.

• Sensor Model Language (SensorML) describes sensors, models and their processes.
For instance the discovery of sensors and data preprocessing.

• Transducer Markup Language (TML) specifies the encoding and transport of
streaming sensor data in real-time scenarios.

• Sensor Observation Service (SOS) provides interfaces for describing what capabil-
ities a sensor can perform and for retrieving actual observations or measurements.

• Sensor Planning Service (SPS) allows users to query the sensor web for a spe-
cific need. For example: “monitor the following 5 intersections every minute for
excessive traffic for the next week”.

25

• Sensor Alert Service (SAS) provides users with the ability to subscribe to certain
sensor events. Like “notify me when the temperature exceeds 100◦F”.

• Web Notification Service (WNS) describes message exchange capabilities between
clients and services.

This thesis uses the same approach in order to define the Service Oriented Archi-

tecture for Monitoring Cargo in Motion Along Trusted Corridors called Transportation

Security SensorNet. However, it has to be noted that there are some differences in the

implementation and use of specifications. For instance only a subset of the Sensor Web

specifications are actually used.

The Geography Markup Language (GML), that is only briefly mentioned by Botts

et al. [10] in the SWE document, essentially describes some of the main components and

elements that are used by most of the specifications in the implementation. Addition-

ally, the Catalogue Service for Web (CSW) can provide a so-called service directory of

available services. The Sensor Web Enablement is an initiative from the OGC that aims

at the combined growth of theses specifications that will essentially make up the Sensor

Web. While some of the specifications are agreed standards others like the Sensor Alert

Service (SAS) are still in draft stage as of summer 2009.

Specifications that are relevant to the Transportation Security SensorNet are ex-

plained in more detail in the following sections.

3.2.2 Geography Markup Language (GML)

The need for a standard to encode geospatial features in an abstract way that can

eventually be mapped onto real world things is elementary. The Geography Markup

Language (GML) as described by Portele [72, 73] aims at defining most, if not all, fea-

tures with a geographical background that can be defined. Among the things covered in

the specification are observation models, spatial and temporal reference systems, geome-

tries and units of measure. It considers a variety of base components that are common

between applications and allows for other domain or application specific profiles to be

26

defined, therefore extending them. Application schemas describe a certain subset of

definitions within the standard but might introduce new or extended types that are

specific to the application.

The specification is highly hierarchical in the sense that several abstraction layers

have been introduced in order to hide complexity. The two base objects that are defined

from which all others are derived are abstract object and abstract gml. Basic types like

features that model things like roads or rivers add more properties onto the base objects.

This extension might be as simple as adding a location name and reference to it.

Things that can be modeled mathematically are part of a so-called geometry. This

includes points which are primitives, lines and curves which are aggregates and can lead

to more complex elements like polygons and surfaces.

Another big part of the specification is describing temporal constructs like time in-

stants, periods, intervals, durations and calendars. Coordinate reference systems may

be used differently throughout the world therefore definitions for them are included as

well. They are used to specify time and location formats for instance. Units of measure

are standardized definitions of measures and values of objects. There is also a section in

the GML specification called observation which covers mostly simple types of observa-

tions. A more in-depth specification covering this is the Observation & Measurements

(OM) specification (see 3.2.4).

An article by Bardet and Zand [2] gives an excellent example of how data is converted

from format called AGS into GML. The main problem that is described is the lack of

systematic archiving and exchange of drilling data. Since obtaining this data can be

very cost intensive it has become a big issue. Hence, transforming the data into GML

allows companies and researchers to take advantage of OGC applications for storage,

exchange and visualization of this information. This reduces cost and makes the drilling

data more useful. The article represents a case study in the sense that it describes in

detail all the steps that were taken to implement the data conversion.

GML is used by many other specifications as the basis for describing geographical

27

information. In the Transportation Security SensorNet it is used by the Sensor Observa-

tion Service and the Sensor Alert Service implementations provided by, among others,

the Sensor Node at the Mobile Rail Network (see section 6.3.1).

3.2.3 Catalogue Service for Web (CSW)

The Catalogue Service for Web (CSW) as specified by Nebert et al. [63] describes the

“discovery, access, maintenance and organization of catalogues of geospatial information

and related resources”. It manages resource information for services in the form of

metadata.

Figure 3.3. Catalogue Service reference model architecture from [63]

Whenever a client requires geospatial information or processing capabilities it queries

the Catalogue Service. A metadata repository is kept in order to store information such

as location, capabilities and schema definitions of services. Information that matches

the query is then returned to the client. The client also has the ability to ask for a

description of specific metadata elements and use that to get more specific results. The

CSW therefore acts as broker between the clients and the services. Once the client has

found a suitable service, it looks into the metadata that describes a particular service

and uses that information to perform its request.

One of the advantages of this architecture is the ease of use for the client. A lot of

services could provide essentially the same functionality. After they have all registered

28

with the Catalogue Service it is up to the client to choose which one to use. If a service

is not available the client can simply try a different one. Furthermore it is not necessary

for the client to actually know where the services are all the time since the Catalogue

Service stores this information. This allows for a flexible environment and makes it

scalable.

In the Transportation Security SensorNet this service directory functionality is pro-

vided by an implementation of Universal Description, Discovery and Integration (UDDI)

specification (see section 4.4). Clients and web services in the framework have the option

to contact it and retrieve similar information to the one offered by a Catalogue Service.

For additional scalability the specification also describes an approach called dis-

tributed search. Multiple Catalogue Services can set up a query topology where each

service is responsible for its own metadata but the query is answered collectively. For

the schema definitions of the Catalogue Service for Web see Nebert et al. [62].

3.2.4 Observations & Measurements (O&M)

Since there exists a variety of different sensors for almost every application, defining

a standard that is true to all of them can be quite hard. The goal of the O&M standard

as specified by Cox [20, 23] is to build an abstraction layer model that allows users and

other services to use whatever granularity they need.

Procedure

Feature of Interest

Observed
Property A

Observation
Pattern

ResultObserved
Property B

Figure 3.4. Observation process as described in [20]

Whenever an action is performed we basically “observe” a feature of interest. What

we are interested in is the value of an observed property of that feature and in order

29

to determine this property value we exercise a particular procedure. Additionally an

observation pattern can be useful for estimation and error correction of the observation

result. In cases where the result is numeric the term measurement is used instead of

observation. There are other specialized result types ranging from simple to complex.

An observation may also be associated with a location. This is quite common.

Depending on the properties of its members, collections of observations can be one

of the following types:

Type Feature Sampling time Observed properties
complex same same different

time series same different same
discrete coverage same same elements of a larger feature

Table 3.2. Collection types from [20]

The specification deals with collection types where the feature of interest does not

change but stays the same. We speak of a complex observation when different properties

are observed at the same time whenever a sample is taken. In case a particular property

is monitored over a certain time period and the property does not change throughout the

observation, the collection is called a time series. Sometimes the observed property we

are interested in is made up of many smaller observed properties. This scenario describes

a discrete coverage. An example given by Cox [20] is the observation of temperature

values in a particular region where there are multiple sensors in the region but one is

only interested in the temperature for the entire region.

Another thing described in the specification is the fact that in many cases the single

observed property is not actually what is wanted but rather just something indirect.

The sampling of features concept that deals with this is described by Cox [21, 22]. On

the one hand, the observed property value could be in need of adjustment or only usable

after the application of an algorithm as is often the case with light and temperature

values. On the other hand, one value might not be of any importance at all but is just

a part of a bigger sample design. Sometimes both cases can apply at the same time.

30

When an observation falls into this category the sample features form a particular

relation that connects them and a so-called survey procedure is defined. This process

achieves the desired abstraction where at a higher level the result of this relation looks

like just another value since the sampling of features works transparently underneath

it.

The Observations & Measurements (O&M) specification is used by the Sensor Ob-

servation Service in the Sensor Node at the Mobile Rail Network (see section 6.3.1). It

is used in combination with GML because O&M allows for more complex observations

while GML provides a broader field of geographical elements.

3.2.5 Sensor Observation Service (SOS)

The Sensor Observation Service (SOS) is described by Na and Priest [60, 61]. It

aims to provide the user with observation data in a generic way that allows the use of

a variety of different sensors. The two major types mentioned in the specification are

in-situ and remote sensors. The primary goal is to provide access to observations (see

3.2.4). An implementation of this service within the Transportation Security SensorNet

is provided by the Sensor Node (see section 6.3.1).

The service provides so-called observation offerings to users and applications. It does

this by maintaining a sensor registry that contains information such as type, location

and other metadata about the sensors that it knows about. This allows clients to

perform detailed inquiries about possible observation times, available properties and

geographical information of sensors and features.

GML is used to deal with measures and units in the offerings and when referencing

observations. Apart from allowing filtering by sensor id the Sensor Observation Service

is able to filter by spatial, scalar and temporal expressions. The two concepts it uses

are called data publishing and data consumption.

31

3.2.5.1 Data Publishing

Sensor Observation
Service

Sensor
Registry

Sensor

Data A Data B
Sensor
Data

Catalogue Service

Service
Registry

1. GetRecords

2. RegisterSensor

3. InsertObservation

Figure 3.5. SOS data publishing process as described in [60]

The data publisher, usually a sensor, is querying the Catalogue Service for Web

(CSW) for available Sensor Observation Services. After it found a suitable one it regis-

ters itself and is then able to publish data. In addition, the new sensor is automatically

integrated in new observation offerings.

3.2.5.2 Data Consumption

Catalogue Service

Service
Registry

1. GetRecords

Client

Sensor Observation
Service

Sensor
Registry

Sensor
Data

2. GetCapabilities

3. DescribeSensor

4. GetObservation

Figure 3.6. SOS data consumption process as described in [60]

32

The user has identified a need for a particular observation. The Catalogue Service

for Web then provides Sensor Observation Services. Depending on the availability of

metadata in the catalogue the user has either already selected a particular sensor or

retrieves that information about a sensor from the observation offerings. More specific

information about a particular sensor can be requested as well. Finally the necessary

observations can be retrieved.

3.2.6 Sensor Alert Service (SAS)

In order to allow for an asynchronous alert reporting mechanism to notify users, the

Sensor Alert Service (SAS) which is a candidate specification by Simonis and Echter-

hoff [78] has been designed. It proposes an event subscription and notification system

that publishes sensor data based on specified criteria. An implementation of this ser-

vice within the Transportation Security SensorNet is provided by the Sensor Node (see

section 6.3.1).

3.2.6.1 Advertising Process

Sensor Alert
Service

Sensor
Registry

Sensor

Data A Data B
Advertise

Subscription
Registry

Notification process

Figure 3.7. SAS advertising process described in [78]

The idea is that sensors advertise their data to the SAS. They then enter into an

advertisement agreement to publish this data whenever it becomes available.

33

3.2.6.2 Notification Process

Sensor Alert
Service

1. GetCapabilities
Client

 3. DescribeAlert

 2. DescribeSensor

Sensor
Registry

Subscription
Registry

Notification process

4. Subscribe

Alert

Figure 3.8. SAS notification process described in [78]

For the client, the service provides so-called subscription offerings. By choosing a

particular offering the client subscribes to the sensor data that is defined by the offering.

The SAS may modify or apply algorithms to the original sensor data which is in a way

similar to applying an observation pattern as described in the O&M specification (see

3.2.4). The offerings are linked to subscription criteria that are used internally to

match the sensor data that is published by the sensors to the individual clients that

subscribed to them. The Sensor Alert Service additionally provides the client with

means to retrieve all necessary information about the sensor itself and the alert data,

especially the format.

The main difference between the Sensor Observation Service and the Sensor Alert

Service is the way query results are provided. If the client is in need of particular

sensor data on an ad hoc basis, it asks the Catalogue Service for Web for a matching

SOS and queries the SOS in order to fulfill this need. The key aspect for the Trans-

portation Security SensorNet is that the SOS only deals with providing the sensor data

synchronously.

In case an alert system is needed to monitor whenever some sensor data reaches a

34

critical value the client does not directly act as the one querying for sensor data but

rather the SAS. The client simply tells the SAS the necessary criteria for an alert through

the means of a subscription. The SAS then monitors incoming sensor data and sends

out notifications accordingly. This is done asynchronously without the client having to

constantly query for data itself.

35

Chapter 4

Service Oriented Architecture

The main idea behind Service Oriented Architecture is that applications are defined

as so-called web services which communicate with each other using a set of predefined

protocols and standards. In terms of technologies, programming languages and plat-

forms used, these web services can be completely independent systems. The key here is

that their interfaces are specified using web service standards.

Service

Data A

Data B

Docs

Process A

Client

Client

Client

Client

Interface C

Interface B

Interface A

Process B

Interface D

Figure 4.1. Service overview

The book“Service-Oriented Architecture: Concepts, Technology, and Design”by Erl

36

[26] describes these fundamentals in more detail. In particular the main components

that make up a Service Oriented Architecture are outlined here.

A message represents the data that is required for a so-called unit of work. An

operation covers the logic that processes these messages. The grouping of logic that

handles related units of work is defined as a service. Additionally, the book defines a

process as the business logic that combines several operations in order to complete a

larger piece of work. Erl not only covers the basic concepts of SOA but also explains

how they can be applied in the real world.

The principles of service orientation according to Erl [26] consist of the following:

• Reusability of logic, operations and services

• Contracts that define the service and information exchange

• Loose coupling of relationships with the goal of minimizing dependencies

• Abstraction that hides implementation logic of services

• Composability of services to form a more complex process

• Autonomy of logic within a service

• Stateless use of information in a service

• Discoverability of services

The SOA approach allows for what is called loose coupling between services. It de-

fines each individual service in two ways. First, a service provides a specific functionality

that could be for instance data processing or information storage. It is autonomous in

doing so which means that it only dependents on itself for providing this functionality.

Second, each service can be replaced by a different service that has the same interface.

This flexibility allows the user to choose between services based on cost, performance

or availability.

Because the functionality of an entire business process or system often depends on

things like cost, availability and quality of a service, so-called service contracts can be

37

defined that allow for the combination of several services into a more complex system

that adheres to specific constraints. This is often necessary given the highly dynamic

environments of distributed, mobile, grid and peer-to-peer systems.

The Service Oriented Architecture is especially useful when dealing with legacy ap-

plications. Since the entire application or system can be “hidden” behind interfaces, the

integration or encapsulation of it into current business models requires far less effort.

Instead of converting or rewriting a complete application, web service interfaces for it

can be defined so that it becomes usable as a web service.

As mentioned before, two of the most important concepts in a Service Oriented

Architecture are autonomy and flexibility. In addition, SOA is very cost effective because

web services by default are built in a reusable way and because of the idea that the most

optimized service which provides the desired capabilities is chosen. Furthermore SOA is

highly scalable since it allows for the easy integration of broker, proxy and load balancing

scenarios.

The statelessness principle can be seen as a rather soft requirement since there are

instances of when a service needs to maintain at least some sense of state. An example

would be an “online time series data processor” that looks at a specific time window in

order to find patterns. It needs to keep track of the data parts that make up the window

and therefore information across multiple messages.

Most of the Service Oriented Architecture deployments make use of at least some sort

service registry that contains metadata about services and allows them to be discovered.

The most standardized approach is the use of Universal Description, Discovery and

Integration (UDDI) (see section 4.4) although a recent investigation by Al-Masri and

Mahmoud [1] found that of all the web services that were discovered 72% can be found

using web search engines and only 38% are registered in UDDI Business Registries.

Since SOA itself is a concept, several so-called Web Services (WS) specifications

have been developed that deal with the different aspects of it. One of the most notable

standards is WS-Addressing (see 4.3.1) which describes how routing information can be

38

directly attached to messages. Another one is WS-Security (see 4.3.3) that provides

end-to-end message integrity and confidentiality.

The benefits of SOA according to Newcomer and Lomow [64] and their relationship

to the Transportation Security SensorNet can be summarized as follows:

• Efficient development through modularity because services can be implemented
independently and solely on the basis of contracts and service descriptions. This
allows for tasks and implementations of clients and web services in the TSSN to
be split up among team members.

• More reuse since it is based on open standards, loose coupling and platform inde-
pendence. The implementation is being made available to everyone and represents
an reference example as to how web services can be utilized in sensor networks.

• Simplified maintenance in the sense that modifications to the implementation do
not necessarily change the service because of abstraction and the fact that clients
utilize the service only through interfaces. With the core of the web services in the
TSSN being implemented, further development can be focused on specific aspects
such as security and enhancements without breaking the current system.

• Incremental adoption since legacy applications can be“wrapped”into a service and
single applications can be transitioned into the Service Oriented Architecture step-
by-step. This is of importance to the Trade Data Exchange as it needs to acquire
cargo and route information from already existing systems (see section 6.5).

• Graceful evolution because service interaction is only interface based and services
can easily be replaced by faster, cheaper or more complex implementations. With
new technology and hardware becoming available parts of the current implemen-
tation of the Transportation Security SensorNet may be upgraded easier.

4.1 Representational State Transfer (REST)

REST is one of the major steps away from Remote Procedure Calls (RPC) and to-

wards scalable and distributed web service architectures. Even though Service Oriented

Architectures most often make use of the more flexible SOAP and its surrounding web

39

services specifications, as is the case with the Transportation Security SensorNet, REST

still plays an important role and is widely supported.

4.1.1 Traditional Definition

The Representational State Transfer (REST) concept was first introduced by Field-

ing [30]. It originally describes the following elements:

Data Elements A resource represents the main data element. It can be anything like

information, data or image. A resource identifier is used to uniquely map to a particular

resource. In order to know what the resource actually is, so-called representations are

defined.

Connectors According to REST, all interactions between a client and server are

stateless. This makes it highly scalable since the server does not need to keep state

information. Additionally, multiple requests at the server can be handled at the same

time. Furthermore, requests can be cached, transferred by intermediaries and reused.

The original definition of request (in) and response (out) parameters is the following.

In parameters are control data, resource identifier and an optional representation. Out

parameters consist of response control data, optional resource metadata and optional

representation.

Components The user agent defines the source of the request and the origin server

is used for so-called namespace resolution of the request.

4.1.2 Current Use

The architectural style of REST has been adapted for web services and is called

RESTful. It is closely tied to HTTP. The idea here is that resources are made available

through Uniform Resource Identifiers (URI). The representation in most cases is XML

but can also be specified using so-called Multipurpose Internet Mail Extensions (MIME)

40

types. HTTP methods such as POST, GET, PUT and DELETE are used as operations

for modifying the resources.

REST can be seen as an “old” standard for web services that is still in use mainly

because it is easy to use and highly flexible. It has traditionally been used in environ-

ments where the communication parties need to transmit small and “relatively” simple

messages. An advantage is that the requirements on bandwidth are usually smaller

when using REST compared to other approaches. With the advent of Asynchronous

JavaScript and XML (AJAX) it has seen an abundance of new application fields. This

is mainly due to the fact that AJAX uses the RESTful web service approach to provide

asynchronous interaction with a web server.

Figure 4.2. Traditional web applications and AJAX from Garrett [35]

Notable examples that use this approach are Google web applications such as GMail,

Maps and Docs. Since AJAX is in use by entire industries, a standardization process

as described by van Kesteren [83] has been started.

41

4.1.3 Further Development

Especially with recent developments in HTML5 as defined by Hyatt and Hickson

[43] the flexibility of REST allows it to be used in more and more applications. The

differences to HTML4 in terms of web application integration are significant. The en-

hancements described by van Kesteren [82] include Application Programming Interfaces

(API) for playing video and audio, editing, drag and drop and more. An important

addition is the ability for offline storage which allows web applications to replace desk-

top applications. The specification for this is defined by van Kesteren and Hickson [84].

This was currently only possible through extensions such as Google Gears.

All of this development and use of AJAX makes RESTful web services very appealing

as they can easily be used from web applications. Apache Axis2 which is the foundation

of the Transportation Security SensorNet supports REST for accessing web services.

This allows the use of TSSN web services in web applications without the need for

additional development effort.

4.2 SOAP

The Transportation Security SensorNet makes use of SOAP as the default message

exchange protocol. In the following SOAP is explained and a comparison with REST

is made, which includes the reasons behind choosing SOAP over REST for the TSSN

implementation.

According to Cabrera et al. [14] SOAP, which was formerly called Simple Object

Access Protocol, provides“a simple and lightweight mechanism for exchanging structured

and typed information between peers in a decentralized, distributed environment using

XML”. It is a message standard for web services that aims to provide more flexibility

and better interoperability than REST. In a comparison of SOAP to REST by Pautasso

et al. [70] it was concluded “to use RESTful services for tactical, ad hoc integration

over the Web (à la Mashup) and to prefer [SOAP in combination with] WS-* Web

42

services in professional enterprise application integration scenarios [, which is the case

with the Transportation Security SensorNet,] with a longer lifespan and advanced QoS

requirements”. The reasoning for this, including a detailed description of SOAP, follows.

One of the main differences between SOAP and REST is complexity. SOAP and the

so-called web services (WS) specifications built around it allow for the most complex

scenarios while maintaining a relatively simple basic format. REST on the other hand

is usually used in point-to-point communications and the exchange of simple XML.

Furthermore, one of the major drawbacks of REST is that it is tied very closely to

HTTP transport whereas SOAP is not.

SOAP is independent from platforms and programming languages and allows dif-

ferent transport protocols to be used as so-called bindings. According to Nielsen et al.

[67] a binding represents a “formal set of rules for carrying a SOAP message within or

on top of another protocol (underlying protocol) for the purpose of exchange”. This

includes describing how the protocol provides the necessary services to transport SOAP

messages, how errors are handled and most importantly what features are provided by

the underlying protocol. Although HTTP remains the most common binding, the ex-

tension of binding possibilities was one of the main enhancements to the original SOAP

1.1 specification by Box et al. [11], the other being the more clearly defined use of XML

schemas.

SOAP enables extensive end-to-end message routing which is important in dealing

with firewalls. The WS-Addressing specification (see 4.3.1) describes this in more detail.

Another important aspect is security, which is available as WS-Security (see 4.3.3) for

instance. Overall SOAP is simple in its default form yet very extensible.

4.2.1 Message format

The basic format according to the SOAP 1.2 specification by Nielsen et al. [66]

defines an Envelope that includes a mandatory Body and an optional Header as seen

in figure 4.3. The Header contains control information in the form of so-called header

43

Envelope

Header

Body

Fault

Figure 4.3. SOAP message format

blocks. These blocks can be used for routing or to pass processing directives to services.

The Body is the mandatory payload of the message and contains the data that is being

transmitted. Listing 4.1 shows the basic format that is used by all SOAP messages:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <soapenv:Envelope
3 xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

4 <soapenv:Header>
5 . . .
6 </soapenv:Header>
7 <soapenv:Body>

8 . . .
9 </soapenv:Body>

10 </soapenv:Envelope>

Listing 4.1 SOAP message format example

4.2.2 Faults

Apart from the basic message format, the specification also describes the Fault for-

mat that is common for all messages containing error information.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <soapenv:Envelope
3 xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

4 <soapenv:Header>
5 . . .

44

6 </ soapenv:Header>
7 <soapenv:Body>

8 <soapenv:Fault>
9 <soapenv:Code>

10 <soapenv:Value>soapenv :Rece iver</soapenv:Value>
11 </soapenv:Code>
12 <soapenv:Reason>

13 <soapenv:Text xml:lang="en-US">Transport e r r o r : 404
Error</soapenv:Text>

14 </soapenv:Reason>

15 <soapenv:Detail/>
16 </soapenv:Fault>
17 </ soapenv:Body>

18 </ soapenv:Envelope>

Listing 4.2 SOAP Fault message example

The Fault consists of three parts. The Code part classifies the error into a predefined

set dealing with version mismatches, so-called mustUnderstand header blocks, data

encoding, and sender and receiver issues. The Reason allows the Fault to be described

in terms of an error message and supports multiple languages. The Details part may

contain application specific information.

4.2.3 Further development

The SOAP 1.2 Primer by Lafon and Mitra [48] includes references to several en-

hancements of the standard. The main reason for this is the potential for performance

problems and the need for binary data transport in SOAP.

The XML-binary Optimized Packaging (XOP) specification by Mendelsohn et al.

[58] defines the use of MIME Multipart/Related messages provided by Levinson [51]

to avoid encoding overhead that occurs when binary data is used directly within the

SOAP message. XOP extracts the binary content and uses URIs to reference it in the

so-called extended part of the message. An abstract specification that uses this idea

is the Message Transmission Optimization Mechanism (MTOM) by Nottingham et al.

[68].

45

Another extension of this is Resource Representation SOAP Header Block (RRSHB)

as described by Gudgin et al. [37] that allows for caching of data elements using so-called

Representation header blocks. They contain resources that are referenced in the SOAP

Body which might be hard to retrieve or simply referenced multiple times. Instead of

having to reacquire them over and over again, a service may choose to use the cached

objects which speeds up the overall processing time.

4.3 Web Service Specifications

The web services in the Transportation Security SensorNet make use of web service

specifications in order to address topics such as addressing, event notification and se-

curity in a uniform and standardized way. The specifications that are relevant to the

TSSN are described in the following sections while their implementations are addressed

in chapter 6.

4.3.1 WS-Addressing

The WS-Addressing core specification by Gudgin et al. [39] and its SOAP binding

by Gudgin et al. [38] defines how message propagation can be achieved using the SOAP

message format. Usually the transport of messages is handled by the underlying trans-

port protocol but there are several advantages of storing this transport information as

part of the header in the actual SOAP message. For example, it allows the routing of

messages across different protocols and management of individual flows and processes

within web services.

WS-Addressing uses so-called EndPointReferences which are a collection of a specific

address, reference parameters and associated metadata that further describe its policies

and capabilities.

Addressing Header The header fields defined by the specification are the following:

• To which represents the destination of the message

46

• From contains the source, a so-called EndPointReference

• ReplyTo specifies that in case of a response, a message is supposed to be sent to
this EndPointReference, which might be different from the From field

• FaultTo defines the EndPointReference for the fault message in the case of an
error

• Action identifies the purpose of the message, in particular the web service opera-
tion, and is the only required field

• MessageID uniquely identifies every message

• RelatesTo references the MessageID of the request message in request-response
message exchanges; the relationship can also be specified explicitly by defining a
so-called RelationShipType

4.3.2 WS-Eventing

In order to allow for subscriptions to web services, the WS-Eventing specification has

been defined by Box et al. [12]. It describes the process of establishing subscriptions as

well as how the subsequent publications are delivered to the subscribers. The specifica-

tion relies on WS-Addressing for the routing of messages. The two main components of

a subscription in this specification are the Subscribe and the SubscribeResponse message.

After subscriptions have been created, publications will be sent out accordingly.

Subscribe The client that wants to subscribe to a particular web service needs to

define the following:

• The Action field of the WS-Addressing header is set to
http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe

• ReplyTo is the EndPointReference that receives the response to this subscription
request

• A MessageID that uniquely distinguishes multiple requests from the same source

• EndTo defines an EndPointReference that is used when the subscription ends
unexpectedly

47

http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe

• Delivery contains the EndPointReferences that are to receive the publications

• An Expires field that defines the expiration time of the subscription

• Filter that by default defines an XPath expression as the Dialect, but could be
any form of expression that is applied to potential publications in order to filter
them

SubscribeResponse The response to a subscription request is generated by the so-

called subscription manager. It sends back a message with these fields:

• The Action field of the WS-Addressing header is set to
http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse

• RelatesTo specifies the subscription request that this is a response to

• SubscriptionManager that contains its own Address and the unique Identifier for
the subscription

• An Expires field that defines the expiration time of the subscription

The WS-Eventing specification also offers message constructs for the renewal, status

retrieval and unsubscribing of subscriptions. Additionally a so-called subscription end

message is automatically generated by the service that publishes information in order

to notify subscribers of errors or other reasons for it being unable to continue the

subscription.

It has to be noted that without additional specifications like WS-ReliableMessaging

the delivery of publications is based purely on best effort and is not guaranteed.

4.3.3 WS-Security

The WS-Security specification as described by Lawrence et al. [49] deals with the

many features needed to achieve so-called end-to-end message security. This provides

security throughout message routing and overcomes the limitations of so-called point-

to-point transport layer security such as HTTPS. Furthermore, the specification aims to

48

http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse

provide support for a variety security token formats, trust domains, signature formats

and encryption technologies.

The two main aspects of security are the following:

Confidentiality This means that the information contained in a message is only avail-

able or visible to entities that are authorized. Encryption provides this confidentiality

for messages.

Integrity The integrity of a message is maintained if it has not been modified on the

way from one entity to another. Applying a signature enables the receiver to check if

the message has been altered during the transmission.

These aspects among others are defined as part of the SOAP message. Most of the

security provided by WS-Security is specified in header blocks of the SOAP header. The

following represent its important parts:

Tokens The specification supports various types of security tokens directly:

• User Name Tokens for username and password pairs

• Binary Security Tokens which essentially are X.509 certificates or Kerberos tickets

• XML Tokens described by the Security Assertion Markup Language (SAML) or
Extensible Rights Markup Language (XrML)

• Encrypted Data Tokens in which case the token itself is encrypted as well

A different way of specifying these tokens is to reference them. This is useful because

at times the security tokens are specified in a different part or even completely outside of

the SOAP message. The WS-Security specification defines the following most commonly

used:

• Security Token References which can be used to wrap around non-standard im-
plementations

49

• Direct References for using a URI as a reference point

• Key Identifiers that uniquely identify security tokens

• Embedded References which directly include tokens instead of pointing to them

Signatures In order to ensure the integrity of messages so-called signatures can be

applied by the sender. The receiver is then able to check the validity of the message

using this signature. Important properties that can be conveyed in the SOAP header

using WS-Security are:

• Signed Info that defines the algorithms to be used for so-called namespace trans-
formations and proper ordering of signature and encryption elements (for example,
sign an encrypted message or encrypt a signed message)

• Signature Value containing the actual digital signature

• Key Info that defines the type of the signature used

The specification also allows for various forms of so-called Signature Confirmations

to be sent out as responses to the initial messages. They can provide additional security

in certain scenarios.

Encryption WS-Security provides great flexibility when it comes to the actual en-

cryption of the message. It supports header, body as well as individual block encryption.

The reason it is able to do this lies in the fact that it makes use of the following two

constructs:

• Reference List that points to the Encrypted Data elements which, since they are
completely independent of each other, enables different encryption techniques and
keys to be used

• Encrypted Key which allows symmetric keys to be embedded in the message and
is used for encrypting the SOAP header

50

Security Timestamps Most of the time, security policies need to make sure that

it is possible to change previously distributed keys and force the ones that are not to

be used anymore to expire. For this purpose WS-Security supports so-called Security

Timestamps that can be attached to the message. Two fields are defined:

• Created describes the time when the message was serialized for transmission

• Expires defines the point in time when the security applied to this message is no
longer considered valid

It has to be noted that WS-Security does not provide any methods for time synchro-

nization which may potentially limit the effectiveness of Security Timestamps in certain

scenarios.

A white paper by Chanliau [15] extends the definition of security to areas such as

secure message delivery, metadata and trust management. It references the web service

specifications that have been introduced to deal with these aspects of security in more

detail.

4.4 Service Directory

Because web services by default are loosely coupled there has to be a way of for them

to establish connectivity with each other. In general there are two different approaches

for doing this. First, let a service A directly know about the presence and address of

a service B that it seeks to contact. This can cause a variety of problems as all the

addresses have to be managed manually which leads to scalability issues. Second, define

a so-called service registry that keeps track of available services and acts as a mediator

between clients and services.

The latter approach has been realized using the Universal Description, Discovery

and Integration (UDDI) specification as described by Bellwood et al. [5] and is being

used in the Transportation Security SensorNet. UDDI provides a XML based service

registry and directory that provides the following:

51

• Information on web services and their categorizations, so-called metadata

• Discovery of web services based on specific criteria

• Connection information such as required security aspects, provided transports and
operation parameters that describes in detail how to connect to a service

• Alternatives in case of a failure of one service

A paper by Bellwood [4] describes the main focus areas of version 3 of the UDDI

specification:

Multi-registry Environments In order to allow for the logical separation of service

registries, UDDI supports so-called root registries that act as parents to affiliates. Fur-

thermore the replication of registries is supported. Whenever a web service publishes

information to a registry it is able to either provide a key as a “suggestion” or have the

registry automatically assign a new unique key to the information.

The UDDI also provides means for transferring the custody and ownership from

one so-called business entity to another. This is an important aspect when it comes to

handling cargo in the transportation industry. The Transportation Security SensorNet

is able to provide this functionality by using an implementation of the UDDI.

Subscriptions Apart from the basic search interface that the UDDI provides, the

specification describes two different subscription models:

• Active subscriptions check whether or not specified criteria of the previously
defined subscriptions match current entries in the registry. This is done syn-
chronously, meaning only when a request has been issued.

• Passive subscriptions allow for the registry to store so-called asynchronous call-
backs for subscriptions. The registry checks against its entries on its own and
independently of the initial subscriber. Whenever it finds a match it sends out a
notification.

52

The Transportation Security SensorNet provides support for active subscriptions

transparently to clients and web services . Web services automatically register with the

UDDI when they are started. Clients are then able to use them by just specifying the

type of service that they need. An according web service is then automatically handed

to them using an underlying active subscription to the UDDI.

Policies The UDDI supports a complex policy abstraction model which main compo-

nents are:

• Rules that define actions for when a set of particular conditions is met

• Decisions which comprise of a set of rules

• Information access and control that defines what kind of functionality can be
provided with regard to inquiries, publications, subscriptions and others.

Policies are also used to enforce security although the specification acknowledges

that only the integrity part of it is defined. This is partly due to the fact that the UDDI

is supposed to be a public registry and lookup directory. For this particular purpose,

the focus is more on the reliability of entries which can be ensured using signatures.

Advanced policy management that is able to restrict access to web services and even

single operations as well as encrypted message exchanges are especially important when

it comes to the scalability and production deployment of the Transportation Security

SensorNet. Within the TSSN policy information as of summer 2009 is not yet in the

UDDI but kept directly in the clients and web services.

4.5 Web Services Description Language (WSDL)

In order to allow services to interact and collaborate they need to share information

about interfaces, operations, parameters, data elements and means of contact with each

other. This has been addressed by the Web Services Description Language (WSDL).

The most widely used and supported version is WSDL 1.1 as described by Christensen

53

et al. [17] but the newer version 2.0 provides a cleaner and more extensible specification.

According to Liu [54] the main improvements include the following:

• Renaming of some elements to express their intentions in more detail (definitions
to description, port type to interface, ports to endpoints)

• Reorganizing the messages constructs that were previously disparate (definition is
now part of types)

• Operations contain messages in a particular Message Exchange Patterns

• Introduction of more Message Exchange Patterns, see section 4.6

• Allows for interface inheritance

Overall WSDL 2.0 is a clear evolution and in many ways a lot cleaner but also far

less supported than WSDL 1.1. The Transportation Security SensorNet uses WSDL

2.0 as it aims to provide an open framework that is extensible in the future. Figure 4.4

provides an overview of the core components of WSDL 2.0.

Service

Endpoint A

Binding A

Endpoint B

Operation B

Interface A

Operation A

Operation B

Operation A

Message

Types

Element A

Binding B

Operation A

Operation B

Element B

Element C

Element D

Message

Message

Message

Figure 4.4. WSDL 2.0 overview

54

Elements that are being used by the service are defined in the types section. They

essentially make up the messages of an operation. A group of operations then defines a

so-called interface. A binding specifies the transport format for these interfaces. Finally

the network addresses for the bindings are exposed as endpoints. Hence, a service can

be seen as a group of endpoints that allow clients to use the functionality provided by

the service through clearly defined interfaces and specified transport formats.

Interfaces from other services may be included using <include schemaLocation="..."

/> in which a location pointing to a valid WSDL file must be specified. The import

namespace must be the the same as the one for the WSDL that it is included into. In

order to be able to use different namespaces while still maintaining modularity, WSDL

files can also be imported using <import namespace="..." schemaLocation="..."

/> and specifying a target namespace. Both of these directives are modeled after XML

Schema includes and imports by Bray et al. [13].

The following is a more detailed description of the Core Language part of the WSDL

2.0 specification by Moreau et al. [59]. Another introduction to the main components

is provided in the Primer by Booth and Liu [9]

4.5.1 Description

1 <?xml version="1.0" encoding="UTF-8"?>
2 <description
3 xmlns="http://www.w3.org/ns/wsdl"

4 xmlns:a="http://www.sample.com/elementBook"

5 xmlns : tns="http://www.sample.com/library"

6 xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"

7 targetNamespace="http://www.sample.com/library">

8 . . .
9 </description>

Listing 4.3 WSDL Description example

The description acts as the root for a WSDL 2.0 document that contains all other

elements. It takes care of defining the target namespace and aliases for namespaces. In

55

the example the default namespace is set to WSDL which specifies that the document is a

WSDL document. The xmlns:wsoap="http://www.w3.org/ns/wsdl/soap" references

the SOAP binding for WSDL. The other namespaces that are mentioned refer to the

library example which was introduced in section 3.1.1.

4.5.2 Types

1 <types>
2 <xsd : import
3 namespace="http://www.sample.com/elementBook"

4 schemaLocation="elementBook.xsd"/>
5 <xsd:schema
6 targetNamespace="http://www.sample.com/library">

7 <xsd :e l ement name="bookList">

8 <xsd:complexType>
9 <xs : e l ement r e f="a:book" minOccurs="0" maxOccurs="

unbounded"/>
10 </ xsd:complexType>
11 </ xsd :e l ement>
12 <xsd :e l ement name="user" type="xsd:string">

13 <xsd :e l ement name="error" type="xsd:string">

14 </ xsd:schema>
15 </types>

Listing 4.4 WSDL Types example

XML schema elements for the service are defined in the types part of the WSDL.

Additionally schema includes and imports are supported. The elements can then be

referenced by messages later on. The code in listing 4.4 imports the book element from

the library example which is used in the bookList describing a list of books. Additionally

elements called user and error are defined in the same library namespace. Since user,

error, book and bookList are fully described by the WSDL, they can now be used by

both the service and the client. The service might have known about them already but

by using WSDL it makes them available to clients and other services in a standardized

way.

56

4.5.3 Interface

1 <interface name="LoanInterface">

2 < f a u l t name="UserIsUnknown" element="tns:error"/>
3 <opera t i on name="getBooks" pattern="http://www.w3.org/ns/

wsdl/in-out">

4 <input messageLabel="Request" element="tns:user"/>
5 <output messageLabel="Response" element="tns:library"/>
6 <o u t f a u l t r e f="tns:UserIsUnknown">

7 </ opera t i on>

8 </ interface>

Listing 4.5 WSDL Interface example

Since version 2.0, WSDL allows for multiple interfaces to be defined and supports

inheritance between them. An interface includes a group of operations that consist

of messages. The operations must be associated with a Message Exchange Pattern

(MEP). For more information see section 4.6. According to the MEP that is used, input

and output messages are specified. They reference elements from the types part of the

WSDL. Note that since the MEP is In-Out in which a fault would replace the response

in case of an error, an outfault is specified. In the example an operation is defined that

allows a user to retrieve a list of the books that were loaned.

4.5.4 Binding

1 <binding name="LibrarySOAPBinding"

2 interface="tns:LoanInterface"

3 type="http://www.w3.org/ns/wsdl/soap"

4 wsoap :ver s ion="1.2"

5 wsoap :protoco l="http://www.w3.org/2003/05/soap/bindings/

HTTP/">

6 < f a u l t r e f="tns:UserIsUnknown" />
7 <opera t i on r e f="tns:getBooks"

8 wsoap :act ion="tns:getBooks" />
9 </binding>

Listing 4.6 WSDL Binding example

57

Each binding is able to reference the interfaces that were previously described in

the WSDL. It associates them with a specific format and protocol that is then used

to transmit messages. A binding can also be defined on a operation or even message

level. This however is not as commonly used. The binding that is specified in listing 4.6

associates the LoanInterface with SOAP 1.2. According to the SOAP binding part of

the WSDL specification by Orchard et al. [69] the type attribute is used to define SOAP

whereas the version and the protocol (SOAP 1.2 over HTTP) are specified using the

SOAP namespace. Note that for the operation in the example a so-called SOAP action

is set which allows SOAP messages received by the service to be pointed to the according

web service operation.

4.5.5 Service

1 <service name="LibraryService"

2 interface="tns:LoanInterface">

3 <wsdl2 : endpo int name="LibrarySOAPEndpoint"

4 binding="tns:LibrarySOAPBinding"

5 address="http://www.sample.com/library/soap" />
6 </ service>

Listing 4.7 WSDL Service example

The last part in a WSDL document is providing an endpoint that specifies a network

address at which the service can be reached. The same interface could potentially have

several different bindings. For each of them an endpoint has to be defined in order to be

able to use them. Hence, a service essentially exposes the defined interfaces and their

bindings.

4.6 Message Exchange Patterns

In order to manage the most complex communication scenarios so-called Message

Exchange Patterns (MEP) have been defined. They are specified for each operation in

the WSDL document (see section 4.5.3). The basic patterns are explained in detail in

58

the following sections.

The Message Exchange Patterns are in large part based on so-called fault propagation

rules which specify what happens in case of an error. SOAP uses them to clearly define

how error messages are sent from clients to services and in between services. This

allows both parties to be aware of their error handling responsibilities. The following

fault propagation rules are defined:

Fault Replaces Message Whenever an error occurs, the message that was supposed

to be sent is replaced by a fault.

Message Triggers Fault In case of an error a fault is sent back to the sender of the

message. The message itself is not replaced though.

No Faults No fault is created at any time. If something goes wrong only the party

that encounters the error knows about it, nobody else.

A combination of these fault propagation rules and the messages that are exchanged

between client and service make up the Message Exchange Patterns. Note that whenever

two services exchange messages, one is always acting as the client. Hence the MEPs

depict only client-service interactions.

In the Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts

by Orchard et al. [69] the following Message Exchange Patterns are defined:

4.6.1 In-Only

Client Service
Request

Figure 4.5. In-Only message exchange pattern

59

Messages in this pattern are one way only. It is defined by http://www.w3.org/ns/

wsdl/in-only. No Faults are sent. This can be seen as a fire-and-forget approach.

4.6.2 Robust In-Only

Client Service
Request

Error triggers Fault message

Figure 4.6. Robust In-Only message exchange pattern

This message pattern is identified by http://www.w3.org/ns/wsdl/robust-in-only

and extends In-Only in the sense that it creates Faults when errors occur.

4.6.3 In-Out

Client Service

Request

Error replaces message with Fault

Response

Figure 4.7. In-Out message exchange pattern

The most common Message Exchange Pattern is defined by http://www.w3.org/

ns/wsdl/in-out. It specifies a request-response model where in the case of an error a

Fault replaces the response message. Services often act as data or application providers

where clients issue their requests and the service responds with either the requested

data or the result of the processing that it provided.

60

http://www.w3.org/ns/wsdl/in-only
http://www.w3.org/ns/wsdl/in-only
http://www.w3.org/ns/wsdl/robust-in-only
http://www.w3.org/ns/wsdl/in-out
http://www.w3.org/ns/wsdl/in-out

Additional MEPs have been defined by Lewis [53]:

4.6.4 In-Optional-Out

Client Service

Request

Error triggers Fault message

Optional response

Figure 4.8. In-Optional-Out message exchange pattern

The pattern identified by http://www.w3.org/ns/wsdl/in-opt-out makes the re-

sponse of an In-Out message exchange optional. It can be used for control messages

where responses are often status messages and the assumption is that only errors are of

importance in which case a Fault is generated.

4.6.5 Out-Only

Client Service
Notification

Figure 4.9. Out-Only message exchange pattern

http://www.w3.org/ns/wsdl/out-only defines a Message Exchange Pattern that

is mostly used in asynchronous communication environments and subscriptions. It is

assumed that the client registered or subscribed with the service and that the service

sends notifications back to the client at a later time. This version does not send out

Faults.

61

http://www.w3.org/ns/wsdl/in-opt-out
http://www.w3.org/ns/wsdl/out-only

4.6.6 Robust Out-Only

Client Service
Notification

Error triggers Fault message

Figure 4.10. Robust Out-only message exchange pattern

In a similar fashion to Out-Only this pattern which is defined by http://www.w3.

org/ns/wsdl/robust-out-only sends out messages to a client. The difference is that

in case of an error it creates a Fault.

4.6.7 Out-In

Client Service

Notification

Error replaces message with Fault

Notification response

Figure 4.11. Out-In message exchange pattern

Being the reverse of the In-Out pattern http://www.w3.org/ns/wsdl/out-in de-

scribes a request-response communication that is initiated by the service. In subscription

scenarios for instance the response can be seen as an acknowledgment that the notifica-

tion has been received by the client. A Fault replaces the notification response in case

of an error.

4.6.8 Out-Optional-In

An extension of the basic Out-In message exchange the http://www.w3.org/ns/

wsdl/out-opt-in pattern provides in a sense a selective acknowledgment of the notifi-

62

http://www.w3.org/ns/wsdl/robust-out-only
http://www.w3.org/ns/wsdl/robust-out-only
http://www.w3.org/ns/wsdl/out-in
http://www.w3.org/ns/wsdl/out-opt-in
http://www.w3.org/ns/wsdl/out-opt-in

Client Service

Notification

Error triggers Fault message

Optional
notification
response

Figure 4.12. Out-Optional-In message exchange pattern

cation that was sent out. It allows for robustness by being able to send Faults.

63

Chapter 5

Related Work

In the following sections related work that is relevant to various aspects of the Trans-

portation Security SensorNet such as Service Oriented Architecture, web services, com-

munication models, the Open Geospatial Consortium specifications and sensor networks

is analyzed.

5.1 Microsoft - An Introduction to Web Service Architecture

The paper by Cabrera et al. [14] about web service architectures gives an excellent

introduction to what eventually evolved into the Service Oriented Architecture. The key

ideas described are the following:

Message only approach The only thing that is exchanged between services are

messages. This principle avoids potential problems that could occur when functionality

embedded in different components becomes too intertwined. It also ensures flexibility

and interoperability between services. The services and messages are defined in Web

Service Description Language (WSDL) and then transported using SOAP. How the

messages are sent from one service to the other is specified is so-called Message Exchange

Patterns (MEP). Additional properties like security or reliability are standardized in the

Web Service (WS) specifications.

64

Flexible protocol stack In order to provide support for a variety of systems, SOA

needs a protocol layering model that ranges from general purpose to highly specific. The

modular architecture of SOAP describes a protocol that consists of “building blocks”.

This ensures two things. First, you only pay for what you actually use and second, it

can be complemented or extended at any time.

Autonomy of services As described before, services aim to embed their function-

ality and be independent from each other. The extensibility of SOAP allows for the

so-called evolution of a web service, also known as versioning. The mustUnderstand

annotation can be provided to signal that the recipient of a message needs to know

how to handle the SOAP header specifics. In order to maintain this autonomy and

at the same time allow complex business models to be used, services must form trust

relationships with the services that they use. The reason for this is that essentially

there is no apparent difference between two services that provide the same interface.

Businesses must know that they can trust their data to be handled confidentially by

the service that they choose. Without this trust paradigm there are many potential

security concerns. Another point mentioned is the move from a centralized system to a

more federated approach using SOA which is able to deal better with the entire message

exchange model.

Managed transparency In order to be flexible enough to support different program-

ming languages and platforms, Service Oriented Architectures use a service abstraction

layer model. The implementation and internal processes of a service are completely

hidden from its client. The only thing visible are the so-called interfaces that are pro-

vided. Every service in SOA is described using the Web Service Description Language

(WSDL). The WSDL file of a service defines its capabilities and provides a standard for

the interoperability of clients and services.

65

Protocol-based integration The interaction between services should be restricted

to the communication using a predefined protocol only. This allows for applications to

be self-contained and independent of their implementation language and system. As

described before it provides this by using abstraction layering through interfaces and

the use of metadata. The Service Oriented Architecture follows the “nothing is shared”

approach. This autonomy is the reason why it can provide the aforementioned flexibility.

Cabrera et al. [14] outline concepts that led to the implementation of Service Ori-

ented Architectures and development of the web services specifications that surround

them and are used by the TSSN. A lot of the main approaches have been standardized

in various committees and organizations by now but were only in the early stages when

this paper first came out.

5.2 Adobe - Service Oriented Architecture

An Adobe technical paper by Nickul et al. [65] outlines general architecture ap-

proaches that can be taken when transitioning business processes to the Service Ori-

ented Architecture. It mentions a widely used technology called the Enterprise Service

Bus (ESB) that provides a standardized means of communication for all services that

connect to it. For the Transportation Security SensorNet this is of importance when it

comes to asynchronous communication as the Java Message Service (JMS) uses queues

that are on the ESB for message exchanges (see section 6.1.6 and 8.2).

In the example that is provided, three business processes all have some sort of login,

authentication, name and address management. The problem that occurs most often

in scenarios like this is how to synchronize states across all three processes. Using SOA

this common task is bundled into a service that all three processes connected to the

ESB can use which improves efficiency and greatly decreases required maintenance.

In addition to the basic Request-Response, several other message exchange patterns

that go beyond the standardized ones (see section 4.6) are described:

66

5.2.1 Request-Response via Service Registry (or Directory)

Figure 5.1. Request-Response via Service Registry (or Directory) message
exchange pattern from [65]

A so-called registry keeps track of service metadata. The service provider is respon-

sible for updating it whenever a change occurs and the service consumer subscribes to

the registry for any of these changes. The metadata that is provided is then used to

configure a service client. Hence, the client can issue requests and receive responses.

The Transportation Security SensorNet essentially uses a very similar approach with

the UDDI. Web services automatically register with the UDDI when they are started

and clients are able to use specific services by looking them up in the UDDI.

5.2.2 Subscribe-Push

The service consumer uses the client to subscribe to specific events as shown in

figure 5.2. Whenever the service encounters one of these events it pushes notifications

back to the client or other endpoints that were defined in the subscription. This approach

is conceptually similar to what is described by the WS-Eventing specification (see 4.3.2).

67

Figure 5.2. Subscribe-Push message exchange pattern from [65]

5.2.3 Probe and Match

When there is no service registry available, a client has to discover usable services

on its own. By using multicast or broadcast messages it probes until suitable services

respond with a match. A hybrid approach could use the registry for a candidate set of

services to probe. This pattern does not scale very well because it is highly dependent

on the available bandwidth.

Figure 5.3. Probe and Match message exchange pattern from [65]

68

5.3 Open Sensor Web Architecture

An approach to implement the proposed standards of the Sensor Web Enablement

that are described in section 3.2.1 is outlined by Chu et al. [19]. A more detailed

definition of the system and its core services is provided in the thesis by Chu [18]. The

system is called NICTA Open Sensor Web Architecture (NOSA) and is focusing on

the combination of sensor networks and distributed computing technologies. For this

purpose the following four layer model is defined:

Figure 5.4. NOSA layer overview from [19]

Physical layer The sensors can be contacted using standardized means such as ZigBee

and other IEEE 802.15 protocols. They can also interact with each other.

69

Sensor layer This layer provides the main sensor applications that are built on top of

the Sensor Operating System. This operating system is called TinyOS (see Levis et al.

[52]) and is widely used in low power sensor environments. It deals with the control,

monitoring and retrieving of data from the sensors in the physical layer. The sensor

layer acts as the basis for services that make use of this data.

Service layer Web services that are compliant to the ones defined in the Sensor Web

Enablement are part of this layer. They provide a uniform and standardized way of

dealing with sensors and the data that they gather.

Application layer Applications that want to interact with the underlying service

infrastructure are provided with development and third party tools that to make use of

the open standards web service interfaces.

The Transportation Security SensorNet uses a similar approach but has some sig-

nificant differences. The goal of both implementations is to integrate a sensor network

into a web services architecture using open standards. NOSA uses a sensor application

that is tightly integrated into the Sensor Operating System and then provides sensor

data and control to web services in a non-standard format. TSSN on the other hand

implements sensor management and monitoring functionality inside a single service, the

Sensor Node (see section 6.3.1) and allows different sensors to be “plugged in”. This

allows other services to use standard web service interfaces and SOAP messages in order

to access sensors.

Furthermore, the web services used by NOSA are implemented manually according

to the Open Geospatial Consortium specifications which causes them to be limited as not

everything that is specified is also implemented. In contrast, the TSSN uses automatic

code generation (see section 6.1.1.4) that enables it to use all OGC specifications. Since

their elements and interfaces are generated the only thing that has to be implemented

is functionality. This approach significantly reduces development efforts.

70

5.4 Globus - Open Grid Services Architecture

Globus is an architecture that is based on grid computing. It focuses on providing

capabilities as services in a grid environment using standard interfaces and protocols.

An initial paper by Foster et al. [32] gives an overview of the architecture and design

decisions. In particular, Globus supports “local and remote transparency with respect

to service location and invocation” and “protocol negotiation for network flows across

organizational boundaries”. Its service approach is similar to the Service Oriented Ar-

chitecture that is used by the Transportation Security SensorNet. Additionally, security

concepts that work inside a grid are applicable to SOA and vice versa.

Services Functionality in the Globus defined architecture can be achieved using so-

called grid services which utilize standard interfaces in order to provide the following:

• Discovery of capabilities and the services using standardized naming conventions

• Lifetime management which includes dynamic service instance creation and con-
currency control of data and processes

• Notification of clients and subscribers in case of events

• Manageability of service relationships and maintenance

• Upgradability in terms of versioning to ensure compatibility between services

• Authorization to enforce access control

Protocols The two important aspects regarding protocols that Globus deals with are:

• Reliable service invocation ensures that the exchange of messages which is the
core of service interaction is reliable. This allows for the means of communication
necessary in a grid computing environment.

• Authentication addresses the need to verify the identity of clients and services in
the grid

71

The current architecture of Globus as shown in figure 5.5 is still based on the same

principles that were initially described by Foster et al. [32]. The combination of custom

components and web services components provides an architecture for security, data

management, execution management, information services and a common runtime in a

grid environment. In the following, the approaches taken are described in detail.

Figure 5.5. Globus Toolkit overview from http://www.globus.org/
toolkit/about.html

Service model All entities are represented as services that provide standard interfaces

over which their capabilities are accessible. Invocation of a particular functionality

and the interaction between services is performed using message exchanges. These

72

http://www.globus.org/toolkit/about.html
http://www.globus.org/toolkit/about.html

grid services utilize web services specifications for their interfaces and implementations.

Since a service in Globus is both, dynamic and stateful, it is assigned a so-called grid

service handle (GSH) to uniquely identify it. In order to support the upgradability

concept, a particular version of the service is identified by a grid service reference (GSR).

Factories Services in the grid that are able to create new service instances are called

factories. Whenever a new service is created, it is automatically assigned a new grid

service handle.

Service lifetime management Globus allows task specific services to be instanti-

ated. These so-called transient services perform a predefined task and terminate upon

its completion. It is also possible to associate a particular lifetime with a service. Note

that services that need more time in order to complete their task may request a lifetime

extension. An important aspect regarding the lifetime management is time synchroniza-

tion across all services. In order to achieve this, Globus uses the Network Time Protocol

(NTP).

Handles and references A so-called HandleMap is used to map grid service handles

to specific grid service references. This is necessary since grid service references have a

defined lifetime and may expire. The HandleMap ensures that it only returns valid grid

service references and not ones that are already terminated. This among other things

also allows detailed access control all the way down to the operation level. For this to

work, every service needs to register with a so-called home HandleMap. The grid service

handle is constructed in a way that it automatically references this home HandleMap

to ensure scalability.

Service data and service discovery Every grid service is associated with so-called

service data which in Globus is a collection of XML documents that describe the capa-

bilities of the service. By default each service provides this data using the mandatory

73

FindServiceData interface. The overall system contains a registry that contains refer-

ences to each individual service. It provides a Registry interface that is used to register

grid service handles. Since the availability of services can change, the registry has to

adapt. In order to deal with these dynamics in the grid environment, registrations must

be refreshed otherwise they expire after a specified time.

Notification Globus provides an asynchronous notification system that is based on

subscriptions. A client acts as a so-called NotificationSink that issues a request for

particular events to the so-called NotificationSource. In the case of events, notifications

are then pushed from the source to the sink.

Change management Web services interfaces in the grid environment are uniquely

named in order to provide manageability. Whenever a significant portion of the interface

or implementation is changed, a new unique name must be provided.

In contrast to the Transportation Security SensorNet, Globus makes use of web ser-

vice specifications in some of its components but also provides custom implementations

and interfaces as for service discovery and notifications. The TSSN uses web services

specifications and Open Geospatial Consortium standards almost exclusively which en-

sures standards compliance and compatibility. For service discovery the UDDI (see

section 4.4) is used and for notifications WS-Eventing (see section 4.3.2).

5.5 Service Architectures for Distributed Geoprocessing

A research article by Friis-Christensen et al. [34] deals with the integration of Open

Geospatial Consortium specifications. It outlines the implementation of an application

that analyzes the impact of forest fires using web services. The purpose of the application

is to assess the damage inflicted by fires based on land cover data for a particular area.

The previous solution looked like figure 5.6.

74

Figure 5.6. Forest fire application from [34]

Friis-Christensen et al. [34] discuss advantages and disadvantages of their improved,

web services based implementation and outline potential solutions for problems that

they discovered.

Figure 5.7. Forest fire web services architecture from [34]

Architecture The main focus is the transition from a client application to a flexible

web services architecture using Open Geospatial Consortium specifications. As shown

75

in figure 5.7 the components include multiple data sources that are made available

through data access services like the Web Map Service and the Web Feature Service.

A geoprocessing service performs the analysis of the data and provides it to a client.

Furthermore a discovery service serves as the registry for all services and their metadata.

The general process is described as follows:

1. Retrieve a map

2. Select a time and area of interest

3. Search for data source masks that deal with burnt areas

4. Search for target data masks that serve as the basis for the assessment of fire
damage

5. Execute the process which retrieves the masked features, performs calculations
and returns the desired statistics

6. Display statistics

Statistics Service This is the implementation of a Web Processing Service (WPS)

according to the OGC specifications. Apart from the general getCapabilities interface, a

describeProcess interface is defined which is used to explain how data is handled within

a particular process and what functionality the process provides. The execute operation

is used to start the specified process with previously defined filters, so-called masks, as

the parameters. During the processing, the statistics service uses these masks to collect

features from the data sources.

Mapping and Feature Services These services provide the relevant data such as

satellite imagery and statistics either in its entirety or through the application of spec-

ified masks.

Catalogue The catalogue serves as a service registry and allows searching for services

and features based on title, bounding box and time of interest.

76

Client In the implementation that is described in the paper, the client application is

browser based. It uses a combination of client (AJAX) and server (JSP) based technol-

ogy to display maps and the calculated fire damage statistics

The prototype implemented uses synchronous communication in between services.

The problem in this case is that the actual processing can take quite a long time. In the

future the authors want to transition to an asynchronous communication model that is

similar to the OGC Web Notification Service.

In addition, it is pointed out that even though standardized interfaces allow for a

combination of services which provides flexibility, the transport of high volumes of data

is often not feasible in geoprocessing scenarios which can lead to highly specialized but

not very reusable services.

The implementation described by Friis-Christensen et al. [34] is interesting in the

sense that it exclusively uses specifications from the Open Geospatial Consortium which

makes it compatible to other Geographical Information Systems. The Transportation

Security SensorNet aims to be OGC compliant as well but includes specifications that

deal with sensor networks such as the Sensor Observation Service and the Sensor Alert

Service, something that this forest fire web service architecture does not even address.

5.6 Web Services Orchestration

A paper that specifically deals with the problem of reusability of services and so-

called “next generation challenges” was written by Kiehle et al. [47]. The idea here is to

increase transparency and reusability by splitting processes into smaller more reusable

processes and utilizing a work flow management system called Web Services Orches-

tration. This is especially important for the integration of the Transportation Security

SensorNet into systems used in the transportation industry. Its modular design and

architecture allow single components to be reused and and information flows to be cre-

ated.

77

Figure 5.8. Web orchestration framework from [47]

The Web Processing Service specification describes how services can be arranged

and combined into so-called service chains that form a process. Two alternatives are

commonly used in order to achieve this. A Web Processing Service can be setup to com-

bine and “encapsulate” other individual web services and therefore provide the desired

abstraction. However, the best way to define work flows is using the so-called Business

Process Execution Language (BPEL). BPEL enables complex service chains as shown

in figure 5.8 to be defined without the need for custom and potentially not reusable Web

Processing Services that just “encapsulate” services.

5.7 Summary

The related work addresses the following key technologies that play an important

part in the Transportation Security SensorNet :

78

Service Oriented Architecture The development of the Service Oriented Architec-

ture and its web services specifications has come a long way but is still far from over.

Even though specifications exist, organizations and businesses often implement compo-

nents that are similar to the specification but not compliant. As discussed before, this is

the case for service discovery and notifications in Globus. Two common reasons behind

this are the following. First, the specification may be available but there are hardly

any reference implementations that can be used. Second, extensions to the specification

that are necessary for a particular implementation or in a specific environment such as

the grid are not covered by the standard.

Open Geospatial Consortium The specifications by the Open Geospatial Consor-

tium are often complex and there is significant development effort necessary to imple-

ment the elements, interfaces and functionality they define. Automatic code generation

as described section 6.1.1.4 and used by the Transportation Security SensorNet can

facilitate their implementations but is not used very often.

Sensor Networks The implications on communication models that sensor networks

have, in particular asynchronous message exchanges, are often ignored in web service

architectures. As seen in NOSA, the focus is on the implementation of a subset of OGC

standards for a particular sensor network, but the link to an overall Service Oriented

Architecture seems to be missing.

It is evident that current systems seem to lack the combination of SOA, OGC specifi-

cations and sensor networks. The Transportation Security SensorNet combines all these

technologies and bridges the gap between implementations that just deal with SOA and

OGC specifications and systems that use OGC standards in sensor networks.

79

Chapter 6

Design & Architecture

6.1 Overview

This chapter describes the architecture of the Transportation Security SensorNet

(TSSN). It provides an in-depth discussion of design aspects and the implementation.

6.1.1 Service Oriented Architecture

“Service Oriented Architecture (SOA) is a paradigm for organizing and uti-

lizing distributed capabilities that may be under the control of different

ownership domains.” MacKenzie et al. [55]

Building a “Service Oriented Architecture for Monitoring Cargo in Motion Along

Trusted Corridors” makes sense. According to a study by the Delphi Group [36], com-

panies that collaborate usually request compliance for the following standards: XML

74%, J2EE (Java) 44% and SOAP 35%. The architecture used for the implementation

of the Transportation Security SensorNet utilizes all three technologies by separating

functionality into web services. This allows for high flexibility and is very cost effective

(see chapter 4).

Haas et al. [40] early on proposed various models for web service architectures. The

Message Oriented Model focuses on message relations and how they are processed. An

80

approach that centers around resources and ownership is the so-called Resource Ori-

ented Model. The Policy Oriented Model defines constraints and focuses on security

and quality of service. Ideas from all these models have been combined with the Ser-

vice Oriented Model into what has become the Service Oriented Architecture. Of the

proposed models it has been the most widely implemented.

A book that provides an excellent overview of Java and web services is written by

Kalin [45]. Note that the Service Oriented Architecture by definition is programming

language and platform independent. It is built on the basis of requests and responses

and the independence of so-called web services. The choice to use Java for the imple-

mentation was made because the Transportation Security SensorNet is built on top of

previous research on the Ambient Computing Environment for SOA by Searl [76] which

is written in Java.

TDE
MRN

TradeDataExchange

SensorNodeAlarmProcessor

VNOC

AlarmProcessor

AlarmReporting

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

Alert
SensorNodeEvent

MRN_Alarm

SensorManagement

Client

SensorNodeStatus
Location

getAllContacts
getAllAlarmContactMappings
getAllSmsProviders
getAllAlarms

Contacts
AlarmContactMappings
SmsProviders
Alarms

NOC_Alarm

startMonitoring
stopMonitoring
getLocation
setAlarmSecure

Status
Location
startMonitoring
 ServiceException

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Subscription

Figure 6.1. Service message overview

81

The main components of the Transportation Security SensorNet are sensor man-

agement and alarm notifications. An overview of the services and relevant message

exchanges is shown in figure 6.1.

The so-called Trade Data Exchange (TDE) (see section 6.5) provides shipment,

route, logistics and relevant cargo information. It is managed externally and used by

the system only through its specified interface. The Virtual Network Operation Center

(VNOC) (see section 6.4) is responsible for the processing of sensor data and alarms.

One of the major capabilities that it provides is alarm notification. The Mobile Rail

Network (MRN) (see section 6.3) deals with the actual management of sensors. Web

services at the Mobile Rail Network capture sensor data from the sensors and “prepro-

cess” that data. A detailed description of each individual service is provided later in

this chapter.

The architecture consists of web services that are separated into so-called service

clouds. These service clouds represent the different geographically distributed locations

(e.g. Overland Park, KS; Lawrence, KS and on a moving train) where services are

deployed and are shown in figure 6.2.

VNOC

AlarmReporting

AlarmProcessor

SensorManagement

TDE

TradeDataExchange

MRN

AlarmProcessor

SensorNode

Figure 6.2. Service cloud

The web services are developed according to the web service specifications and the

standards provided by the Open Geospatial Consortium. This means that they aim

to be standards compliant. Since the OGC specifications are at times very complex,

the Geography Markup Language for example defines over 1000 elements, the basis for

82

the framework was implemented using custom interface definitions first and adding the

OGC ones later. This enabled fast prototyping and testing of the system.

An analysis of geospatial problems and their potential solutions is done by de Smith

et al. [24]. Among other things it is pointed out that using standards, in particular the

specifications provided by the Open Geospatial Consortium, greatly increases interop-

erability and allows for the development of distributed systems that are more flexible

than commonly used Geographic Information Systems.

The following sections explain in-depth the approaches and technologies used in the

implementation of the Transportation Security SensorNet that represents a “Service

Oriented Architecture for Monitoring Cargo in Motion Along Trusted Corridors”.

6.1.1.1 Ambient Computing Environment for SOA

The infrastructure described by Searl [76] called Ambient Computing Environment

for SOA forms the basis of the implementation of the Transportation Security SensorNet.

It provides a complete SOAP stack using Apache Axis2 and a variety of other useful

programs that assist in the development of a Service Oriented Architecture.

The Ambient Computing Environment for SOA [76] deals with multiple ownerships

and federations that provide web services. In particular it covers the following aspects:

• Service Discovery across different federations

• Authentication of clients and services

• Authorization of clients and services

• Subscriptions

The implementation of the capabilities provided is based on Apache Axis2 and the

web service specifications. It is explained in detail in the following sections.

83

6.1.1.2 Apache Axis2

Apache Axis2 is a software stack that allows the development and running of web

services and clients. Its architecture as described by Chinthaka [16] consists of the

following main components:

AXIs Object Model (AXIOM) AXIOM is an XML object model that aims for

high performance while requiring low amounts of memory. The idea behind it is the

application of a so-called pull parser. This allows objects to be built from XML only up

to the information that is needed by the user while the rest of it is deferred.

The advantage of this is that the memory that an object requires is significantly

reduced. Furthermore, since the entire object model does not have to be constructed

before information can be retrieved, which is the case in the DOM parser, this approach

also increases performance.

Extensible Messaging Engine As can be seen in figure 6.3, Axis2 provides a very

modular architecture that allows for a variety of different implementations of web ser-

vices as long as they adhere to certain specifications.

Figure 6.3. Axis2 extensibility from [16]

A variety of transports such as HTTP, SMTP, JMS and TCP can be used for mes-

sage exchanges. Inside the engine each message goes through so-called phases that are

part of the piping model which is used to implement Message Exchange Patterns (see

section 4.6). Inside these phases messages can be modified, filtered or processed. The

advantage of doing this inside a phase is that it applies to all messages. This allows for

service independent processing implementations. The message receiver will then be re-

84

sponsible for handing over the actual message to the service implementation accordingly.

They also take care of synchronous and asynchronous message communication.

Context Model Axis2 provides a hierarchical context model that distinguishes be-

tween the following levels:

• Configuration of Axis2

• Service Group which is a collection of services

• Service which contains several operations

• Operation that consists of messages

• Message that is sent or received

These contexts are important in the implementation of web service specifications

such as WS-Security and WS-Policy. It means that these specifications can be applied

on a level basis which provides great flexibility.

Pluggable Modules In order to provide even more flexibility and to make the imple-

mentation of web service specifications easier to use, Axis2 provides so-called modules:

Figure 6.4. Axis2 modules from [16]

85

These allow an implementation of message processing that is common and useful

for many web services to be shared. Modules can also be engaged or disengaged on the

following levels:

• System which means that every service makes use of the module such as WS-
Addressing

• Service which useful for WS-Eventing

• Operation that for example allows fine grained security using WS-Security

More information about the modules that are used in the Transportation Security

SensorNet see section 6.1.4.

Data Binding Since a majority of data processing, element definitions and interface

specifications are in XML, Axis2 provides a variety of so-called data binding frameworks

such as XMLBeans [33], Java Architecture for XML Binding (JAXB) [29] and JiBX

[80]. In addition, the Axis2 Data Binding (ADB) can be used, which due to its tight

integration with Axis2 is highly performant. For instance, every object contains a so-

called factory that is able to transform XML into the specific object and vice versa.

As part of this thesis further development was done by the author on this data

binding to support a full range of Open Geospatial Consortium specifications such as

the Sensor Observation Service, Sensor Alert Service and most notably the Geography

Markup Language.

Several changes to the initial version of Axis2 were made in order to either fix bugs

or support more functionality. In particular the build structure was adapted to work

better with the Transportation Security SensorNet development. It makes extensive

use of Apache Ant for the automatic generation of elements from their respective XML

schema definitions, the compilation of Java classes and the deployment of web services

and clients

86

6.1.1.3 SOAP

Service Oriented Architectures make use of SOAP as a flexible message format. The

Transportation Security SensorNet does the same since web service specifications can

easily be integrated and applied to SOAP messages.

An in-depth discussion of SOAP can be found in section 4.2.

6.1.1.4 WSDL

All services in the Transportation Security SensorNet are defined using the Web Ser-

vices Description Language (WSDL) version 2.0. An in-depth introduction is provided

in section 4.5. This section explains how the combination of WSDL files and XML

schemas make up the foundation of a web service.

Service Java Classes

WSDL

Service
Skeleton

External Service
Stub B

WSDL2Java

External Service
Stub A

Schema
Elements

Service
XML Schema

External
XML Schemas

External library A

External library B

Data A

Data B

Service

Service Implementation

Figure 6.5. Service composition

Utilizing the automatic code generator of Axis2 called WSDL2Java, all elements

defined in the XML schemas are available as Java classes. Furthermore a skeleton is

created that contains the operations of the web service as methods. Interaction with

87

other services is achieved using their respective stubs which provide methods for each

of its defined operations. They allow clients to perform requests directly using Java.

This is because Axis2 provides the entire SOAP stack from the message format to the

parsing into elements all the way up to the invocation of a method that represents a

service operation.

The composition of the generated parts, data and external libraries then forms the

actual service implementation.

6.1.2 Services

The services that are implemented in the Transportation Security SensorNet make

use of a variety of components. For long term information storage, a MySQL database

is used. A so-called object-relational mapping tool called Hibernate [41] enables objects

to be stored and retrieved transparently without the need of complicated database

interactions.

Esper [27] provides complex event and alarm processing and is used at the Virtual

Network Operation Center. The Alarm Processor at the Mobile Rail Network currently

uses a less complex approach.

The Sensor Node is responsible for the actual communication with the sensors. It

makes use of the so-called Hi-G-Tek (HGT) [42] protocol and a serial connection library

for Java called RXTX.

Each component and its particular use is explained in the later sections when each

individual service is described. At a high level, one of the main aspects when dealing

with web services is the definition of whether they are stateless or stateful :

6.1.2.1 Stateless

By default web services are meant to be stateless. This is because most message

exchanges are completely independent of each other. Web services usually offer calcu-

lations, information or capabilities that only require the service to perform a specific

88

action and give a response. This is part of the autonomy approach of web services (see

chapter 4).

Even in the case where a web services provides data, the service is still considered

stateless since the retrieval of the data at any given time is not dependent on the internal

state of the service but only on the underlying data. If the data changes there is no

state change in the web service and it still provides the same functionality.

6.1.2.2 Stateful

The need for stateful web services has been identified for the Transportation Security

SensorNet because there are certain limitations in just using stateless web services.

Given a so-called online data processor that analyzes sensor data; using a stateless web

service, it is impossible to react to trends and complex events because the service is

limited to single data objects that it receives.

Let us say that a web service is monitoring whether seals that lock cargo containers

are broken and is supposed send out warning messages whenever they are. The service

has limited capacity in terms of storing historic data but should still be able to intelli-

gently determine if a sensor reading that shows that a seal is broken is just a misreading

or a real threat. This is only possible if the service keeps track of previous states. In

contrast, a stateless service would only be able to react to the current reading and is

forced to make decisions based on this single piece of data.

Another example is the Alarm Processor service (see section 6.3.2) at the Mobile

Rail Network that is used in the Transportation Security SensorNet implementation.

It classifies sensor data from containers either as information or security depending on

whether one is currently allowed to open the container or not.

6.1.3 Clients

Clients are able to make use of the operations provided by the web services. They

usually utilize the same modules as the service. This means that in theory all web

89

services could have clients. Since a lot of the services in the Transportation Security

SensorNet interact independently from users, the number of clients that are available

to users is actually smaller.

One of the aspects of clients in the Transportation Security SensorNet is the man-

agement of the sensors. The Sensor Management service (see section 6.4.1) provides

this among other things like retrieving the location of a particular Sensor Node.

Another aspect is the management of alarm notifications. For this purpose the Alarm

Reporting service (see figure 6.13) defines various management operations for clients.

In order to facilitate the use of those clients, a so-called Command Center Graphical

User Interface was implemented that works just like a desktop application. This is

in addition to the command line interface that every client provides using the Apache

Commons Command Line Interface (CLI) library.

6.1.4 Modules

Axis2 provides the possibility to “plug in” so-called modules that add functionality

or change the way a service behaves. This allows a specific capability to be shared

among different services without having to implement it in each of them. In general,

the web service specifications that are used in Axis2 are implemented as modules. For

more information see section 6.1.1.2.

6.1.4.1 Ping

In order to check the status of a particular service Axis2 provides a module that

adds an operation called pingService to a service. This can be used to check the status

of either a specific operation or all operations that the service defines. The client part

that actually uses this operation was not part of Axis2 and had to be implemented by

the author.

90

6.1.4.2 Logging

Especially for debugging purposes and performance evaluations, it is of great benefit

to be able to see the raw SOAP messages that are sent and received. The so-called

logging module that was implemented provides this functionality. In particular the

following information is captured:

• Time when the message was sent or received

• Service which is used

• Operation that is being executed

• Direction of the message, which can be either incoming or outgoing. Note that
there are special directions that deal with incoming and outgoing faults.

• From address of the message

• Reply to address that may differ from the From address

• To address of the message

• Schema element that is being “transported” as part of the operation containing
the request parameters or the response elements

• Size of the message in bytes

• Message which represents the entire SOAP message in a readable form

In terms of analyzing the Transportation Security SensorNet and its performance

the logging module was engaged in all services. More information on the findings can

be found in chapter 7.

6.1.4.3 Addressing

An implementation of the WS-Addressing specification as described in section 4.3.1

comes as part of the addressing module in the Axis2 core. It fully supports all compo-

nents of the standard and its ReplyTo and RelatesTo fields are used among other things

to allow for asynchronous communication (see section 6.1.6) in the TSSN.

91

6.1.4.4 Savan

The Savan module enables web services and clients in Axis2 to make use of various

forms of subscription mechanisms as defined by the WS-Eventing specification (see

section 4.3.2).

6.1.4.5 Rampart

In order to provide security according to the WS-Security specification (see sec-

tion 4.3.3) for the TSSN the Rampart module was developed by Axis2. It makes exten-

sive use of the WS-SecurityPolicy standard described by Lawrence et al. [50].

6.1.5 Subscriptions

Subscriptions are a fundamental part of the overall architecture of the Transportation

Security SensorNet. They are used by the Alarm Processor at the Virtual Network

Operation Center as well as in the Mobile Rail Network. These web services, that act

as information publishers, utilize the Savan module to provide the operations defined

in WS-Eventing.

6.1.6 Synchronous and asynchronous communication

By default Axis2 uses request-response in a synchronous manner. This means that

the client has to wait and is therefore blocking until it receives the response from the

service. In certain scenarios, for instance when the service needs a large amount of

processing time, the client can experience timeouts. Furthermore, in the Transportation

Security SensorNet where the Mobile Rail Network is only intermittently connected to

the Virtual Network Operation Center, synchronous communication shows its limita-

tions.

A better option is to make the communication between services asynchronous. This

resolves timeout issues and deals with connections that are only temporary. The follow-

92

ing aspects need to be taken into consideration when using asynchronous communica-

tion:

6.1.6.1 Client

The client needs to make changes in regard to the how the request is sent out. Axis2

provides a low-level non-blocking client API and additional methods in the service stubs

that allow callbacks to be registered. These so-called AxisCallbacks need to implement

two methods, one that is being invoked whenever the response arrives and the other to

define what happens in case of an error.

6.1.6.2 Transport Level

Depending on the transport protocol that is being used, Axis2 supports the following

approaches.

• One-way uses one channel for the request and another one for the response such
as the Simple Mail Transfer Protocol (SMTP)

• Two-way allows the same channel to be used for the request and the response, for
example HTTP

For asynchronous communication to work the two-way approach was modified through

the Axis2 client API which provides the option of using a separate listener. This tells

the service that it is supposed to use a new channel for the response. In order to corre-

late request and response messages Axis2 makes use of the WS-Addressing specification,

in particular the RelatesTo field.

6.1.6.3 Service

The final piece of asynchronous communication is to make the service processing

asynchronous as well. This is done by specifying so-called asynchronous message re-

ceivers in the services configuration in addition to the synchronous ones.

93

Axis2 then uses the ReplyTo field of the WS-Addressing header in the client as a sign

to send an immediate acknowledge of the request back to it. Furthermore it processes

the request in a new thread and sends the response out when it is done, allowing the

communication to be performed in asynchronous manner completely.

There exist various forms of transport protocols that are suitable for asynchronous

communication. Axis2 by default supports HTTP, SMTP, JMS and TCP as transports

but other transports can easily be defined and plugged in. The Java Message Service

(JMS), for instance, makes use of so-called queues which allow clients and services to

store on them and retrieve messages in a flexible manner. This is essential for satellite

communication which is part of the next stage of the implementation of the Transporta-

tion Security SensorNet.

6.2 TSSN Common Namespace

Elements are often shared among a variety of services. Since defining the same

element over and over again is neither a scalable nor maintainable approach, it makes

sense to specify a common namespace for them and let the web services that want to use

them, include them. In the Transportation Security SensorNet these shared elements

are part of the so-called TSSN Common namespace.

In particular the following elements and types are defined:

Simple Types

A TrainID t represents a unique assembly unit of engines and rail cars.

The SensorNodeID t uniquely identifies a Sensor Node.

A HGT SealID t is a combination of four characters and eight numbers that is used

to identify a Hi-G-Tek tag or sensor.

94

Location

The LocationBean is used to store GPS location information. It consist of:

• longitude

• latitude

• quality of the so-called GPS fix

The so-called quality can be one of the following predefined ones:

• none, no position information available

• old, more than 1 minute without a valid position

• poor, last position information less than 60 seconds old and GPS fix is bad

• fair, last position information less than 40 seconds old and GPS fix is okay

• good, last position information less than 20 seconds old and GPS fix is okay

• great, last position information less than 10 seconds old and GPS fix is good

Messages

A Status is used widely as a return message and indicates the success or failure of

an operation. It has the following fields:

• status that is defined as a boolean and signals success or failure

• message which contains information on the success or failure

A Failure that represents the occurrence of an exception is made up of a simple

message.

95

Alarms

The AlarmSeverity which can be either one of the following:

• Information that someone might be interested in

• Maintainence related

• Security breach of a seal

• Hazard that needs to be investigated

The AlarmType can be one of these:

• Message that contains no other inherent meaning

• SensorLimitReached that is propagated when an observed property value exceeds
certain limitations

• SensorLost which means that the specified sensor cannot be reached

• SensorFound which informs of an established connection to a particular sensor

• Exception that has occurred in a service

The one element that is most commonly used for the alarm notifications is the

MRN AlarmBean because it contains all the valuable information of an alarm.

• SourceNode that identifies the Sensor Node

• TrainId that identifies the associated train

• TimeStamp when the alarm occurred

• Type of the alarm, an AlarmType

• Severity of the alarm, an AlarmSeverity

• Message that contains the alarm data or information

• Location of the alarm, a LocationBean

Other commonly used or shared elements such as the ExceptionReport are part of

the web service specifications and are described separately when explaining each service

individually in the following sections.

96

6.3 Mobile Rail Network

MRN

SensorNodeAlarmProcessor

VNOC

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

Alert
SensorNodeEvent

MRN_Alarm

SensorNodeStatus
Location

Subscription

Figure 6.6. Mobile Rail Network message overview

The Mobile Rail Network is a collection of services that is located on a train or

in a rail yard. Its services provide the abilities to manage sensors, monitor them and

propagate sensor alerts to the Virtual Network Operation Center. This section describes

them in detail.

6.3.1 Sensor Node

The Sensor Node contains the actual sensor monitoring and management application

and its components are shown in figure 6.7. It provides several abstraction layers that

allow various forms of sensors to be used. The current implementation makes use of

so-called Hi-G-Tek (HGT) sensors. Interaction with these sensors is performed using a

so-called Automatic Vehicle Location (AVL) reader. The Sensor Node implements the

functionality that allows higher level management of the sensors and the data that they

provide through the use of a sensor registry, the sensor data storage and sensor data

processing

Attaching a GPS sensor to the Sensor Node allows sensor events to be tagged with

97

Sensor Node

Sensor Data
Processing

HGT Sensor

SAS Interface

Location Interface

Sensor Management
Interface

AVL Reader

GPS Sensor Subscription
Registry

Notification Process

Sensor
Registry

Sensor
Data

HGT Sensor

HGT Sensor

HGT Sensor

SOS Interface

Figure 6.7. Mobile Rail Network Sensor Node

the specific location that they appeared at. The core functionality of the Sensor Ob-

servation Service that allows the service to offer its capabilities and observations is

implemented. Furthermore, a subscription registry is available for alert notifications.

The next sections explain the implementation details of these capabilities.

6.3.1.1 Sensor control

The following operations provide the ability to manage the underlying sensor infras-

tructure that is part of the Sensor Node.

StartMonitorSensors

The StartMonitorSensors operation described in table 6.1 starts the monitoring

application. The Sensor Node then watches the status of the specified sensors identified

by the sensorIds using the AVL reader via the HGT protocol. Note that even though

98

Message Exchange Pattern In-Out
Parameters trainId

sensorIds
Response SensorNodeStatus
Fault ows:ExceptionReport

Table 6.1. Sensor Node StartMonitorSensors operation

the Sensor Node may be aware of additional sensors, it only captures events generated

by the monitored sensors. The trainId specifies the train that the sensor node and the

sensors are associated with.

StopMonitorSensors

Message Exchange Pattern In-Out
Parameters none
Response SensorNodeStatus
Fault ows:ExceptionReport

Table 6.2. Sensor Node StopMonitorSensors operation

The sensor monitoring application is stopped and the sensors are released by the

StopMonitorSensors operation (table 6.2).

setSensors

Message Exchange Pattern In-Out
Parameters none
Response SensorNodeStatus
Fault ows:ExceptionReport

Table 6.3. Sensor Node setSensors operation

The HGT sensors that are used allow for a so-called sleep mode. Since they need to

be“awake”in order to receive commands from the monitoring application, the setSensors

operation described in table 6.3 sends so-called set signals to the sensors.

99

AddSeals

Message Exchange Pattern In-Out
Parameters sensorIds
Response SensorNodeStatus
Fault ows:ExceptionReport

Table 6.4. Sensor Node AddSeals operation

It is possible to tell the monitoring application to monitor additional sensors, which

in case of HGT sensors are called seals, that are specified by the sensorIds using the

AddSeals operation (table 6.4).

6.3.1.2 Location retrieval

Clients can also inquire about the current location of the Sensor Node when a GPS

sensor has been attached.

getLocation

Message Exchange Pattern In-Out
Parameters none
Response Location
Fault ows:ExceptionReport

Table 6.5. Sensor Node getLocation operation

The getLocation operation described in table 6.5 provides a location query interface

to the user. It retrieves the current location of the sensor node. Since a GPS sensor is

usually attached to the sensor node directly, its location information is retrieved and

not the one of a particular sensor.

6.3.1.3 OGC specifications

In order to provide standardized support for utilizing the functionality, the Sensor

Node uses WS-Eventing to allow subscriptions to alerts that is similar to the Sensor

100

Alert Service (see section 3.2.6) and provides the following operations of the Sensor

Observation Service (see section 3.2.5):

GetCapabilities

Message Exchange Pattern In-Out
Parameters sos:GetCapabilities
Response sos:Capabilities
Fault ows:ExceptionReport

Table 6.6. Sensor Node GetCapabilities operation

In accordance with the Sensor Observation Service specification, the GetCapabilities

operation described in table 6.6 enables users to retrieve information about the sensors

and the data they provide, the so-called offerings. The Capabilities element returned

by this implementation also contains a list of sensor ids that are currently monitored.

GetObservation

Message Exchange Pattern In-Out
Parameters sos:GetObservation
Response om:Observation

Table 6.7. Sensor Node GetObservation operation

The GetObservation operation (table 6.7) is a simplified version of the Sensor Obser-

vation Service equivalent and is used to retrieve current or historical sensor data from

a sensor which identified by a sensor id that is part of the GetObservation parameter.

The provided Observation is a reduced version of the Observation in the Observations

& Measurements specification and provides the time, format and the measurement of

the sensor data observed.

The Sensor Node provides its functionality through the operations that were de-

scribed. They allow sensor management, provide location information and OGC com-

pliant interfaces.

101

6.3.2 Alarm Processor

Alarm Processor

Alert
Processing

SAS Interface

Alert Interface

Monitoring State
Interface

Subscription
Registry

Notification Process

Monitoring
State

Sensor Event
Interface

Figure 6.8. Mobile Rail Network Alarm Processor

The Alarm Processor on the Mobile Rail Network performs an initial filtering of

sensor events generated by the Sensor Node. It subscribes to of all events of the Sensor

Node, providing interfaces for generic sensor events as well as sensor alerts. Alerts

reported to the Alarm Processor include potential alarms that the Sensor Node reports,

GPS acquisitions and losses, and status messages of the monitoring application such as

when it is started and stopped. In case the data is not as complex as an alert, the event

element provides a simple structure with a timestamp and a data field.

The Alarm Processor classifies alerts into either information or security alarms de-

pending on its current monitoring state. It is also responsible for deciding whether or

not to forward the alarm to the Virtual Network Operation Center for further process-

ing and possible transmission to the decision maker. Its implementation details are

discussed next.

102

6.3.2.1 Notifications

The following operations are defined in reference to the Sensor Alert Service (see

section 3.2.6) for receiving notifications from the Sensor Node.

Alert

Message Exchange Pattern In-Only
Parameters sas:Alert

Table 6.8. Alarm Processor Alert operation

The Alert operation described in table 6.8 represents a simplified version of its Sensor

Alert Service equivalent. It contains fields for storing all the necessary information about

a sensor node alert. In particular:

• SensorID of the particular sensor causing the alert

• TimeStamp of the alert

• NodeId of the Mobile Rail Network

• TrainId that identifies the current train association

• AlertData which contains the raw alert information

• Latitude of the alert location

• Longitude of the alert location

• PosQuality that specifies the quality of the GPS signal when the location was
retrieved

SensorNodeEvent

Message Exchange Pattern In-Only
Parameters SensorNodeEvent

Table 6.9. Alarm Processor SensorNodeEvent operation

Simple events can occur as well and are reported using the SensorNodeEvent oper-

ation (table 6.9). They contain these two fields:

103

• TimeStamp of the event

• EventData which contains the raw alert information

6.3.2.2 Monitoring State

The Alarm Processor can be configured using the following operation:

SetMonitoringState

Message Exchange Pattern Robust-In-Only
Parameters monitoringState
Fault Failure

Table 6.10. Alarm Processor SetMonitoringState operation

The SetMonitoringState operation described in table 6.10 specifies the current mon-

itoring state of the Alarm Processor. It can be used to enable or disable security. When

it is enabled, seal breaks are reported using a security notification instead of basic

information message.

The Alarm Processor uses the described operations for handling alerts and events

that it receives from the Sensor Node. In addition, it provides functionality to specify

its monitoring state, in particular to switch between information and security mode.

6.4 Virtual Network Operation Center

The Virtual Network Operation Center as shown in figure 6.9 represents the man-

agement facility of the TSSN and consists of services that receive and process alerts

received from Mobile Rail Networks. It works with the Trade Data Exchange to asso-

ciate shipment and trade information with a particular alert. Furthermore, the Alarm

Reporting service provides clients with the ability to be notified upon specific events.

The processes that are involved in performing these tasks are the topic of this section.

104

MRN

VNOC

AlarmProcessor

AlarmReporting

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

MRN_Alarm

SensorManagement

Client

SensorNodeStatus
Location

getAllContacts
getAllAlarmContactMappings
getAllSmsProviders
getAllAlarms

Contacts
AlarmContactMappings
SmsProviders
Alarms

NOC_Alarm

startMonitoring
stopMonitoring
getLocation
setAlarmSecure

Status
Location
startMonitoring
 ServiceException

Subscription

TDE

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Figure 6.9. Virtual Network Operation Center message overview

6.4.1 Sensor Management

The Sensor Management service (figure 6.10) is responsible for controlling sensors

and alarm reporting. It provides methods for starting and stopping sensor monitoring.

Additionally the monitoring state which defines how alerts are interpreted and processed

can be specified. The Sensor Management service essentially relays these “control”

messages to the according Mobile Rail Network. Another functionality that is provided

is the ability to query for a specific MRN’s location. The implementation details of the

interfaces that it provides to clients are described in the following.

105

Sensor Management

Message Relay
Process

Location Interface

Monitoring State
Interface

Sensor Management
Interface

Figure 6.10. Virtual Network Operation Center Sensor Management

6.4.1.1 Sensor control

The following operations enable remote sensor management of the Mobile Rail Net-

works.

startMonitoring

Message Exchange Pattern In-Out
Parameters collectorId

trainId
tagId
sensorId

Response tssn:Status
Fault ows:ExceptionReport

Table 6.11. Sensor Management startMonitoring operation

The startMonitoring operation described in table 6.11 tells the MRN that is specified

by the collectorId to start monitoring sensors. The collectorId is the identifier of an

individual sensor node. Furthermore the trainId provides the Sensor Node with the

information of which train it is coupled to. This can be used later on to refine alarm

processing and more importantly container handovers between trains. The tagId and

sensorId are used in a parent-child sensor relationship. In this case a tag as the parent

106

would monitor the associated sensor as a child while the the sensor node only interacts

with the tags. In case of sensor events the reporting chain would be sensor → tag →

sensor node.

stopMonitoring

Message Exchange Pattern In-Out
Parameters collectorId
Response tssn:Status
Fault ows:ExceptionReport

Table 6.12. Sensor Management stopMonitoring operation

The stopMonitoring operation (table 6.12) is the opposite of the startMonitoring

operation. It tells the specified sensor node to stop monitoring all sensors.

6.4.1.2 Location retrieval

Clients can inquire about the location of a particular Sensor Node.

getLocation

Message Exchange Pattern In-Out
Parameters collectorId
Response tssn:LocationBean
Fault ows:ExceptionReport

Table 6.13. Sensor Management getLocation operation

The getLocation operation described in (table 6.13) provides a location query inter-

face to the user. It retrieves the current location of the specified Sensor Node.

6.4.1.3 Monitoring state

Alarm Processors at the Mobile Rail Networks can be configured using the following

operations:

107

setAlarmSecure

Message Exchange Pattern In-Out
Parameters collectorId

secure
Response tssn:Status
Fault ows:ExceptionReport

Table 6.14. Sensor Management setAlarmSecure operation

The specified MRN Alarm Processor can be contacted using the setAlarmSecure

operation (table 6.14) in order to enable or disable security in its monitoring state.

When the security state is enabled, seal breaks are reported using a security notification

instead of basic information message.

setAlarmProcessorMonitoringState

Message Exchange Pattern In-Out
Parameters collectorId

monitoringState
Response tssn:Status
Fault ows:ExceptionReport

Table 6.15. Sensor Management setAlarmProcessorMonitoringState oper-
ation

The setAlarmProcessorMonitoringState operation described in table 6.15 provides

a more flexible configuration interface to the Alarm Processor on the MRN. Settings

are specified in a descriptive and extensible monitoring state bean which could hold

additional state information such as time frames for monitoring sensors or GPS location

zones in which to automatically switch into security state. This state bean is used for

instance by the setAlarmSecure operation.

The operations described allow the Sensor Management service to control Sensor

Nodes and their monitoring state. Additionally, it is able to retrieve the location of

Sensor Nodes.

108

6.4.2 Alarm Processor

Alarm Processor

SAS Interface

Alarm Interface

Subscription
Registry

Notification Process

Esper
Event

ProcesingEsper
Rules

Figure 6.11. Virtual Network Operation Center Alarm Processor

In contrast to the “basic” processing that is performed by the Alarm Processor at

the Mobile Rail Network, the Alarm Processor as shown in figure 6.11 at the VNOC has

more resources such as the associated shipment and trade information available which

is provided by the Trade Data Exchange and can therefore process alarms in a more

complex way. This advanced filtering and processing is done using a complex event

processing system called Esper developed by Bernhardt and Vasseur [7].

Figure 6.12. Esper architecture from [27]

109

Esper works on the basis of sliding windows in which events that are close together

on the time axis are analyzed and correlated. It also supports using historical data from

a variety of sources. An efficient query and filtering language called Event Processing

Language allows for the most complex scenarios to be implemented. In the TSSN it

is used for instance to filter out alarms for which shipment information could not be

retrieved from the TDE and mark them as security notifications.

6.4.2.1 Notifications

The Alarm Processor receives alarm notifications from the Mobile Rail Network

using the following operation:

MRN Alarm

Message Exchange Pattern In-Only
Parameters mrnpub:MRN Alarm

Table 6.16. Alarm Processor MRN Alarm operation

The MRN Alarm operation described in table 6.16 is used as a notification interface

for alarms from the Alarm Processor on the MRN. The Alarm Processor service sub-

scribes to alarms from its counterpart on the Mobile Rail Network. The alarms are of

type tssn:MRN AlarmBean (see section 6.2).

Upon receiving an alarm, shipment data is retrieved from the Trade Data Exchange

and attached to the original alarm. Esper then processes the alarm and passes it on to

the Alarm Reporting service.

The Alarm Processor at the VNOC primarily provides functionality for the Mobile

Rail Network to deliver alert notifications. It uses Esper to perform complex event

processing, taking into consideration alert data and information from the TDE, and to

forward alarms to the Alarm Reporting service.

110

6.4.3 Alarm Reporting

Alarm Reporting

Reporting Management
Interface

Alarm History
Interface

Notification Process

Alarm
Database

Alarm Interface

Reporting Management
Process

Reporting
Database

Hibernate
Reporting
Mappings

Hibernate
Alarm

Mapping

Figure 6.13. Virtual Network Operation Center Alarm Reporting

The Alarm Reporting service deals with the following two aspects. First, it stores

alarms long term to allow for in-depth reporting and analysis. Second, clients that

want to be notified of particular alarms can register with the Alarm Reporting service.

Whenever alarms occur notifications are sent out to the registered clients via email

and/or SMS accordingly.

For long term data storage and to maintain a registry of the client notifications the

Alarm Reporting service makes use of the MySQL database. In order to remain flex-

ible and provide an abstraction layer to the core database functionality a tool called

Hibernate [41] was utilized. An excellent introduction to the so-called object-relational

mapping is provided by Bauer and King [3]. The main advantage is that objects refer-

enced in code can easily be persisted into a relational database and vice versa. The only

thing that needs to be defined is the so-called mapping. Once that has been defined

111

Hibernate takes care of the rest.

Since the objects that are being stored in the database are defined using XML

schemas and then automatically compiled into Java objects during the build process, it

makes sense to specify the mappings in XML as well. This is done in the Transportation

Security SensorNet. Another approach that is supported by Hibernate is using so-called

annotations within the Java objects themselves. This is not possible because of the

aforementioned build process as the objects would have to be reannotated at every

build.

The registry that is used for notifications contains so-called alarm contact mappings

that specify what kind of alarms a specific contact wants to be notified of. In case the

contact wants to receive SMS notifications, a SMS provider has to be specified as well.

The implementation details of the interfaces provided are described in the following.

6.4.3.1 SMS Providers

SMS providers have the following fields:

• id that uniquely identifies a provider

• name of the provider

• emailSuffix which is used for the email-based delivery of sms messages

The emailSuffix is used to construct an email address that is used to send out the

SMS. For example “123456789@sampleProvider.com” where “123456789” is the phone

number of the contact and“@sampleProvider.com”the email suffix of the phone provider.

addSmsProvider

Message Exchange Pattern In-Out
Parameters SmsProvider
Response tssn:Status

Table 6.17. Alarm Reporting addSmsProvider operation

112

The addSmsProvider operation described in table 6.17 adds a new sms provider to

the service. Note that the sms provider id is left blank (null) intentionally in this case

and only the name and the email suffix have to be provided. The Alarm Reporting

service automatically assigns an id to the new sms provider and stores it.

updateSmsProvider

Message Exchange Pattern In-Out
Parameters SmsProvider
Response tssn:Status

Table 6.18. Alarm Reporting updateSmsProvider operation

Within the updateSmsProvider operation (table 6.18) the sms provider is identified

by its id. The service looks for changes made to the sms provider and saves them.

removeSmsProvider

Message Exchange Pattern In-Out
Parameters SmsProvider
Response tssn:Status

Table 6.19. Alarm Reporting removeSmsProvider operation

The Alarm Reporting service identifies sms providers that match the provided name

and email suffix with elements in the database and removes them. The removeSm-

sProvider operation described in table 6.19 allows for pattern-based removal of sms

providers. It also checks if there are still contacts associated with it.

removeSmsProviderById

Message Exchange Pattern In-Out
Parameters Id
Response tssn:Status

Table 6.20. Alarm Reporting removeSmsProviderById operation

113

Since the id uniquely identifies an sms provider it can be removed explicitly using the

removeSmsProviderById operation (table 6.20). The same check as in the removeSm-

sProvider operation is in place.

getAllSmsProviders

Message Exchange Pattern In-Out
Parameters none
Response SmsProviders

Table 6.21. Alarm Reporting getAllSmsProviders operation

The getAllSmsProviders operation described in table 6.21 provides an interface to

retrieve all available sms providers in a list form.

6.4.3.2 Contacts

Contacts have the following fields that contain general information about them:

• id that uniquely identifies a contact

• affiliation that represents an organization or company

• name which usually is first and last name of a person

• email address of the contact

• smsProviderId reference to the phone provider’s email-to-SMS service

• cellPhoneNumber for SMS notifications

An email address or cellPhoneNumber must be provided, not necessarily both.

addContact

Message Exchange Pattern In-Out
Parameters Contact
Response tssn:Status

Table 6.22. Alarm Reporting addContact operation

114

The addContact operation (table 6.22) is similar to the addSmsProvider operation

in the sense that no id has to be provided for the new contact. The contact is stored in

the database with an automatically assigned id.

updateContact

Message Exchange Pattern In-Out
Parameters Contact
Response tssn:Status

Table 6.23. Alarm Reporting updateContact operation

Within the updateContact operation described in table 6.23 the service retrieves the

specified contact by its id and saves the changes that were made to it.

removeContact

Message Exchange Pattern In-Out
Parameters Contact
Response tssn:Status

Table 6.24. Alarm Reporting removeContact operation

The removeContact operation (table 6.24) removes the specified contact. It also

allows for pattern based removal. A check is in place that prevents removal of contacts

for which there still exist alarm contact mappings.

removeContactById

Message Exchange Pattern In-Out
Parameters Id
Response tssn:Status

Table 6.25. Alarm Reporting removeContactById operation

The contact that is identified by the id is removed using the removeContactById

operation described in table 6.25. The same check as in removeContact is in place.

115

getAllContacts

Message Exchange Pattern In-Out
Parameters none
Response Contacts

Table 6.26. Alarm Reporting getAllContacts operation

A list of all the defined contacts can be retrieved with the getAllContacts operation

(table 6.26).

6.4.3.3 Alarm Contact Mappings

Alarm contact mappings have the following fields:

• id that uniquely identifies a mapping

• severity of the alarm

• type of alarm

• contactId which references a particular contact

• method of notification (email or SMS)

These mappings are used by the Alarm Reporting service to determine what kind of

notifications each contact receives and which methods to use for delivering them.

addAlarmContactMapping

Message Exchange Pattern In-Out
Parameters AlarmContactMapping
Response tssn:Status

Table 6.27. Alarm Reporting addAlarmContactMapping operation

A new “alarm to contact” mapping is created using the defined entities with the

addAlarmContactMapping operation (table 6.27).

116

updateAlarmContactMapping

Message Exchange Pattern In-Out
Parameters AlarmContactMapping
Response tssn:Status

Table 6.28. Alarm Reporting updateAlarmContactMapping operation

Within the updateAlarmContactMapping operation described in table 6.28 the ser-

vice retrieves the specified alarm contact mapping by its id and saves the changes that

were made to it.

removeAlarmContactMapping

Message Exchange Pattern In-Out
Parameters AlarmContactMapping
Response tssn:Status

Table 6.29. Alarm Reporting removeAlarmContactMapping operation

The removeAlarmContactMapping operation (table 6.29) removes the specified alarm

contact mapping.

removeAlarmContactMappingById

Message Exchange Pattern In-Out
Parameters Id
Response tssn:Status

Table 6.30. Alarm Reporting removeAlarmContactMappingById opera-
tion

The alarm contact mapping that is defined by the id is removed using the re-

moveAlarmContactMappingById operation described in table 6.30.

getAllAlarmContactMappings

The service provides a list of all the alarm contact mappings that are in place with

the getAllAlarmContactMappings operation (table 6.31).

117

Message Exchange Pattern In-Out
Parameters none
Response AlarmContactMappings

Table 6.31. Alarm Reporting getAllAlarmContactMappings operation

6.4.3.4 Notifications

The Alarm Reporting service receives alarm notifications from the Alarm Processor

at the Virtual Network Operation Center using the following operation:

NOC Alarm

Message Exchange Pattern In-Only
Parameters nocpub:NOC Alarm

Table 6.32. Alarm Reporting NOC Alarm operation

This operation is used to provide a notification interface primarily for the subscrip-

tion of alarms from the Alarm Processor. The Alarm Reporting service subscribes to

alarms and provides this operation for its notifications. An alarm here is a combination

of the tssn:MRN AlarmBean and shipment and trade information received from the

Trade Data Exchange.

6.4.3.5 Alarm history

getAllAlarms

Message Exchange Pattern In-Out
Parameters none
Response Alarms

Table 6.33. Alarm Reporting getAllAlarms operation

A list of all the alarms that the service has received are retrieved using the getAl-

lAlarms operation described in table 6.33. The alarms are of type tssn:MRN AlarmBean.

Note that the associated shipment data is not stored in the Alarm Reporting service as

118

it is permanently available in the Trade Data Exchange.

6.5 Trade Data Exchange

TDE

TradeDataExchange

VNOC

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Figure 6.14. Trade Data Exchange message overview

The Trade Data Exchange [79], as shown in figure 6.14, in a sense represents a

shipment and other trade data information provider. It aims to be a collection of

heterogeneous systems that stores and manages the business aspects of a transport of

goods. This is due to the fact that there is a variety of different systems implemented

by the parties that participate in the transport chain (see section 2.1 and section 2.3).

Some provide route information while others manage contracts and shipment data. For

the current implementation of the Transportation Security SensorNet this “collection”

of information and management services is combined into a single service, the Trade

Data Exchange service.

6.5.1 Trade Data Exchange Service

The Trade Data Exchange service (figure 6.15) interacts with the Alarm Processor

at the Virtual Network Operation Center. Upon request it provides shipment and trade

information for a specified alarm. It also provides functionality that can be used for

long term alarm storage, although in its current implementation fairly limited. Since

119

Trade Data Exchange

Shipment Information
Interface

Alarm Interface

Shipment
Information

Alarm
Database

Figure 6.15. Trade Data Exchange Service

the service was designed externally, the elements used are not compatible to the TSSN

common elements or any of the other services.

The alarm data element used has the following fields:

• timeOccured which represents the time when the alarm occurred

• train id that uniquely identifies a train

• tag id that uniquely identifies a tag (in this case a seal)

• sensor id that uniquely identifies a sensor

• alarm type which is either Door open, Door closed, Sensor missing or Sensor
returned

This element has some shortcomings such as no location information, no alarm data

field and limited alarm types but is currently used by the TSSN for the lack of a better

interface to the shipment information.

6.5.1.1 Information inquiry

The following operation is provided to retrieve shipment and trade information from

the Trade Data Exchange.

120

ShipmentQuery

Message Exchange Pattern In-Out
Parameters alarm data
Response shipment data

Table 6.34. TradeDataExchange ShipmentQuery operation

The ShipmentQuery operation as described in table 6.34 provides shipment data for

the specified alarm data. The shipment data contains the following information:

• train id that uniquely identifies a train

• equipment id that uniquely identifies a rail car; it consists of an initial and a
number

• car position of the container that the sensor is attached to

• bic code that uniquely identifies a so-called intermodal unit

• stcc which is the Standard Transportation Commodity Code of the goods shipped

It has to be noted that no route information is made available through this inquiry.

6.5.1.2 Alarm storage

For long term storage of alarms the next operation is provided:

ValidatedAlarm

Message Exchange Pattern In-Out
Parameters alarm data
Response status

Table 6.35. TradeDataExchange ValidatedAlarm operation

Using the ValidatedAlarm operation (table 6.35) the Trade Data Exchange service

receives alarm data and stores it in a database.

121

6.6 Open Geospatial Consortium Specifications

As described before, the amount of work that is required to fully implement spec-

ifications of the Open Geospatial Consortium such as the Sensor Observation Service

and the Sensor Alert Service is immense. The focus of the first stage of the imple-

mentation of the Transportation Security SensorNet is on the sensor management and

alarm notification capabilities. However, at the Mobile Rail Network the Sensor Node

provides an implementation for the Sensor Observation Service as defined by the OGC.

Furthermore, services in the TSSN that utilize subscriptions, in particular the Alarm

Processor, are able to receive subscribe requests and publish alerts in a manner that is

similar to the Sensor Alert Service. The difference to the proposed SAS specification

is that the services that subscribe are already aware of the capabilities, sensor types

and alert types. Therefore the operations that allow the retrieval of this information,

as described in section 3.2.6, need to be implemented in order to be fully compliant.

122

Chapter 7

Implementation Results

In this chapter tools that were developed and used to monitor the Transportation

Security SensorNet are described. The logging module (section 7.1) plays the most

important part as it captures message flows throughout the TSSN. These can then

be analyzed using the log parser (section 7.2) and visualized by the Visual SensorNet

tool (section 7.3). Performance measurements that were made throughout a series of

trials are the used to evaluate the communication speed, processing times and alarm

notifications (see section 7.4) within the TSSN.

7.1 Logging Module

The logging module as described in section 6.1.4.2 provides extensive logging capa-

bilities to the web services in the Transportation Security SensorNet. It was engaged

during development and testing of the entire system since it logs all messages that are

sent and received. In addition, it also writes the raw contents of the SOAP messages

into log files.

123

7.2 Log Parser

The log parser enables parsing and most importantly the merging of log files. It

transforms the raw SOAP messages back into Java elements that can then be filtered

and analyzed.

7.2.1 Abstraction Layer Model

Since SOAP is essentially XML, information from the so-called log messages can

retrieved using XPath [8] path expressions. For this purpose the log parser provides

an object abstraction layer model that corresponds to the specific parts in the SOAP

message.

An example mapping is shown in figure 7.1. It displays the structure of the orig-

inal SOAP message (for more information on SOAP see section 4.2) on the left and

the equivalent log parser objects on the right. Note that the corresponding objects

highlighted in yellow are actual classes while the Header and Body are not abstracted

separately.

Envelope

Body

WS-Eventing

Header

WS-Addressing

Axis2SoapMessage

Body

Subscribe

Header

Addressing

Figure 7.1. SOAP message (left) to Log parser classes (right) comparison

The log parser objects would then provide access to their properties using XPath

expressions. In this case they correspond to their respective web service specifications

but they could also be defined according to the XML schema definitions of any other

124

element. For example, for the WS-Addressing (see section 4.3.1) equivalent object the

path expressions in table 7.1 are used:

XPath expression Method equivalent
//To/text() getTo()
//ReplyTo/Address/text() getReplyTo()
//From/Address/text() getFrom()
//MessageID/text() getMessageId()
//RelatesTo/text() getRelatesTo()
//Action/text() getAction()

Table 7.1. XPath expressions for WS-Addressing

This mapping process is easily defined and allows for an in-depth analysis of the

messages that are sent and received in the Transportation Security SensorNet.

7.2.2 Message Types

Since the logging module is enabled on both ends of a message exchange, the log

parser is able to correlate messages. In order to do this it makes use of the so-called

message id that is provided by the WS-Addressing specification. The following two

types of message associations are present in the log files:

Transmit-Receive Pair Whenever a message is sent out by a particular client or

service it is captured by the logging module. The receiving service logs the message as

well but as an incoming message. The content of the message is essentially the same

which can also be seen by the fact that they have the same message id. The outgoing

and the incoming message are combined and form what is called a transmit-receive pair.

This allows us to compute the message transfer or so-called transmit time which

describes how long it takes to transmit the message from one entity to another using

the following equations:

transmitT ime1 = time2.Incoming − time1.Outgoing (7.1)

transmitT ime2 = time4.Incoming − time3.Outgoing (7.2)

125

Service A Service B

1. Outgoing 2. Incoming

3. Outgoing4. Incoming

Figure 7.2. Two transmit-receive pairs (red and green)

As shown in figure 7.2 the log parser automatically detects the transmit-receive pairs

and stores them in a particular list for further analysis.

Message Couple The most common message exchange pattern as described in sec-

tion 4.6 is the In-Out pattern. It defines request-response based message transfers which

the log parser calls message couples. A single message couple consists of two messages,

the outgoing request and the outgoing response on the receiving entity, which is shown

in figure 7.3. They can be correlated using the WS-Addressing specification. The re-

quest will carry a message id and the response a so-called relatesTo id in addition to

its own unique message id.

Service A Service B

1. Outgoing 2. Incoming

3. Outgoing4. Incoming

Figure 7.3. A message couple (red)

Note that a message couple can also be seen as a combination of two transmit-receive

pairs. This relationship is extremely useful in computing measures such as round trip

126

and processing times:

roundTripT ime = time4.Incoming − time1.Outgoing (7.3)

processingT ime = time3.Outgoing − time2.Incoming (7.4)

The log parser provides functionality to associate messages and analyze complete

end-to-end message flows. More details on the performance measurements and test

results can be found in section 7.4.

7.3 Visualization

Figure 7.4. Log file and service interaction visualization

In order to be able to understand the message flows better without needing too

127

much of a technical background, a visualization tool called the Visual SensorNet was

developed. It makes use of the log parser to display services, clients and messages that

are present in log files.

The user is able to load and merge log files to create a visualization of services and

clients as shown in figure 7.4. The layout of these services is defined according to their

membership in a particular service cloud. Furthermore, any point in time that is part

of the log files can be “jumped to” using the time line. It displays significant events in

the log files:

• Alarms, alerts and sensor node events with a warning sign

• Requests such as location retrieval with a light bulb sign

• Control messages such as start monitoring with a message sign

The scenario that was captured by the log files can also be played back in portions

or in its entirety. Using the Visual SensorNet tool, it is therefore possible to analyze

service interactions and message flows conveniently.

7.4 Performance and Statistics

An in-depth analysis of the real world scenarios that were performed to test the

Transportation Security SensorNet is given by Fokum et al. [31]. For the tests the

Trade Data Exchange was deployed in Overland Park, the Virtual Network Operation

Center at the University of Kansas in Lawrence and the Mobile Rail Network either on

a truck or on a train. Note that in both cases the communication between the Mobile

Rail Network and the Virtual Operation Center was established using a GSM modem.

The main findings are as follows:

7.4.1 Road Tests with Trucks

During the tests the overall system had to deal with several issues. The location

was not always available due to loss of so-called GPS fixes. This caused some alarms to

128

be reported with an inaccurate or old location. Furthermore, at some point the GSM

connection broke down but could be reestablished. Note that no messages were lost in

the process though.

In order to test the range of the AVL Reader, one of the goals was to find out at what

point the reader loses contact to the sensors that it monitors. During the testing this

distance was found to be about 400 meters. This was mainly due to significant hardware

tuning and enhancements that were made by members of the SensorNet project. One

of the reasons why range is so important is the fact that in the second stage the Trans-

portation Security SensorNet was deployed in the engine of a train and it had to monitor

sensors that were positioned on different railcars. In contrast to many other sensor net-

works where sensors surround a so-called base station in a circular manner with the aims

of minimizing distance, the rail scenario represents an almost linear sensing approach

where the distance to the base station increases for each sensor.

Another problem was the significant clock drift on the Mobile Rail Network during

relatively short tests (about 2 1/2 hours). Unfortunately this makes some time mea-

surements unreliable, in particular those in between the MRN and the VNOC. Note

that this is not such a big problem within the Mobile Rail Network and Virtual Network

Operation Center service clouds though, since there is a greater interest in relative times

such as the processing time of an operation. This problem could partially be solved by

letting the log parser that was used for the analysis apply a time adjustment parameter.

A better and more natural solution to this problem is discussed in section 8.2.

Note that these observations are mostly hardware related. The implementation of

the Transportation Security SensorNet as described in this thesis worked and was able

to provide the sensor management as well as complete end-to-end alarm notification

capabilities.

129

7.4.2 Short Haul Rail Trial

This more advanced scenario was performed by deploying the Mobile Rail Network

on a locomotive of a train along with sensors attached to containers for it to monitor.

The train traveled approximately 35 kilometers during the trip, from a rail intermodal

facility to a rail yard.

The system faced some of the same issues as during the truck trials such as loss of

GPS, GSM and sensor communication. The data that was collected however shows that

again the Transportation Security SensorNet was able to deal with them and send out

alarm notifications reliably. The log files were analyzed using the log parser and led to

the following:

Message Counts An overview of the message flow is shown in figure 6.1. During the

short haul rail trial the Sensor Node reported 546 alerts to the Alarm Processor. After

filtering, the details of which are explained in section 6.3.2, 131 alarms were sent to the

Alarm Processor at the Virtual Network Operation Center. For 63 of them, shipment

information was queried from the Trade Data Exchange and 33 were stored as so-called

validated alarms. All of the 131 alarms that the Alarm Processor received were sent out

to Alarm Reporting service which notified the according contacts via SMS and email.

There were also 30 inquiries for the location of the Mobile Rail Network.

Message Sizes Looking at the communication between the Virtual Network Opera-

tion Center and the Mobile Rail Network one can notice the following pattern. So-called

control messages such as startMonitoring or getLocation are always initiated at the Vir-

tual Network Operation Center. Since these messages usually transmit only a small

functional request, the average message size is around 690 bytes. On the other hand,

Alarms are always sent from the Mobile Rail Network and contain of a lot of valuable

information. Hence the average message size is about 1420 bytes.

130

Request Performance As shown in figure 7.5, the time it took for messages from

the Virtual Network Operation Center (Sensor Management) to send requests to the

Mobile Rail Network (either Sensor Node or Alarm Processor) and receive a response

was about 4.4 seconds on average. The fastest request was answered in 0.9 seconds

while the slowest took about 11 seconds.

0 2.5 5 7.5 10 12.5
0

5

10

15

Request/response Time (s)

C
ou

nt

Figure 7.5. Request performance from [31]

Overall these numbers meet the expectations of the transportation industry. Per-

forming a location inquiry given an average train speed of 30 km/h and 60 seconds to

retrieve the location, the actual position and the reported one may differ by as much

as 500 meters. However, the Transportation Security SensorNet provides location in-

formation in less than 5 seconds resulting in a maximum difference of just 41.7 meters.

0 1 2 3 4 5 6 7
0

2

4

6

8

10

Network Time (s)

C
ou

nt

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

Processing Time (s)

C
ou

nt

Figure 7.6. Network transmission and processing performance from [31]

131

The bottleneck here is the message transmit time as defined in equation 7.1. As

shown in figure 7.6, processing on the Sensor Node took only 0.6 seconds on average

whereas about 85% of the time is spent on message transmission. This percentage is

likely to increase when switching to satellite communication instead of communicating

with the GSM modem which was used in the trials.

Alarm Notification Performance Because of the problems with the clock drift, the

measured times for messages coming from the Mobile Rail Network going to the Virtual

Network Operation Center are unreliable. However, taking our previous findings about

the request performance the time for this particular transmission can be estimated using

the average round trip and the processing times:

transmitT ime =

1
n

n∑
i=1

(roundTripT imei − processingT imei)

2
(7.5)

=
4.4 seconds− 0.6 seconds

2
(7.6)

= 1.9 seconds (7.7)

Given this estimate, we can compute the total time it takes from for an alarm to go

through the entire TSSN as shown in figure 7.7.

2 3 4 5 6
0

20

40

60

80

100

Elapsed Time (s)

C
ou

nt

Figure 7.7. System alarm notification performance from [31]

132

This includes the times from the Sensor Node to the Alarm Processor at the Mo-

bile Rail Network, the approximated transmit time of 1.9 seconds, and the time from

the Alarm Processor to the Alarm Reporting service at the Virtual Network Operation

Center. On average this yields about 2.1 seconds with the fastest time being just over

1.9 seconds and the slowest around 4.9 seconds.

Both, the road test with trucks and the short haul rail trial can be called suc-

cessful because they displayed the capabilities of the TSSN, its good performance and

that the functionality implemented in the web services worked. In particular, two of

its main capabilities, location inquiry and alarm notification were extensively demon-

strated. Furthermore, the time it took from registering alerts, propagating them through

the Transportation Security SensorNet and sending out notifications accordingly is un-

der 5 seconds and significantly smaller than expected for such a complex system.

133

Chapter 8

Conclusion

8.1 Current Implementation

The implementation of the Transportation Security SensorNet using a Service Ori-

ented Architecture works. Testing has been completed in a lab environment as well as

in the real world and TSSN was evaluated in chapter 7.

The complete system provides a web services based sensor management and alarm

notification infrastructure that is built using open standards and specifications. Partic-

ular functionality within the system has been implemented in web services that provide

interfaces according to their respective web service specifications.

Using standards from the Open Geospatial Consortium allows the integration of the

system into Geographic Information Systems. Although not all the interfaces are fully

implemented as of summer 2009, the basic Sensor Observation Service and Sensor Alert

Service are. Other Open Geospatial Consortium specifications can be integrated a lot

easier now because enhancements to the Axis2 schema compiler have been made by the

author (see 6.1.1.2).

WS-Eventing plays an important role in the Transportation Security SensorNet as

it is essential for the alarm notification chain. The specification that is used by all the

clients and services is WS-Addressing. Note that HTTP, which represents the underlying

134

transport layer of most the web services, already provides an addressing scheme. This

however, is not as useful as it seems because web services may change their transport

layer and messages sometimes require complex routing. The reasoning behind this and

other things have been explained in detail in section 4.3.1.

Overall the Transportation Security SensorNet provides a Service Oriented Architec-

ture for Monitoring Cargo in Motion Along Trusted Corridors based on the extensible

infrastructure of the Ambient Computing Environment for SOA. This web services based

implementation allows for platform and programming language independence and offers

compatibility and interoperability.

The integration of Service Oriented Architecture, Open Geospatial Consortium spec-

ifications and sensor networks is complex and difficult. As described in section 5.7, most

systems and research focuses either on the combination of SOA and OGC specifications

or on OGC standards and sensor networks. However, the Transportation Security Sen-

sorNet shows that all three areas can be combined and that this combination provides

capabilities to the transportation and other industries that have not existed before. In

particular, web services in a mobile sensor network environment have always been seen

as slow and producing a lot of overhead. The TSSN, as shown by the results in chapter 7,

demonstrates that this is not necessarily true.

Furthermore, the Transportation Security SensorNet and its Service Oriented Ar-

chitecture allow sensor networks to be utilized in a standardized and open way through

web services. Sensor networks and their particular communication models led to the

implementation of asynchronous message transports in SOA and are supported by the

TSSN.

8.2 Future work

After evaluating the current implementation, several points of improvement were

identified.

135

Clock Synchronization In order to deal with the clock drift issue mentioned in

section 7.4, enhancements are currently developed that will allow the time on the Mobile

Rail Network to be adjusted using a local Network Time Protocol server. It is provided

the so-called pulse per second from a GPS sensor attached to the Sensor Node. As a

result of this there should hardly be any time synchronization problems left.

Service Discovery Due to several problems in the specific implementation of the

UDDI that was used, for the trials most of the services were made aware of the other

services through the means of configuration instead of service discovery. Since using a

UDDI provides far better scalability, it is an essential piece of future versions of the

Transportation Security SensorNet

Multiple service clouds During the trials all services were unique which in an oper-

ational system this is not the case. There are issues that need to be explored in dealing

with multiple versions not only of single web services but multiple Virtual Network Op-

eration Centers and Mobile Rail Networks. This is especially important when it comes

to managing policies and subscriptions properly.

Security The current system only provides entry points for the WS-Security in terms

of the Rampart module. There are several issues in the current implementation of the

module, especially with regard to attaching policies to web services and clients. Further

development is underway to implement WS-Security.

In between the Virtual Network Operation Center and the Mobile Rail Network

communication is secured by establishing a Virtual Private Network (VPN). However,

this is not practical using a satellite link because of performance reasons.

Sensors management is done at the Sensor Node but as of now there is no support

for the secure handover to other Sensor Nodes. The remote management systems need

to be improved in this area.

136

Asynchronous Communication The implementation of the Transportation Secu-

rity SensorNet that was used during the trials made use of a “relatively” stable GSM

modem connection that provided good performance and coverage. Furthermore, mes-

sages were sent in a synchronous manner.

In the next stage of development, the communication between the Virtual Network

Operation Center and the Mobile Rail Network is done over a satellite link that is pro-

vided by a communication service. This means that several topics have to be addressed.

First, the current message sizes should be reduced in order to accommodate for the

loss of speed. Possible optimizations have been discussed in section 4.2.3 but compres-

sion or conversion into binary formats are options as well.

Second, an enhancement that is currently being pursued and that deals better with

message queuing on both ends of the communication is the switch to the Java Message

Service as the transport. This is discussed by Easton et al. [25]. The Java Message

Service uses so-called Enterprise Service Bus queues in order to send and receive mes-

sages. This allows the current implementation to work almost unmodified as the only

thing that changes is the choice of transport for a few web services to fully support

asynchronous communication.

8.3 Acknowledgment

The work for this thesis is supported by the Office of Naval Research through Award

Number N00014-07-1-1042, Oak Ridge National Laboratory (ORNL) via Award Number

4000043403, and the KU Transportation Research Institute (KUTRI).

137

References

[1] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web services on the world
wide web. In WWW ’08: Proceeding of the 17th international conference on World
Wide Web, pages 795–804, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-
085-2. URL http://doi.acm.org/10.1145/1367497.1367605.

[2] Jean-Pierre Bardet and Amir Zand. Spatial modeling of geotechnical infor-
mation using gml. Transactions in GIS, 13(1):p125 – 165, 20090101. ISSN
13611682. URL http://search.ebscohost.com.www2.lib.ku.edu:2048/login.
aspx?direct=true&db=aph&AN=36983054&site=ehost-live.

[3] Christian Bauer and Gavin King. Hibernate in Action. Manning, 2005.

[4] Tom Bellwood. Rocket ahead with UDDI V3. IBM article, IBM, November 2002.
http://www.ibm.com/developerworks/webservices/library/ws-uddiv3/.

[5] Tom Bellwood, Luc Clement, David Ehnebuske, Andrew Hately, Maryann Hondo,
Yin Leng Husband, Karsten Januszewski, Sam Lee, Barbara McKee, Joel Munter,
and Claus von Riegen. UDDI Version 3.0. OASIS specification, OASIS, July 2002.
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm.

[6] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986 (Standard), January 2005. URL http://www.ietf.
org/rfc/rfc3986.txt.

[7] Thomas Bernhardt and Alexandre Vasseur. Event-driven application servers, 2007.
URL http://dist.codehaus.org/esper/JavaOne_TS-1911_May_11_2007.pdf.

[8] Scott Boag, Anders Berglund, Don Chamberlin, Jérôme Siméon, Michael Kay,
Jonathan Robie, and Mary F. Fernández. XML path language (XPath) 2.0.
W3C recommendation, W3C, January 2007. http://www.w3.org/TR/2007/
REC-xpath20-20070123/.

[9] David Booth and Canyang Kevin Liu. Web services description language (WSDL)
version 2.0 part 0: Primer. W3C recommendation, W3C, June 2007. "http:
//www.w3.org/TR/2007/REC-wsdl20-primer-20070626.

[10] Mike Botts, George Percivall, Carl Reed, and John Davidson. OGC Sensor
Web Enablement: Overview And High Level Architecture. OGC white paper,

138

http://doi.acm.org/10.1145/1367497.1367605
http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=36983054&site=ehost-live
http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=36983054&site=ehost-live
http://www.ibm.com/developerworks/webservices/library/ws-uddiv3/
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://dist.codehaus.org/esper/JavaOne_TS-1911_May_11_2007.pdf
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
"http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626
"http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626

OGC, December 2007. http://portal.opengeospatial.org/files/?artifact_
id=25562.

[11] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Proto-
col (SOAP) 1.1. W3C note, W3C, July 2003. http://www.w3.org/TR/2000/
NOTE-SOAP-20000508/.

[12] Don Box, Luis Felipe Cabrera, Craig Critchley, Francisco Curbera, Donald Fer-
guson, Steve Graham, David Hull, Gopal Kakivaya, Amelia Lewis, Brad Lover-
ing, Peter Niblett, David Orchard, Shivajee Samdarshi, Jeffrey Schlimmer, Igor
Sedukhin, John Shewchuk, Sanjiva Weerawarana, and David Wortendyke. Web
services eventing (ws-eventing). W3C member submission, W3C, March 2006.
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/.

[13] Tim Bray, Richard Tobin, Dave Hollander, and Andrew Layman. Namespaces in
XML 1.0 (second edition). W3C recommendation, W3C, August 2006. http:
//www.w3.org/TR/2006/REC-xml-names-20060816.

[14] Luis Felipe Cabrera, Christopher Kurt, and Don Box. An Introduction to the Web
Services Architecture and Its Specifications. Microsoft technical article, Microsoft,
October 2004. http://msdn.microsoft.com/en-us/library/ms996441.aspx.

[15] Marc Chanliau. Web Services Security: What’s Required To Secure A Service-
Oriented Architecture. Oracle white paper, Oracle, October 2006.

[16] Eran Chinthaka. Web services and Axis2 architecture. IBM article,
IBM, November 2006. https://www.ibm.com/developerworks/webservices/
library/ws-apacheaxis2/.

[17] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web services description language (WSDL) 1.1. W3C note, W3C, March 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[18] Xingchen Chu. Open sensor web architecture: Core services. Master’s thesis,
University of Melbourne, Australia, 2005. http://www.gridbus.org/reports/
OSWA-core%20services.pdf.

[19] Xingchen Chu, Tom Kobialka, and Rajkumar Buyya. Open sensor web archi-
tecture: Core services. In In Proceedings of the 4th International Conference
on Intelligent Sensing and Information Processing, pages 1–4244. Press, 2006.
http://www.gridbus.org/papers/ICISIP2006-SensorWeb.pdf.

[20] Simon Cox. Observations and Measurements - Part 1 - Observation schema.
OGC implementation specification, OGC, December 2007. http://portal.
opengeospatial.org/files/?artifact_id=22466.

139

http://portal.opengeospatial.org/files/?artifact_id=25562
http://portal.opengeospatial.org/files/?artifact_id=25562
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://msdn.microsoft.com/en-us/library/ms996441.aspx
https://www.ibm.com/developerworks/webservices/library/ws-apacheaxis2/
https://www.ibm.com/developerworks/webservices/library/ws-apacheaxis2/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.gridbus.org/reports/OSWA-core%20services.pdf
http://www.gridbus.org/reports/OSWA-core%20services.pdf
http://www.gridbus.org/papers/ICISIP2006-SensorWeb.pdf
http://portal.opengeospatial.org/files/?artifact_id=22466
http://portal.opengeospatial.org/files/?artifact_id=22466

[21] Simon Cox. Observations and Measurements - Part 2 - Sampling Features.
OGC implementation specification, OGC, December 2007. http://portal.
opengeospatial.org/files/?artifact_id=22467.

[22] Simon Cox. Observations and Measurements - Part 2 - Sampling Features. OGC
schema, OGC, . http://schemas.opengis.net/sampling/.

[23] Simon Cox. Observations and Measurements - Part 1 - Observation schema. OGC
schema, OGC, . http://schemas.opengis.net/om/.

[24] Michael J de Smith, Michael F Goodchild, and Paul A Longley. Geospatial Analysis
- A Comprehensive Guide to Principles, Techniques and Software Tools. Matador,
2008. http://www.spatialanalysisonline.com.

[25] Peter Easton, Bhakti Mehta, and Roland Merrick. SOAP over java message ser-
vice 1.0. W3C working draft, W3C, July 2008. http://www.w3.org/TR/2008/
WD-soapjms-20080723.

[26] Thomas Erl. Service-Oriented Architecture - Concepts, Technology, and Design.
Prentice Hall, 2005.

[27] EsperTech. Esper - Event Stream and Complex Event Processing for Java. URL
http://www.espertech.com/.

[28] David C. Fallside and Priscilla Walmsley. XML schema part 0: Primer second
edition. W3C recommendation, W3C, October 2004. http://www.w3.org/TR/
2004/REC-xmlschema-0-20041028/.

[29] Joe Fialli and Sekhar Vajjhala. Java architecture for xml binding (jaxb) 2.0. Java
Specification Request (JSR) 222, October 2005.

[30] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[31] Daniel T. Fokum, Victor S. Frost, Daniel DePardo, Martin Kuehnhausen, Angela N.
Oguna, Leon S. Searl, Edward Komp, Matthew Zeets, Joseph B. Evans, and Gary J.
Minden. Experiences from a Transportation Security Sensor Network Field Trial.
ITTC Tech. Rep. ITTC-FY2009-TR-41420-11, University of Kansas, Lawrence,
KS, June 2009.

[32] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The physiology
of the grid: An open grid services architecture for distributed systems integration.
In Open Grid Service Infrastructure WG, Global Grid Forum, June 2002. http:
//www.globus.org/alliance/publications/papers/ogsa.pdf.

[33] Apache Software Foundation. XMLBeans, July 2008. URL http://xmlbeans.
apache.org/.

140

http://portal.opengeospatial.org/files/?artifact_id=22467
http://portal.opengeospatial.org/files/?artifact_id=22467
http://schemas.opengis.net/sampling/
http://schemas.opengis.net/om/
http://www.spatialanalysisonline.com
http://www.w3.org/TR/2008/WD-soapjms-20080723
http://www.w3.org/TR/2008/WD-soapjms-20080723
http://www.espertech.com/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://xmlbeans.apache.org/
http://xmlbeans.apache.org/

[34] Anders Friis-Christensen, Nicole Ostländer, Michael Lutz, and Lars Bernard.
Designing service architectures for distributed geoprocessing: Challenges and
future directions. Transactions in GIS, 11(6):p799 – 818, 20071201. ISSN
13611682. URL http://search.ebscohost.com.www2.lib.ku.edu:2048/login.
aspx?direct=true&db=aph&AN=28048261&site=ehost-live.

[35] Jesse James Garrett. Ajax: A new approach to web applications, February 2005.
URL http://adaptivepath.com/ideas/essays/archives/000385.php.

[36] Delphi Group. The value of standards. Survey, Delphi Group, Ten Post
Office Square, Boston, MA 02109, June 2003. www.ec-gis.org/sdi//ws/
costbenefit2006/reference/20030728-standards.pdf.

[37] Martin Gudgin, Yves Lafon, and Anish Karmarkar. Resource representation SOAP
header block. W3C recommendation, W3C, January 2005. http://www.w3.org/
TR/2005/REC-soap12-rep-20050125/.

[38] Martin Gudgin, Martin Gudgin, Marc Hadley, Tony Rogers, Tony Rogers, and
Marc Hadley. Web services addressing 1.0 - SOAP binding. W3C recommendation,
W3C, May 2006. http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509.

[39] Martin Gudgin, Marc Hadley, and Tony Rogers. Web services addressing 1.0 -
core. W3C recommendation, W3C, May 2006. http://www.w3.org/TR/2006/
REC-ws-addr-core-20060509.

[40] Hugo Haas, David Booth, Eric Newcomer, Mike Champion, David Orchard,
Christopher Ferris, and Francis McCabe. Web services architecture. W3C note,
W3C, February 2004. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[41] Red Hat. Hibernate Reference Documentation 3.3.1. Technical report, Septem-
ber 2008. http://www.hibernate.org/hib_docs/v3/reference/en-US/pdf/
hibernate_reference.pdf.

[42] Hi-G-Tek. URL http://www.higtek.com/.

[43] David Hyatt and Ian Hickson. HTML 5. W3C working draft, W3C, February 2009.
http://www.w3.org/TR/2009/WD-html5-20090212/.

[44] Melissa Irmen. 10 ways to reduce the cost and risk of global trade management.
Journal of Commerce, March 2009. http://www.joc.com/node/410216.

[45] Martin Kalin. Java Web Services: Up and Running. O’Reilly, February 2009.

[46] Michael Kay. XSL transformations (XSLT) version 2.0. W3C recommendation,
W3C, January 2007. http://www.w3.org/TR/2007/REC-xslt20-20070123/.

[47] Christian Kiehle, Klaus Greve, and Christian Heier. Requirements for next gener-
ation spatial data infrastructures-standardized web based geoprocessing and web
service orchestration. Transactions in GIS, 11(6):p819 – 834, 20071201. ISSN

141

http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=28048261&site=ehost-live
http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=28048261&site=ehost-live
http://adaptivepath.com/ideas/essays/archives/000385.php
www.ec-gis.org/sdi//ws/costbenefit2006/reference/20030728-standards.pdf
www.ec-gis.org/sdi//ws/costbenefit2006/reference/20030728-standards.pdf
http://www.w3.org/TR/2005/REC-soap12-rep-20050125/
http://www.w3.org/TR/2005/REC-soap12-rep-20050125/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.hibernate.org/hib_docs/v3/reference/en-US/pdf/hibernate_reference.pdf
http://www.hibernate.org/hib_docs/v3/reference/en-US/pdf/hibernate_reference.pdf
http://www.higtek.com/
http://www.w3.org/TR/2009/WD-html5-20090212/
http://www.joc.com/node/410216
http://www.w3.org/TR/2007/REC-xslt20-20070123/

13611682. URL http://search.ebscohost.com.www2.lib.ku.edu:2048/login.
aspx?direct=true&db=aph&AN=28048260&site=ehost-live.

[48] Yves Lafon and Nilo Mitra. SOAP version 1.2 part 0: Primer (second edi-
tion). W3C recommendation, W3C, April 2007. http://www.w3.org/TR/2007/
REC-soap12-part0-20070427/.

[49] Kelvin Lawrence, Chris Kaler, Anthony Nadalin, Ronald Monzillo, and Phillip
Hallam-Baker. Web Services Security: SOAP Message Security 1.1 (WS-Security
2004). OASIS standard, OASIS, February 2006. http://docs.oasis-open.org/
wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

[50] Kelvin Lawrence, Chris Kaler, Anthony Nadalin, Marc Goodner, Martin Gudgin,
Abbie Barbir, and Hans Granqvist. WS-SecurityPolicy 1.2. OASIS standard, OA-
SIS, July 2007. http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.
2/ws-securitypolicy.pdf.

[51] E. Levinson. The MIME Multipart/Related Content-type. RFC 2387 (Proposed
Standard), August 1998. URL http://www.ietf.org/rfc/rfc2387.txt.

[52] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for
sensor networks. In in Ambient Intelligence. Springer Verlag, 2004. http://www.
cs.berkeley.edu/~culler/AIIT/papers/TinyOS/levis06tinyos.pdf.

[53] Amelia A. Lewis. Web services description language (WSDL) version 2.0: Ad-
ditional MEPs. W3C note, W3C, June 2007. http://www.w3.org/TR/2007/
NOTE-wsdl20-additional-meps-20070626.

[54] Canyang Kevin Liu. First Look at WSDL 2.0. SAP article, SAP, January
2005. https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
uuid/74bae690-0201-0010-71a5-9da49f4a53e2.

[55] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown, Rebekah
Metz, and Booz Allen Hamilton. Reference Model for Service Oriented Architec-
ture 1.0. OASIS standard, OASIS, October 2006. http://docs.oasis-open.org/
soa-rm/v1.0/.

[56] Lance McKee. The Importance of Going “Open”. OGC white paper, OGC, July
2005. http://portal.opengeospatial.org/files/?artifact_id=6211.

[57] Noah Mendelsohn, Murray Maloney, Henry S. Thompson, and David Beech. XML
schema part 1: Structures second edition. W3C recommendation, W3C, October
2004. http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[58] Noah Mendelsohn, Hervé Ruellan, Martin Gudgin, and Mark Nottingham. XML-
binary optimized packaging. W3C recommendation, W3C, January 2005. http:
//www.w3.org/TR/2005/REC-xop10-20050125/.

142

http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=28048260&site=ehost-live
http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=28048260&site=ehost-live
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.pdf
http://www.ietf.org/rfc/rfc2387.txt
http://www.cs.berkeley.edu/~culler/AIIT/papers/TinyOS/levis06tinyos.pdf
http://www.cs.berkeley.edu/~culler/AIIT/papers/TinyOS/levis06tinyos.pdf
http://www.w3.org/TR/2007/NOTE-wsdl20-additional-meps-20070626
http://www.w3.org/TR/2007/NOTE-wsdl20-additional-meps-20070626
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/74bae690-0201-0010-71a5-9da49f4a53e2
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/74bae690-0201-0010-71a5-9da49f4a53e2
http://docs.oasis-open.org/soa-rm/v1.0/
http://docs.oasis-open.org/soa-rm/v1.0/
http://portal.opengeospatial.org/files/?artifact_id=6211
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/2005/REC-xop10-20050125/

[59] Jean-Jacques Moreau, Sanjiva Weerawarana, Roberto Chinnici, and Arthur Ry-
man. Web services description language (WSDL) version 2.0 part 1: Core lan-
guage. W3C recommendation, W3C, June 2007. http://www.w3.org/TR/2007/
REC-wsdl20-20070626.

[60] Arthur Na and Mark Priest. Sensor Observation Service. OGC implementation
specification, OGC, October 2007. http://portal.opengeospatial.org/files/
?artifact_id=26667.

[61] Arthur Na and Mark Priest. Sensor Observation Service. OGC schema, OGC.
http://schemas.opengis.net/sos/.

[62] Douglas Nebert, Arliss Whiteside, and Panagiotis (Peter) Vretanos. OpenGIS Cat-
alogue Services Schemas. OGC schema, OGC. http://schemas.opengis.net/
csw/.

[63] Douglas Nebert, Arliss Whiteside, and Panagiotis (Peter) Vretanos. OpenGIS Cat-
alogue Services Specification. OGC implementation specification, OGC, February
2007. http://portal.opengeospatial.org/files/?artifact_id=20555.

[64] Eric Newcomer and Greg Lomow. Understanding SOA with Web Services (Inde-
pendent Technology Guides). Addison-Wesley Professional, December 2004. ISBN
0-321-18086-0. http://portal.acm.org/citation.cfm?id=1044935.

[65] Duane Nickul, Laurel Reitman, James Ward, and Jack Wilber. Service Ori-
ented Architecture (SOA) and Specialized Messaging Patterns. Adobe article,
Adobe, December 2007. www.adobe.com/enterprise/pdfs/Services_Oriented_
Architecture_from_Adobe.pdf.

[66] Henrik Frystyk Nielsen, Marc Hadley, Anish Karmarkar, Noah Mendelsohn, Yves
Lafon, Martin Gudgin, and Jean-Jacques Moreau. SOAP version 1.2 part 1: Mes-
saging framework (second edition). W3C recommendation, W3C, April 2007.
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/.

[67] Henrik Frystyk Nielsen, Anish Karmarkar, Noah Mendelsohn, Martin Gud-
gin, Yves Lafon, Marc Hadley, and Jean-Jacques Moreau. SOAP version 1.2
part 2: Adjuncts (second edition). W3C recommendation, W3C, April 2007.
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/.

[68] Mark Nottingham, Hervé Ruellan, Noah Mendelsohn, and Martin Gudgin. SOAP
message transmission optimization mechanism. W3C recommendation, W3C, Jan-
uary 2005. http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/.

[69] David Orchard, Hugo Haas, Sanjiva Weerawarana, Amelia A. Lewis, Roberto
Chinnici, and Jean-Jacques Moreau. Web services description language (WSDL)
version 2.0 part 2: Adjuncts. W3C recommendation, W3C, June 2007. http:
//www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626.

143

http://www.w3.org/TR/2007/REC-wsdl20-20070626
http://www.w3.org/TR/2007/REC-wsdl20-20070626
http://portal.opengeospatial.org/files/?artifact_id=26667
http://portal.opengeospatial.org/files/?artifact_id=26667
http://schemas.opengis.net/sos/
http://schemas.opengis.net/csw/
http://schemas.opengis.net/csw/
http://portal.opengeospatial.org/files/?artifact_id=20555
http://portal.acm.org/citation.cfm?id=1044935
www.adobe.com/enterprise/pdfs/Services_Oriented_Architecture_from_Adobe.pdf
www.adobe.com/enterprise/pdfs/Services_Oriented_Architecture_from_Adobe.pdf
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626

[70] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services
vs. ”big”’ web services: making the right architectural decision. In WWW ’08:
Proceeding of the 17th international conference on World Wide Web, pages 805–
814, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-085-2. URL http:
//doi.acm.org/10.1145/1367497.1367606.

[71] George Percivall, Carl Reed, Lew Leinenweber, Chris Tucker, and Tina Cary.
OGC Reference Model. Technical report, OGC, November 2008. http://portal.
opengeospatial.org/files/?artifact_id=31112.

[72] Clemens Portele. OpenGIS Geography Markup Language (GML) Encoding Stan-
dard. OGC implementation specification, OGC, August 2007. http://portal.
opengeospatial.org/files/?artifact_id=20509.

[73] Clemens Portele. OpenGIS Geography Markup Language (GML) Encoding Stan-
dard. OGC schema, OGC. http://schemas.opengis.net/gml/.

[74] Carl Reed. Topic 0: Abstract Specification Overview. OGC abstract specification,
OGC, June 2005. http://portal.opengeospatial.org/files/?artifact_id=
7560.

[75] Mark Reichardt. The Havoc of Non-Interoperability. OGC white paper, OGC, De-
cember 2004. http://portal.opengeospatial.org/files/?artifact_id=5097.

[76] Leon S. Searl. Service Oriented Architecture for Sensor Networks Based on the
Ambient Computing Environment. ITTC technical report, ITTC, February 2008.
www.ittc.ku.edu/sensornet/trusted_cooridors/papers/41420-07.pdf.

[77] Jérôme Siméon, Don Chamberlin, Daniela Florescu, Scott Boag, Mary F.
Fernández, and Jonathan Robie. XQuery 1.0: An XML query language.
W3C recommendation, W3C, January 2007. http://www.w3.org/TR/2007/
REC-xquery-20070123/.

[78] Ingo Simonis and Johannes Echterhoff. Sensor Alert Service. OGC candidate
implementation specification, OGC, June 2007. http://portal.opengeospatial.
org/files/?artifact_id=24780.

[79] KC SmartPort. Trade Data Exchange - Nothing short of a logistics revolution.
Journal of Commerce, November 2008. URL http://www.joc-digital.com/joc/
20081110/?pg=29.

[80] Dennis Sosnoski. JiXB, March 2009. URL http://jibx.sourceforge.net/.

[81] C. M. Sperberg-McQueen, François Yergeau, Eve Maler, Jean Paoli, and Tim
Bray. Extensible markup language (XML) 1.0 (fifth edition). W3C proposed
edited recommendation, W3C, February 2008. http://www.w3.org/TR/2008/
PER-xml-20080205.

144

http://doi.acm.org/10.1145/1367497.1367606
http://doi.acm.org/10.1145/1367497.1367606
http://portal.opengeospatial.org/files/?artifact_id=31112
http://portal.opengeospatial.org/files/?artifact_id=31112
http://portal.opengeospatial.org/files/?artifact_id=20509
http://portal.opengeospatial.org/files/?artifact_id=20509
http://schemas.opengis.net/gml/
http://portal.opengeospatial.org/files/?artifact_id=7560
http://portal.opengeospatial.org/files/?artifact_id=7560
http://portal.opengeospatial.org/files/?artifact_id=5097
www.ittc.ku.edu/sensornet/trusted_cooridors/papers/41420-07.pdf
http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123/
http://portal.opengeospatial.org/files/?artifact_id=24780
http://portal.opengeospatial.org/files/?artifact_id=24780
http://www.joc-digital.com/joc/20081110/?pg=29
http://www.joc-digital.com/joc/20081110/?pg=29
http://jibx.sourceforge.net/
http://www.w3.org/TR/2008/PER-xml-20080205
http://www.w3.org/TR/2008/PER-xml-20080205

[82] Anne van Kesteren. HTML 5 differences from HTML 4. W3C working draft, W3C,
June 2008. http://www.w3.org/TR/2008/WD-html5-diff-20080610/.

[83] Anne van Kesteren. The XMLHttpRequest object. a WD in last call, W3C, April
2008. http://www.w3.org/TR/2008/WD-XMLHttpRequest-20080415/.

[84] Anne van Kesteren and Ian Hickson. Offline web applications. W3C note, W3C,
May 2008. http://www.w3.org/TR/2008/NOTE-offline-webapps-20080530/.

[85] Michael Wolfe. In this case, bad news is good news. Journal of Commerce, July
2004. www.ismasecurity.com/ewcommon/tools/download.aspx?docId=175.

145

http://www.w3.org/TR/2008/WD-html5-diff-20080610/
http://www.w3.org/TR/2008/WD-XMLHttpRequest-20080415/
http://www.w3.org/TR/2008/NOTE-offline-webapps-20080530/
www.ismasecurity.com/ewcommon/tools/download.aspx?docId=175

Application of Passive UHF RFID in
Intermodal Facilities

Daniel D. Deavours

ITTC-FY2010-TR-41420-14

July 2009

Copyright © 2009:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Technical Report

The University of Kansas

 i

Abstract
In this paper, we explore the use of passive UHF RFID for tracking containers within intermodal
facilities. We find that there are a number of emerging technologies that may be applicable,
including the relatively new Mojix system and the KU Cargo Tag, a long range passive UHF
RFID tag developed at the University of Kansas. We note that while there may be technical
solutions available, the more challenging issue involves coordination and cooperation with the
large number of companies and agencies that would benefit from such a system.

 ii

Table of Contents
Abstract .. i
Table of Contents.. ii
List of Figures ... ii
1. Introduction... 1
2. Background... 2

2.1. Passive UHF RFID .. 2
2.2. KU Cargo Tag.. 3
2.3. Portunus RFID Tag .. 4
2.4. Mojix.. 5
2.5 RF Controls... 6
2.6. Advanced Research in Location Positioning in Multi-Path Environments 8

3. Observations ... 9
3.1. Manufacturing and Execution System (MES) ... 9
3.2. Dock Door Application.. 11
3.3. Real Time Location Positioning (RTLS)... 11
3.4. Large Container Stationing .. 12

4. Applicability to Intermodal Facilities ... 13
5. Conclusions... 15
References... 16

List of Figures
Figure 1: A popular commercial passive UHF RFID tag. ... 2
Figure 2: The KU Cargo tag. ... 4
Figure 3: Early version of the Portunus RFID tag. Photo by Megan E. Gannon.......................... 5
Figure 4: Mojix Star node (a) and 4-port eNode (b) [9]. ... 6
Figure 5: RF Controls unit. .. 7
Figure 6: Experimental MES line. ... 10
Figure 7: Example of experimental test scenario for large metal container storage and staging
area.. 13

 1

1. Introduction
Automatic container-tracking within an intermodal facility may improve logistical efficiency and
security. Passive UHF RFID is a potentially useful technology for tracking containers because
of a unique combination of attributes, such as cost, performance, standardization, and adoption.
An emerging, new capability within passive UHF RFID tag community is the ability to
accurately identify the positioning of tags. This document reviews our findings on the suitability
of using passive UHF RFID for intermodal facilities, and in particular on the applicability of
location positioning capabilities within such an environment.

Recently, there has been interest in the development of passive UHF RFID (pRFID) tags for
intermodal containers. The rationales for using pRFID for intermodal containers are briefly as
follows.

• Relatively long read distance allows automatic identification at range (30 feet or more).
• Relatively low cost (few cents to dollars US).
• The lack of an internal power supply reduces maintenance and extents life of the product

to approximately that of the life of the asset.
• Compatible with ISO 18000-6c (“Gen 2”), which is becoming a very well-supported

standard.
• Compatible with related EPCglobal information-sharing standards to associate containers

with pallets, cases, and items within those containers and to share that information across
organizational boundaries.

• Weak but functional authentication through a combination of techniques, which gives
reasonably strong pedigree verification. Techniques include:

o Use of unique tag ID (TID) within each IC that requires a foundry to replicate.
o Password-protected portions of memory

Because of these attributes, the use of pRFID may be a suitable technology for automatic
tracking of containers.

Some challenges of using the technology, briefly, are as follows.

• Typically relatively short read distance (only 30 feet or so) as compared to active RFID
• Little intelligence / sensing / positioning
• Lack of existing products for cargo containers
• Lack of standardization, positive pilots, and proven business cases

While the above list is not exhaustive, they are probably the most notable. In this report, we aim
to report on the current state of the technology to address the technical challenges, and we give
comments on related business and policy challenges.

The remainder of the report is outlined as follows. In Section 2, we give a further review of the
pRFID technology to date, including ITTC/KU contributions, and emerging commercial
products that provide location-positioning information. In Section 3, we give an overview of our
observations of the technology in action. It was our aim to observe the technology used in use
cases as similar as possible to those of an intermodal facility, but due to the newness of the

 2

technology and other constraints, that was not possible. However, we give a report on the
technology’s capabilities as we observed them in the fall of 2008. In Section 4, we extrapolate
our observations and knowledge of the pRFID system to pRFID may be used in an intermodal
facility. Finally, we conclude with observations and thoughts on future directions.

2. Background

2.1. Passive UHF RFID
Passive RFID is an old technology that has likely been used since WW-II [1]. Passive UHF
RFID (hereafter pRFID), or RFID that specifically uses the frequency band between 860 and 960
MHz, has recently gained attention primarily because of retailer mandates [2], in which retailers
are attempting to tag cases and pallets of products moving through the supply chain. pRFID
transponders, or “tags,” are interrogated by interrogators or “readers.” The reader RF energy is
used to power the tag (hence the tags are passive), interact with the tag according to a protocol,
provide a clock, and to provide a carrier signal for the tag to backscatter information. The tags
contain an integrated circuit (IC) which is used to decode the reader signal, store the tag ID in
non-volatile RAM, and to backscatter the ID and other information. The tag also consists of an
antenna, some carrier or encapsulation, and a method of attachment, such as pressure sensitive
adhesive. The tag backscatters a signal by changing the impedance of the IC, which can change
the magnitude and phase of the signal scattered (retransmitted) by the antenna.

The hope within the supply chain industry is that increased product visibility will result in
increases in efficiencies, such as reduced out-of-stocks, better logistical planning, anti-
counterfeit measure, and reduced labor costs. UHF RFID was chosen because of a combination
of low-cost ($0.10 per tag is now common) and relatively long read distance (25 feet is
common), which will facilitate reading cases on a conveyor as well as cases and pallets moving
through a dock door. Figure 1 shows a popular pRFID tag roughly to scale.

Figure 1: A popular commercial passive UHF RFID tag.

The demand for pRFID for has driven a number of processes and products. Most importantly,
there was a concerted effort within the community to develop a set of standards around the use of
pRFID. These include the air interface protocol (ISO 18000-6c [3]), standard ways to interact
with readers, and ways to store and share information within an organization, as well as between
organizations. These standards have been managed by the EPCglobal, a standards body that
promotes Electronic Product Code through RFID. The standardization, as well as the demand,
has resulted in high quality, low cost sources for tags, readers, and information systems. This is
a potentially rich infrastructure for intermodal transport tracking to build upon. Part of that
infrastructure is the development of RFID tags that are designed for use on cargo containers that
can be read at long distances.

 3

2.2. KU Cargo Tag
The KU Cargo tag has been described in [4]. The KU Cargo tag is intended to be affixed to
large metal assets and to be read from a long distance. A prototype was constructed out of a six
inch square polypropylene plastic sheet that is approximately 5 mm thick. On the reverse side
we attach a copper foil, which acts as a ground plane when the tag is not attached to a metal
surface. On the front side we attach an “inlay”, which consists of an antenna and an IC. The
inlay size is approximately 4 inches square. The antenna is designed to provide excellent
efficiency (less than 1 dB loss), relatively wide bandwidth, and large antenna gain. The
measured gain of the tag antenna is over 5 dBi.

Briefly, the KU Cargo tag is a microstrip antenna with the TM01 and TM10 modes placed at 867
and 915 MHz so that it can operate efficiently both within the 865-869 MHz frequency band
(used in Europe and many other countries) and 902-928 MHz (used in North America and many
Asian countries). In one band, the tag is horizontally polarized, and in a second band, it is
vertically polarized. As with dipole antennas, this usually imposes a 3 dB polarization loss when
used with circularly polarized reader antennas, but since orientation on containers can be
controlled, use of linearly polarized reader antennas is likely possible for further improved
efficiency. Unlike dipole antennas, the Cargo tag provides a high gain over a wide bandwidth
when attached to large containers, and thus can be read at considerably longer distance.

What is novel about the KU Cargo tag is that we inscribe the antenna with a cross-shaped slot,
and we place a matching circuit within that slot. We feed the two modes in series.
Conveniently, when one mode is active, the other mode presents a low impedance (close to that
of a short circuit). Using that, we are able to achieve an excellent impedance match over both
frequency bands.

Finally, since the writing of [4], we have modified the matching circuit to accept the Alien Higgs
3 IC [5]. The original IC had a minimum turn-on power of -13 dBm, while the Higgs 3 IC has a
stated turn-on power of approximately -18 dBm, which yields more than 5 dB of performance
improvement over [4].

 4

Figure 2: The KU Cargo tag.

The KU Cargo tag designed for the Higgs 3 IC, shown in Figure 2, was tested by a third party in
a warehouse environment with a circularly polarized reader antenna. Note that this environment
provided considerable ground, ceiling, and other sources of reflection. We observed reliable
reads out to approximately 80 feet and intermittent reads to about 100 feet. From about 110 to
120 feet, the tag was not readable likely because it was in a local null zone. At about 130 feet,
the tag became readable intermittently. The long read distance was likely assisted by multi-path
effects in the warehouse environment.

2.3. Portunus RFID Tag
The Portunus RFID tag [6] (see Figure 3) was designed to operate in a heavy industrial
environment. The requirement was to have a low profile, be very rugged, and it was acceptable

 5

to compromise read distance for other requirements. The Portunus tag was developed by the
University of Kansas RFID Lab to meet this market requirement. The Portunus tag is two by
four inches square and uses a 1/16” polycarbonate substrate. The IC is protected by being placed
in a small recess in the polycarbonate. Again, the inlay is affixed to the front of the substrate and
a copper foil to the reverse side of the substrate. More information about the technology used to
develop the RFID tag is given in [7].

Figure 3: Early version of the Portunus RFID tag. Photo by Megan E. Gannon.

The Portunus RFID tag is currently being used to tag metal assets for use in rugged
environments, such as manufacturing. The largest application is installation on farm equipment
at the time of manufacturing. Since the Portunus tag is commercially available, it was used for
some of the location-positioning testing.

2.4. Mojix
In traditional pRFID systems, the readers emit RF energy fields, and tags within the field
respond. The reader performs the transmitting and receiving functions, i.e., a transceiver, either
by using two isolated antennas (bistatic), or electrically splitting the transmit and receive signals
from a single antenna (monostatic). Readers are relatively self-contained, typically having a
considerable amount of local computing resources to run local applications, but also capable of
communicating to middleware or back-end systems through a network. To instrument a large
facility with RFID, it takes a large number of readers, each covering a relatively small localized
zone. While some readers are becoming smarter and capable of some positioning or sensing
capabilities, such is a direction of travel through a portal or sensing a tag is getting closer or
further away, location positioning is dominated by presence or absence in read zones and travel
through choke points. These capabilities are of little use in intermodal facilities.

The Mojix system [8] differs from the classical system in a number of ways. First, the hardware
performing transmit and receive function are physically separated. The transmit function is
performed a low-cost “eNode” [9] (see Figure 4b). The receive function over a large area is
concentrated in a single (or small number) of “Star” nodes [10] (see Figure 4a), which contain a
phased array antenna and sophisticated signal processing capabilities. The Star node controls the
eNodes through a coaxial cable or wirelessly, and provides power, commands, and precise
signaling information. The Star system also uses a phased array, very sensitive receivers, and
sophisticated signal processing to detect tags that have been excited by eNodes at very long

 6

distances (200 meters or more). Using a combination of techniques, the Star is able to provide
reasonably accurate location-positioning information. Product literature indicates a positioning
accuracy of one meter or better.

The complete operating process of the Mojix system is proprietary. We speculate that the
following techniques are used in combination to determine the position of an RFID tag.

• The set of eNodes that is able to excite a tag. The tag lies in the intersection of the read
fields of each of the eNodes.

• Varying the power of the eNode until a tag is no longer in field. The tag location can be
localized to the surface of a sphere.

• Tag signal strength. Tags that are close to eNodes receive more power and (presumably)
have a larger backscatter signal. By measuring the quality of the tag signal, one can
estimate the distance of the tag from the eNode.

• Angle of arrival. Using array processing and independent, synchronized receivers on
each element of the antenna array, the phase angle of the received signal at each antenna
in the element is likely to be estimated with good accuracy.

(a) (b)

Figure 4: Mojix Star node (a) and 4-port eNode (b) [9].

It is also possible that the Mojix system uses techniques that are discussed in Section 2.6.

2.5 RF Controls
RF Controls [11] produces a product that has similarities to that of Mojix in that it provides a
level of location-positioning information. The architecture of the RF Controls system is what
they call the “Integrated Antenna Array”, or IAA. Figure 5 is an illustration of an IAA with the
back cover removed. The IAA consists of a commodity RFID reader, some unknown hardware,
and approximately 32 antenna elements. The IAA works as a single, large phased array for
monostatic operation. We observed a 4-way power splitter / combiner on the back of the array,
which is likely used to split the signal from / to the RFID reader to / from the array elements.
Thus, we surmise that the 32 elements are divided into four blocks of 8 elements, with each
block of 8 receiving equal power. Though hidden, we suspect that there is a phase shifter on

 7

each of the array elements. By controlling the phase of each of the elements, one is able to
create a highly directional antenna.

We were able to observe a single IAA system in operation in a limited field trial. The system
was not fully configured when we observed operation. However, we were able to observe a
demonstration in which showed a tag position being correctly identified to within approximately
one meter of accuracy from a distance of approximately 5 meters. Again, it is difficult to
conclude much from this limited observation.

Sirit RFID
reader

4-way
splitter*

Phase array
controller*

Figure 5: RF Controls unit.

From what we know of the architecture, we can conclude several things.

• Because the IAA is built from commodity components, the initial and overall system cost
is likely to be low.

• Because the system is inherently monostatic, one complete IAA system will need to be
installed for each area to be monitored.

 8

• By overlapping read zones, one is able to increase the positioning accuracy of the system,
but with a proportionate increase in cost.

• A RF Controls representative indicated that positioning was likely to be inaccurate at
distance and in heavy multi-path environments.

• The phased array is physically large, approximately 4 by 8 feet. This makes it
impractical for many outdoor environments where wind load will be an issue.

The economics of the RF Controls and Mojix system differs. The IAA is likely to have a lower
initial cost, but will scale more poorly. The Mojix system, because of the cost of the Star
receiver, will have a high initial cost. Adding additional eNodes are likely to be much less
expensive. Neither RF Controls nor Mojix were willing to provide any pricing information
outside of a confidentiality agreement.

2.6. Advanced Research in Location Positioning in Multi-Path
Environments
A recent article [12] described some of the most advanced research in location positioning in a
multi-path environment. We briefly describe the approach that we investigated here.

The premise of this approach is that the receiver uses a phased array that is very well
characterized and calibrated. Second, it is assumed that the signal from the transmitter has a
limited (20 kHz) bandwidth, which is comparable to signal bandwidth used in RFID systems.
The system uses a combination of both the estimated angle of arrival and the signal correlation
coefficient to estimate whether two signals that are received from different angles are in fact the
same signal.

Within an RFID system, the question is not whether the signal is emitted from two different
sources or the same source; a collision detection algorithm within the protocol can be used for
that purpose. The difference in a Mojix-like system is that the system is coherent: the tag’s
signal is the modulated reflected signal from an eNode, which is under direct and presumably
coherent control from the Star node. Thus, it may be possible to use a coherent match filter and
the angle of arrival to reinforce the estimate of a distinct multi-path. Further, the matched filter
can be used to estimate the path length of each incident signal.

If one is able to correctly estimate all the multi-paths and the length of each path, then one may
be able to estimate the distance of the shortest path. The distance and angle of arrival of the
shortest distance, if line-of-sight is one of the paths, is sufficient to estimate the location of a tag.
Failing that, one may be able to estimate the angle and distance of the dominant signal. Again,
the estimate would assume the dominant signal is the line-of-sight signal, and that a multi-path
signal is attenuated.

As with any FCC-compliant device, the RFID reader system uses frequency hopping over the
902-928 MHz frequency band, so tags may be interrogated multiple times on different channels
in order to obtain a more reliable estimate. Finally, for stationary or slow-moving objects,
repeated observations may be used to increase the confidence of various estimates.

 9

We emphasize that we have no knowledge about whether the Mojix system uses this or any
similar approach to estimating positioning. We are merely inferring that existing research results
of [12] with modifications may be applied to a Mojix-like system for local positioning.

3. Observations
Here, we report on our observations of the Mojix system used for evaluation of commercial
fitness for a number of use cases. We are somewhat limited in what we are able to report due to
sensitivity of the companies involved.

3.1. Manufacturing and Execution System (MES)
We observed Mojix operational in a MES (manufacturing and execution system, i.e., an
assembly line) use case. Figure 6 illustrates the MES setup that was tested. We observed two
use cases. First, a metal rack on wheels was tagged with a KU Portunus RFID tag. The metal
rack was pulled through five stations. At each station, the rack was placed in three positions:
early, middle, and late within the station, labeled A, B, and C respectively. At each point in the
station, the Mojix system attempted to identify the station that the rack was in, and in which
position of each station. The experiment was repeated five times. We observed that for all five
experiments, the Mojix system was able to correctly identify the station and position within the
station with every attempt.

The second use case involved two metal racks, both tagged using a KU Portunus tag. The two
racks were exactly one station apart. For example, the first rack was in 1A and the second rack
was in 2A, then the first rack was moved to 1B and the second rack to 2B, etc. The experiment
was repeated five times. Again, the Mojix system was able to correctly identify the station and
position of each rack in all five of the experiments.

We speculate that the method in which the Mojix system is estimating the rack position is by
determining the eNodes that are able to excite the Portunus tags and the signal strength of each
of the tags as excited by different eNodes, and perhaps by varying the eNode transmit power.
For example, a rack at position 1B could be read by eNode 1 on very low power levels. In
position 1C, eNode 1 would require more power to read the tag, while eNode 2 may be able to
read the tag at very high power levels.

 10

Star Node

MES Line

1A1B1C2A2B2C3A3B3C

eNode eNode eNode

eNode

eNode

4A

4B

4C

5A

5B

5C

Figure 6: Experimental MES line.

 11

3.2. Dock Door Application
Next, the Mojix system was used to identify pallets coming in and out of a dock door onto a
truck. Two dock doors were instrumented with eNodes and photo sensors. The test was to
determine if the Mojix system could correctly identify the pallet tag ID and the door that the
pallet would enter or exit while being carried by a fork lift. The test setup was less formal, and
was performed relatively quickly based on time constraints. We observed that the Mojix system
was able to correctly identify the dock door and the pallet tag on every test case.

This test seems somewhat contrived, since there was only one lift truck operational, and there
were photo sensors on both of the eNodes. Simply correlating the reads with the photo sensor
would be sufficient for the system to correctly correlate the reads with the dock door. Thus, this
test demonstrated no unique capability of the Mojix system.

In private discussions with Mojix representatives, Mojix claims that their system is capable of
detecting the contents of pallets on fork lifts traveling through as many as eight dock doors
simultaneously. We have no way of verifying this claim, nor do we have any reason to doubt its
validity.

This form of location-positioning offers little technical advantage over the capability of current
fixed reader systems, but it was a successful demonstration.

3.3. Real Time Location Positioning (RTLS)
Next, we observed the Mojix system acting in a RTLS tracking mode in tracking a single RFID
tag. This proved problematic. The team spent two days troubleshooting the system, and the
system never fully functioned properly. Debriefing with Mojix representatives, we understand
that there were some configuration difficulties and challenges working across time zones, and
that Mojix did not understand that this would be a tested use case and therefore the system was
not configured to perform that test. Regardless, here are our general observations.

• The RTLS system took several seconds to identify the region and provide an <X,Y>
coordinate for the system. Once it did, the system appeared to be fairly accurate, i.e.,
within three to five feet, sometimes more accurate.

• If the tag moved, the RTLS system would take several seconds to recognize the move,
and the measured position would slowly converge to the new position over several more
seconds. After debriefing with Mojix, we understand that this was an intentional delay
filter that was inserted because of the previous tests involving tracking racks required
accuracy of slow-moving objects.

• The RTLS did not appear to be able to accurately track a tag moving at the pace of a
brisk walk, or any motion that involved several abrupt changes in direction. After
debriefing with Mojix, it is their claim that the system is capable of providing that
capability, but the test that we observed was not properly configured for that use case.
We have no evidence to confirm or reason to refute this claim.

 12

3.4. Large Container Stationing
This example is very similar to the use of ISO containers in an intermodal facility. In this
example, the KU Cargo tag was attached to a large metal container. While these were not ISO
containers, there were similarly sized and used in a similar manner.

The particular application studied here is to manage large containers in a staging yard. The yard
is 150 feet wide and contains numerous containers that are moved by heavy equipment. Within
this 150 zone, no RFID equipment is allowed. The application is to track the container assets
within the yard. Assets may be at most 75 feet from one of the sides of the yard, and thus there
is a tag read distance requirement of 75 feet. In this experiment, the KU Cargo tag using the
Higgs 3 IC was affixed to a container and the Mojix system was used to track the location of the
container within the yard. The KU Cargo / Higgs 3 tag was used because of the long read
distance requirement.

To maximize performance, the Mojix eNodes should use linearly polarized antennas, since the
KU Cargo tag is linearly polarized. This experiment was found to be satisfactory using
circularly polarized eNode antennas. The Mojix system was deployed around the perimeter of
the yard to provide location-positioning information. Figure 7 illustrates the setup.

We are able to give only high-level observations of the results. We can say that the Mojix
system was able to reasonably predict the location of RFID tags within the staging area and with
reasonable accuracy and timeliness. We generally conclude that with line-of-sight, the Mojix
system is likely to be able to detect with reasonable accuracy the position of a container in a
yard.

 13

No Reader Zone

container

container

container

container

container

container

container

container

container

container

container

container

container

container

container

container

eNode eNode eNode eNode

eNode eNode eNode eNode

Star Node

Star Node

150'

Figure 7: Example of experimental test scenario for large metal container storage and staging area.

4. Applicability to Intermodal Facilities
We were not able to directly test the ability to tag and track containers in intermodal facilities.
This is due to relatively new technology and great sensitivity from potential early adopters to
protect potential trade secrets. However, we have seen the product perform in several
environments, have interacted with representatives, and can discuss potential capabilities.

 14

We note the following observations:
• As claimed [13], the Star node is extremely sensitive. It was able to detect the KU Cargo

tag at nearly 130 feet away when the Star was pointing away from the tag. Thus, the
signal from the tag was very weak, and the Star node must have detected the signal from
one or more reflections, further weakening the signal.

• We observed location-positioning capabilities that were not highly refined and took some
time to settle on a location, but likely due to in part to improper configuration.
Regardless, it showed location positioning accuracy sufficient to one to two meters,
which is more than sufficient for locating a container in a storage yard. Similarly positive
results from the container staging area are positive indicators of likely usability.

• The wireless eNode released in October 2008, which we did not observe, potentially adds
flexibility to the exciters. It is not clear whether the wireless eNodes can be mobile and
still provides accurate location positioning, or whether it is a feature that could be added
in the future. If so, a mobile eNode could be used inventory and position containers
within the yard periodically.

• The KU Cargo tag provided excellent long-distance performance. IC improvement has
been growing steadily so that read distances double every 2 to 3 years. There is evidence
that this trend can continue for at least one more generation of chips before efficiencies
are exhausted and performance becomes more closely tied to Moore’s law. However,
recent trends indicate that additional improvements will be focused on decreasing costs
more than increasing IC sensitivity, so it might be the case that the next generation of ICs
will provide more features and lower cost rather than improved performance.

Within an intermodal facility, we envision two possible use cases. The first is to observe the
container any time it is moved, and the second is to observe the container as it is stationary.
Both provide different use cases and potential business benefits.

All loading and moving equipment would be fitted with a powered eNode, which would be able
to excite RFID tags attached to containers at is being moved. All truck and rail chokepoints
would also be fitted with powered eNodes and sensors. One or two Star nodes would be fitted
within a facility that would provide coverage and greater accuracy in triangulation. In this way,
all movement of containers within the facility could be directly monitored with a system like the
Mojix RTLS and supplemented through other forms of data acquisition, such as manual data
entry. With the wireless eNode, these use cases become readily feasible.

Static monitoring is useful to detect unauthorized or erroneous movement of containers within
the facility. This can be very helpful, for example, in finding “lost” containers. For this
application, one could fit normal operating equipment with a wireless eNode, which would move
throughout the yard in normal operations, and in doing so, would assist in monitoring location
information of the containers in the yard. In addition, a periodic yard “audit” could be performed
by one of the vehicles to validate the yard inventory. These methods would allow the excitation
of RFID tags potentially deep within container “canyons.” Without direct line-of-sight, location-
positioning is not likely to be highly accurate. However, accuracy of this use case is not critical;
it would be sufficiently accurate to detect whether a container is not close to where it is supposed
to be, or is absent. Anomalous container movement could be detected relatively quickly, and
still protected by chokepoints.

 15

While use of RFID and location services is useful for yard management, more value can be
obtained through better logistics management. Knowing when and where containers were
offloaded could provide better end-to-end logistics management. For example, if a container is
not off-loaded at the proper port (perhaps because it was improperly loaded), the sooner the
information is known, the easier it is for logistics providers and down-stream consumers to make
adjustments.

Second, by using the authentication features of the ISO 18000-6c standard, one can perform
better and more targeted container inspections. By having reasonably strong authentication and
methods of sharing data, together with manifest information, one can easily identify containers
that come from trusted sources through secure ports and those that do not. This will allow port
security to target those containers that are at much higher risk.

It is our opinion that pRFID will not be implemented on containers without a mandate and some
clear, industry-wide, over-arching plan. Because of the number of organizations, both private
and government, the data sharing, sharing cost, maintenance, deployment standardization, and
numerous other issues, it is unlikely that such an integrated system would arise organically in the
near future. This is a common challenge with using RFID as infrastructure: the benefits are
spread across numerous organizations, but the costs are often concentrated to a few
organizations. Equitably sharing costs and benefits can be an insurmountable challenge without
a single dominant advocate. It is our opinion that technical solutions exist or can be easily
developed in the near future to meet the technical requirements. The most significant problem is
finding ways to incentivize organizations to work together to exploit the efficiencies in the
system that are available.

5. Conclusions
In this report, we examine the use of passive RFID and location positioning within an intermodal
facility. We find that the most promising technology is a combination of a system like the Mojix
system and the KU Cargo tag or similar high gain antenna tag. We observed an early Mojix
system demonstration that showed a combination of great potential and the challenges that are
common with new systems: awkward configuration process, organizations unwilling to share
information early on, and poor early-stage support. For example, the KU Cargo tag shows
excellent capabilities, but is not yet commercially available primarily due to weak demand. We
believe that the obstacles are part of the “growing pains” of an early-stage technology, but our
opinion, there are no technical hurdles that are not insurmountable. We foresee that the largest
hurdle will be the cross-organizational will to deploy such a system.

 16

References

[1] Daniel M. Dobkins. The RF in RFID. Newness, 2008.

[2] “Wal-Mart Expands RFID Mandate,” RFID Journal, August 18, 2003, available

http://www.rfidjournal.com/article/view/539/1/1.

[3] International Organization for Standards, “Information technology – radio frequency

identification for item management – part 6: Parameters for air interface communications
at 860 MHz to 960 MHz,” ISO/IEC, Tech. Rep. 18000-6:2004/Amd 1:2006, 2006.

[4] Supreetha Aroor and Daniel D. Deavours, Dual-Resonant Microstrip-Based UHF RFID

Cargo" Tag. In Proc. IEEE MTT-S International Microwave Symposium 2008
(IMS2008) June 15-20, 2008, Atlanta, TX.

[5] “Alien Higgs 3 Product Overview,” Alien Technologies, June, 2008, available

http://www.alientechnology.com/docs/products/DS_H3.pdf.

[6] Starport Technologies, “Products – Portunus | Starport Technologies,”

http://starporttech.com/products/portunus.html, accessed November 20, 2008.

[7] M. Eunni, M. Sivakumar, D. D. Deavours. A Novel Planar Microstrip Antenna Design

for UHF RFID. JSCI, vol. 5, no. 1, January 2007, pp. 6-10.

[8] Mojix. http://www.mojix.com/

[9] Mojix, “Mojix eNode Family,” product brochure, 2008, available

http://www.mojix.com/products/documents/Mojix_eNode_Brochure.pdf.

[10] Mojix, “Mojix Star System,” product brochure, 2008, available

http://www.mojix.com/products/documents/Mojix_STAR_System.pdf.

[11] RF Controls home page, available http://www.rfctrls.com/

[12] Uğur Sarac, F. Kerem Harmanci, and Tayfun Akgül, "Experimental Analysis of

Detection and Localization of Multiple Emitters in Multipath Environments,” IEEE
Antennas and Propagation Magazine, Vol. 50, No. 5, October 2008.

[13] Andy Holman, personal communications, November 2008.

Summary of Status:
A Unified Architecture for SensorNet with Multiple

Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors

University of Kansas, ITTC
V.S. Frost, G.J. Minden,J.B. Evans, L. Searl,

D.T. Fokum, D. Deavours, E. Komp, A. Oguna,
M. Zeets, M. Kuehnhausen, D. Depardo

EDS, an HP Company
J. Walther, L. Sackman, M. Gatewood,

J. Spector, S. Hill, J. Strand

ITTC-FY2010-TR-41420-15

July 2009

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Abstract

This effort is aimed at monitoring cargo movements along a trusted corridor, e.g., rail facilities,

in association with an integrated data-oriented methodology to increase efficiency and security.
This goal is being achieved by performing research and deployment of an associated testbed
focused on rail transportation issues. This effort is being performed in conjunction with the private
sector to enhancing the ability of the to efficiently embed security that provides business value
such as safety, faster transport, and reduced theft while supporting law enforcement and national
security. This has been demonstrated in a live “short haul” trial and will shortly be demonstrated
in a “long haul” trial in a foreign country. (For background and definition of terms see [1]).

ii

Table of Contents

Abstract ... i
Table of Contents... ii
1. Executive Summary ... 1
2. Introduction.. 2
3. Status on Technology Proof of Concept and Integration of the SmartPort Trade Data
Exchange and Transportation Security SensorNet Technologies ... 2
4. Status of the Development of Transportation Security SensorNet (TSSN) Technologies 2
5. Status of System Architecture, Modeling, and Optimization ... 3
6. Status of Communications System Evaluation ... 3
7. Status RFID Technology Evaluation and Development ... 4
8. Associated Efforts ... 4
9. Project Timeline .. 4
10. References ... 4

 1

1. Executive Summary

This effort has had numerous thrusts, but is primarily focused on creating the
Transportation Security SensorNet Technology (TSSN), information technology that
bridges the gap between deployed sensor networks and decision-makers in a multi-modal,
multi-organizational transportation environment. In January 2009, we successfully tested
the system with a 20 km “short haul” rail-based test. This included the mating of sensor
events and data from the Trade Data Exchange (TDE), complex event processing, and
timely notification of events with relevant data to decision-makers. For this test the
mobile rail network (MRN) was installed in a locomotive; sensors (electronic seals) were
attached to several container cars and others placed in the locomotive; the train then
traveled for five hours along an approximately 20 km route. KU/ITTC and HP (formerly
EDS) personnel traveled with the MRN in the locomotive. The MRN communicated with
the virtual operations center (VNOC) located at KU/ITTC in Lawrence, Kansas. The
VNOC sent out alarm messages (both SMS and e-mail) to decision makers; in addition to
sensor state and location, these messages contained logistics information obtained in real
time from the TDE located in Overland Park, Kansas. Extensive message logs were
recorded during this test; a visualization tool was developed to graphically study the
logged messages and their timing. We have performed extensive analysis, resulting in
several reports and publications [1-5], including several peer-reviewed under review and
in preparation.

Since the successful short haul test, we have set three goals to be implemented for the
next “long haul” test:

• Integrating satellite communications and asynchronous message passing into SOA
• Enhance sensor capability
• Implement security within the SOA
First, integration of satellite communications is straightforward, but the challenge is

that most SOA tools assume a continuous (always-on) communications capability and
will block waiting for a reply. Consistent with our implementation philosophy, we have
found a solution that uses standards-based, open source-supported transport “protocol”
that is compatible with SOA. Second, we investigated vendor product that provide
enhanced “parent/child” capability and found that the products were too unreliable for
use. Third, we have implemented security within portions of the TSSN, most notably
between services that uses the publish/subscribe paradigm. We discovered that this is
pioneering work, and have made contribution to the open source tools to support this
task.

For the “long haul” test, we are partnering with a rail carrier to transport cargo from
Mexico to the US. The trial will originate in Mexico, travel through Mexico to the
US/Mexico boarder, cross the boarder, and terminate some place in the southeastern US
(exact locations TBD). The exact date has not yet been decided, but will be in late July
or early August. The objectives of the long haul test are to:

• Collect additional and more detailed system data during the long haul trial
• Demonstrate the new technical features described above
• Collaborate with stakeholders on technology demonstration to further demonstrate

security, business value, and facilitate commercialization and impact

 2

2. Introduction

This effort is aimed at monitoring cargo movements along a trusted corridor, e.g., rail
facilities, in association with an integrated data-oriented methodology to increase
efficiency and security. This goal is being achieved by performing research and
deployment of an associated testbed focused on rail transportation issues. This effort is
being performed in conjunction with the private sector to enhancing the ability of the to
efficiently embed security that provides business value such as safety, faster transport,
and reduced theft while supporting law enforcement and national security. This has been
demonstrated in a live “short haul” trial and will shortly be demonstrated in a “long haul”
trial in a foreign country. (For background and definition of terms see [1]).

3. Status on Technology Proof of Concept and Integration of the SmartPort Trade

Data Exchange and Transportation Security SensorNet Technologies

The “short haul” trial that took place in January, 2009 demonstrated a full integration
of the Trade Data Exchange (TDE) and the Transportation Security SensorNet
Technology (TSSN). This was demonstrated when a sensor on the train indicated that the
container door was opened: the TSSN was able to successfully interact with the TDE to
extract manifest information which was combined with the sensor event, and the
combined information was delivered to the decision-maker in a timely way (less than one
minute). The “long haul” test scheduled for late July or early August will demonstrate
further integration by implementing security between the TDE and TSSN.

4. Status of the Development of Transportation Security SensorNet (TSSN)

Technologies

The development of the TSSN takes an SOA approach, building upon the original
ideas of ACE but utilizing current technology and widely accepted open Web Service
specifications and publicly available implementations which are suitable for Sensor
Networks. Some of the Web Service specifications in use are SOAP, the WS-X
specifications, OGC, and UDDIv3. The TSSN is being implemented in three phases.
The first phase will be used in the field trials described above.

Phase 1 – Simple service messages based on OGC specifications (used in trials).
Phase 2 – Use full OGC specification interface messages.
Phase 3 – Use lessons learned from Phases 1 and 2 to make improvements.
Phase 4 – Satellite communications in conjunction with GSM and software support for
asynchronous communications
Phase 5 – Security framework and implementation throughout the TSSN

Phases 1–3 have been completed, and lessons learned have been documented in [3]
and [4]. Phase 4 has recently been completed and is documented in [4] and described
more in Section 6. Phase 5 has partially been completed and has resulted in contributions
to open source tools to support security. One of the major lessons learned is that the
available open tool support is lacking the functionality for a fully generalized approach to

 3

implementing security within the SOA. We have instead focused on implementing a
fully-functional security model within the constraints of the contemporary tool support.
Details will be documented in future reports.

5. Status of System Architecture, Modeling, and Optimization

This task is focused on developing models of the TSSN to identify trade-offs and

enable system optimization. (An extended abstract of the model was presented in [5]. An
updated description is under development.) The short-haul rail trial has provided the basis
to determine the performance of the TSSN system with respect to detecting events on
intermodal containers in a rail environment. Analysis of the data from the short-haul trial
has provided realistic parameters, including message sizes, probabilities of notifying
decision makers within a given interval, and network times from the train to a virtual
network operations center, that will be used with the developed models to determine
trade-offs and study system optimization. A full description of the short-haul trial and
results of the post-processing is in [3].

The final step is to combine the developed models with the realistic parameters to
conduct the trade-offs and system optimization. Specifically, the visibility of cargo
shipments on a train will be determined as a function of sensors placement, onboard
network and backhaul communication system; the system trade-offs and optimizations
will be performed with respect to cargo visibility.

6. Status of Communications System Evaluation

Research is continuing on radio technologies for TSSN. As part of evaluating the

current active container seal technology operating in the 916 MHz band, it was
discovered that the communication range for the devices selected for this research was
more limited than expected. We provided a custom bi-directional RF amplifier to their
system, which boosted the communication range to over 400 meters, which was used for
the “short haul” test.

We have investigated the use of a vendor-provided “parent-child” capability of the
active seals. This capability would provide a second “parent” tag covertly located on the
container, which would monitor the “child” seal. If the seal was broken or lost while the
container was not in range of the mobile rail network, the parent would keep a status
event, including the time of the event, which could later be recovered. After extensive
testing, we determined that the vendor-provided capability was not sufficiently robust for
inclusion on the “long haul” trial, and that the vendor-proposed fixes would not be
available with sufficient lead time for the trial.

The mobile rail network communicates to the network operations center through
either a GSM modem, or when there is no GSM coverage, a satellite modem. The
satellite modem has been integrated into the mobile rail network. The substantial
challenge has been the reliable exchange of messages over an unreliable link because the
majority of SOA open tools assume a continuous (always-on) communications channel.
The implementation uses using a Java Message Service (JMS) and the Apache ActiveMQ
implementation at the protocol layer. This new capability will be exercised in the “long
haul” test. The developed system is an example of a delay tolerant network (DTN) and

 4

demonstrates that Java Message Service (JMS) and the Apache ActiveMQ
implementation addresses DTN issues.

7. Status RFID Technology Evaluation and Development

The combination of the new (patent-pending) ITTC/KU on-metal RFID tag

technology and the Mojix [6] system was deployed and tested in a warehouse
environment. While this initial testing focused on the suitability of the system on an
MES (manufacturing and execution system, i.e., an assembly line) and for scanning
entering and exiting a dock door, the results of this testing lead to conclusions concerning
applicability of the technology in an intermodal environment. Additional experiments
have been conducted; the results of those experiments as well as the suitability for
intermodal environments are described in [7].

8. Associated Efforts

KC SmartPort has continued to coordinate meetings for the groups involved in TSSN,

CTIP and EFM, as well as additional activities. These meeting are creating a common,
open environment with low entry barriers to enable broader access by stakeholders while
contributing a venue to commercialization. Recently, KCS SmartPort has initiated a
small activity to expand the capabilities of the TSSN, specifically to enhance the
capability to track the transfer of containers across organizational boundaries.

9. Project Timeline

The “short haul” field trial was completed in January of 2009. A “long haul” field

trial is currently being scheduled and is anticipated to take place in late July or early
August of 2009. The long haul trial will start in Mexico, cross the US – Mexico boarder,
and terminate somewhere in the southern USA. The efforts associated with the summer
modeling, communications, and RFID are planned to be completed by the end of Fall
2009 and interim reports describing these activities are currently available. Activities
associated with SmartPort, EFM, and CTIP will continue until June 2010. The current
date of completion for the effort is June 15, 2010.

10. References

[1] V.S. Frost, G.J. Minden, J.B. Evans, L. Searl and D.T. Fokum, T. Terrell, L.

Sackman, M. Gatewood, J. Spector, S. Hill, and J. Strand, “Status Update : A Unified
Architecture for SensorNet with Multiple Owners: Supplement to Advance Sensor
Technologies to Monitor Trusted Corridors,” ITTC-FY2009-TR-41420-10 August
2008.

[2] Daniel T. Fokum “Optimal Communications Systems and Network Design for Cargo

Monitoring”, Proposal for Ph.D. dissertation research, Department of Electrical
Engineering & Computer Science, University of Kansas, December 2008.

 5

[3] D. T. Fokum, V. S. Frost, D. DePardo, M. Kuehnhausen, A. N. Oguna, L. S. Searl, E.
Komp, M. Zeets, D. D. Deavours, J. B. Evans, and G. J. Minden, “Experiences from a
Transportation Security Sensor Network Field Trial,” Information and
Telecommunication Technology Ctr., University of Kansas, Lawrence, KS, USA,
Technical Report ITTC-FY2009-TR-41420-11, June 2009.

[4] M. Kuehnhausen, D. T. Fokum, V. S. Frost, D. DePardo, A. N. Oguna, L. S. Searl, E.

Komp, M. Zeets, D. D. Deavours, J. B. Evans, and G. J. Minden, “Service Oriented
Architecture for Monitoring Cargo in Motion Along Trusted Corridors,” ITTC-
FY2010-TR-41420-13 July 2009.

[5] D.T. Fokum, “Optimal Communications Systems and Network Design for Cargo

Monitoring,” to appear Proc. Tenth Int’l Workshop on Mobile Computing Systems
and Applications (HOTMOBILE 2009), Santa Cruz, California, USA

[6] Mojix. http://www.mojix.com/

[7] Daniel D. Deavours, “Application of Passive UHF RFID in Intermodal Facilities,”

ITTC-FY2010-TR-41420-14, July 2009.

[8] V. S. Frost, G. J. Minden, J. B. Evans, “Summary of Status: A Unified Architecture

for SensorNet with Multiple Owners: Supplement to Advance SensorNet
Technologies to Monitor Trusted Corridors,” ITTC-FY2010-TR-41420-12 December
2008.

EDS HP Final Report

EDS, an HP Company
J. Walther, L. Sackman, M. Gatewood,

J. Spector, S. Hill, J. Strand

ITTC-FY2010-TR-41420-16

December 2009

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

SensorNet Final Report
Oak Ridge National Laboratory i

Saved 18 Dec 2009

EDS HP Final Report

0 Amendment History
Append document status to the following table (for example, Draft, Final or Release #).

CR#
(optional)

Document
Version#

Approval
Date

Modified By Section, Page(s)and
Text Revised

 0.1 09 Feb 2009 Sackman, Larry Initial Creation

CONTENTS
0 Amendment History...i

 Table of Contents ..1

 List of Tables ..2

1 Project Process ...1

2 Project Deviations..2

2.1 Schedule Modifications .. 2
2.2 Budget Modifications ... 2
2.3 Operational Field Tests .. 3

2.3.1 Original Field Tests ... 3
2.3.2 Project Field Tests .. 4
2.3.3 Final Field Tests.. 5

3 Trade Data Exchange ..6

3.1 Overview... 6
3.2 Lessons Learned... 6
3.3 Future Directions .. 7

4 Acknowledgements ..8

5 Legal Trademark Requirements...9

TABLES
Table 1 Original Planned and Finish Date for Each Phase..2

Table 2 Modified Project Schedule to Reflect the Planned Dates ..2

Table 3 Original Budget Allocation, Changes Allowed, and Resulting Project Budget3

SensorNet Final Report
Oak Ridge National Laboratory 1

Saved 18 Dec 2009

EDS HP Final Report

1 Project Process
The purpose of the EDS effort was to produce an integrated SensorNet and Trade Data
Exchange architecture and field tested in a rail environment of sensing prototype for
intermodal transport. This goal was successfully achieved. An integrated SensorNet and
Trade Data Exchange environment was designed, implemented, and demonstrated with two
rail field trials. The effort resulted in two filed demonstrations of end-to-end operability of
the use cases selected and defined with stakeholders (KCS).

For convenient reference, the following is a review of EDS’ project process.

Milestone
1

Planning and Architecture Phase

 In this first phase, EDS formed the project team and engaged stakeholders
to ensure their business and operational requirements were identified and
documented. EDS finalized the project scope document, prepared the
project management plan, finalized the business-technology processes and
developed the enterprise architecture developed the test plan.

Milestone
2

Hardware Specification and Procurement Phase

 In the second phase, EDS specified and procured the servers to host the
Trade Data Exchange (TDE) architecture and procured the Hi-G-Tek sensors.
In addition, EDS developed the test scenarios for the operational field tests.

Milestone
3

SensorNet Configuration and Deployment Phase

 The third milestone involved SensorNet devices configuration, integration
and deployment, plus core feature enhancement and system testing.

Milestone
4

TDE Integration and Testing Phase

 The fourth milestone involved integration of the SensorNet configuration with
the SmartPort TDE architecture and two operational field tests: (1) a short-
haul test in the KC metropolitan area and (2) a long-haul test.

SensorNet Final Report
Oak Ridge National Laboratory 2

Saved 18 Dec 2009

EDS HP Final Report

2 Project Deviations
As the project progressed, the needs and requirements of stakeholders and the technologies
selected necessitated modifications to EDS’ original statement of work. A change order,
Subcontract 2007-023 M1 executed in August 2008, redefined EDS’ scope in terms of
schedule, budget and operational tests. The following sections detail the modifications
specified in the change order.

2.1 Schedule Modifications
EDS’ original project schedule had a July 7, 2007, planned start date and a December 31,
2008, planned finish date. In accordance with the statement of work, the original schedule
incorporated four deliverable-based milestones: (1) Planning & Architecture, (2) Hardware
Specification & Procurement, (3) SensorNet Configure & Deploy and (4) TDE
Integration/Testing. Table 1 shows the original planned and finish date for each phase.

Table 1

Deliverable Original Planned Start Original Planned Finish

Planning & Architecture July 2007 September 2007

Hardware Specification &
Procurement

October 2007 December 2007

SensorNet Configure & Deploy January 2008 June 2008

TDE Integration/Testing July 2008 December 2008

Following the August 2008 change order, EDS modified the project schedule to reflect the
planned dates shown in Table 2.

Table 2

Deliverable Project Planned Start Project Planned Finish

Planning & Architecture July 2007 September 2007

Hardware Specification &
Procurement

October 2007 December 2007

SensorNet Configure & Deploy January 2008 December 2008

TDE Integration/Testing January 2009 August 2009

2.2 Budget Modifications
The original project budget allocated $26,617.00 for computer equipment, $253,378.00 for
sensing devices and $38,040.00 for travel. During Phase 2, Hardware Specification &
Procurement, it became apparent that the original budget allocated more than would be
required for computer equipment, sensing devices and for travel. Within the change order,
KUCR and EDS agreed to reallocate budget dollars from these categories to labor. Table 3

SensorNet Final Report
Oak Ridge National Laboratory 3

Saved 18 Dec 2009

EDS HP Final Report

shows EDS’ original budget allocation, the changes allowed by the change order and the
resulting project budget.

Table 3

Description Original Budget Change Project Budget

Labor $430,875.00 $155,721.00 $586,596.00

Telecomm $1,500.00 $3,500.00 $5,000.00

Computer Equipment $26,617.00 ($14,617.00) $12,000.00

Sensing Devices $253,378.00 ($230,378.00) $23,000.00

Travel $38,040.00 ($18,040.00) $20,000.00

TOTAL SUBCONTRACT $750,410.00 ($103,814.00
)

$646,596.00

2.3 Operational Field Tests
A major aspect of the EDS contribution to this research was developing a relationship with
the rail stakeholder, in this case KSC, defining the priority scenarios with the stakeholders,
and coordinating and participating in rail field trials. While the specific nature of the field
tests changed over time, two successful field trials were conducted: one in the US, and the
second originating in Mexico and completing in the US. After reviewing customer
requirements and priority business cases, EDS acquired the Hi-G-Tek sensors.

The original plan (2007) subcontract specified three field tests. However, the business
requirements of stakeholders and technical limitations of sensors required that modifications
be included in the change order. Section 0 details the original field test, and as the project
evolved, a second more specific set of field test were defined. Section 0 details the
modified project field tests. Section 3.3.3 contains an overview of the two field experiments
that were conducted in January and July of 2009.

2.3.1 Original Field Tests
Test
1

International in-bound cargo through Mexico

 Equip three to five intermodal cargo containers will be equipped with tracking and
sensing devices. Tracking and sensing information will potentially include data
such as door open, door close, temperature, vibration, as well as chemical and
radiation profiles. Stakeholders will include an international shipper, Kansas City
Southern, Mexican and US brokers and a local truck line carrier, US Customs And
Border Patrol, Mexican Customs, and the Port of Lazaro Cardenas.

Test
2

International out-bound cargo to Mexico

SensorNet Final Report
Oak Ridge National Laboratory 4

Saved 18 Dec 2009

EDS HP Final Report

 Equip one to two tractor trailer rigs with tracking and sensing devices. Monitor the
rigs they travel from Kansas City, through the Laredo, TX port to a final destination
in Mexico. Tracking and sensing information will potentially include data such as
door open, door close, temperature, vibration, as well as chemical and radiation
profiles. Stakeholders will include an International shipper or third-party logistics
(3PL), Mexican brokers, a truck line carrier and Mexican Customs.

Test
3

International in-bound cargo through US West Coast port

 Similar to Test 1, however, the route will be through a US West Coast port of entry
(for example, Seattle/Tacoma or Los Angeles/Long Beach) and travel over the
Burlington Northern Santa Fe (BNSF) rail line to Kansas City, MO, intermodal
transfer to truck line and delivery to ultimate destination. Tracking and sensing
information will potentially include data such as door open, door close,
temperature, vibration, as well as chemical and radiation profiles. Stakeholders
will include an International shipper or third party logistics (3PL), US Customs and
Border Patrol, a US brokers and BNSF rail line.

2.3.2 Project Field Tests
Test
1

KC metropolitan short haul

 Equip one to three intermodal cargo containers with tracking and sensing devices.
Tracking and sensing will potentially include sensing information such as door open
and door close. Stakeholders will include Kansas City Southern Rail lines.

Test
2

Mexico port of entry to Nuevo Laredo, MX

 One to three intermodal cargo containers will be equipped with tracking and
sensing devices and monitored as they travel from a Mexican port of entry to
Nuevo Laredo. Tracking and sensing will potentially include sensing information
such as door open and door close. Stakeholders will include Kansas City Southern
de Mexico.

Test
3

Mexico port of entry to Guadalajara, MX

 One to three intermodal cargo containers will be equipped with tracking and
sensing devices and monitored as they travel from a Mexican port of entry to
Guadalajara. Tracking and sensing will potentially include sensing information such
as door open and door close. Stakeholders will include Kansas City Southern de
Mexico.

SensorNet Final Report
Oak Ridge National Laboratory 5

Saved 18 Dec 2009

EDS HP Final Report

2.3.3 Final Field Tests
Regrettably, the economic recession of 2008 further restricted the participation of
stakeholders. As a result, the number of test was reduced from three to two. The final
tests executed under the subcontract are detailed below.

Test
1

KC metropolitan short haul

 Equip one to three intermodal cargo containers with tracking and sensing devices.
Tracking and sensing include the following data: sensor present, sensor missing,
GPS, and door open and door close. Stakeholders will include Kansas City
Southern Rail lines. See the ITTC technical report ITTC-FY2009-TR-41420-11 for
summary and analysis of the KC metropolitan short haul trial.

Test
2

San Luis Potosi, MX, to Nuevo Laredo, MX, to Laredo, TX, to US destination

 One to three intermodal cargo containers will be equipped with tracking and
sensing devices and monitored as they travel from a Mexican port of entry to
Nuevo Laredo. Tracking and sensing include the following data: sensor present,
sensor missing, GPS, door open and door close. Stakeholders will include Kansas
City Southern de Mexico. A full description and analysis of this trial will be
available shortly in an ITTC technical report.

SensorNet Final Report
Oak Ridge National Laboratory 6

Saved 18 Dec 2009

EDS HP Final Report

3 Trade Data Exchange

3.1 Overview
The Trade Data Exchange (TDE) contains commercial shipping data. The TDE is based on a
standards-based, service-oriented architecture. Hosted on a server geographically separate
from the VNOC, the TDE responds to queries from the VNOC. Finally, the TDE sends
startMonitoring, stopMonitoring, and getLocation messages to the VNOC.

The TDE monitors the progress of shipments from the point of origination to the point of
destination. The TDE captures commercial and clearance data including the shipping list,
bill of lading, commercial invoice, certificate of origin and shipper’s export declaration. The
TDE validates data within and across these trade documents to ensure the data is accurate,
consistent and complete. Further, the TDE will monitor the progress of the documentation
and notify responsible parties when errors or incompleteness pose the threat of delaying a
shipment. Finally, the TDE will also forward notification to the customs broker to request
verification of the trade origination documents. The customs broker accesses the TDE via
the same portal to review and verify the trade documentation. The TDE will also allow for
collaboration between participating shippers, third-party logistics providers, carriers and
customs brokers to define and document business requirements and risk assessment
requirements.

The TDE was successfully integrated with SensorNet as demonstrated with the field trials.
The TDE continues to be developed and integrated into the Kansas City SmartPort with
expectations of becoming operational in 2010. The TDE and SensorNet projects continue to
be further integrated with separate funding to include automated data collection of changes
in custody of shipments.

3.2 Lessons Learned
All of the major goals of the project were met. We were able to successfully demonstrate
the integration of the TDE and SensorNet systems on a realistic scenario that demonstrated
business value to stakeholders.

Through the process, we encountered a number of situations that we have learned from.
These are given in the table below.

Automate
startMonitoring
Activity

The manual startMonitoring activity required that additional
resources be available at the beginning of the short-haul and
long-haul test. As a result, resources were providing support at
atypical working hours. Further, the long-haul test was a 24x7
operation throughout its duration. An automated
startMonitoring action would have benefited those on the train
and KU ITTC resources in Lawrence during the operational
tests.

SensorNet Final Report
Oak Ridge National Laboratory 7

Saved 18 Dec 2009

EDS HP Final Report

Secure Greater
Commitment from
Operational Test
Stakeholder

KCS played a vital and critical role in the ability to demonstrate
the integration of the TDE with the SensorNet through
extensive facilitation efforts associated with both operational
tests. To their credit, KCS did provide valuable resources
(using only their internal resources) in people, access and
equipment. For this, the project team is grateful. However, a
stronger relationship with the stakeholder may have fostered a
greater investment on the part of KCS, which is critical for the
long-term impact of the developed systems.

MCS Data Moving forward, an automated feed of MCS data, rather than
static data formulated by the project team, would have allowed
the operational tests to reflect a better, real-world type of
scenario.

Sensor Hardware The sensor hardware from Hi-G-Tek functioned as expected
during both operational tests with one exception, the
parent/child capability. Hi-G-Tek was selected as the sensor
hardware provider because their technology was marketed and
sold as having the parent/child capability. The project team did
not learn that Hi-G-Tek’s hardware available in 2008 and 2009
did not include the parent/child capability.

EDS worked with Hi-G-Tek to incorporate the parent/child
capability into the sensor hardware procured for the project.
Hi-G-Tek, however, was not able to complete implementation of
the capability without adversely affecting the schedule of the
long-haul test.

3.3 Future Directions
Continued
Partnership

HP sees great value in continuing the partnership between KU ITTC
and EDS. We see the SensorNet technology becoming an integrated
component of the TDE solution. Using SensorNet as the gateway
between field-deployed sensing technologies and the TDE allows the
TDE to offer services wider audience of transportation industry service
providers.

That SensorNet keeps the TDE agnostic of sensors deployed in the
field is a value proposition to all. Further, that the SensorNet can
provide sensor data related to field events allows transportation
stakeholders the ability to more closely monitor cargo and assets.
This in turn can help the industry minimize loss due to theft and
tampering, which provides a means to stakeholders to operate more
efficiently in such a competitive industry.

Continued
Development of
the TDE

Related to the TDE specifically, EDS would very much like to keep the
solution moving forward to its eventual objective: a commercial
product. To that end, EDS continues to pursue sources of funds to
continue development of the product.

SensorNet Final Report
Oak Ridge National Laboratory 8

Saved 18 Dec 2009

EDS HP Final Report

4 Acknowledgements
The authors would like to acknowledge Kansas City Southern de Mexico for their vital
participation in the long-haul rail trial; specifically, Jim Kneistadt, Head of Security, and Alan
Martinez.

SensorNet Final Report
Oak Ridge National Laboratory 9

Saved 18 Dec 2009

EDS HP Final Report

5 Legal Trademark Requirements
EDS
EDS and the EDS logo are registered trademarks of Hewlett-Packard Development
Company, LP. HP is an equal opportunity employer and values the diversity of its people.
© 2009 Hewlett-Packard Development Company, LP.

TRANSPORTATION SECURITY SENSOR NETWORK:
SENSOR SELECTION AND SIGNAL STRENGTH ANALYSIS

Angela Oguna

ITTC-FY2010-TR-41420-17

December 2009

Copyright © 2009:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Technical Report

The University of Kansas

i

Abstract

Cargo theft is a major problem in the US; the FBI estimated losses of $15-30 billion in 2006. The Transportation
Security Sensor Network (TSSN) aims to mitigate these risksby utilizing sensors that will track and monitor train-
borne shipping containers. Prior to deployment, we need to know the read ranges of proposed sensors and their
practicability in a rail scenario. I describe the experiments that were performed to test the sensors; results indicate
that the wire sensor is the most suitable. Ultimately, I expect that the improved cargo security resulting from TSSN
implementation will lead to fewer incidences of theft, thereby lowering prices for the final consumer.

ii

CONTENTS

I Introduction 1

II System Architecture 1
II-A Mobile Rail Network 1
II-B Virtual Network Operations Center 3
II-C Trade Data Exchange 3

III Tests 3
III-A Read Range Tests 3

III-A1 Free Space Tests .3
III-A2 Tests in the presence of a Ground Plane 4
III-A3 Test with Cars . 4
III-A4 Test on a Trailer . 4

III-B Short-haul Rail Trial 4

IV Results 4
IV-A Read Range Tests 5

IV-A1 Free Space Tests . 5
IV-A2 Tests in the presence of a Ground Plane 5
IV-A3 Test with Cars . 5
IV-A4 Test on a Trailer . 6

IV-B Short Haul Train Test 6
IV-B1 TSSN Component Interaction .. . 6

IV-C HSDPA Signal Strength 6

V Conclusion 7

Acknowledgments 7

References 8

L IST OF FIGURES

1 Transportation Security Sensor Network (TSSN) Architecture 2
2 Mobile Rail Network Hardware 2
3 Wireless Sensors 3
4 Read Range Success versus Seal-Reader separation in free space 5
5 Read Range Success vs. Seal-Reader Separation 5
6 Read Range Success versus Seal-Reader Separation in Presence of Cars 6
7 HSDPA Signal Strength vs. Time 7

L IST OF TABLES

I Number of Messages Generated by TSSN Components 7

1

I. INTRODUCTION

CARGO shipments are subject to theft, hijacking, and tampering. In 2006 the FBI estimated that cargo
theft cost the US economy between $ 15–30 billion in annual losses [1]. However, law enforcement

acknowledges that these values are only about 40% of the losses that occur; due to the reluctance of
businesses to report theft. Cargo is also used as a guise to transport illegal drugs, arms, and aliens; giving
rise to other forms of crime that law enforcement officers tackle daily. Indirect costs stemming from
cargo crimes, such as delayed deliveries, insurance claimsand processing, and in the worst case scenarios
injuries or loss of life, result in total losses that are 4-5 times greater than the direct losses [2]; a cost
that the consumer eventually carries.

Cargo transportation requires a complex interaction between the originator, the shipper and the receiver.
This paper describes two components of a system designed to minimize the effects of cargo crime. The
transmission ranges of the sensors used will be measured to design and deploy the system. The Global
System for Mobile (GSM) communications signal strength along a train route will be collected to guide
the future design of algorithms that switch between communication routes.

A hardware and software system referred to as the Mobile RailNetwork (MRN) monitors the cargo
in transit. The Mobile Rail Network sends alerts to the Virtual Network Operations Center (VNOC),
which processes the messages to determine if the shipper and/or recipient should be notified. The VNOC
communicates with the Trade Data Exchange (TDE) to get information on the cargo shipment, and
determine the personnel to be informed of the security alert. Therefore, the Mobile Rail Network, Virtual
Network Operations Center, and the Trade Data Exchange linkthe originator, the shipper and the receiver;
ensuring that informed decisions can be made in a timely manner in case of a security breach.

This paper describes the component interaction within the TSSN and experimental data documenting
suitable hardware for a rail environment. The results show that the TSSN can effectively monitor cargo,
and notify decision makers of security breaches. The rest ofthe paper is laid out as follows: Section II ,
describes the TSSN architecture and its components. Section III discusses two experiments to determine
suitable hardware for a rail environment, and also assessesthe effectiveness of the TSSN system in cargo
monitoring. Section IV describes the results of our tests and finally Section V describes the conclusion.

II. SYSTEM ARCHITECTURE

A Transportation Security Sensor Network (TSSN) was set up to achieve the objectives stated above.
The TSSN utilizes a Service Oriented Architecture (SOA) to provide a reusable framework that can be
implemented across the transportation industry [3]. It uses open web standard interfaces, such as Apache
Axis 2, to process and share information across different applications. The main components of the TSSN
are the Mobile Rail Network (MRN), Virtual Network Operations Center (VNOC), and the Trade Data
Exchange (TDE), which allow interaction between the originator, shipper, and receiver as illustrated in
Fig. 1.

A. Mobile Rail Network

The Mobile Rail Network (MRN) includes the software and hardware that monitor freight on the
train and report any suspicious activity to a Virtual Network Operations Center (VNOC). The hardware
component of the MRN consists of a set of wireless shipping container security sensors positioned
on individual containers, an electronics suite located in the locomotive, and a set of antennas that is
magnetically mounted on the locomotive roof to maximize reception. The electronics suite contains a
computing platform, a power inverter, a three-axis accelerometer, a security seal interrogation transceiver
and wireless data modems as illustrated in Fig. 2

The MRN software consists of the MRN SensorNode, the MRN AlarmProcessor and a communications
service. If the seals are tampered with, they send an alert burst message to the MRN SensorNode. The
MRN SensorNode service determines the seal events that are unsafe and it sends an alert message to
the MRN AlarmProcessor service for each suspicious event. The MRN AlarmProcessor performs further

2

Fig. 1. Transportation Security Sensor Network (TSSN) Architecture

processing on the alert and sends an MRN alarm message to the VNOC AlarmProcessor if the event
is indeed unsafe. The communications service logs the High Speed Downlink Packet Access (HSDPA)
signal strength-information that will determine when the communications system should switch between
the Iridium satellite and Global System for Mobile (GSM) communication connection.

Fig. 2. Mobile Rail Network Hardware

3

Fig. 3. Wireless Sensors

B. Virtual Network Operations Center

The Virtual Network Operations Center (VNOC) contains a VNOC AlarmProcessor and a VNOC
AlarmReporting Service which run on a remote server at the monitoring location. The VNOC Alarm-
Processor receives alarms from the MRN AlarmReporting Service. It queries the Trade Data Exchange
for cargo information and uses the response to determine if aVNOC alarm should be forwarded to
personnel. The MRN alarm and shipment data are combined intoa message that is sent to the user by
the VNOC AlarmReporting Service via email and/or SMS. The VNOC also transmits startMonitoring,
stopMonitoring, and getLocation commands from the TDE to the MRN.

C. Trade Data Exchange

The Trade Data Exchange (TDE) contains the cargo information, which it relays when queried by the
VNOC about specific shipments. It also stores alarm messagessent to the user by the VNOC in addition
to sending startMonitoring, stopMonitoring, and getLocation commands to the MRN via the VNOC.

III. T ESTS

Two sets of experiments were conducted to test the TSSN hardware. The first set of experiments analyzes
the performance of the sensors in a static environment, while the second set of tests records the High-Speed
Downlink Packet Access (HSDPA) signal strength and evaluates the overall TSSN performance.

A. Read Range Tests

The primary objective of this test was to determine which wireless seal provided the best read ranges,
and would best withstand a rail environment. The magnetic seal, target tag and the wire seal, illustrated
in Fig. 3, were tested in free space, in the presence of metal ground plane, near cars and next to a trailer.

1) Free Space Tests: The seal interrogator transceiver (SIT) and the magnetic seal were placed on plastic
carts to elevate them and minimize grounding effects. The SIT antenna was placed at a fixed position,
while the seal was moved away from the SIT antenna in 10 m increments. The seal was interrogated ten
times at each new seal position, and then the seal-SIT antenna separation was incremented by a distance
of 10 m. Responses received within two minutes were recordedas successes; otherwise they were counted

4

as failures. The procedure was repeated until the maximum read distances for each seal was reached or
exceeded.

A line of sight path existed between the SIT antenna and the seal during the test. Both the SIT reader
and the laptop remained powered for all the tests, except forthe test performed on the trailer because
their battery power could only last 1.5 hours before shutting off.

2) Tests in the presence of a Ground Plane: The objective of this test was to determine the effect of
a metal ground plane on the read range. The same procedure outlined in free range test was followed,
but the seal interrogator transceiver was placed on 1.5 m× 0.9 m metal sheet. Ten readings were taken
as before and the tests were repeated until the maximum read range was obtained, or the number of
successful readings fell below two. The tests were repeatedwith the SIT antenna placed on the metal
sheet, and the seal positioned on a Styrofoam block covered with aluminum foil to determine the effects
of placing both the seal interrogator transceiver and the seal on metal ground planes.

3) Test with Cars: The objective of this test was to test the effect of large interfering metal objects
on the read ranges. The seal interrogator transceiver was positioned on a cars trunk lid. The seal was
placed on a 0.9 m high wooden block one car width away from the reader. Unlike previous tests, there
was no direct line of sight path between the seal interrogator and the seal. Ten readings were taken as
before at each position, and the seal was then moved one parking spot (2.5 m) farther away. The tests
were repeated until the number of successful readings dropped to two.

4) Test on a Trailer: The final test was performed on a 16 m trailer to simulate a railenvironment. A
car was parked in front of the trailer and the SIT antenna was placed on the cars roof while the seal was
placed at the back of the trailer. Ten queries were sent out bythe seal interrogator as in the previous tests
and if no response was received within two minutes, the interrogation was counted as a failure. There
was no line of sight path between the seal and the seal interrogator, and both the seal interrogator and
laptop were running on battery power.

B. Short-haul Rail Trial

This test was carried out on a train traveling on a 35 km route from an intermodal shipping facility to a
rail yard. The main objectives were to analyze message transmission between the TSSN components for
correctness and monitor the HSDPA signal strength to determine the feasibility of switching between an
Iridium satellite and HSDPA link to relay messages between the MRN and the VNOC. During the test,
the VNOC was located at the university (approximately 60 km away), the TDE was at a remote location
approximately 48 km away, and the MRN was located in the locomotive cab. Several seals were hung on
intermodal containers, and one seal was kept in the locomotive cab with the MRN electronics suite. The
latter seal was opened and closed to simulate seal open and close events. The VNOC AlarmProcessor
received alerts from the MRN which contained the event time,seal position, message type, unique sensor
ID and the event type. The VNOC AlarmProcessor queried the TDE to obtain the shipment information
and decided (based on a set of rules) if personnel should be notified. If the alarm met the set criteria,
the MRN alert and the shipment data were combined into an email or SMS message that was sent to the
user by the VNOC AlarmReporting service. The GSM signal strength between the MRN and the VNOC
was monitored and recorded in log files by the communicationsservice. The experiment was considered
a success as all the events detected by the seals were processed and reported to the personnel using email
and SMS.

IV. RESULTS

This section discusses the results of the TSSN hardware evaluation and the HSDPA signal strength
experiment, in addition to presenting brief results on overall TSSN performance.

5

20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

Seal Reader separation in m
%

 s
uc

ce
ss

fu
l

wire seal

target tag

magnetic seal

Fig. 4. Read Range Success versus Seal-Reader separation infree space

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

110

Seal Reader separation in m

%
 s

uc
ce

ss
fu

l

Reader on metal

Both on metal

No ground plane

(a) Target Tag

20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

Seal Reader separation in m

%
 s

uc
ce

ss
fu

l

Reader on metal

Both on metal

No ground plane

(b) Wire Seal

Fig. 5. Read Range Success vs. Seal-Reader Separation

A. Read Range Tests

1) Free Space Tests: The highest percentage of successful readings was obtainedin the free space
tests which were characterized by a direct line of sight in the duration of testing. The wire seal had the
longest read range (100 m) followed by the magnetic seal which could be read up to 90 m, contrary to
manufacturers specified range of 50 m. The target tag achieved its stated read range of 50 m. The results
illustrated in Fig. 4 show the superior performance of the wire seal, as it recorded 100% success rate
throughout the test.

2) Tests in the presence of a Ground Plane: The performance of both the magnetic seal and the target
tag seals deteriorated when a ground plane was introduced inthe testing environment. Their performance
further declined when both the SIT antenna and the seals wereplaced on ground planes in comparison
to the scenario where only the SIT was positioned on a ground plane. Fig. 5a illustrates the performance
of the target seal when tested with and without a ground plane.

The wire seal performance was not affected greatly by the ground plane especially at shorter distances
as shown in Fig. 5b. Although a lower performance is noted as the seal approaches its maximum read
range, it clearly displays a superior performance when compared to the target tag and magnetic seal.

3) Test with Cars: The wire seal and target tag performed well at short distances when tested with
cars. However, their performance declined as the separation distance was increased. A lower success rate
had been expected for the target tag and magnetic seal due to the ground planes introduced by the car
bodies. The poor performance for the wire seal could be attributed to the lack of a line of sight path in

6

10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

110

Seal Reader separation in m
%

 s
uc

ce
ss

fu
l

wire seal

target tag

magnetic seal

Fig. 6. Read Range Success versus Seal-Reader Separation inPresence of Cars

this experiment. Furthermore, the tests were carried out inan open parking lot, while the previous tests
had been performed next to several large buildings. This indicates that the seal performances in the initial
tests may have been improved by signal reflection from the surrounding buildings. Fig. 6 displays the
performance of the seals in the presence of cars.

4) Test on a Trailer: The final test involved testing the seals when attached to theend of a 16 m (53’)
trailer. This time there was no line of sight path between theseal and the seal interrogator, and the open
location minimized reflection from surrounding buildings.The percentage of successful readings recorded
with the target tag, wire seal and magnetic seal were 0%, 20%,and 10% respectively. The decreased
performance was partly attributed to the absence of a line ofsight path between the SIT reader and the
seal, as well as a lower transmit power since the seal interrogator transceiver was running on battery power.
However, more tests are needed to confirm our assertions. Thewire seal displayed a better performance
than the magnetic seal and the target tag; making it most suitable for the rail environment.

B. Short Haul Train Test

1) TSSN Component Interaction: Table I shows the messages that were transmitted between several
TSSN components. All VNOC queries were responded to by the TDE, i.e., 63 shipmentQueries and
63 shipmentQueryResponses, and the MRN responded to all commands from the TDE which were sent
via the VNOC. This illustrates that all three TSSN components could communicate successfully without
messages being dropped. Table I also illustrates that some messages are filtered by the system. The MRN
SensorNode reported 546 alerts to the MRN AlarmProcessor. Only 131 alerts met the criteria set by the
rules in the MRN AlarmProcessor and were sent out as MRN alarms to the VNOC AlarmProcessor.
All the MRN alarms were sent out as VNOC alarms; indicating that they met the set criteria, and were
therefore, sent out as SMS or email messages to decision makers [4]. Our results confirmed that the
TSSN could not only detect unsafe events, but it could process the messages and relay the information
to decision makers.

C. HSDPA Signal Strength

In the current TSSN implementation the MRN is instructed, atstartup, to either use an Iridium satellite
or HSDPA link to transmit messages between the VNOC and the MRN. Future TSSN implementations
will have an algorithm that can switch dynamically between HSDPA and satellite link transmissions.

The MRN communications service monitored HSDPA signal strength during the short-haul trial. Fig. 7
provides a trace of the change of signal strength with time. The signal strength is constant at the beginning
of the trip. This corresponds to the time when the MRN was on, but the train was stationary. There are

7

TABLE I
NUMBER OF MESSAGESGENERATED BY TSSN COMPONENTS

Message Type From To No. of Messages
Alerts MRN SensorNode MRN AlarmProcessor 546
MRN Alarm MRN AlarmProcessor VNOC AlarmProcessor 131
VNOC Alarm VNOC AlarmProcessor VNOC AlarmReporting 131
getLocation TDE MRN SensorNode 30
Location MRN SensorNode TDE 30
shipmentQuery VNOC AlarmProcessor TDE 63
shipmentQueryResponseTDE VNOC AlarmProcessor 63

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

Time/ Minutes Since 06:25:20

S
ig

na
l S

tr
en

gt
h/

 U
ni

ts

Fig. 7. HSDPA Signal Strength vs. Time

two other constant portions at about 220 and 240 minutes whenthe train stopped at a train crossing.
Once the train journey begins, the signal strength varies between 18 and 24 units. For the greater part of
the journey, the signal strength is reliable except at the 180th minute when the signal strengths drops to
0. This illustrates the viability of a dual communication system that switches between the HSDPA and
Iridium link in areas with a strong HSDPA signal strength. The more expensive iridium satellite could be
turned on in areas with low HSDPA signal.

V. CONCLUSION

This paper presents results from hardware testing and a short haul trial of the Transportation Security
Sensor Network (TSSN). The wire seal was the most practical sensor for a rail environment since it had a
long read range, and was not affected greatly by metal surfaces. A strong HSDPA signal was detected along
the train route, although this result does not generalize toother train routes, it was useful information for
interpreting other results of this experiment. In addition, the collected HSDPA signal strength data will be
used in the future design of an algorithm that can dynamically switch between modes of communication.
Although the TSSN system can effectively monitor cargo, andtransmit messages to decision makers; a
lot of messages were dropped at the MRN AlarmProcessor. Given the large number of filtered messages,
it is important to perform further analysis to see if the rules that determine unsafe events are incorrectly
dropping important messages. This early test of the TSSN provides evidence that this design can be
efficient in streamlining the communication between the originator, shipper, and the recipient to ensure
safer cargo transportation. By reducing the risks of cargo theft, we hope that this will result in monetary
savings for manufacturers that will eventually trickle down to the final consumer through lower prices.

ACKNOWLEDGMENTS

This work was supported in part by Oak Ridge National Laboratory (ORNL)—Award Number
4000043403.

8

REFERENCES

[1] Federal Bureau of Investigation. (2006, July 21) Cargo Theft’s High Cost. Headline. Federal Bureau of Investigation. [Online].
Available: http://www.fbi.gov/page2/july06/cargotheft072106.htm

[2] R. J. Fischer and G. Green,Introduction to Security, 7th ed. Boston, MA: Butterworth-Heinemann, 2004.
[3] K. Martin, “Service Oriented Architecture for Monitoring Cargo in Motion along Trusted Corridors,” University of Kansas, Lawrence,

KS, ITTC Tech. Rep. ITTC-FY2010-TR-41420-13, July 2009.
[4] D. T. Fokum et al., “Experiences from a Transportation Security Sensor Network Field Trial,” University of Kansas, Lawrence, KS,

ITTC Tech. Rep. ITTC-FY2009-TR-41420-11, June 2009.

Application of the Java Message Service
in Mobile Monitoring Environments

Martin Kuehnhausen and Victor S. Frost

ITTC-FY2010-TR-41420-18

December 2009

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Table of Contents

Table of Contents.. i
List of Figures ... i
List of Tables ... ii
Abstract .. 1
I. Introduction .. 1
II. Problem Area .. 1

A. Asynchronous Communication... 2
B. Message Security and Integrity ... 2
C. Scalability.. 2

III. Related Work ... 2
A. Java Message Service.. 2
B. Web Services... 2

IV. Proposed Solution.. 3
A. Java Message Service.. 3
B. Transportation Security SensorNet ... 4

V. Results... 8
A. Stationary .. 9
B. Mobile ... 9

VI. Conclusion ... 9
Acknowledgment ... 10
References.. 10

List of Figures

Figure 1: JMS administration according to [22] single consumer that have not been received. .. 4
Figure 2: Point-to-Point messaging .. 4
Figure 3: Publish/Subscribe messaging when the message is sent and vice versa. 4
Figure 4: TSSN physical architecture adapted from [25] ... 5
Figure 5: Mobile Rail Network message overview from [20] specifications............................... 5
Figure 6: Virtual Network Operation Center message overview from [20] 6
Figure 7: JMS transport receiver configuration in axis2.xml ... 7
Figure 8: JMS transport sender configuration in axis2.xml.. 7
Figure 9: JMS service queue name configuration in services.xml ... 7
Figure 10: ActiveMQ broker configuration in activemq.xml... 7
Figure 11: ActiveMQ transport connector configuration in activemq.xml 7
Figure 12: ActiveMQ MRN network connector configuration in activemq.xml 8
Figure 13: One-way JMS message transmission messages to be forwarded in both directions... 8
Figure 14: Two-way JMS message transmission ... 8
Figure 15: Route for longhaul field trial, route starts at San Luis Potosi and ends approximately
 210 miles down the track .. 8
Figure 16(a): ActiveMQ message queue for stationary scenario Initial test 9
Figure 16(b): ActiveMQ message queue for stationary scenario Follow-up tests........................ 9
Figure 17: ActiveMQ message queue for mobile scenario... 10

ii

List of Tables

Table I: Elapsed Time From MRN to VNOC During Trial in Seconds .. 9
Table II: Comparison of Elapsed Time From MRN to VNOC of Longhaul to Shorthaul Trial in
 Seconds ... 9

1

Application of the Java Message Service
in Mobile Monitoring Environments

Martin Kuehnhausen, Graduate Student Member, IEEE and Victor S. Frost, Fellow, IEEE

Abstract—Distributed systems and in particular sensor net-
works are in need of efficient asynchronous communication,
message security and integrity, and scalability. These points
are especially important in mobile environments where mobile
remote sensors are connected to a control center only via
intermittent communication, e.g. via satellite link. We present
an approach that is able to deal with the issues that arise in
such scenarios. In particular we focus on providing a solution
that allows for flexible and efficient cargo monitoring on trains.

The Java Message Service presents a flexible transport layer
for asynchronous communication that provides a transparent
store-and-forward queue mechanism for entities that need to be
connected to each other. Previously JMS was primarily used
in always-connected high-bandwidth enterprise communication
systems. We present the advantages of using JMS in a mo-
bile bandwidth limited and intermittently connected monitoring
environment and provide a working implementation called the
Transportation Security SensorNet (TSSN). It makes use of an
implementation of JMS called ActiveMQ that is used here to
enable monitoring of cargo in motion along trusted corridors.

Results obtained from experiments and a field trial show
that using JMS provides not just a practical alternative to
often custom binary communication layers but a better and
more flexible approach. One reason for this is transparency.
Applications on both communication ends only need to implement
JMS connectors while the remaining functionality is provided
by the JMS implementation. Another benefit arises from the
exchangeability of JMS implementations.

In utilizing JMS we present a new and flexible approach to
deal with challenges such as intermittent and low-bandwidth
communication in mobile monitoring environments.

Index Terms—Telemetry, Transport protocols, Intermittently
connected wireless networks, Communication system software,
Data communication, Software engineering

I. INTRODUCTION

THE primary use of Java Message Service (JMS) is in
always-connected high-bandwidth enterprise communi-

cation systems but its concepts and techniques are useful in
other scenarios as well. This paper describes the application
of JMS in mobile monitoring environments.

One of the main advantages of using JMS is the fact that
applications do not need to be modified to implement their
own store-and-forward or resend mechanisms. How this is
achieved is explained in detail later. Furthermore an example
of an implementation of a mobile monitoring system is given
that was field tested in stationary as well as intermittent mobile
scenarios.

M. Kuehnhausen and V. S. Frost are with the Information and Telecommu-
nication Technology Center, The University of Kansas, Lawrence, KS, 66045,
USA; Corresponding author: mkuehnha@ittc.ku.edu

This work was supported in part by Oak Ridge National Laboratory
(ORNL)—Award Number 4000043403. This material is also partially based
upon work supported while V. S. Frost was serving at the National Science
Foundation.

II. PROBLEM AREA

Whenever disparate systems are deployed in the field that
need to communicate with each other and a control center,
there exist particular problems that need to be addressed. Here
we used the following scenario as a motivating example.

Sensors are connected to cargo containers which they mon-
itor. A train is then used to transport these containers. The
sensors have limited capabilities and are managed locally by
a more powerful sensor node which has extended functionality
including a communication link back to a control center.
Whenever a sensor detects an event it notifies the sensor
node immediately. The sensor node then performs a simple
evaluation of the event and decides whether or not to send
it to the control center. In this paper we focus on the part
that comes next, sending messages to and receiving control
messages from the control center.

The communication link used may provide only intermittent
communication. Therefore, the sensor node must deal with
establishing the connection as well as transmitting messages.
Especially the latter can cause problems. In a synchronous
communication model the sensor node would only be able to
send one message at a time and block while waiting for its
acknowledgement. This is not feasible in this case because of
the intermittent connection, low bandwidth and high latency
of the communication link. An asynchronous communication
model overcomes this blocking problem and is therefore more
suitable. Furthermore, since messages cannot be send out
immediately due to the intermittent connectivity they need
to be stored. This is often done by implementing a queuing
mechanism inside of the sensor node.

It is also possible to send control messages such as location
or receive status inquiries from the control center to a specific
sensor node. Again, since there does not necessarily exist
an active connection to the sensor node messages need to
be queued. Hence, the applications in the control center
are responsible for implementing proper queuing and retry
mechanisms.

Security and message integrity are critical aspects of the
overall monitoring system. If thieves were able to tamper
with the message contents then they could easily spoof the
system. Security is essential and needs to be implemented in
each application that sends or receives messages as part of
the monitoring system. This brings up another issue, scalabil-
ity. Implementing asynchronous communication and security
components for each application in a small system may
work for experiments but is not feasible for large production
environments. In terms of the cargo monitoring scenario for
trains there could be many control centers, thousands of sensor

2

nodes and even more sensors on containers. This is a very
common scenario for sensor network deployments even though
the particular details of the deployments may be different.
In this paper we demonstrate that by using JMS in these
mobile monitoring environments it is possible to overcome
the common problems discussed above. In particular we focus
on the problems of asynchronous communication, message
security and integrity, and scalability.

A. Asynchronous Communication

Reliable communication between control centers and the
sensor networks cannot always be ensured. Additionally com-
munication is based on the form of underlying connectivity
that is provided. The connectivity may vary. The system could
use a 3G system when available and resort to the satellite
communication only when needed; exposing several issues.

First, message sizes should be small in order to accom-
modate for the slow speeds such as satellite communication
when needed. Possible optimizations are discussed in III-B4
but compression or conversion into binary formats are suitable
options here.

Second, in order to address reliable transmission of mes-
sages either a store-and-forward or a resend mechanism needs
to be implemented on both communication ends. The store-
and-forward technique in this context would mean that the
sensor networks need to hold to the data they capture until
connectivity is established. By contrast, in the resend scenario
they would attempt to transmit the data continuously or with
a backoff timer.

B. Message Security and Integrity

The data that is produced by sensor networks will likely be
sensitive and needs to be kept private. This is especially true
for systems whose main purpose is to provide monitoring of
cargo. Cargo information as well as status updates and events
should only be visible to authorized entities. Furthermore it
is critical that messages being transmitted cannot be tampered
with, for example control messages that allow the opening of
cargo containers.

In this sense it is also important to distinguish between
point-to-point and end-to-end security. Using transit networks
or message relay mechanisms is not possible when messages
are secured in a point-to-point manner because security may
be compromised at each individual connection point. However,
in end-to-end system security it is possible for messages to
pass through individual connection points. Another issue that
always needs to be kept in mind is that while control centers
often have adequate storage and computing power individual
sensors or sensor networks may not. This can be a challenge
when implementing security for the targeted scenarios.

C. Scalability

Sensor networks in general can be set up in two basic ways.
First, after an initial configuration they repeatedly report their
sensor data to a control center. Second, a control center sends
out messages to the sensors or sensor networks in order to

control their reporting or inquire for specific sensor data. Thus
efficient management and scalability can become an issue.

Even though the most common scenario is running a single
setup with one central control center or base station and
multiple sensors or sensor networks connecting to it, the
integration of multiple systems can be problematic. There are
issues in dealing with multiple control centers and multiple
sensor networks that need to be explored. This is especially
important when it comes to managing policies and subscrip-
tions properly.

III. RELATED WORK

A. Java Message Service

Musolesi et al. [1] present their experiences in implementing
a system called EMMA (Epidemic Messaging Middleware for
Ad hoc networks) based on JMS. In particular they identified
the need to adapt JMS in order to be applicable for mobile
ad hoc networks. Their approach consists in synchronization
of queues using a middleware layer that also manages reacha-
bility of individual nodes. For message delivery in partially
connected networks they make use of an approach called
epidemic routing which is described by [2] which works by
propagating messages to neighbors, their neighbors and so on.
In contrast the solution discussed here and implemented in the
TSSN is standards based using the original JMS specification
and therefore more compatible with other systems.

Vollset et al. [3] present a middleware platform built for
mobile ad-hoc networks. Their solution is “serverless” in the
sense that after an intial setup all the participating entities
have a local copy of the JMS configuration. Furthermore they
implement a new multicast protocol for delivering messages
on JMS topics to their subscribers. Their platform again is an
adaptation of the original JMS standard whereas the solution
presented here makes use of a specified and standardized
implementation and shows that JMS can be used unaltered.

In general the Java Message Service is primarily used in
always connected systems such as the one described by [4].
The Mission Data Processing and Control Subsystem (MPCS)
[4] utilizes JMS for different levels of event notifications.
However, the communication link with the flight systems is
custom. Although an extreme case, it seems that using the
Java Message Service for establishing mobile connectivity is
undervalued. Another, more realistic example is the Remote
Real-time Oil Well Monitoring System [5] where clients
receive event notifications via JMS but the data that is collected
by the remote terminal units is sent to the data processing
station using a custom process.

B. Web Services

Service Oriented Architectures (SOA) present a flexible
approach to some of the problems mentioned earlier such as
message security and scalability. The idea is to implement
specific functionality in web services that communicate with
each other using standardized interfaces. Message exchanges
in general use the flexible SOAP message format [6]. This has
a number of advantages as for instance routing and security
are available as extensions to it. JMS is able to transmit SOAP

3

messages. Hence, applying JMS enables the use of web service
specifications in mobile monitoring environments.

1) WS-Addressing: The WS-Addressing core specification
by [7] and its SOAP binding by [8] defines how message
propagation can be achieved using the SOAP message format.
Usually the transport of messages is handled by the underlying
transport protocol but there are several advantages of storing
this transport information as part of the header in the actual
SOAP message. For example, it allows the routing of messages
across different protocols and management of individual flows
and processes within web services.

The Java Message Service uses a similar concept for its
addressing but its properties are adapted to the management
of messages in queues. However, since SOAP messages can be
transported over JMS flexible routing of messages is preserved.

2) WS-Security: The WS-Security specification as described
by [9] deals with the many features needed to achieve so-
called end-to-end message security. This provides security
throughout message routing and overcomes the limitations
of so-called point-to-point transport layer security such as
HTTPS. Furthermore, the specification aims to provide support
for a variety security token formats, trust domains, signature
formats and encryption technologies.

Whenever SOAP messages are transported using the Java
Message Service, WS-Security can be applied. In this scenario
JMS simply acts as a tunnel.

3) WS-ReliableMessaging: Without additional specifica-
tions like WS-ReliableMessaging [10] the delivery of SOAP
messages is based purely on best effort and cannot necessarily
be guaranteed. The Java Message Service provides several
mechanisms for dealing with message reliability issues. Within
transactions messages are acknowledged and if necessary
redelivered. When a message carries the persistent attribute,
JMS message brokers store the message in order to be able to
recover it in case of a failure.

4) Efficient Data Transmission: The SOAP 1.2 Primer [6]
includes references to several enhancements of the original
SOAP standard. In particular they deal with potential perfor-
mance problems and the need for binary data transport in
SOAP. The XML-binary Optimized Packaging (XOP) spec-
ification [11] defines the use of MIME Multipart/Related
messages provided by [12] to avoid encoding overhead that
occurs when binary data is used directly within the SOAP
message. XOP extracts the binary content and uses URIs to
reference it in the so-called extended part of the message.
An abstract specification that uses this idea is the Message
Transmission Optimization Mechanism (MTOM) [13].

Another extension of the SOAP standard is the Resource
Representation SOAP Header Block (RRSHB) [14] that allows
for caching of data elements using so-called Representation
header blocks. They contain resources that are referenced in
the SOAP Body which might be hard to retrieve or simply
referenced multiple times. Instead of having to reacquire them
over and over again, a service may choose to use the cached
objects which speeds up the overall processing time.

ActiveMQ, which is the JMS implementation that is used in
the Transportation Security SensorNet, allows several different
protocols (e.g. AMQP [15], OpenWire [16], REST [17], Stomp

[18], XMPP [19]), to be used for message transmission. By
default it uses the OpenWire protocol, an optimized binary
format for fast and efficient communication.

IV. PROPOSED SOLUTION

In order to be flexible and provide a suitable solution
for a mobile monitoring environment a transparent store-
and-forward approach is used here. A resend mechanism is
often implemented directly in the application which makes
it inflexible. However, the store-and-forward approach allows
for a more efficient and scalable centralized storage pool that
is automatically forwarding the messages.

How JMS can be applied effectively is described here
using the Transportation Security SensorNet (TSSN) [20] as
an example. The TSSN provides monitoring capabilities in
mobile environments and makes use of JMS. The TSSN uses
a SOA approach for monitoring cargo in motion along trusted
corridors. The system is built using web service specifica-
tions and utilizes a Java Message Service implementation for
connectivity between its Virtual Network Operation Center
(VNOC), the control center in this case, and the Mobile
Rail Networks (MRN), which contains the sensor nodes and
sensors, it monitors.

The TSSN uses the Java Message Service through one of
its open-source implementations called ActiveMQ which is
described in detail by Snyder et al. [21]. Each application in
the TSSN is a web service. These web services can be utilized
through their JMS addresses. ActiveMQ establishes a so-called
queue for each web service and uses these queues to store-
and-forward messages to them.

This queue approach has the advantage that applications do
not need to be modified and implement their own store-and-
forward or resend mechanisms. It is also transparent to clients
of the web services since apart from using another address, the
JMS address, interfacing with the web services stays the same.

In this paper we explain the basic concepts of JMS and in
particular how they relate to mobile monitoring environments
and one implementation, the TSSN. Furthermore the details
for the JMS implementation within the TSSN are discussed.

A. Java Message Service

The Java Message Service [22] provides a standardized
specification for synchronously and asynchronously transport-
ing messages using queues. Its implementation is vendor spe-
cific but the interfaces are clearly defined in the specification
so that in theory this is an open system where changing
vendors is possible. The following sections describe the Java
Message Service in detail.

1) Components: In the JMS context clients are called
producers when they create and send messages. The receiving
end is called a consumer. Note that a client can be both, a
producer and a consumer, at the same time. Clients connect
to JMS providers which are entities that have the specified
interfaces to send and receive messages.

Since most of the connections in general are point-to-point,
a so-called queue is the most commonly used destination
of a message. It contains messages from producers to a

4

JNDI Bindings

Client

JMS Provider1. Lookup

Object
Object

2. Connection

Fig. 1. JMS administration according to [22]

single consumer that have not been received. Within the
TSSN unique queues are used to represent the individual web
services. Messages are usually delivered in order First In, First
Out (FIFO) following the basic principle of a queue but this
is dependent on the underlying implementation of JMS.

Topics have multiple consumers and can have one or many
producers publishing messages. They are used in publish-
subscribe models and contain messages that have not yet been
published.

A message can be any object or data that needs to be
transported using JMS. The Java Message Service describes
messages as entities that consist of a header which contains
identification and routing information and a body carrying the
data. Additional properties such as application, provider or
standards specific properties can be attached to messages. This
is effectively used in providing things like security or reliable
messaging.

Note that since JMS per se does not define a message
format, implementation may vary significantly. For service
oriented architectures the agreed standard message format is
SOAP. Easton et al. [23] describe in detail how SOAP can be
used within the Java Message Service. Because the TSSN is
based on SOA and uses SOAP messages it is able use web
service specifications as part of JMS and therefore provide
features such as WS-Addressing and WS-Security as described
in III-B.

2) Java Naming and Directory Interface: In order to iden-
tify objects within the Java Message Service implementation
in a standardized way the specification makes use of the Java
Naming and Directory Interface (JNDI) Application Program-
ming Interface [24]. JNDI provides a directory service for
objects. This process is used for so-called connection factories
which are used to establish connections and destinations which
are either queues or topics in order to increase portability
and ease of administration. JMS clients look up objects and
use them in connections as shown in Figure 1. TSSN uses
local JNDI repositories for JMS lookups and a combination of
hostname and web service name for uniquely naming queues.

3) Messaging Models: JMS supports the two common mes-
saging models; point-to-point and publish-subscribe. These are
also called message domains. Both of them allow for true
asynchronous communication in which the message consumer
does not need to be connected to the producer at the time

Client ClientQueue
1. Produce 2. Consume

Fig. 2. Point-to-Point messaging

Client ClientTopic
2. Publish

Client1. Subscribe

Client1. Subscribe

3. Deliver

3. Deliver

1. Subscribe

3. Deliver

Fig. 3. Publish/Subscribe messaging

when the message is sent and vice versa.
a) Point-to-point: This messaging model makes use of

queues and is shown in Figure 2. Its main application is a
request-response type of message exchange. Messages in this
model are truly unique in the sense that once the consumer
received and acknowledged the message it is removed from the
queue. While there can be only a single consumer, messages
can be put on the queue by multiple producers. This is
the model used in the TSSN because message propagation
throughout the mobile monitoring system is done from one
web service to another.

b) Publish-subscribe: Whenever there is the need for
multiple consumers to receive messages, a subscription model
is useful. The consumers subscribe to a specific topic and
receive messages as soon as they are published by one or
multiple producers as shown in Figure 3. There exists no direct
connection between publishers and subscribers.

Two types of subscriptions are possible in this model.
The subscriber is either continuously connected to the topic
and checks for new publications or a durable subscription is
created in which the messages are kept within the topic while
the subscriber is not connected. Upon reconnection messages
are delivered to the subscriber.

In the TSSN the JMS publish-subscribe messaging model
is currently not used since publications are handled using
the web service standard WS-Eventing for SOAP messages.
However, JMS publish-subscribe presents a flexible approach
to scalability. Since switching between messaging models is
only based on configuration parameters and not on a different
implementation it is possible to use JMS publish-subscribe
effectively in mobile monitoring environments as well.

B. Transportation Security SensorNet

The Transportation Security SensorNet [20] as shown in
Figure 4 uses a Service Oriented Architecture approach for
monitoring cargo in motion along trusted corridors. The com-
plete system provides a web services based sensor manage-
ment and event notification infrastructure that is built us-
ing open standards and specifications. Particular functionality
within the system has been implemented in web services that
provide interfaces according to their respective web service

5

TDE
VNOC

Internet Cellularnetwork Satellite network
MRNGPS Receiver NotebookPC

DisplayalarmSMSalarm Sensor measurementsSensor alarmsSensor configurationsLocation information
Internet

Database
Shipment dataTrain & sensor IDsAlarmsLocation informationEmailalarm

Cargo seal Seal Interrogation Transceiver Comms. Transceivers
Fig. 4. TSSN physical architecture adapted from [25]

MRN

SensorNodeAlarmProcessor

VNOC

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

Alert
SensorNodeEvent

MRN_Alarm

SensorNodeStatus
Location

Subscription

Fig. 5. Mobile Rail Network message overview from [20]

specifications. This web services based implementation allows
for platform and programming language independence and
offers compatibility and interoperability with other systems.

The TSSN represents the integration of SOA, Open Geospa-
tial Consortium (OGC) specifications and sensor networks.
Previous systems and research focused either on the combina-
tion of SOA and OGC specifications or on OGC standards and
sensor networks. However, the TSSN shows that all three can
be combined and that this combination provides capabilities
to the transportation and other industries that have not existed
before. In particular, the preeminent lack of performance in
mobile sensor network environments has previously limited the
application of web services because they have been perceived
as too slow and producing a lot of overhead. The TSSN, as

shown by the results in [20], demonstrates that with proper
architecture and design the performance requirements of the
targeted scenario can be satisfied.

Furthermore, unlike existing proprietary implementations
the Transportation Security SensorNet allows sensor networks
to be utilized in a standardized and open way through web
services. Sensor networks and their particular communication
models led to the implementation of asynchronous message
transports in SOA and are supported by the TSSN.

Within the TSSN the Mobile Rail Network (MRN), which
is shown in Figure 5, represents a train-mounted sensor
network (sensors and sensor node) that monitors seals on
cargo containers. The MRN is able to receive control messages
such as when to start and stop monitoring. When an event is

6

MRN

VNOC

AlarmProcessor

AlarmReporting

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

MRN_Alarm

SensorManagement

Client

SensorNodeStatus
Location

getAllContacts
getAllAlarmContactMappings
getAllSmsProviders
getAllAlarms

Contacts
AlarmContactMappings
SmsProviders
Alarms

NOC_Alarm

startMonitoring
stopMonitoring
getLocation
setAlarmSecure

Status
Location
startMonitoring
 ServiceException

Subscription

TDE

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Fig. 6. Virtual Network Operation Center message overview from [20]

detected it is transmitted from a sensor (seal) to the sensor
node where it is analyzed to determine whether or not to
send out a notification to the VNOC (Figure 6). Sensor
management and correlation of events with shipment and route
information is then performed in the VNOC. According to
specified mappings, people and organizations that subscribed
to these notifications then receive emails and/or sms messages
containing detailed information about the nature of the event.

In terms of the communication the critical link is between
the Mobile Rail Network and the Virtual Network Operation
Center because it cannot be guaranteed that there always exists
a link and hence an asynchronous communication model had
to be implemented. An approach that is able to deal with
message queuing on both ends of the communication is the
integration of the Java Message Service as the transport. The
TSSN implementation fully supports asynchronous communi-
cation using the so-called Enterprise Service Bus queues in
order to send and receive messages.

1) Axis2: The TSSN is based on the Apache Axis2 web ser-
vices software stack. By default Axis2 uses request-response
in a synchronous manner. This means that the client has to
wait and is therefore blocking until it receives the response
from the service. In certain scenarios, for instance when the
service needs a large amount of processing time, the client
can experience timeouts. Furthermore, in the TSSN where
the MRN is only intermittently connected to the VNOC,
synchronous communication is not feasible.

A better option is to make the communication between

services asynchronous. This resolves timeout issues and deals
with connections that are only temporary. The following
aspects were taken into consideration when developing the
asynchronous communication for this case:

a) Client: The client needs to make changes from syn-
chronous to asynchronous messaging in regard to how the
request is sent out. Axis2 provides a low-level non-blocking
client API and additional methods in the service stubs that
allow callbacks to be registered. These so-called AxisCallbacks
need to implement two methods, one that is being invoked
whenever the response arrives and the other to define what
happens in case of an error.

b) Transport Level: Depending on the transport protocol
that is being used, Axis2 supports the following approaches.

• One-way uses one channel for the request and another
one for the response such as used in the Simple Mail
Transfer Protocol (SMTP)

• Two-way allows the same channel to be used for the
request and the response, for example HTTP

For asynchronous communication to work in the TSSN the
two-way approach was modified as part of [20] through the
Axis2 client API which provides the option of using a separate
listener. This tells the service that it is supposed to use a new
channel for the response. In order to correlate request and
response messages Axis2 makes use of the WS-Addressing
specification, in particular the RelatesTo field.

c) Service: The final piece of asynchronous communica-
tion is to make the service processing asynchronous as well.

7

<transportReceiver name="jms"
class="org.apache.axis2.transport.jms.JMSListener">
<parameter name="myTopicConnectionFactory">
<parameter name="java.naming.factory.initial">
org.apache.activemq.jndi.ActiveMQInitialContextFactory
</parameter>
<parameter name="java.naming.provider.url">
tcp://localhost:61616</parameter>
<parameter name="transport.jms.ConnectionFactoryJNDIName">
TopicConnectionFactory</parameter>

</parameter>

<parameter name="myQueueConnectionFactory">
<parameter name="java.naming.factory.initial">
org.apache.activemq.jndi.ActiveMQInitialContextFactory
</parameter>
<parameter name="java.naming.provider.url">
tcp://localhost:61616</parameter>
<parameter name="transport.jms.ConnectionFactoryJNDIName">
QueueConnectionFactory</parameter>

</parameter>

<parameter name="default">
<parameter name="java.naming.factory.initial">
org.apache.activemq.jndi.ActiveMQInitialContextFactory
</parameter>
<parameter name="java.naming.provider.url">
tcp://localhost:61616</parameter>
<parameter name="transport.jms.ConnectionFactoryJNDIName">
QueueConnectionFactory</parameter>

</parameter>
</transportReceiver>

Fig. 7. JMS transport receiver configuration in axis2.xml

<transportSender name="jms"
class="org.apache.axis2.transport.jms.JMSSender" />

Fig. 8. JMS transport sender configuration in axis2.xml

This is done by specifying so-called asynchronous message
receivers in the services configuration in addition to the
synchronous ones.

Axis2 then uses the ReplyTo field of the WS-Addressing
header in the client as a sign to send an immediate acknowl-
edge of the request back to it. Furthermore it processes the
request in a new thread and sends the response out when
it is done, allowing the communication to be performed in
asynchronous manner completely.

There exist various forms of transport protocols that are
suitable for asynchronous communication. Axis2 by default
supports HTTP, SMTP, and JMS as asynchronous transports
but other transports can easily be defined and plugged in.

In order to allow for the TSSN to use JMS as a transport
the following items were added to the Axis2 configuration
by the authors. First, a so-called transport receiver for JMS
as shown in Figure 7. This represents the receiving end of
the communication and allows web services and clients to
consume JMS messages by creating a JMS address for them.
In particular, connection factories are set up for queues and
topics. Second, a transport sender shown in Figure 8 allows
JMS messages to be produced.

Axis2 by default sets up a queue for each of the services
and uses the service name as the queue name. Since a service
is not necessarily unique this name can be changed in the
service configuration (Figure 9). For the Mobile Rail Network
this naming consists of the node id which is used to represent
a sensor network and the name of the service. For the Virtual
Network Operation Center the name is made up of the host

<parameter name="transport.jms.ConnectionFactory">
myQueueConnectionFactory</parameter>
<parameter name="transport.jms.Destination">
TSSN_NODE/2222/MRN_SensorNode</parameter>

Fig. 9. JMS service queue name configuration in services.xml

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="mrn2222"
dataDirectory="\${activemq.base}/data">
...
</broker>

Fig. 10. ActiveMQ broker configuration in activemq.xml

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61616" />

<transportConnector name="ssl"
uri="ssl://localhost:61617"/>

</transportConnectors>

Fig. 11. ActiveMQ transport connector configuration in activemq.xml

on which the service is run and its name. This makes it
possible to easily identify queues and avoid misconfiguration
of ActiveMQ while also offering a naming scheme that is
scalable.

2) ActiveMQ: Apache ActiveMQ is an open source imple-
mentation of the Java Message Service and is used by the
TSSN for JMS messaging. A detailed introduction is given
by Snyder et al. [21]. It is a JMS message broker mostly
used in enterprise systems where high bandwidth connectivity
is a given and throughput is most important. Note that the
version used within the TSSN had to be modified by the
authors because ActiveMQ could not work correctly without
an existing and permanent Internet connection. However, being
able to function without constant connectivity is essential in
mobile monitoring environments. For example, the connection
between the Virtual Network Operation Center and the Mobile
Rail Networks in the TSSN may be intermittent.

The following sections explain the important components of
ActiveMQ that are used in the TSSN and provide configuration
details.

a) Broker: A broker is responsible for managing queues
and topics. It receives message from producers which connect
to it and delivers them to the according consumers. The
configuration for a broker at a Mobile Rail Network is shown
in Figure 10.

b) Transport Connectors: Brokers allow producers and
consumers to use various protocols to connect to it. In Ac-
tiveMQ these connectivity entities are defined as transport
connectors. The TSSN configures the services and clients use
TCP in order to connect to the broker (Figure 11). Another use
of the specified protocols is for inter-broker communication
which is explained in detail later.

c) Network Connectors: Multiple brokers can form a
network of brokers using network connectors. This is allows
the use of distributed queues and is the setup that is used to
connect Virtual Network Operation Center and Mobile Rail
Networks. In order to be flexible the configuration of a so-
called network bridge is initiated by the Mobile Rail Networks
(Figure 12). Establishing a duplex connection then enables

8

<networkConnectors>
<networkConnector
name="MRN2222network"
uri="static://(tcp://laredo.ittc.ku.edu:61616)?
initialReconnectDelay=5000&
useExponentialBackOff=false"
duplex="true"
dynamicOnly="false"
networkTTL="5"/>

</networkConnectors>

Fig. 12. ActiveMQ MRN network connector configuration in activemq.xml

Service Service

Distributed Queue

Service
end

Service
end

2.
1.

3.

Fig. 13. One-way JMS message transmission

messages to be forwarded in both directions. The advantage
here is that the VNOC does not need to be reconfigured every
time a new MRN is set up.

ActiveMQ makes use of the OpenWire protocol [16] which
is an optimized binary compressed format tailored to efficient
management of JMS queues and topics as well as network
connectivity. This is another advantage of using ActiveMQ
since it makes sure that communication between brokers is
bandwidth efficient which is essential for slow and unstable
connections such as satellite links.

d) Distributed Queues: Connections from the VNOC
to the MRN and vice versa are point-to-point which corre-
sponds to queues in the Java Message Service. Queues can
be distributed across several brokers. Whenever the brokers
are connected to each other they exchange information about
which broker has the consumer and the other brokers forward
their queue messages to that broker. The two common types of
message exchanges are explained in the following paragraphs.

Notification messages require only one-way communication
as shown in Figure 13. Within the TSSN a web service acts
as a producer and puts the notification onto the queue which
corresponds to the web service it wants to notify. This is done
by using the specified transport connector to connect to the
local broker and deliver the message to it. The broker then
puts the message on the queue end that it manages. Whenever
the broker can contact the queue end with the consumer
it forwards the message. The receiving web service uses a
listener to detect when its queue at the broker contains new
messages. It then uses its local transport connector to consume
the notification.

Control messages that are sent by the VNOC to the MRN
are good examples of two-way communications. As shown
in Figure 14 in a request-response scenario the client creates
a temporary queue at its local broker that only itself knows
about. This is where the response message will be put. The
request then follows the usual path from the local transport
connector to the local broker, from the local broker to the
broker with the specified consumer and then using the remote
transport connector to the according web service. The JMS
message that is transmitted contains a ReplyTo field with the

Client Service

Distributed Queue

Client
end

Service
end

2.
1. 3.

Distributed Temporary Queue

Client
end

Service
end

5. 4.6.

Fig. 14. Two-way JMS message transmission

Fig. 15. Route for longhaul field trial, route starts at San Luis Potosi and
ends approximately 210 miles down the track

temporary queue that is used for the response. The response
is then sent to back using the web service’s local transport
connector, local broker, remote broker until it is consumed
from the temporary queue by the original client.

In the TSSN all of the queue creation, message queuing
and brokering is transparent to the web services. Whenever
asynchronous communication using the Java Message Service
is required the clients and web services simply use JMS
addresses instead of the default HTTP ones which can be set
in the their configuration files. This makes the solution very
scalable and flexible since a store-and-forward mechanism
does not need to be implemented in each web service but
is provided by an ActiveMQ JMS message broker. This holds
true not only for Service Oriented Architectures that make use
of web services but is also applicable to other systems.

V. RESULTS

The described system above has been successfully tested in
a field trial. Here are results from two scenarios which were
explored: a stationary scenario and a mobile scenario, carried
out by mounting the equipment onto a train. Throughout the
experiments communication between the VNOC and the MRN
in the TSSN is using a satellite link, in this case Iridium at
2.4 kb/s. Both scenarios were performed as part of a longhaul
trial in Mexico (see Figure 15).

9

1

2

3

4

5

6

0 300 600 900 1200

ActiveMQ Message Queue

Bridge established

On Queue in sec

Time in seconds from 2009-07-29 12:45:00

M
es

sa
g

e

(a) Initial test

1

2

3

4

5

6

7

8

0
300

600
900

1200
1500

1800
2100

2400
2700

3000
3300

3600
3900

4200
4500

4800
5100

5400
5700

ActiveMQ Message Queue

Bridge established

Bridge established

Bridge established

Bridge established

Bridge established

On Queue in sec

Time in seconds from 2009-07-29 14:55:00

M
es

sa
g

e

(b) Follow-up tests

Fig. 16. ActiveMQ message queue for stationary scenario

A. Stationary

Figures 16a and 16b show tests results acquired from when
the MRN was set up in a rail yard but not mounted on
a train and not moving. The time each message spent on
the distributed queues as well as when the MRN and the
VNOC brokers had a JMS network bridge established and
were therefore fully connected is displayed. It can be seen
that while all messages were successfully transmitted the time
a message was on a queue is dependent on the quality of the
satellite connection. Only once the satellite connection is stable
enough for ActiveMQ to establish a network bridge messages
can be transmitted.

B. Mobile

The more interesting scenario is to use TSSN as a mobile
monitoring environment. For this purpose the MRN was
deployed on a train and sensors attached to cargo containers.
Figure 17 shows results of roughly the first hour (8:30-
9:30am July 30th 2009) of the longhaul trial along the path
shown in Figure 15. Due too a hardware problem after about
9:30am the system clock synchronization is significantly off
and the remaining data, especially time measurements, cannot
be analyzed. Therefore, only the time before the hardware
issue occurred is shown in Figure 17. However, it is important
to note that the TSSN kept operating correctly for more than
32 hours and ActiveMQ was successfully transmitting and
receiving messages.

Figure 17 shows in detail when messages were put on
a queue, when they were consumed and at which time the
JMS network bridge, actual connectivity, was established.
A comparison of times message required to be transmitted
from the MRN to the VNOC is shown in Table I. Whenever
connectivity, in ActiveMQ a so-called bridge, is established
the actual message transmission takes about 11.6 seconds
on average. This is in stark contrast to when the satellite
link is down and needs to be established before sending out
messages. In that case it took 616.2 seconds on average with

TABLE I
ELAPSED TIME FROM MRN TO VNOC DURING TRIAL IN SECONDS

Minimum Maximum Mean Median Std. Dev

Link Down 31.29 1273.1 616.26 553.23 411.36

Link Up 5.85 40.53 11.62 6.02 10.77

Average Case 5.85 1273.1 481.90 430.97 441.86

TABLE II
COMPARISON OF ELAPSED TIME FROM MRN TO VNOC OF LONGHAUL TO

SHORTHAUL TRIAL IN SECONDS

Minimum Maximum Mean Median Std. Dev

Shorthaul 0.45 2.90 1.89 1.94 0.62

Longhaul 5.85 1273.1 481.90 430.97 441.86

the slowest message being received 1273.1 seconds or more
than 21 minutes after it was sent.

The key characteristic here is the availability of the satellite
link. The trial was performed in a mountainous environment
where the satellite view was partially obstructed and hence the
times measured may not be the same in a different geographic
region. Looking at the average case of about 7 minutes per
message transmission though the system is found to be in
range of mobile monitoring environments.

A comparison of these results to a previous shorthaul trial
described in [20] is shown in Table II. During the shorthaul the
MRN was continuously connected to the VNOC using a GSM
modem with a peak throughput of about 700 kb/s. Looking at
the minimum times and assuming this as the best case scenario
the satellite configuration is slower by a factor of about 13.

VI. CONCLUSION

As discussed in the previous sections the approach of
using JMS in mobile monitoring environments works. We
showed that Java Message Service technology can be utilized
to provide drop-in connectivity between disparate and delay
tolerant systems. Previously JMS was primarily used in always
connected high bandwidth scenarios but its concepts and

10

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900

ActiveMQ Message Queue

Bridge established

Bridge established

Bridge established

Bridge established

Bridge established

Bridge established

Bridge established

Bridge established

Seconds on queue

Time in seconds from 2009-07-30 08:29:00

M
es

sa
g

e

Fig. 17. ActiveMQ message queue for mobile scenario

techniques are useful in mobile monitoring environments as
well.

JMS provides a transparent asynchronous communication
model that is scalable and flexible since a store-and-forward
mechanism does not need to be implemented in each com-
ponent but is provided by a JMS message broker. This is
done using distributed queues that are managed by network
connectors as described above.

Since JMS allows the transport of all types of messages
including SOAP messages, web service specifications were
used here to provide features such as end-to-end message
security and integrity. In terms of scalability JMS makes it pos-
sible to connect disparate systems with limited effort without
having to implement store-and-forward, resend mechanisms
and security again and again. Furthermore, JNDI and support
for different messaging models enhance scalability for JMS
based systems.

In this paper we presented a new and flexible approach to
deal with challenges such as intermittent and low-bandwidth
communication in mobile monitoring environments. This ap-
proach is to utilize the features that the Java Message Service
provides to address the issues of asynchronous communica-
tion, message security and integrity, and scalability. We have
shown that this is possible and presented an implementation
of a mobile monitoring system called TSSN that successfully
uses the approach.

ACKNOWLEDGMENT

This work was supported in part by Oak Ridge National
Laboratory (ORNL) Award Number 4000043403. This mate-
rial is also partially based upon work supported while V. S.
Frost was serving at the National Science Foundation.

REFERENCES

[1] M. Musolesi, C. Mascolo, and S. Hailes, “Adapting asynchronous mes-
saging middleware to ad hoc networking,” in MPAC ’04: Proceedings of
the 2nd workshop on Middleware for pervasive and ad-hoc computing.
New York, NY, USA: ACM, 2004, pp. 121–126.

[2] A. Vahdat and D. Becker, “Epidemic Routing for Partially-Connected
Ad Hoc Networks,” Duke University, Tech. Rep., 2000.

[3] E. Vollset, D. Ingham, and P. Ezhilchelvan, “JMS on Mobile Ad-Hoc
Networks,” in In Personal Wireless Communications (PWC. Springer-
Verlag, 2003, pp. 40–52.

[4] D. Allard, “Development of a ground data messaging infrastructure for
the mars science laboratory and beyond,” in Aerospace Conference, 2007
IEEE, March 2007, pp. 1–8.

[5] L. Hongsheng, W. Yu, D. Yongzhong, and P. Zhongxiao, “Implemen-
tation of network-computing and nn based remote real-time oil well
monitoring system,” in Neural Networks and Brain, 2005. ICNN&B ’05.
International Conference on, vol. 3, Oct. 2005, pp. 1810–1814.

[6] Y. Lafon and N. Mitra, “SOAP version 1.2 part 0: Primer (second
edition),” W3C, W3C Recommendation, Apr. 2007, http://www.w3.org/
TR/2007/REC-soap12-part0-20070427/.

[7] M. Gudgin, M. Hadley, and T. Rogers, “Web services addressing 1.0
- core,” W3C, W3C Recommendation, May 2006, http://www.w3.org/
TR/2006/REC-ws-addr-core-20060509.

[8] M. Gudgin, M. Gudgin, M. Hadley, T. Rogers, T. Rogers, and
M. Hadley, “Web services addressing 1.0 - SOAP binding,”
W3C, W3C Recommendation, May 2006, http://www.w3.org/TR/2006/
REC-ws-addr-soap-20060509.

[9] K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, and P. Hallam-Baker,
“Web Services Security: SOAP Message Security 1.1 (WS-Security
2004),” OASIS, OASIS Standard, Feb. 2006, http://docs.oasis-open.org/
wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

[10] P. Fremantle, S. Patil, D. Davis, A. Karmarkar, G. Pilz, S. Winkler,
and mit Yalinalp, “Web Services Reliable Messaging (WS-
ReliableMessaging) Version 1.1,” OASIS, OASIS Standard, Jun. 2007,
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.
pdf.

[11] N. Mendelsohn, H. Ruellan, M. Gudgin, and M. Nottingham, “XML-
binary optimized packaging,” W3C, W3C Recommendation, Jan. 2005,
http://www.w3.org/TR/2005/REC-xop10-20050125/.

[12] E. Levinson, “The MIME Multipart/Related Content-type,” RFC
2387 (Proposed Standard), Aug. 1998. [Online]. Available: http:
//www.ietf.org/rfc/rfc2387.txt

11

[13] M. Nottingham, H. Ruellan, N. Mendelsohn, and M. Gudgin,
“SOAP message transmission optimization mechanism,” W3C,
W3C Recommendation, Jan. 2005, http://www.w3.org/TR/2005/
REC-soap12-mtom-20050125/.

[14] M. Gudgin, Y. Lafon, and A. Karmarkar, “Resource representation
SOAP header block,” W3C, W3C Recommendation, Jan. 2005, http:
//www.w3.org/TR/2005/REC-soap12-rep-20050125/.

[15] “Advanced Message Queuing Protocol (AMQP) version 0-10 Specifica-
tion,” Specification, 2009, http://www.amqp.org.

[16] “OpenWire Version 2 Specification,” Apache ActiveMQ, Specification,
2009, http://activemq.apache.org/openwire-version-2-specification.html.

[17] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[18] J. Strachan, “Stomp Protocol Specification, Version 1.0,” FuseSource,
Specification, 2005, http://stomp.codehaus.org/Protocol.

[19] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 3920 (Proposed Standard), Internet Engineering Task Force,
Oct. 2004. [Online]. Available: http://www.ietf.org/rfc/rfc3920.txt

[20] M. Kuehnhausen, “Service Oriented Architecture for Monitoring Cargo
in Motion Along Trusted Corridors,” Master’s thesis, University of
Kansas, Jul. 2009.

[21] B. Snyder, D. Bosanac, and R. Davies, ActiveMQ in Action. Manning
Publications, 2009.

[22] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, “Java(TM)
Message Service Specification,” Sun Microsystems, Specification, 2002,
http://java.sun.com/products/jms/.

[23] P. Easton, B. Mehta, and R. Merrick, “SOAP over java message service
1.0,” W3C, W3C Working Draft, Jul. 2008, http://www.w3.org/TR/2008/
WD-soapjms-20080723.

[24] “Java Naming and Directory Interface Application Programming Inter-
face (JNDI API),” Sun Microsystems, Specification, 1999, http://java.
sun.com/products/jndi/.

[25] D. T. Fokum, V. S. Frost, D. DePardo, M. Kuehnhausen, A. N. Oguna,
L. S. Searl, E. Komp, M. Zeets, J. B. Evans, and G. J. Minden, “Ex-
periences from a Transportation Security Sensor Network Field Trial,”
Information Telecommunication and Technology Center, University of
Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2009-TR-41420-11, June
2009.

Implementing Web Services: Conflicts Between
Security Features and Publish/Subscribe

Communication Protocols

Edward Komp, Victor Frost, and Martin
Kuehnhausen

ITTC-FY2010-TR-41420-19

February 2010

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Table of Contents

Table of Contents.. i
List of Figures ... i
Abstract .. 1
I. Introduction .. 1
II. Background ... 1

A. TSSN... 1
 1) Security Requirements... 2
 2) Asynchronous Communication Requirements .. 3
B. WSA-based Implementation ... 3

III. Implementation Conflicts... 3
A. Server Operations Obscured ... 4
B. Reversal of Client and Server Roles.. 5
C. Multiple Subscribers, Different Security Policies... 5

IV. Resolution.. 5
V. Conclusions... 6
Acknowledgment ... 6
References.. 6

List of Figures

Figure 1: Top-level view of the TSSN architecture.. 2

 1

Implementing Web Services: Conflicts Between Security
Features and

Publish/Subscribe Communication Protocols
Edward Komp, Victor Frost, Fellow, IEEE, and Martin Kuehnhausen, Student Member IEEE

Abstract - While on the surface the combination of software components that adhere to associated standards should
lead to rapid and successful system implementation. However, issues can arise when integrating independently defined
software subsystems. Here conflicts are discussed that arose when integrating elements from the Web Services
Architecture[1] (WSA) led by the World Wide Web Consortium[2] (W3C), specifically publish/subscribe communication
and service security. Unfortunately, the various standard components are seldom completely independent, and when
separate components are jointly deployed unanticipated interactions sometimes cause significant problems at
implementation time. The nature of the conflicts is discussed within the context of a specific system implementation the
Transportation Security Sensor Network (TSSN) and interim solutions presented.

Index Terms— Eventing, Publish/Subscribe, Security, Service-Oriented-Architecture, SOA

I. INTRODUCTION
Divide and conquer is a standard engineering practice

for large, complex systems. The system is often
repeatedly subdivided into (nearly) independent
components, allowing groups to work independently
and in parallel on subtasks. This basic principle is
fundamental to large ongoing specification efforts such
as the Web Services Architecture[1] (WSA) led by the
World Wide Web Consortium[2] (W3C).
Unfortunately, the various components are seldom
completely independent, and when separate components
are jointly deployed unanticipated interactions
sometimes cause significant problems at
implementation time.

We have experienced an example of conflict between
independently defined subsystems when jointly
deployed, in our design and implementation of the
Transportation Security Sensor Network[3] (TSSN). In
this paper we provide a brief overview of our system,
followed by a detailed description of the conflicts
between security features and the publish/subscribe
communication protocol, and finally techniques to
resolve these conflicts.

II. BACKGROUND

A. TSSN
Monitoring cargo movements along trusted corridors

requires coordinated application of sensing,
communications, as well as the integration of shipment
and other associated cargo information. To realize a
trusted corridor a Transportation Security Sensor
Network (TSSN) has been designed, implemented and
tested in the field [4] to provide the required visibility
into cargo shipments.

The system is composed of three major
geographically distributed components. The Mobile
Rail Network (MRN) consists of container seals that
communicate over a wireless network to a reader when
an event occurs, e.g., seal open, a sensornet collector
node that interfaces to the reader, processes events,
determines which events need to be communicated to a
virtual network operations center (VNOC), and the
mode of communications (e.g., GSM or satellite). The
second component is the VNOC, which accepts
messages from the MRN, obtains associated cargo
information from a remote trade data exchange and then
combines the information (e.g., nature of the event,
location of the event, and cargo manifest) into an alarm
message that is sent (by e-mail or SMS) to appropriate
decision makers. The third component is the trade data
exchange that contains the shipment information and
other associated cargo information. A goal of the effort
was to create technologies that will allow continuous
monitoring of containers by leveraging communications
networks, sensors as well as trade and logistics data
within an environment composed of multiple
enterprises, owners, and operators of the infrastructure.

 2

The resulting technologies must be open and easy to
use, enabling small and medium sized enterprises
(SMEs) to obtain the associated economic and security
benefits. Thus a standards web-based open system is
preferred. The architecture developed as part of this
effort uses existing software components in addition to
those specifically developed for the TSSN. The
infrastructure is based on W3C and OASIS Web Service
specifications; including service discovery, services are
described using Web Service Description Language
(WSDL), and Client/Server communication based on
Simple Object Access Protocol (SOAP). Figure 1
provides a top-level view of the TSSN architecture.

Figure 1

The TSSN has been tested in the field where the
VNOC was located in Lawrence, Kansas, alarms
generated on the train were sent to the MRN located in
the locomotive, which forwarded relevant alarms to the
VNOC. When the VNOC received an alarm, it
contacted the TDE located at Overland Park, Kansas. to
get the cargo information. The VNOC then combined
the sensing and the shipment information to generate the
alarm messages that were then communicated to a set of
interested parties. See [4] for a discussion of TSSN field
trials.

1) Security Requirements
Our application includes services and clients hosted

by independent businesses often exchanging sensitive
data. Therefore, robust and flexible security features
were an integral portion of our design. It was clear that
a single system wide security policy would be entirely
inadequate to satisfy our goals.

As described in the following section, the Web
Services Security[5] specifications provide support for

the range of capabilities required in our system
definition.

The Web Services Security model includes many
features that are particularly important to our
application:
• Does not rely on a single, application-wide

security policy. Each service is allowed to define
a security policy to match the sensitivity of data
exchanged and other system constraints, such as
bandwidth limitations.

• Provides a mechanism for each service to publish
its security policy in a formal standard syntax, so
that clients do not require details of service
implementation.

• Does not demand (though allows for) a single,
centralized supplier of authorization.

• Permits each easy extension of both services and
clients.

In our distributed application some services must

operate within tight processor and/or bandwidth
constraints. A general comprehensive security policy,
predicated on relatively large bandwidths among
members, probably would not fit within the operating
constraints of some services in our system. However,
even in constrained environments, it is not acceptable to
ignore security issues. The structure defined in WS-
Security (WSS) specification allows each service to
define precisely the amount of security, and
implementation guidelines, to a fine degree. The WSS
specification supports the attachment of security
constraints at a variety of levels within the service
definition including, service-wide policy, specific policy
per operation, and distinct policies for different
connections to the same service. The specification
further defines how overlapping policies are to be
integrated. This flexibility in defining the security
policy for a service allows one to precisely define the
level of security for a wide variety of services and to
address changing demands if additional capabilities
(operations) are added to an existing service.

The security policy(ies) enforced by a service can be
specified in the WSDL (Web Services Definition
Language) [6] description that formally defines a web
service interface. The security policy is a critical
aspect of a service interface that must be understood by
any potential client. In earlier system implementations

 3

this information was generally expressed by any number
of informal and ad hoc techniques, such as extra
documentation and/or direct person-to-person
communication between service provider and client.
Web Services Policy 1.5 [7] defines a formal language
to precisely define a service’s security requirements,
and to incorporate it into the web service interface
definition. This is a major advancement for facilitating
inter-operation of a service and its clients. This is
particularly important when the service author and
clients belong to independent business organizations.

2) Asynchronous Communication Requirements

A second fundamental aspect of our system is the

ability to contact a diverse group of users when specific
sensor events occur. For example, if a security lock is
compromised on a container, we may need to
immediately contact the carrier of the container, public
first responders in the area in which the event occurs, as
well as the owner of the specific container.
Asynchronous notification does not directly fit the
traditional client-server model. For many applications,
some variation of client polling can be used in place of
asynchronous notification. This approach is widely
used in web applications, for example with RSS feeds.
However, for our TSSN application, timely delivery of
alerts and alarms is critical to utility of the system.
Some portions of the TSSN network have very limited
bandwidth and possibly long communication delays,
further discouraging the usage of polling.

Fortunately, the Web Services Architecture includes

the WS-Eventing [8] specification that defines a
protocol for one Web service (“subscriber”) to register
interest in another Web service (“publisher”). In this
document we will refer to this capability as the
“publish/subscribe communication protocol”. The
publisher disseminates information to the subscriber(s)
by sending one-way messages. The specification
further defines mechanisms to dynamically add and
remove members from the subscriber list; and support
for complex publisher-subscriber topologies by
allowing an “event source (to) delegate subscription
management to another Web service”[8].

B. WSA-based Implementation
Adopting the Web Services Architecture as the basis

for the TSSN dramatically reduced the effort we needed
to both design and implement the infrastructure.
Simply asserting that all services and clients would be
WSA compliant eliminated the need to design and
provide implementation for significant portions of our
system. For example, our design simply stated that an
alarm service would provide notification of the
occurrence of an alarm condition via a publish/subscribe
protocol (using WS-Eventing). We did not need to
design the actual message protocols, and determine how
they would be realized over various transport layers; nor
address implementation issues of buffering, timeouts,
etc.

Furthermore, a variety of open source and vendor-
supplied implementations of various portions of the
WSA are available. We chose to use the open source,
Apache Axis2 [9], web services software stack in our
implementation of TSSN. This middleware
dramatically reduced the amount of code to be written
by our team. In particular, the Axis2 program suite
includes modules providing implementation for the two
specifications, WS-Security and WS-Eventing, that are
the subjects of this paper.

The Axis2 module, Rampart, is “a module based on
Apache WSS4J to provide WS-Security features”[10].
This module places handlers in the pre-dispatch phase
of Axis2 message handling, with independent
configurations for each service on the server side. In
addition, the Rampart module can automatically extract
and enforce the security policy(ies) specified in the
service definition. This feature ensures that the security
requirements of a service always match the service’s
published security policy. In addition, the service
provider is able to alter the security policy enforced for
the service operations by simply modifying its service
definition – without making source code changes.

The Axis module, Savan, is an “implementation of
WS-Eventing specification …designed as a general
publisher/subscriber tool”[11]. When any service
engages the Savan module, it provides implementation
for a number of additional operations including
Subscribe, Unsubscribe, Renew, and GetStatus.

III. IMPLEMENTATION CONFLICTS
In the design process, we did not specifically address

 4

how security issues for the publish/subscribe
communications would be handled. Security issues for
servers and clients were considered independently in the
context of the WS-Security specification and
implementation. This separation is an example of the
divide and conquer engineering practice described
earlier. The decision to consider these aspects of the
design independently was concretely supported by the
web services architecture documentation. The WS-
Eventing submission begins with the statement: “This
specification specifically relies on other Web service
specifications to provide secure, reliable, and/or
transacted message delivery and to express Web service
and client policy.” [12]

Preliminary implementation tests were encouraging.
We created a simple client/server test case. First, the
service interface was formally defined in WSDL 2.0
(Web Service Description Language)[6]. In this first
version, no security policy was defined in the WSDL for
the service; and programmers generated a successful
implementation for the service and a client based on the
formal interface definition. In the next step, a security
policy was attached to some operations defined for the
service. The service was rebuilt against the modified
WSDL definition, and immediately enforced the stated
security policy on the selected operations. The
(unmodified) client was able to access only the
operations for which no security policy was enforced.
With minor modifications to the client, to provide the
necessary security credentials demanded by the
modified service, the client was able to invoke all
service operations.

In summary, this test indicated that a service could be
implemented without regard to the service policy
demanded for its operations. In addition, different
security policies could be assigned at a very fine grain
down to different operations within the same service.

Unfortunately, when we proceeded to integrate these

concepts into the implementation of TSSN we
encountered serious unexpected difficulties. The TSSN
includes services that are also clients to other services.
For example, the VNOC alarm processor service sends
email messages containing sensor alarm notification
coupled with relevant cargo information. In order to do
so, this service must solicit information from both the
MRN and TDE services. So, the VNOC alarm

processor service also performs a client role to these
two other services. Because alarms occur
asynchronously, the MRN alarm processor uses the
publish/subscribe protocol for exchanging information
with its clients. It was very difficult to realize
independent security policies for the VNOC alarm
service and MRN alarm service for which it is a client.

This problem arises because of the interactions
between the WS-Eventing specification (for the
publish/subscribe communication) and WS-Security for
the two services. For this discussion we label a service
that is also a client to another service using the
publish/subscribe protocol, as a service with
asynchronous client.

A. Server Operations Obscured
When a service engages the Savan module to support

WS-Eventing, Savan inserts handlers into the pre-
dispatch phase of operations destined to the service, and
implicitly provides features of the WS-Eventing
specification for this service. The task of these pre-
dispatch handlers is to detect and handle operations
defined in the WS-Eventing specification. These
operations include: Subscribe, Unsubscribe, Renew,
GetStatus, however, these operations never appear in
the WSDL for the user-defined service. So, these
operations are “obscured”, that is, do not appear in the
external, WSDL definition of the user-defined service.
This has major impact on the specification and
implementation of security for these operations as
described in the following paragraph.

As demonstrated by our early test cases, using WSDL
to formally define the service interface, including the
security policy(ies) associated with its operation set, is a
very powerful abstraction. Clearly, providing a
standard, public definition of the interface promotes
interoperability. In addition, middleware tools (we use,
Apache Axis2) provide support for securing messages.
If a service (client) engages the Axis2 Rampart module,
handlers are inserted in the pre-dispatch phase to satisfy
the security policy expressed in the service WSDL. The
Rampart module automatically handles signing
messages, encrypting/decrypting messages, applying
and verifying timestamps, etc. This significantly
reduced the coding effort for servers and clients.
Perhaps, even more importantly, modification of
security policy attached to service operations may
require no modification of the service or client code,

 5

since securing messages can be handled by the
underlying Rampart module.

Since these eventing operations do not appear in the
WSDL, there is no place to express the specific security
policy for these operations. This has adverse effects for
both the publisher (service) and subscriber (client).

Although the service author cannot attach security
policy to specific WS-eventing operations in the WSDL,
it is possible to attach a security policy at the service
level. Specification at this level, attaches the same
security policy to every operation of the service.
Sometimes this is an acceptable compromise, but in
general, one wants the finer level of security control that
WS-policy provides for other services. In our
application, we require higher levels of security for an
entity requesting subscription to a sensor’s alarm events,
than to other more general status operations to
determine if a sensor is active, etc.

For a service with asynchronous client assigning a
service level security policy implicitly applies the same
policy to both the service side and client side
operations. This effectively requires this service to
utilize the security policy of the service supplying it
with asynchronous input for its own operation set. This
is completely counter to the WS-Security intention to
allow each service independently define its own security
policy.

On the client (subscriber) side, obscuring these
additional service operations also makes it difficult to
ensure that the client satisfies the security policy
enforced by the server. The service stub generator, used
to generate a framework for a client for the service
incorporates code to direct the Rampart module on the
client-side to satisfy the security policy appearing the
service WSDL for each visible operation. Since the
eventing specific operations do not appear in the service
WSDL, this behavior is not available.

On the client side, the explicit server eventing
operations are further hidden from the client author. The
client code must include an external library (provided
with the Savan module) that provides an abstract
functional interface providing the WS-Eventing
capabilities. Internally the Savan module invokes the
Subscribe (and related) operations provided by the
service. Unfortunately, Savan completely ignores
security policy required by the service it contacts.

B. Reversal of Client and Server Roles
For the delivery of asynchronous messages from

server to client, Savan effectively reverses the roles of
the participants. The server (publisher) delivers a
notification to the client (subscriber) by invoking a
client operation. The name of the client operation
corresponds to the notification type. So, for
notification, the server requests the named operation to
be performed by the client.

From the perspective of security management, the
client must enforce the appropriate security policy for
the incoming operation message. The client now
controls the level of security for the delivery of
asynchronous messages. It is much more appropriate
for the server, who is the owner of the information
being distributed, to control the level of security used
for this message transfer.

C. Multiple Subscribers, Different Security Policies
As described in the previous section, the Savan

module permits the client (subscriber) to define the
security policy for the delivery of asynchronous
messages. In addition to mis-assigning security
responsibility, this role reversal may make it (nearly)
impossible for the server to successfully deliver
notification to all clients. Multiple clients may
subscribe to a server for the same notification (a core
feature of WS-Eventing), and each could enforce a
different security policy in its implementation of the
associated notification operation. The Savan module
provides no support for delivering notification to
different subscribers with different security policies, so
special care must be taken to ensure that every client
specifies the same security policy for notification
operations.

IV. RESOLUTION
As described in section III, use of the Savan module

to implement WS-Eventing seriously restricts the
independence of security policy for servers and clients.

Initial attempts to specify security policy for
publishing services failed. The current release of Savan
for subscription support, ignores security policy
required by the service it contacts. Since these
operations are invoked below the level of the user-
written client code, there is no obvious way to ensure
that the service provider’s security requirements are

 6

satisfied. In order to satisfy the security requirements
for subscription in our system, we modified the Savan
module, and added a new method to allow the client to
transfer to Savan the service security policy.

If every subscriber to a server providing
asynchronous notification is purely a client, then many
of security policy conflicts can be resolved, though,
informally, by the server describing the security policy
it will apply to notification messages it sends; and
expect all clients to respect this agreement.
Unfortunately, this workaround significantly diminishes
many of the advantages of WS-Security related to
formally publishing security policy in the service
description (in WSDL). In our experience, both server
and client were required to embed in its implementation
details of this security policy.

In the case of more complex clients, such as a server
with asynchronous client, the challenges became more
complex. For services of this type, it is necessary to
distinguish those operations that define the interface of
this service to its clients, from the operations added to
handle the notifications sent to it. We devoted large
amounts of time to testing and debugging to eventually
generate services meeting specific security constraints
for our application. The goal of generating a solution
with a flexible and extensible set of security policies
was compromised at the critical juncture where multiple
services communicate asynchronously.

V. CONCLUSIONS
We were able to successfully field the TSSN as a set

of web services and ensured that all links satisfied our
security constraints. But to do so, we had to require that
otherwise independent services shared the same security
policy for their respective operations; and we had to
embed security policy decisions directly into the
implementation of some services. These compromises
restrict the flexibility and extensibility of TSSN.

To fully resolve these issues, we believe that aspects
of the WS-Eventing specification, and the Savan
module implementation, in particular, need to be
reviewed from the perspective of interactions with WS-
Security.

The specifications should more clearly identify who
is responsible for the definition of security policy for the
delivery of messages from publisher to subscriber. The
publisher of the information invokes an operation of the

subscribing (client) service, thereby deferring the
security policy to the operation owner, or client.
However, since the publisher is the actual owner of the
information being disseminated, it seems that it should
maintain responsibility for the service policy to enforce
when delivering messages.

In addition, the implementers of the Savan module
should review the implementation strategy for the WS-
Eventing specifications to ensure that it respects the
security policies expressed in the WSDL definition of
any service that activates the Savan module. In
addition, consideration should be be given to make all
WS-Eventing operations, such as subscribe, and renew,
explicit in the WSDL interface for each service
activating the Savan module. This is important to allow
the pusblishing service advertise (and enforce) specific
security policy for these operations.

ACKNOWLEDGMENT
This work was supported in part by Oak Ridge

National Laboratory (ORNL) Award Number
4000043403. This material is also partially based upon
work supported while V. S. Frost was serving at the
National Science Foundation.

REFERENCES
[1] David Booth, et al. “Web Services Architecture, W3C Working

Group Note.” http://www.w3.org/TR/ws-arch/, W3C 2004.
October 2009.

[2] W3C. http://www.w3.org/, W3C 2009, October 2009.
[3] Martin Kuehnhausen, “Service Oriented Architecture for

Monitoring Cargo in Motion Along Trusted Corridors,” Master’s
thesis, University of Kansas, July 2009.

[4] D. T. Fokum, V. S. Frost, D. DePardo, M. Kuehnhausen, A. N.
Oguna, L. S. Searl, E. Komp, M. Zeets, D. D. Deavours, J. B.
Evans, and G. J. Minden, "Experiences from a Transportation
Security Sensor Network Field Trial." to appear Proc. 3rd IEEE
Workshop on Enabling the Future Service-Oriented Internet-
Towards Socially-Aware Networks (EFSOI 09), Honolulu,
Hawaii, USA, Nov. 2009.

[5] Anthony Nadalin (ed.) et al. “Web Services Security: SOAP
Message Security 1.1.” http://docs.oasis-open.org/wss/v1.1/,
OASIS Open, Feb. 2006.

[6] Roberto Chinnic (ed.) et al. “Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language,”
http://www.w3.org/TR/wsdl20/, W3C 2007, October 2009.

[7] Asir S Vedamuthu (ed.) et al. “Web Services Policy 1.5 –
Framework.” http://www.w3.org/TR/2007/REC-ws-policy-
20070904/, W3C September 2007, October 2009.

[8] Don Box (ed.), et al.”Web Services Eventing (WS-Eventing),
http://www.w3.org/Submission/WS-Eventing/, W3C March
2006, October 2009.

 7

[9] “Apache Axis2/Java - Next Generation Web Services,”
http://ws.apache.org/axis2/, Apache Software Foundation 2009,
October 2009.

[10] “Securing SOAP Messages with Rampart”,
http://ws.apache.org/axis2/modules/rampart/1_0/security-
module.html, May 04, 2007.

[11] “Apache Savan/Java”, http://wso2.org/projects/savan/java.
WSO2 Inc., 2009.

[12] Don Box (ed.), et al. “Web Services Eventing (WS-Eventing):
Introduction.” http://www.w3.org/Submission/WS-Eventing/,
W3C March 2006, October 2009.

Framework for Analyzing SOAP Messages
in Web Service Environments

Martin Kuehnhausen and Victor S. Frost

ITTC-FY2010-TR-41420-20

March 2010

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Table of Contents

Table of Contents.. i
List of Figures... i
List of Tables .. i
Abstract.. 1
I. Introduction .. 1
II. Problem Area .. 1

A. Logging... 1
B. Analysis... 1
C. Visualization ... 2

III. Related Work ... 2
A. Logging Systems .. 2
B. Web Service Specifications .. 2

IV. Proposed Solution.. 4
A. Logging... 4
B. Log Parser ... 5
C. Visualization ... 7

V. Results... 7
A. Short Haul Rail Trial .. 7

VI. Conclusion ... 9
Acknowledgment ... 9
References.. 9

List of Figures

Figure 1: Geographically distributed services. ... 2
Figure 2: Framework overview: logging, log parser and visualization (from left to right) 4
Figure 3: SOAP message (left) to Log parser classes (right) comparison. ... 4
Figure 4: Two transmit-receive pairs (red and green)... 5
Figure 5: A message couple (red). .. 5
Figure 6: Log file and service interaction visualization showing individual services grouped by their

physical location... 6
Figure 7: Complete message flow from the MRN Sensor Node to the VNOC Alarm Reporting Service . 6
Figure 7(a): Initial alarm notification within the MRN from the Sensor Node service to theAlarm
Processor service.. 6
 Figure 7(b): Alarm notification from the MRN Alarm Processor to the VNOC AlarmProcessor
 6
 Figure 7(c): Shipment information and route query from the VNOC Alarm.. 6
 Figure 7(d): Alarm message with additional shipment information forwarded to the VNOCAlarm
Reporting service ... 6
Figure 8: Request performance from [16] .. 7
Figure 9: Network transmission and processing comparison from [16] ... 8
Figure 9(a): Network transmission performance from [16]... 8
Figure 9(b): Processing performance from [16] ... 8
Figure 10: System alarm notification performance from [16] .. 8

List of Tables

Table I: XPath Expressions for WS-Addressing .. 5

 1

Abstract—Service Oriented Architectures can be quite

complex which makes managing and monitoring them hard.
Message exchanges as well as complete message flows are
important when it comes to analyzing the performance of
systems and identifying problems. The use of SOAP as the
common message format for web services enables
interoperability and extensibility. Furthermore it can be used for
logging and analysis because its components follow web service
specifications. We present a framework that allows for logging,
analyzing and visualizing these messages across a distributed
system.

The proposed framework consists of a flexible logging module
that captures incoming and outgoing messages of a web service.
The log parsing library provides various methods for
normalizing, correlating across geographically distributed sites
and analyzing messages. The visualization tool is able to display
relationships between the web services as well as message flows.

In utilizing this adaptable framework for analyzing SOAP
messages it is possible to overcome the challenges of complexity
and disparity that monitoring and management approaches face
in web service environments

Index Terms—Logging, Log analysis systems, Visualization,
Transport protocols, Data communication, Software

engineering

I. INTRODUCTION
HE use of Service Oriented Architectures (SOA) in

application systems is widespread. The idea is to
implement specific functionality in web services that
communicate with each other using standardized interfaces.
Message exchanges in general use the flexible SOAP message
format [1]. This has a number of advantages as for instance
message routing and security are available as extensions to it.
However, in many cases and especially in geographically
distributed systems as shown in Figure 1, there exists no
simple way to analyze and visualize the message flow through
the entire system as well as measuring performance of
components in order to identify potential bottlenecks.

Manuscript received March 2, 2010.
M. Kuehnhausen and V. S. Frost are with the Information and

Telecommunication Technology Center, The University of Kansas, Lawrence,
KS, 66045, USA; e-mail: mkuehnha@ittc.ku.edu and frost@ittc.ku.edu

This work was supported in part by Oak Ridge National Laboratory
(ORNL)—Award Number 4000043403. This material is also partially

based upon work supported while V. S. Frost was serving at the National
Science Foundation.

This paper describes a framework that is able to analyze a
variety of timing measurements such as message transmission
and service processing times. Furthermore it correlates
messages which can then be used to analyze message flows.
Finally a graphical user interface is presented that allows the
visualization of individual system components and their
message interactions.

II. PROBLEM AREA
Web service environments consist of disparate systems and

technologies. In order to efficiently monitor and analyze
message flows the following areas need to be addressed.

A. Logging
Chuvakin et al. [2] explain that logs often contain “valuable

information about systems, networks, and applications”. In
particular logging is important when it comes to auditing
because laws often mandate so-called audit trails, for example
in the health industry and the banking sector. Another
important observation that Chuvakin et al. make is that
logging in distributed systems needs to be addressed
differently as web services “are by their nature distributed
across multiple systems, disparate technologies and policies,
and even organizational domains”. This means that logging
needs to be addressed on a global basis either with a
centralized logging server or with a common logging format
that is used by each individual service.

B. Analysis
Apart from auditing purposes log file analysis is often used

to study or detect failures in systems. Furthermore usage and
bandwidth monitoring in distributed systems is important for
load balancing in order to keep costs down. Lim et al. [3]
outline particular aspects that need to be considered in logging
systems, in their case an enterprise telephony system, that
allow efficient and effective analysis.

They also note that one of the problems is that data in logs
is often unstructured and it is therefore hard to automatically
discover patterns. However, this is often solved by log
preprocessing such as message normalization and clustering.
After cleaning the logs data mining approaches such as
finding frequent item sets, frequency analysis and anomaly
detection may be applied. Furthermore data in logs can be
correlated and dependencies of messages can lead to message
flow analysis. In terms of performance analysis measurements
such as processing and transmission times are important.

Framework for Analyzing SOAP Messages
in Web Service Environments

Martin Kuehnhausen Graduate Student Member, IEEE and Victor S. Frost, Fellow, IEEE

T

 2

C. Visualization
Since there is often an abundance of data present it is not

necessarily easy to grasp important aspects or quickly analyze
data. This is especially true regarding message flows. While
time measurements and message statistics can easily be
represented using a table format, sequences and dependencies
need more complex structures such as graphs and trees.

III. RELATED WORK

A. Logging systems
Cinque et al. [4] propose an system that is based on specific

logging rules that allow “effective dependability evaluation of
complex systems”. By defining a common set of rules such as
service start, service end, entity (resource) interaction start and
end an observer is able to follow certain event flows. Given
estimated computation duration and considering potential
timeouts the system generates alerts whenever it detects a
problem in an event flow.

Vaarandi [5] introduces two compact log file analysis tools
called Simple Logfile Clustering Tool (SLCT) and LogHound
which apply two of the most common approaches to log
analysis. SLCT uses a density based clustering method that is
able to detect outliers while LogHound “employs a frequent
itemset mining algorithm”.

Makanju et al. [6] provide an overview of “network
information visualization tools” as well as propose their own
version called LogView. They are using a variety of
techniques such as plots and treemaps to visualize network
traffic, intrusion detection and application logs.

Logging web sessions that track specific users generates a
lot of data. In contrast to other logging systems the focus here
lies on analyzing flows and user behaviors. Session Viewer
[7] by Lam et al. is a visual tool that consists of various panels
for data aggregation, cluster and flows analysis. This allows a
statistical overview as well as detailed analysis of so-called

session logs.
An approach that applies directly to web services is

proposed by Simmonds et al. [8]. They describe a runtime
monitoring system based on a subset of UML 2.0 Sequence
Diagrams which are used for checking conditions and
messages exchanges. After the constraints are correctly
defined in sequence diagrams they are handed over to a
“monitoring manager” that receives events from a “message
manager” and checks those against the events and flows
specified. Simmonds et al. also discuss various related work in
terms of the difference in “offline” and “online” monitoring as
well as “global” and “local” property checking. Their
proposed system is able to efficiently check the correctness of
events and flows at runtime.

Service Oriented Architectures are inherently based on web
service specifications. These specifications clearly define
standard properties and functionality of web services that
implement a particular specification. Within a logging system
this leads to the ability of extracting information according to
these standards independent of how they are implemented and
in a flexible and extensible manner. This is not necessarily
true in most logging system that depend on a particular log
format or are specifically built for one particular purpose.
Whenever more information needs to be captured the log
format needs to be adapted in these systems while using a web
service based approach this is not necessary.

B. Web Service Specifications
In web service environments there are two common types

of message exchanges. The first is a one-way message transfer
from a service to another service or client which is often used
in notification scenarios. The second is a common two-way
exchange in which a request message is sent to a particular
service, the service then fulfills the request and sends out a
response accordingly. Apart from these basic message
exchange patterns it is possible to set up a subscription system

Fig. 1. Geographically distributed services

 3

and then have a web service automatically deliver messages to
a client.

It is important to note that the messages themselves can be
encrypted in order to protect private information which can
pose issues when trying to analyze message flows. In the
following the web service specifications related to message
exchanges, subscriptions and security are discussed.

1) WS-Addressing:
The WS-Addressing core specification [9] and its SOAP

binding [10] defines how message propagation can be
achieved using the SOAP message format. Usually the
transport of messages is handled by the underlying transport
protocol but there are several advantages of storing this
transport information as part of the header in the actual SOAP
message. For example, it allows the routing of messages
across different protocols and management of individual flows
and processes within web services.

WS-Addressing uses so-called EndPointReferences which
are a collection of a specific address, reference parameters and
associated metadata that further describe its policies and
capabilities. The Addressing Header header fields defined by
the specification are the following:

• To which represents the destination of the message
• From contains the source, a so-called

EndPointReference
• ReplyTo specifies that in case of a response, a message

is supposed to be sent to this EndPointReference,
which might be different from the From field

• FaultTo defines the EndPointReference for the fault
message in the case of an error

• Action identifies the purpose of the message, in
particular the web service operation, and is the only
required field

• MessageID uniquely identifies every message
• RelatesTo references the MessageID of the request

message in request-response message exchanges; the
relationship can also be specified explicitly by defining
a so-called RelationShipType

2) WS-Eventing:

In order to allow for subscriptions to web services, the WS-
Eventing specification [11] has been defined. It describes the
process of establishing subscriptions as well as how the
subsequent publications are delivered to the subscribers. The
specification relies on WS-Addressing for the routing of
messages. The two main components of a subscription in this
specification are the Subscribe and the SubscribeResponse
message. After subscriptions have been created, publications
will be sent out accordingly.

a) Subscribe
The client that wants to subscribe to a particular web

service needs to define the following:
• The Action field of the WS-Addressing header is set to

http://schemas.xmlsoap.org/ws/2004/08/eventing/Subsc

ribe
• ReplyTo is the EndPointReference that receives the

response to this subscription request
• A MessageID that uniquely distinguishes multiple

requests from the same source
• EndTo defines an EndPointReference that is used when

the subscription ends unexpectedly
• Delivery contains the EndPointReferences that are to

receive the publications
• An Expires field that defines the expiration time of the

subscription
• Filter that by default defines an XPath expression as

the Dialect, but could be any form of expression that is
applied to potential publications in order to filter them

b) SubscribeResponse
The response to a subscription request is generated by the

so-called subscription manager. It sends back a message with
these fields:

• The Action field of the WS-Addressing header is set to
http://schemas.xmlsoap.org/ws/2004/08/eventing/Subsc
ribeResponse

• RelatesTo specifies the subscription request that this is
a response to

• SubscriptionManager that contains its own Address
and the unique Identifier for the subscription

• An Expires field that defines the expiration time of the
subscription

The WS-Eventing specification also offers message

constructs for the renewal, status retrieval and unsubscribing
of subscriptions. Additionally a so-called subscription end
message is automatically generated by the service that
publishes information in order to notify subscribers of errors
or other reasons for it being unable to continue the
subscription.

It has to be noted that without additional specifications like
WS-ReliableMessaging the delivery of publications is based
purely on best effort and is not guaranteed.

3) WS-Security
The WS-Security specification [12] deals with the many

features needed to achieve so-called end-to-end message
security. This provides security throughout message routing
and overcomes the limitations of so-called point-to-point
transport layer security such as HTTPS. Furthermore, the
specification aims to provide support for a variety security
token formats, trust domains, signature formats and encryption
technologies.

 4

IV. PROPOSED SOLUTION
The framework developed here allows the capture and

analysis of SOAP messages in one and two-way
communications as well as subscriptions. Logging these
messages that are based on web service specifications and
extracting information from them overcomes common
problems previous approaches faced such as the necessity of a
common log format across different platforms and the
inability to extend the system later to log more information
without breaking existing functionality.

The individual components are shown in Figure 2 and are
explained in the following sections. Note that the logging part
is positioned in between the message sender/receiver and the
security layer which makes it possible to capture message
information without compromising security functionality in
the web service environment.

A. Logging
The logging component that was developed as part of this

framework was initially designed to support a particular

system, the Transportation Security SensorNet (TSSN) [13].
However, it can easily adapted to other systems. The TSSN is
based on the Axis2 web service stack which uses modules for
implementing web service specifications. While modules for
WS-Addressing and WS-Eventing come as part of Axis2, a
module that implements the desired logging functionality had
to be developed separately.

1) Logging Module
The logging module as described in the following provides

extensive logging capabilities to the web services. It was
engaged during development and testing of the entire TSSN
system since it logs all messages that are sent and received. In
addition, it also writes the raw contents of the SOAP messages
that are sent and received into log files. In particular the
following information is captured:

• Time when the message was sent or received
• Service which is used
• Operation that is being executed
• Direction of the message, which can be either

incoming or outgoing. Note that there are special
directions that

• deal with incoming and outgoing faults.
• From address of the message
• Reply to address that may differ from the From address
• To address of the message
• Schema element that is being “transported” as part of

the operation containing the request parameters or the
response elements

• Size of the message in bytes
• Message which represents the entire SOAP message in

a readable form

Fig. 2. Framework overview: logging, log parser and visualization (from left to right)

Fig. 3. SOAP message (left) to Log parser classes (right) comparison

 5

In terms of analyzing the TSSN and its performance the
logging module was engaged in all services. More information
on the findings can be found in V.

2) Addressing:
An implementation of the WS-Addressing specification as

described in III-B1 comes as part of the addressing module in
the Axis2 core. It fully supports all components of the
standard and its ReplyTo and RelatesTo fields are used among
other things to allow for asynchronous communication in the
TSSN.

3) Savan:
The Savan module enables web services and clients in

Axis2 to make use of various forms of subscription
mechanisms as defined by the WS-Eventing specification (see
III-B2).

B. Log Parser
The log parser enables parsing, processing and merging of

log files. It transforms the raw SOAP messages into Java
elements that can then be filtered and analyzed.

1) Abstraction Layer Model:
Since SOAP is essentially XML, information from the so-

called log messages can retrieved using XPath [14] path
expressions. For this purpose the log parser provides an
object abstraction layer model that corresponds to the specific
parts in the SOAP message.

An example mapping is shown in Figure 3. It displays the
structure of the original SOAP message (for more information
on the individual SOAP messages see III-B) on the left and
the equivalent log parser objects on the right. Note that the
corresponding objects highlighted in yellow are actual classes
while the Header and Body are not abstracted separately.

The log parser objects would then provide access to their
properties using XPath expressions. In this case they

correspond to their respective web service specifications but
they could also be defined according to the XML schema
definitions of any other element. For example, for the WS-

Addressing (see III-B1) equivalent object the path expressions
in Table I are used:

This mapping process is easily defined because it
corresponds to the web service specifications and allows for
an in-depth analysis of the messages that are sent and
received.

2) Message Types:
Since the logging module is enabled on both ends of a

message exchange, the log parser is able to correlate
messages. In order to do this it makes use of the so-called
message id that is provided by the WS-Addressing
specification. It has to be noted that a requirement for the
following analysis is that the times on both ends of the
message transfer are synchronized. Within the TSSN system
this is done using NTP [15] but it is also possible with GPS.

Without this assumption the computed times are
questionable and represent an estimation at best. The
following two types of message associations are present in the
log files:

a) Transmit-Receive Pair:
Whenever a message is sent out by a particular client or

service it is captured by the logging module. The receiving
service logs the message as well but as an incoming message.
The content of the message is essentially the same which can
also be seen by the fact that they have the same message id.
The outgoing and the incoming message are combined and
form what is called a transmit-receive pair.

This allows us to compute the message transfer or so-called
transmit time which describes how long it takes to transmit the
message from one entity to another using the following
equations:

 1 2.Incoming 1.OutgoingtransmitTime time time−= (1)
 2 4.Incoming 3.OutgoingtransmitTime time time−= (2)
As shown in Figure 4 the log parser automatically detects

the transmit-receive pairs and stores them in a particular list
for further analysis.

b) Message Couple:
The most common message exchange pattern is the In-Out

pattern. It defines request-response based message transfers
which the log parser calls message couples. A single message

TABLE I
XPATH EXPRESSIONS FOR WS-ADDRESSING

XPath expression Method equivalent

//To/text() getTo()
//ReplyTo//Address/text() getReplyTo()

//From/Address/text() getFrom()
//MessageID/text() getMessageId()
//RelatesTo/text() getRelatesTo()

//Action/text() getAction()

Fig. 4. Two transmit-receive pairs (red and green)

Fig. 5. A message couple (red)

 6

Fig. 6. Log file and service interaction visualization showing individual services grouped by their physical location

(b) Alarm notification from the MRN Alarm Processor
to the VNOC Alarm Processor

(c) Shipment information and route query from the VNOC Alarm Processor (d) Alarm message with additional shipment information
forwarded to the VNOC Alarm Reporting service

Fig. 7. Complete message flow from the MRN Sensor Node to the VNOC Alarm Reporting Service

(a) Initial alarm notification within the MRN from the
Sensor Node service to the Alarm Processor service

 7

couple consists of two messages, the outgoing request and the
outgoing response on the receiving entity, which is shown in
Figure 5. They can be correlated using the WS-Addressing
specification. The request will carry a message id and the
response a so-called relatesTo id in addition to its own unique
message id.

Note that a message couple can also be seen as a
combination of two transmit-receive pairs. This relationship is
extremely useful in computing measures such as round trip
and processing times:

 4.Incoming 1.Outgoing roundTripTime time time= − (3)

 3.Outgoing 2.Incoming processingTime time time= − (4)
The log parser provides functionality to associate messages

and analyze complete end-to-end message flows. More details
on the performance measurements and test results can be
found in V.

C. Visualization
In order to understand the message flows better without

needing too much of a technical background, a visualization
tool was developed. It makes use of the log parser to display
services, clients and messages that are present in log files.

The user is able to load and merge log files to create a
visualization of services and clients as shown in Figure 6.
Lines connecting individual services appear as communication
occurs. The layout of these services is defined according to
their membership in a particular service cloud. Furthermore,
any point in time that is part of the log files can be “jumped
to” using the time line. It displays significant events in the log
files:

• Alarms, alerts and sensor node events with a warning
sign

• Requests such as location retrieval with a light bulb
sign

• Control messages such as start monitoring with a
message sign

The scenario that was captured by the log files can also be
played back in portions or in its entirety. Using the
visualization tool, it is therefore possible to analyze service
interactions and message flows conveniently. An example
message flow is shown in Figure 7.

V. RESULTS
The framework described here enabled analysis of field

trials of the TSSN. The Transportation Security SensorNet
[13] uses a Service Oriented Architecture approach for
monitoring cargo in motion along trusted corridors. The
complete system provides a web services based sensor
management and event notification infrastructure that is built
using open standards and specifications. Particular
functionality within the system has been implemented in web
services that provide interfaces according to their respective
web service specifications. This web services based
implementation allows for platform and programming
language independence and offers compatibility and

interoperability with other systems.
Furthermore, unlike existing proprietary implementations

the TSSN allows sensor networks to be utilized in a
standardized and open way through web services. Sensor
networks and their particular communication models led to the
implementation of asynchronous message transports in SOA
and are supported by the TSSN.

An in-depth analysis of the real world scenarios that were
performed to test the TSSN is given by [16]. For the tests the
Trade Data Exchange was deployed in Overland Park, the
Virtual Network Operation Center at the University of Kansas
in Lawrence and the Mobile Rail Network either on a truck or
on a train. Note that in both cases the communication between
the Mobile Rail Network and the Virtual Operation Center
was established using a GSM modem. The main findings are
as follows:

A. Short Haul Rail Trial
This more advanced scenario was performed by deploying

the Mobile Rail Network on a locomotive of a train along with
sensors attached to containers for it to monitor. The train
traveled approximately 35 kilometers during the trip, from a
rail intermodal facility to a rail yard.

The system faced some of the same issues as during the
truck trials such as loss of GPS, GSM and sensor
communication. The data that was collected however shows
that again the Transportation Security SensorNet was able to
deal with them and send out alarm notifications reliably. The
log files were analyzed using the log parser and led to the
following:

1) Message Counts:
During the short haul rail trial the Sensor Node reported

546 alerts1 to the Alarm Processor. After filtering 131 alarms
were sent to the Alarm Processor at the Virtual Network
Operation Center. For 63 of them, shipment information was
queried from the Trade Data Exchange and 33 were stored as
so-called validated alarms. All of the 131 alarms that the
Alarm Processor received were sent out to Alarm Reporting
service which notified the according contacts via SMS and

1 Alerts were generated manually by opening and closing an electronic seal
in the locomotive and automatically by things such as losing a GPS fix

0 2.5 5 7.5 10 12.5
0

5

10

15

Request/response Time (s)

C
ou

nt

Fig. 8. Request performance from [16]

 8

email. There were also 30 inquiries from the TDE for the
location of the Mobile Rail Network.

2) Message Sizes:
Looking at the communication between the Virtual Network

Operation Center and the Mobile Rail Network one can notice
the following pattern. So-called control messages such as
startMonitoring or getLocation are always initiated at the
Virtual Network Operation Center. Since these messages
usually transmit only a small functional request, the average
message size is around 690 bytes. On the other hand, Alarms
are always sent from the Mobile Rail Network and contain of a
lot of valuable information. Hence the average message size is
about 1420 bytes.

a) Request Performance:
As shown in Figure 8, the time it took for messages from

the Virtual Network Operation Center (Sensor Management)
to send requests to the Mobile Rail Network (either Sensor
Node or Alarm Processor) and receive a response was about
4.4 seconds on average. The fastest request was answered in
0.9 seconds while the slowest took about 11 seconds.

Overall these numbers meet the expectations of the
transportation industry. Performing a location inquiry given an

average train speed of 30 km/h and 60 seconds to retrieve the
location, the actual position and the reported one may differ
by as much as 500 meters. However, the Transportation
Security SensorNet provides location information in less than
5 seconds resulting in a maximum difference of just 41.7
meters.

The bottleneck here is the message transmit time as defined
in Equation 1. As shown in Figure 9, processing on the Sensor
Node took only 0.6 seconds on average whereas about 85% of
the time is spent on message transmission. This percentage is
likely to increase when switching to satellite communication
instead of communicating with the GSM modem which was
used in the trials.

b) Alarm Notification Performance:
 Because of the problems with the clock drift, the measured

times for messages coming from the Mobile Rail Network
going to the Virtual Network Operation Center are unreliable.
However, taking our previous findings about the request
performance the time for this particular transmission can be
estimated using the average round trip and the processing
times:

1

1 ()
n

i i
i

t roundTripTime processingTime
n =

= −∑ (5)

4.4 0.6

2
seconds seconds−

= (6)

 1.9seconds= (7)
Given this estimate transmit time t, we can compute the

total time it takes from for an alarm to go through the entire
TSSN as shown in 10.

This includes the times from the Sensor Node to the Alarm
Processor at the Mobile Rail Network, the approximated
transmit time of 1.9 seconds, and the time from the Alarm
Processor to the Alarm Reporting service at the Virtual
Network Operation Center. On average this yields about
2.1seconds with the fastest time being just over 1.9 seconds

0 1 2 3 4 5 6 7
0

2

4

6

8

10

Network Time (s)

C
ou

nt

0 1 2 3 4 5 6

0

5

10

15

20

25

30

35

Processing Time (s)

C
ou

nt

(a) Network transmission performance from [16] (b) Processing performance from [16]

Fig. 9. Network transmission and processing comparison from [16]

2 3 4 5 6
0

20

40

60

80

100

Elapsed Time (s)

C
ou

nt

Fig. 10. System alarm notification performance from [16]

 9

and the slowest around 4.9 seconds.

Both, the road test with trucks and the short haul rail trial

can be called successful because they displayed the
capabilities of the TSSN, its good performance and that the
functionality implemented in the web services worked. In
particular, two of its main capabilities, location inquiry and
alarm notification were extensively demonstrated.
Furthermore, the time it took from registering alerts,
propagating them through the Transportation Security
SensorNet and sending out notifications accordingly is under
5 seconds and significantly smaller than expected for such a
complex system.

The framework was used to capture and analyze the results
presented here. For example we were able to break down the
measurements into processing and transmission times as well
as determine the performance of individual web services and
the total alarm notification performance. Furthermore being
able to visualize message flows helped identify problems and
locate the particular part that was causing it.

VI. CONCLUSION
Capturing SOAP messages directly and using them as the

basis for log analysis has the advantage of being a more
structured approach because the SOAP messages adhere to
specific web service specifications. This allows convenient
mappings from the SOAP messages to elements defined in the
specification and vice versa.

In this paper we presented a flexible framework for
analyzing SOAP Messages in web service environments. The
proposed solution consists of three parts. First, a logging
module that can be attached to web services in order to
capture SOAP messages and log their send and receive times.
Second, a log parsing and processing library that allows for
efficient correlation of messages, message flows and analysis.
Finally, a visualization tool that provides convenient visual
analysis of service interactions capabilities.

ACKNOWLEDGMENT
This work was supported in part by Oak Ridge National

Laboratory (ORNL) Award Number 4000043403. This
material is also partially based upon work supported while V.
S. Frost was serving at the National Science Foundation.

REFERENCES
[1] Y. Lafon and N. Mitra, “SOAP version 1.2 part 0: Primer (second

edition),” W3C, W3C Recommendation, Apr. 2007,
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/.

[2] A. Chuvakin and G. Peterson, “Logging in the age of web services,”
IEEE Security and Privacy, vol. 7, pp. 82–85, 2009.

[3] C. Lim, N. Singh, and S. Yajnik, “A log mining approach to failure
analysis of enterprise telephony systems,” in Dependable Systems and
Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, June 2008, pp. 398–403.

[4] M. Cinque, D. Cotroneo, and A. Pecchia, “A logging approach for
effective dependability evaluation of complex systems,” in
Dependability, 2009. DEPEND ’09. Second International Conference
on, June 2009, pp. 105–110.

[5] R. Vaarandi, “Mining event logs with slct and loghound,” in Network
Operations and Management Symposium, 2008. NOMS 2008. IEEE,
April 2008, pp. 1071–1074.

[6] A. Makanju, S. Brooks, A. Zincir-Heywood, and E. Milios, “Logview:
Visualizing event log clusters,” in Privacy, Security and Trust, 2008.
PST ’08. Sixth Annual Conference on, Oct. 2008, pp. 99–108.

[7] H. Lam, D. Russell, D. Tang, and T. Munzner, “Session viewer: Visual
exploratory analysis of web session logs,” in Visual Analytics Science
and Technology, 2007. VAST 2007. IEEE Symposium on, 30 2007-Nov.
1 2007, pp. 147–154.

[8] J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani, and
J. Waterhouse, “Runtime monitoring of web service conversations,”
IEEE Transactions on Services Computing, vol. 99, no. PrePrints, pp.
223–244, 2009.

[9] M. Gudgin, M. Hadley, and T. Rogers, “Web services addressing 1.0 -
core,” W3C, W3C Recommendation, May 2006, http://www.w3.org/
TR/2006/REC-ws-addr-core-20060509.

[10] M. Gudgin, M. Gudgin, M. Hadley, T. Rogers, T. Rogers, and M.
Hadley, “Web services addressing 1.0 - SOAP binding,” W3C, W3C
Recommendation, May 2006, http://www.w3.org/TR/2006/REC-ws-
addr-soap-20060509.

[11] D. Box, L. F. Cabrera, C. Critchley, F. Curbera, D. Ferguson, S. Graham,
D. Hull, G. Kakivaya, A. Lewis, B. Lovering, P. Niblett, D. Orchard, S.
Samdarshi, J. Schlimmer, I. Sedukhin, J. Shewchuk, S. Weerawarana,
and D. Wortendyke, “Web services eventing (ws-eventing),” W3C,
W3C Member Submission, Mar. 2006,
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/.

[12] K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, and P. Hallam-Baker,
“Web Services Security: SOAP Message Security 1.1 (WS-Security
2004),” OASIS, OASIS Standard, Feb. 2006, http://docs.oasis-
open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

[13] M. Kuehnhausen, “Service Oriented Architecture for Monitoring Cargo
in Motion Along Trusted Corridors,” Master’s thesis, University of
Kansas, Jul. 2009.

[14] S. Boag, A. Berglund, D. Chamberlin, J. Sim´eon, M. Kay, J. Robie, and
M. F. Fern´andez, “XML path language (XPath) 2.0,” W3C, W3C
Recommendation, Jan. 2007, http://www.w3.org/TR/2007/REC-
xpath20-20070123/.

[15] D. Mills, “Network Time Protocol (NTP),” RFC 958, Internet
Engineering Task Force, September 1985, obsoleted by RFCs 1059,
1119, 1305. [Online]. Available: http://www.ietf.org/rfc/rfc958.txt

[16] D. T. Fokum, V. S. Frost, D. DePardo, M. Kuehnhausen, A. N. Oguna,
L. S. Searl, E. Komp, M. Zeets, J. B. Evans, and G. J. Minden,
“Experiences from a Transportation Security Sensor Network Field
Trial,” Information Telecommunication and Technology Center,
University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2009-TR-
41420-11, June 2009.

An Open System Transportation Security Sensor
Network: Field Trial Experiences

Daniel T. Fokum, Victor S. Frost, Daniel DePardo,
Martin Kuehnhausen, Angela N. Oguna,

Leon S. Searl, Edward Komp, Matthew Zeets,
Daniel D. Deavours, Joseph B. Evans,

and Gary J. Minden

ITTC-FY2010-TR-41420-21

March 2010

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Abstract

Cargo shipments are subject to hijack, theft, or tampering. Furthermore, cargo shipments are at risk of

being used to transport contraband, potentially resulting in fines to shippers. The Transportation Security

Sensor Network (TSSN), which is based on open software systems and Service Oriented Architecture

(SOA) principles, has been developed to mitigate these risks. Using commercial off-the-shelf (COTS)

hardware, the TSSN is able to detect events and report those relevant to appropriate decision makers.

However, field testing is required to validate the system architecture as well as to determine if the system

can provide timely event notification. Field experiments were conducted to assess the TSSN’s suitability

for monitoring rail-borne cargo. Log files were collected from these experiments and postprocessed. We

present the TSSN architecture and results of field experiments, including the time taken to report events

using the TSSN as well as on the interaction between various components of the TSSN. These results

show that the TSSN architecture can be used to monitor rail-borne cargo.

ii

CONTENTS

I Introduction 1

II System Architecture 2

II-A Trade Data Exchange . 4

II-B Virtual Network Operations Center . 4

II-C Mobile Rail Network . 5

II-C1 Mobile Rail Network Hardware . 5

II-C2 Mobile Rail Network Software . 7

III Experiments 8

III-A Road Test with Trucks . 9

III-B Short-haul Rail Trial . 9

IV Postprocessing of Experimental Data 13

V Results 15

V-A Road Test: Message Counts . 16

V-B Short-haul Trial: Message Counts . 16

V-C Network Time from VNOC to MRN to VNOC . 17

V-D Elapsed Time from Alert Generation to AlarmReporting Service 17

V-E End-to-end Time from Event Occurrence to Decision Maker Notification 18

V-F Modeling of Decision Maker Notification Time . 19

V-G Timing Analysis of Other TSSN Interactions . 20

V-H Message Sizes . 21

VI Refinements Based on Experimental Results 22

VII Related Work 22

VIII Conclusion 23

Acknowledgments 23

References 24

iii

LIST OF FIGURES

1 Transportation Security Sensor Network (TSSN) Architecture 3

2 Virtual Network Operations Center Architecture . 5

3 TSSN Collector Node Hardware Configuration . 6

4 Container Seal . 7

5 Mobile Rail Network Collector Node Architecture . 8

6 Map of Road Test with Event Annotations . 10

7 Logical Short-haul Rail Trial Configuration . 10

8 Collector Node and Sensor Deployment During Short-haul Rail Trial 11

9 E-mail Message Received During Short-haul Trial . 12

10 SMS Message Received During Short-haul Trial . 12

11 LogParser Framework Showing Message Couples and Transmit-receive Pairs 14

12 Network Times from VNOC → MRN → VNOC . 17

13 Sequence Diagram with Messages Involved in Decision Maker Notification 18

LIST OF TABLES

I Summary of Time Statistics for Decision Maker Notification 18

II Estimated Gamma Distribution Parameters for Time Taken Between Seal Events and Deci-

sion Maker Notification . 20

III Summary of Time Statistics for other TSSN Interactions . 21

IV Summary of Message Size Statistics . 21

1

I. INTRODUCTION

IN 2006 the FBI estimated that cargo theft cost the US economy between 15 and 30 billion dollars per

year [1]. Cargo theft affects originators, shippers, and receivers as follows: originators and receivers

need a reliable supply chain to deliver goods in a timely and cost-effective manner. Shippers hold

liability and insurance costs for shipments, which are proportional to the rate of theft. Finally, receivers

are impacted by out-of-stock and scheduling issues due to cargo theft. Most non-bulk cargo travels

in shipping containers. Container transport is characterized by complex interactions between shipping

companies, industries, and liability regimes [2]. Deficiencies in the container transport chain expose the

system to attacks such as the commandeering of a legitimate trading identity to ship an illegitimate or

dangerous consignment, hijack, or the theft of goods. Insufficiencies in these areas can be overcome by

creating secure trade lanes, or trusted corridors, especially at intermodal points, for example, at rail/truck

transitions. Research and development is underway to realize the vision of trusted corridors.

The work described here focuses on: advanced communications, networking, and information technol-

ogy applied to creating trusted corridors. The objective of the research is to provide the basis needed to

improve the efficiency and security of trade lanes by combining real-time tracking and associated sensor

information with shipment information. One crucial research question that must be answered in order to

attain this objective is how to create open technologies that will allow continuous monitoring of containers

by integrating communications networks, sensors as well as trade and logistics data. This integration must

occur within an environment composed of multiple enterprises, owners, and infrastructure operators.

To achieve improved efficiency and security of trade lanes, we have developed a Transportation Security

Sensor Network (TSSN) architecture, which uses Service Oriented Architecture (SOA) [3] principles, for

monitoring the integrity of rail-borne cargo shipments. The TSSN is an open system where different

components can be provided by different vendors. The TSSN is composed of a Trade Data Exchange

(TDE) [4], Virtual Network Operations Center (VNOC), and Mobile Rail Network (MRN). The functions

of each of these components are discussed in greater detail in Section II. The TSSN detects events,

integrates the event type from the train in the field with logistics information, and then reports those

events that are important to decision makers using networks with commercial links. Ideally, decision

makers would be notified of events within 15 minutes [5] so that they can take effective action. For

the TSSN to be deployed, we need to validate its architecture and understand the timeliness of the

system response. Work by Arsanjani et al. [6] and Saiedian and Mulkey [7] shows that service oriented

architectures introduce overhead. As a result, we want to determine whether an SOA-based system such

2

as the TSSN provides timely event notification. TSSN event notification is also impacted by unpredictable

packet latency on commercial networks and the use of of e-mail and/or Short Message Service (SMS)

[8] for event notification. Thus, we have designed and implemented hardware and software needed to

realize a prototype of the TSSN and carried out experiments [9] to characterize the system, particularly

the end-to-end time between event occurrence and decision maker notification using SMS or e-mail as

well as the impact of SOA overhead.

In this paper we provide a high-level description of the TSSN architecture and document two field

experiments that were carried out to demonstrate that sensors and software based on an open service-

oriented architecture can be used to monitor cargo in motion. Our experiments focussed on determining

the time from event occurrence to decision maker notification as well as testing functionality between

the component services of the prototype TSSN. Our experimental results show that decision makers

can be notified of events on the train in a timely manner using the prototype TSSN architecture. The

rest of this paper is laid out as follows: In Section II we describe the TSSN architecture including the

components and the prototype hardware implementation. Section III discusses experiments conducted to

assess the suitability of the TSSN system for cargo monitoring. In Section IV we discuss the framework

used to postprocess the log files from our experiments. Section V presents empirical results showing

the interaction between various components of the TSSN. Refinements to the TSSN given our field trial

experiences are discussed in Section VI. In Section VII we present related research on monitoring trains

and securing shipping containers in motion. Section VIII provides concluding remarks.

II. SYSTEM ARCHITECTURE

To achieve the vision of a trusted corridor we have designed and implemented a prototype of the

Transportation Security Sensor Network (TSSN) architecture. The detailed architecture of the TSSN,

including system extensibility, is found in [10], whereas this section gives an overview of the TSSN. The

architectural details discussed here are important in understanding the experiments and results presented

in Sections III and V, respectively.

The SOA and web services used in the TSSN enable the integration of different systems from multiple

participating partners. Moreover, the use of SOA and web services enable data to be entered once and

used many times. Using commercial off-the-shelf (COTS) hardware and networks, as well as an open

systems approach, the TSSN is able to detect events and report those relevant to shippers and other

decision makers as alarms. Furthermore, the TSSN supports multiple methods for notifying decision

makers of system events.

3

Fig. 1. Transportation Security Sensor Network (TSSN) Architecture

The TSSN uses web service specification standards—such as Web Services Description Language

(WSDL 2.0) [11], Simple Object Access Protocol (SOAP 1.2) [12], WS-Addressing [13], WS-Security

[14], and WS-Eventing [15]—which are implemented through Apache Axis2 [16] and associated modules.

These standards are used to exchange structured information between a web service and client. The use

of SOAP allows the deployment of platform-independent interfaces and thus a heterogeneous network of

web service platforms. On the other hand, since SOAP and web services are based on XML, which is

verbose, there is communication and processing overhead related to SOAP messages.

The TSSN supports wireless and satellite communication technologies such as HSDPA (High-Speed

Downlink Packet Access) [17] and Iridium [18]. The TSSN uses the Hypertext Transfer Protocol (HTTP)

for message transport over wired and wireless links. Finally, the TSSN prototype uses sensors and readers

from Hi-G-Tek [19]. There is also a need to gather log files to enable system debugging as well as to

capture metrics that can be used to evaluate system performance. Logging is currently done at the MRN,

VNOC, and TDE using Apache log4j [20].

The TSSN system is composed of three major geographically distributed components: the Trade

Data Exchange (TDE), Virtual Network Operations Center (VNOC), and Mobile Rail Network (MRN),

as shown in Fig. 1. Wired links are used between the TDE and the VNOC, while MRN to VNOC

4

communications are done using networks with commercial wireless link components. The TDE, VNOC,

and MRN are examined in greater detail in the following subsections.

A. Trade Data Exchange

The Trade Data Exchange (TDE) contains shipping data and it interconnects commercial, regulatory

and security stakeholders. The TDE is based on a “technology-neutral, standards-based, service-oriented

architecture” [4]. The TDE is hosted on a server with a wired connection to the Internet. The TDE is

geographically separated from the VNOC and responds to queries from the VNOC. The TDE also stores

event messages sent by the VNOC. Finally, the TDE sends commands to start and stop monitoring at

the MRN as well as to get the train’s current location.

In addition to the functions mentioned above, the TDE monitors the progress of shipment and other

logistics information. The TDE captures commercial and clearance data including: the shipping list, bill

of lading, commercial invoice, Certificate of Origin (for example, NAFTA Letter), and shipper’s export

declaration. It also validates and verifies data to ensure accuracy, consistency, and completeness. The TDE

monitors the progress of the documentation and notifies responsible parties when errors or incompleteness

pose the threat of delaying a shipment. The TDE forwards notification to the customs broker to request

verification of the trade origination documents. The customs broker accesses the TDE via the same

portal to review and verify the trade documentation. Finally, the TDE allows for collaboration between

participating shippers, third-party logistics providers, carriers and customs brokers to define and document

business requirements and risk assessment requirements. Real-time cargo sensing capability is provided

to the TDE via the TSSN. Data from the TDE is combined with event data from the MRN to provide the

decision maker complete information concerning the alarm, e.g., cargo information, location, and nature

of the event.

B. Virtual Network Operations Center

The Virtual Network Operations Center is the management facility of the TSSN [10] and it is also the

shipper’s interface to the TDE. The VNOC can be the central decision and connection point for multiple

MRNs. The VNOC consists of services that receive and process alarms from the MRN as well as services

that notify decision makers of events. Fig. 2 summarizes the VNOC and its components.

The functions of the VNOC include: forwarding commands from a client to the MRN to start and

stop sensor monitoring as well as to get the MRN’s current location, receiving MRN Alarms from the

MRN, obtaining event-associated cargo information from the Trade Data Exchange (TDE) in real time,

5

Fig. 2. Virtual Network Operations Center Architecture

and combining cargo information obtained from the TDE with an MRN Alarm to form a VNOC Alarm

message that is sent (by SMS and/or e-mail to decision makers as shown in Figs. 9 and 10. A key role

of the VNOC is getting the the right alarm information to the right personnel in a timely manner and

also to prevent personnel from being overwhelmed by event messages. An AlarmProcessor service in

the VNOC makes decisions, using rules, on which MRN Alarms are forwarded to decision makers. For

example, a low battery alarm is sent to technical staff, while an unexpected open/close event is sent to

system security personnel. These decisions are made using a complex event processor, Esper [21], which

takes into account shipping information as well as data (for example, geographical location) from current

and past MRN Alarms.

C. Mobile Rail Network

The MRN subsystem is located on the train and it consists of hardware and software. The prototype

hardware and software architecture is described below.

1) Mobile Rail Network Hardware: The MRN subsystem hardware consists of a set of wireless

shipping container security seals and a TSSN collector node. The collector node is composed of two

major sections: an electronics suite mounted in the locomotive cab and a remote antenna assembly that

is magnetically attached to the exterior of the locomotive. Fig. 3 summarizes the key components of the

TSSN collector node.

6

Fig. 3. TSSN Collector Node Hardware Configuration

The electronics suite contains a power inverter, a security seal interrogation transceiver, a computing

platform, wireless data modems, a three-axis accelerometer, and a GPS receiver. The antenna assembly

consists of three communications antennas, a GPS receiver antenna, and a bidirectional RF amplifier.

Coaxial cables connect electronics suite devices to corresponding antennas.

Container physical security is monitored using a system that was originally designed for tanker truck

security [19]. Container security is monitored with active and battery-powered container seals (sensors)

equipped with flexible wire lanyards that are threaded through container keeper bar lock hasps as shown

in Fig. 4. These seals had no support for multihop communications. The TSSN is designed to monitor

and report security seal events including seal opened, seal closed, tampered seal, seal armed, seal missing,

and low battery warnings. The seal interrogation transceiver (SIT) communicates with the container seals

over a wireless network while the interrogation transceiver communicates with a notebook computer via

a serial data connection. In order to conserve energy the container seals are asleep most of the time [22].

About every three seconds the seals listen for commands from the interrogation transceiver; however, the

7

Fig. 4. Container Seal

frequency at which the seals listen for commands is configurable. If the sensors are instructed to listen

for commands more frequently then their battery lifetimes are reduced, whereas longer intervals between

interrogations result in longer battery lifetimes [22].

Communication between the MRN and the VNOC is accomplished using a HSDPA cellular data

modem. An Iridium satellite modem is also available and is intended for use in remote locations that

lack cellular network coverage. The Iridium modem is a combination unit that includes a GPS receiver,

which is used to provide the MRN with position information.

2) Mobile Rail Network Software: The protoype MRN software was implemented using a service-

oriented architecture approach. The software consists of a SensorNode service, an AlarmProcessor service,

and a Communications service. The SensorNode service finds and monitors sensors that have been

assigned to its control. The SensorNode service manages several sensor software plug-ins, for example,

a seal interrogation transceiver plug-in and a GPS device plug-in, that do all the work on behalf of

the SensorNode service. During typical operation each container seal listens for interrogation command

signals at regular intervals from the interrogation transceiver. In the event of a seal being opened, closed,

or tampered with, the seal immediately transmits a message to the SensorNode service running on the

Collector Node. The message contains the seal event, a unique seal ID, and event time. The SensorNode

service passes the seal message as an Alert message to the service that has subscribed for this information.

The AlarmProcessor service determines messages from the SensorNode service that require transmis-

sion to the VNOC. Alarm messages include the seal event, event time, seal ID, and train’s GPS location.

The Communications service uses either HSDPA or Iridium for reporting events via the Internet to the

8

Fig. 5. Mobile Rail Network Collector Node Architecture

VNOC. Fig. 5 shows the key software functions of the MRN.

III. EXPERIMENTS

This section presents two experiments—a road test and the short-haul rail trial— conducted to assess

the suitability of the TSSN architecture for cargo monitoring as well as to collect data that would be

used to guide the design of future cargo monitoring systems. It is non-trivial to carry out experiments

on moving freight trains; furthermore, as part of this effort we were limited to one chance to carry

out experiments from a train. As a result, the TSSN architecture was tested in several static and some

mobile tests, including the road test with trucks and the short-haul rail trial. In this section we present the

experimental objectives, configuration, data collected during the tests, and issues that were encountered

during the tests. The overarching goals of these experiments were to:

• Demonstrate the concept of using sensors, communications, and a service oriented architecture to

monitor cargo in motion using the TSSN architecture.

• Determine the time from event occurrence to decision maker notification in a real field experiment.

• Verify proper operation of the prototype TSSN in a field environment. Proper operation means all

messages were transmitted, received, and processed as expected and decision makers received all

correct notification.

9

Thus, the following items were within scope of our experiments: the stability and timely performance

of the communications protocols between TSSN component services, whereas the following items were

out of scope: overall system robustness, whole train monitoring, energy consumption of the sensors,

comprehensive security1 issues, such as message spoofing, and decision maker response time given that

event notification had been delivered.

A. Road Test with Trucks

The first experiment was conducted with two pickup trucks on local roads to validate the system

operation and to determine if correct information is reported by the TSSN collector node, including valid

GPS coordinates. One of the pickup trucks used in the test had the locomotive cab electronics suite in

the truck bed, while both trucks had seals in their truck cabins so that seal open and close events could

be emulated and reported. The VNOC was located in Lawrence, Kansas while the TDE was located in

Overland Park, Kansas. The trucks were driven for approximately 1.5 hours over a 90 km route that

began and ended in Lawrence, Kansas. The experiment route covered suburban and rural roads as well as

state highways. During the experiment the seals were opened and closed at selected intersections along

the test route that were easily identifiable on Google Maps [23].

Fig. 6 shows a trace of our route and the events overlaid on a Google map. The diamonds indicate

an open event, tear drops a close event, circles with slashes across indicate a GPS lost signal, tacks

indicate where the GPS signal was regained, a triangle with an exclamation sign indicates where HSDPA

connectivity was lost, and the arrow indicates where HSDPA connectivity was regained.

B. Short-haul Rail Trial

Another experiment was carried out using a freight train travelling from an intermodal facility to a rail

yard. Our objectives in this experiment were the following:

• To determine the performance of the prototype TSSN architecture when detecting events on inter-

modal containers in a real rail environment.

• To investigate if decision makers could be informed of events in a timely manner using SMS

messages and e-mails.

• To collect data that will be used in a model to investigate system trade-offs and the design of

communications systems and networks for monitoring rail-borne cargo.

• Evaluate the overall system performance to guide the future development of the TSSN architecture.

10

Fig. 6. Map of Road Test with Event Annotations

Fig. 7. Logical Short-haul Rail Trial Configuration

Fig. 7 shows the logical system configuration used in the short-haul rail trial. In this experiment the

VNOC was located in Lawrence, Kansas, the TDE was located in Overland Park, Kansas, and the MRN

was placed on the train. Within the MRN, the TSSN collector node was placed in a locomotive and

1Comprehensive security issues are being addressed in the next version of the prototype.

11

Fig. 8. Collector Node and Sensor Deployment During Short-haul Rail Trial

used to monitor five seals. All communications between the MRN and the VNOC were passed through

a Virtual Private Network (VPN) for message security. Prior to the start of the experiment prototype

logistics data was added to the TDE to facilitate testing.

During the short-haul trial the train traveled for approximately five hours over a 35 km (22 miles)

route. The route, which traversed both rural and urban areas, was relatively flat with a total elevation

change of about 100 m. Fig. 8 shows a picture of the train used in the short-haul rail trial along with

the arrangement of the sensors (wire seals). As shown in Fig. 8, the short-haul trial train was composed

of well-cars with a mixture of empty cars, cars with a single container, or cars with double-stacked

containers. Since we were demonstrating a proof of concept and the sensors in use for this test were

commercial-off-the-shelf devices with no support for multihop communications, three sensors were placed

on containers on three of the five railcars nearest to the locomotive so that they could be within radio

range of the seal interrogation transceiver. One sensor was placed on the front of the locomotive while

the fifth sensor was kept in the locomotive and manually opened and closed while the train was in motion

to create events.

During the experiment the VNOC reported events to decision makers using e-mail and SMS messages.

The e-mail messages also include a link to Google Maps, so that the exact location of the incident could

be visualized. Fig. 9 shows the content of one of the e-mail messages that was sent to the decision makers

and Fig. 10 presents an example of an SMS message.

In Figs. 9 and 10, the sensor ID, latitude and longitude data, and event type come from the MRN,

while the shipment data comes from the TDE. The VNOC combines these pieces of information into an

12

NOC_AlarmReportingService:

Date-Time: 2009.01.07 07:12:17 CST /

2009.01.07 13:12:17 UTC

Lat/Lon: 38.83858/-94.56186,

Quality: Good

http://maps.google.com/maps?q=38.83858,-94.56186

TrainId=ShrtHaull

Severity: Security

Type: SensorLimitReached

Message: SensorType=Seal

SensorID=IAHA01054190

Event=Open Msg=

NOC Host: laredo.ittc.ku.edu

Shipment Data:

Car Pos: 3

Equipment Id: EDS 10970

BIC Code: ITTC054190

STCC: 2643137

Fig. 9. E-mail Message Received During Short-haul Trial

NOC_Alarm:

Time:2009.01.07 07:12:49 CST

GPS:38.83860/-94.56186

Trn:ShrtHaull

Sev:Security

Type:SensorLimitReached

Msg:Sensortype=Seal SensorID=IAHA01054190

Event=Close

Fig. 10. SMS Message Received During Short-haul Trial

e-mail message that also includes a link to Google Maps, so that the exact location of the incident can

be visualized.

During the test the interrogation transceiver lost communication with the seals for a brief period along

the route while the train was stationary and then regained communications once the train started moving.

13

We believe that this loss of communications was due to electromagnetic interference. However, further

investigations are needed to validate this claim.

The short-haul rail trial was a success as all seal events were detected and reported to decision makers

using both e-mail and SMS messages. Extensive log files were collected during the test and they were

postprocessed to obtain data on TSSN system performance. The results from postprocessing, which are

reviewed in Section V, show that the prototype system functioned as expected.

Following this experiment, analysis of event logs obtained from the MRN, VNOC, and TDE revealed

that there was a significant amount of clock drift on the TSSN Collector Node during this relatively short

trial. The time recorded at the VNOC for receipt of a message, in some cases, was earlier than the time

recorded at the TSSN Collector Node for sending the message. Since time at the VNOC is controlled by

a Network Time Protocol (NTP) [24] server, we conclude that the clock drift is occurring on the TSSN

Collector Node. The clock drift problem was resolved in the next version of the TSSN by using a high

performance GPS receiver to get high quality local time. Pulse per second (PPS) output from the GPS

receiver was used as an input to the NTP server running on the TSSN collector node. It should be noted

that in spite of the clock drift in the TSSN collector node we were able to correct for it in our data

analysis by assuming that data from different parts of the TSSN is independent, e.g., the time taken to

break a seal and generate an alert message is independent of the time taken to transfer a message from

the MRN to the VNOC. As a result we can measure elapsed time in different epochs separately and

characterize performance of the TSSN prototype.

IV. POSTPROCESSING OF EXPERIMENTAL DATA

In this section we discuss the framework for postprocessing the results of our experiments. During the

short-haul rail trial we recorded events in log files at the geographically distributed VNOC, MRN, and

TDE. These log files contained data on message sizes, timestamps, event type, message type (incom-

ing/outgoing) amongst other data elements. Our objective was to postprocess these files to evaluate the

performance of the prototype TSSN.

Postprocessing of log files was accomplished using a Java library (LogParser) that was developed in-

house. First, the library read in all available information in each log file including time, message size,

from and to addresses, as well as the original SOAP message. Information from the MRN, VNOC, and

TDE log files in this experiment was combined into a single collection of log entries. We expect that

every message transmitted in the TSSN should result in at least two log entries—a transmit log entry (at

the originating entity) and a received log entry (at the receiving entity). The LogParser library identified

14

Fig. 11. LogParser Framework Showing Message Couples and Transmit-receive Pairs

log entries as:

• Transmit-receive pairs, that is, the outgoing and incoming log entries with the same SOAP WS-

Addressing [13].

• Couples, that is, SOAP request-response message pairs.

Fig. 11 shows the relationship between log entry couples and transmit-receive pairs. Suppose the

TDE sends a message to the VNOC requesting the current MRN location. The circled “1” and “2” in

Fig. 11 denote the log entries representing message transmission from the TDE and receipt of this same

message at the VNOC. Much of the communication between client/server is based on a request-response

model. As a result, there are two related messages which contain additional information to establish their

relationship:

1) REQUEST: from client to server asking for something; and

2) RESPONSE: from server back to the client with the response.

Log entry couples are marked by the records for the outgoing request and response messages. Conse-

quently, the circled “3” and “5” in Fig. 11 constitute the log entry couple for the VNOC forwarding the

location request message to the MRN and the MRN’s origination of a response respectively. Using the

receive pairs for records “3” and “5”, we can also identify entries “4” and “6.”

With this framework, programs were written against the log entry collection to extract the number of

messages sent by each service, request-response time for messages, processing time at either the MRN,

VNOC, or TDE, the time that messages were carried by the network, and message sizes. Additional

15

information, such as, latitude, longitude, sensor IDs, and event timestamps, is extracted from the SOAP

message using XPath expressions. XML Path language (XPath) is used for extracting information from

XML by using path expressions that traverse the XML tree. Since SOAP is XML and the elements that

we use, e.g., Alerts, MRN Alarms, and VNOC Alarms, are also XML, the use of XPath is appropriate.

XPath also provides “basic facilities for manipulation of strings, numbers and booleans” [25].

V. RESULTS

This section discusses the results of the experiments presented in Section III. Most of the results shown

here are based on the short-haul rail trial because we had more data to analyze. The results presented

here are selected to test claims that:

• All messages between component services of the TSSN were transmitted, received, and processed

as expected.

• Decision makers can be notified of events on the train in a timely manner.

The rest of this section is laid out as follows: Sections V-A and V-B present results on message counts

for the road test and short-haul rail trial respectively. These results test the claim that all messages between

component services of the TSSN are transmitted, received, and processed as expected. The rest of the

results are based on the short-haul rail trial. Sections V-D–V-E study different portions of the time from

event occurrence to decision maker notification to verify the claim that the TSSN can notify decision

makers of events in a timely manner. Probability distributions are used in Section V-F to determine the

likelihood of timely decision maker notification.

Note that due to significant clock drift in the TSSN collector node, we can only present an estimate

of the time taken for an event report to travel from the MRN to the VNOC. However, observed time

values can be directly used for other TSSN component interactions. These results show how the aggregate

time from event detection to decision maker notification is distributed among the various services and

communication links in the TSSN. With this information we will be able to guide system refinements

to further reduce the overall time. Suppose that Tn indicates when log entry n is made, then we can

compute the following metrics:

• Service request processing time. This is the time between when a service receives a request and

when a response message is composed. Using Fig. 11, this time is: T5 − T4.

• Request-response time. This is the time taken to get a response from a remote service, including

the processing time. Using Fig. 11, this time is: T6 − T3.

16

• Network time. This is the time taken to get a response from a remote service, excluding the

processing time. Using Fig. 11, this time is computed as: T6 − T3 − (T5 − T4).

Our time analysis in Section V-G examines request-response messages from VNOC → MRN → VNOC,

TDE → VNOC → TDE, and VNOC → TDE → VNOC.

The last objective of the short-haul rail trial was to collect data that will be used in a model [26] to

support the future design of systems for monitoring rail-borne cargo and determine trade-offs. Message

sizes are one component of this model. As a result, Section V-H presents a table summarizing the message

size statistics between different components of the TSSN. It should be noted that message sizes can be

computed a priori; however, the distribution of these messages cannot be determined beforehand.

A. Road Test: Message Counts

The primary goal of the road test was to validate TSSN prototype operation and to determine if

correct information is reported by the TSSN collector node, including valid GPS coordinates. During

the road test a manual record was made of all seal events and this written record was compared with

the information generated from the TSSN. This comparison revealed that all open and close events were

propagated correctly. During the approximately 1.5 hours long road test 76 messages (72 Alarms, 2

StartMonitorSensors, and 2 StopMonitorSensors commands) were exchanged on the VNOC to MRN link

and these messages corresponded with the events that were recorded in the experiment log. Based on

analysis of these messages we conclude that the system operated as expected. In addition, the experiment

revealed that the TSSN was able to recover from a dropped HSDPA connection. However, it is worth

noting that the seal interrogation transceiver was unable to read the sensors when the trucks were over

400 m apart on a hilly road. Based on the road test we conclude that the TSSN prototype worked

as expected in a mobile scenario; we were able to combine sensor data from the MRN in a moving

vehicle with shipment information obtained from the TDE to generate e-mail messages that were sent to

distributed decision makers. Results from the road test showed that the TSSN prototype was ready for

evaluation in a real rail environment.

B. Short-haul Trial: Message Counts

One objective of our postprocessing was to determine if messages were being passed correctly between

the TSSN components. During the short-haul trial 203 messages (2 StartMonitorSensors, 2 StopMonitorS-

ensors, 4 SensorNodeStatus, and 4 SetMonitoringState commands, 30 getLocation queries, 30 Location

responses, and 131 MRN Alarms.) were passed over the VNOC to MRN link. Full details on the messages

17

0 1 2 3 4 5 6 7
0

2

4

6

8

10

Median = 3.88
Mean = 3.77
Std. Dev = 1.24
Min. = 0.89
Max. = 5.79

Network Time (s)

C
ou

nt

Fig. 12. Network Times from VNOC → MRN → VNOC

exchanged are found in [27]. All of the MRN Alarms received by the VNOC AlarmProcessor met the

necessary rules so that they could be forwarded to decision makers as SMS and/or e-mail messages.

The test users who were designated to receive all event notifications from the TSSN received 131 e-mail

messages each.

C. Network Time from VNOC to MRN to VNOC

The network time statistics from VNOC to MRN to VNOC allow us to draw conclusions on the time

taken to transfer request and response messages from the VNOC to the MRN and vice versa. These

statistics also allow us to gain insight into the one-way network delay from the TSSN collector node on

the train to the VNOC in Lawrence, Kansas—a delay that is one component of sending an MRN Alarm

message—which indicates an event at a sensor—from the MRN to the VNOC. Due to clock drift in

the TSSN collector node, we are unable to obtain statistics on the one-way network delay from MRN

→ VNOC. However, it is reasonable to assume that the MRN ↔ VNOC links are symmetric thus, the

average one-way delay from the MRN to the VNOC is approximately 1.89 s.

D. Elapsed Time from Alert Generation to AlarmReporting Service

Demonstrating that the elapsed time from alert generation to the AlarmReporting service is of the

order of several seconds can help establish the value of the TSSN. Fig. 13 shows the messages involved

in notifying a decision maker of an event at a seal. This subsection deals with epochs 2, 3, and 4. Exact

values can be computed for the time taken to propagate Alert and VNOC Alarm messages, while we can

18

Fig. 13. Sequence Diagram with Messages Involved in Decision Maker Notification

TABLE I

SUMMARY OF TIME STATISTICS FOR DECISION MAKER NOTIFICATION

Epoch Description Min./s Max./s Mean/s Median/s Std. Dev./s

1 Event occurrence to Alert generation 0.81 8.75 2.70 2.13 1.86

2 Alert generation to MRN AlarmProcessor service 0.01 0.08 0.02 0.01 0.01

3 One-way delay from MRN AlarmProcessor to VNOC

AlarmProcessor

0.45 2.90 1.89 1.94 0.62

4 MRN Alarm arrival at VNOC AlarmProcessor to

AlarmReporting service

0.01 3.01 0.17 0.05 0.32

5 Elapsed time from VNOC AlarmReporting service to

mobile phone

5.2 58.7 11.9 9.8 7.4

use the 1.89 s estimate from the previous subsection as a reasonable value for the time taken to transfer

a MRN Alarm message from the MRN to the VNOC.

By analyzing the log files we see that on average it takes about 2 s for messages to get from the

MRN SensorNode service to the VNOC AlarmReporting service. Thus, we conclude that the time taken

to process events in the TSSN is not an impediment to timely notification of decision makers.

E. End-to-end Time from Event Occurrence to Decision Maker Notification

The primary performance metric for prototype TSSN performance is the time between event occurrence

until a decision maker is notified using an SMS message. The components of the end-to-end time include

19

epochs 1–5 in Fig. 13.

To obtain an understanding of the end-to-end system time as well as overcome any clock errors in

the MRN subsystem, we set up a laboratory experiment to determine the elapsed time between event

occurrence and the TSSN’s generation of the related event alert. In this experiment, a stopwatch was

started when a seal was either broken or closed; when the MRN SensorNode service generated an Alert

message the stopwatch was stopped. From Table I we see that the longest observed time in epoch 1 is

about 8.8 s, while the mean is about 2.7 s.

Since the commercial wireless networks used for decision maker notification are outside TSSN control,

a second laboratory experiment was carried out to determine the elapsed time in epoch 5. In this

experiment a client program was written to send messages to the VNOC AlarmReporting service. A

stopwatch was started when the VNOC sent an alarm to a decision maker and the stopwatch was stopped

when the decision maker’s phone received an SMS message. This experiment was repeated for four

different carriers resulting in the data shown in row 5 of Table I.

From Table I we see that even though SMS was not designed as a real-time system, it provides

excellent notification for this application, since most of our messages were delivered within one minute.

Combining all of these results, we see that in these experiments the longest observed end-to-end system

time was just over one minute2 to notify decision makers of events. Most of this time is spent delivering

an SMS message to the decision maker, so we conclude that the TSSN provides a mechanism for timely

notification of decision makers.

F. Modeling of Decision Maker Notification Time

In this section we determine the likelihood of timely event notification. To determine the likelihood

of timely event notification a probabilistic model is needed for the time epochs shown in Fig. 13. The

observed histograms for each epoch visually resembled a Gamma distribution. Thus, in this analysis we

assume the times in each epoch followed a Gamma probability density function. While the number of

observations (less than 130) was insufficient to statistically validate this assumption this postulate allows

us to probabistically determine if the TSSN prototype can provide event notification within 15 minutes

[5] as required. The parameters for the distributions are estimated from the collected data and shown

in Table II, where α̂ and θ̂ represent the shape and scale parameters of the associated Gamma random

2This time is broken out as follows: in the longest observed times in our experiments it took approximately 8.8 s between

event occurrence and the TSSN generating an alert; 2) it took approximately 4.91 s for an alert message to go through the TSSN

until notification was sent to decision makers; and 3) it took up to 58.7 s to deliver an SMS message to decision makers.

20

TABLE II

ESTIMATED GAMMA DISTRIBUTION PARAMETERS FOR TIME TAKEN BETWEEN SEAL EVENTS AND DECISION MAKER

NOTIFICATION

Epoch Symbol Description α̂ θ̂

1 E1 Event occurrence to Alert generation 4.01 0.60

2 + 4 E2,4 Alert generation to MRN AlarmProcessor and MRN Alarm

arrival at VNOC AlarmProcessor to AlarmReporting service

1.13 0.13

3 E3 One-way delay from MRN AlarmProcessor to VNOC Alarm-

Processor

13.95 0.14

5 E5 Elapsed time from VNOC AlarmReporting service to mobile

phone

10.44 1.00

variable. Let τ , which is composed of each of the epochs presented in Sections V-C–V-E, represent the

total time taken from event occurrence on the train to decision maker notification on a mobile phone.

Then τ = E1 +E2,4 +E3 +E5 and we use the results from [28] to show that Pr [τ ≤ 240 sec] = 99.9 %.

These results indicate that the prototype TSSN can notify decision makers in a timely manner with very

high probability.

G. Timing Analysis of Other TSSN Interactions

Table III summarizes request/response, processing, and network time statistics for interaction between

various TSSN components. The statistics on VNOC → MRN → VNOC interaction allow us to draw

conclusions on request-response and processing times for certain (Start or stop monitoring at the MRN

and get current MRN location.) VNOC commands. TDE → VNOC → TDE interaction statistics give

us insight into the time taken to initiate and process commands to start or stop monitoring at the MRN,

get the MRN’s current location, or to process the setAlarmSecure command. The VNOC forwards these

commands to the MRN and returns the MRN response to the TDE. To the TDE, all the elapsed time from

when the VNOC receives a message from the TDE until the VNOC sends a response is processing time

at the VNOC, even though part of that time is spent forwarding a response to the MRN and waiting for

a response. Finally, the statistics on VNOC → TDE → VNOC interactions allow us to draw conclusions

on request-response, processing, and network times for the TDE to store alarm messages and execute

shipment queries. Both of these actions are carried out when the VNOC AlarmProcessor service is about

to send an alarm to the VNOC AlarmReporting service. Note that there are no results for the MRN

to VNOC to MRN interaction. This is for two reasons: first, clock drift in the MRN prevents us from

21

TABLE III

SUMMARY OF TIME STATISTICS FOR OTHER TSSN INTERACTIONS

Description Min./s Max./s Mean/s Median/s Std. Dev./s

Request-response times from VNOC → MRN →
VNOC

0.90 10.96 4.39 3.95 2.40

Network times from VNOC → MRN → VNOC 0.89 5.79 3.77 3.88 1.24

Processing times from VNOC → MRN → VNOC 0.00 5.21 0.61 0.01 1.69

Request-response times from TDE → VNOC → TDE 0.34 11.03 4.29 3.94 2.51

Network times from TDE → VNOC → TDE 0.00 4.00 0.14 0.04 0.64

Processing times from TDE → VNOC → TDE 0.29 10.98 4.15 3.85 2.45

Request-response times from VNOC → TDE →
VNOC

0.02 0.41 0.12 0.07 0.11

Network times from VNOC → TDE → VNOC 0.01 0.08 0.05 0.07 0.02

Processing times from VNOC → TDE → VNOC 0.01 0.38 0.07 0.01 0.10

TABLE IV

SUMMARY OF MESSAGE SIZE STATISTICS

Description Min./bytes Max./bytes Mean/bytes Median/bytes Std. Dev./bytes

TDE → VNOC 846 1278 874.7 848 96.8

VNOC → TDE 968 975 971.5 971 2.6

VNOC → MRN 650 1036 690.8 650 101.5

MRN → VNOC 799 1560 1419.2 1536 237.1

computing a one-way network delay. Secondly, the MRN only generates response messages. As expected

there are no request messages originating from the MRN that could be used in a log entry couple to

calculate request-response or processing times.

H. Message Sizes

Table IV summarizes the message size statistics for all the messages exchanged in the TSSN. Message

size data are needed for a model [26] that is under development to determine system trade-offs as well

as optimal or near-optimal sensor locations when using a rail-borne cargo monitoring system. The cost

of transmitting a message from the train to an operations center is one component of this model. This

transmission cost, in turn, depends on the average message length transmitted from the train and the

frequency at which these messages are generated.

22

VI. REFINEMENTS BASED ON EXPERIMENTAL RESULTS

This section proposes refinements to the TSSN based on experimental results. Recall from Section III-B

that we have corrected the clock drift problem by using a high performance GPS receiver to get

high quality local time on the TSSN collector node. In addition, postprocessing of the log files also

indicated that a unique identifier—perhaps composed of a timestamp and counter—is needed in the Alert,

MRN Alarm, and NOC Alarm messages to trace an Alert message through the TSSN. This identifier can

also be used in the future to locate MRN Alarm messages that need to be retransmitted to the VNOC

following a loss of connectivity. Finally, the identifier can be used to mark previously processed messages

so that the VNOC does not process the same message more than once.

Additional TSSN enhancements include:

• Redesigning the MRN hardware so that the TSSN collector node has redundant backhaul com-

munication capabilities, for example, multiple satellite and cellular modems each with a different

provider.

• Creating a comprehensive security framework for the TSSN. Ongoing research is addressing this

issue [29].

• Enhancing sensor capabilities so that sensors can engage in multihop communications to enable

whole-train monitoring.

The desired result of the research presented here is a standards-based open environment for cargo

monitoring with low entry barriers to enable broader access by stakeholders while showing a path to

commercialization.

VII. RELATED WORK

In this section we provide a brief overview of related research to monitor trains and to secure cargo in

motion. In 2005 Edwards et al. [30] presented a prototype system to monitor and control various sensors

and actuators on a freight train. The prototype uses a Controller Area Network (CAN) bus to collect

data from the sensors. The data is then coupled with GPS information and reported to a web server

via a CDMA-based transmitter. Edwards et al. [30] argue that “on board sensing of mechanical defects

enables car owners to track defects and proactively schedule maintenance” at a time and location that

makes economic sense.

The Transf-ID system [31], proposed in 2009, uses radio frequency identification (RFID) tags and a

service-oriented architecture to track cargo, railcars, and frequently serviced parts. The authors of [31]

23

argue that use of the Transf-ID system improves rail freight safety since part maintenance schedules are

now based on actual use.

In 2007 Lauf and Sauff [32] proposed a security protocol for transmitting information from sensors

within a shipping container to a trusted third party. Such a protocol permits tracing liability for cargo

theft and/or damage while minimizing the risk that shipping containers can be used for terrorism or

shipment of contraband. The protocol was deployed successfully to test hardware; however, additional

research is needed to create tamper-resistant units for monitoring container security [32]. Also in 2007,

Ruiz-Garcia et al. [33] argued that the technology already exists to develop a monitoring system for

refrigerated containers. They added that sensor readings and GPS information can be combined to track

a shipping container through different stages of the supply chain.

The review of related work presented in this section shows that others have monitored train equipment

using a service-oriented architecture as well as developed security protocols for communicating with

sensors inside shipping containers. To the best of our knowledge, the TSSN is the first effort that uses

sensors and an open service-oriented architecture to monitor freight in motion.

VIII. CONCLUSION

In this paper we have presented results from field trials of the prototype TSSN (Transportation

Security Sensor Network). The TSSN is an open system where different vendors can supply different

components of the system. Within the TSSN framework we have successfully combined sensor and

shipment information to provide event notification to distributed decision makers. This paper has shown

results documenting the interactions between the different components of the TSSN. Based on our

experiments and evaluations with the prototype the TSSN architecture is viable for monitoring rail-

borne cargo. We have successfully demonstrated that alert messages can be sent from a moving train

to the VNOC and combined with cargo information that is forwarded to geographically distributed

decision makers using either SMS or e-mail. Furthermore, based on the experiments reported here, we

are able to detect events and notify decision makers in just over one minute. Thus, we conclude that the

TSSN architecture provides a mechanism for timely notification of decision makers. However, additional

development and testing is needed before the TSSN architecture can be deployed in production systems.

ACKNOWLEDGMENTS

The authors would like to thank A. Francis reading and commenting on previous versions of this paper.

The authors wish to acknowledge Kansas City Southern Railway for their participation in the short-haul

24

rail trial. We would also like to acknowledge the support of EDS, an HP company, and Kansas City

SmartPort, Inc. our partners on this project. Finally, L. Sackman of EDS, an HP company, assisted with

the short-haul rail trial.

REFERENCES

[1] Federal Bureau of Investigation. (2006, July 21) Cargo Theft’s High Cost. Headline. Federal Bureau of Investigation.

[Online]. Available: http://www.fbi.gov/page2/july06/cargo theft072106.htm

[2] European Conference of Ministers of Transport, Container Transport Security Across Modes. Paris, France: Organisation

for Economic Co-operation and Development, 2005.

[3] OASIS. (2006, Oct 12) Reference Model for Service Oriented Architecture 1.0. OASIS Standard. [Online]. Available:

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

[4] KC SmartPort. (2008, Nov 10) Trade Data Exchange—Nothing short of a logistics revolution. Digital magazine. [Online].

Available: http://www.joc-digital.com/joc/20081110/?pg=29

[5] Kansas City Southern Railroad, Private communication, 2007.

[6] A. Arsanjani et al., “Web Services: Promises and Compromises,” Queue, ACM, vol. 1, no. 1, pp. 48–58, Mar 2003.

[7] H. Saiedian and S. Mulkey, “Performance Evaluation of Eventing Web Services in Real-time Applications,” Communications

Magazine, IEEE, vol. 46, no. 3, pp. 106–111, Mar 2008.

[8] J. Brown et al., “SMS: The Short Message Service,” Computer, vol. 40, no. 12, pp. 106–110, Dec. 2007.

[9] D. T. Fokum et al., “Experiences from a Transportation Security Sensor Network Field Trial,” in Proc. 3rd IEEE Workshop

Enabling the Future Service-Oriented Internet: Towards Socially-Aware Networks (EFSOI 2009). Honolulu, HI: IEEE,

Dec. 2009, pp. 1–6.

[10] M. Kuehnhausen, “Service Oriented Architecture for Monitoring Cargo in Motion Along Trusted Corridors,” Master’s

thesis, University of Kansas, July 2009.

[11] R. Chinnici et al. (2007, June) Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language. W3C

Recommendation. W3C. [Online]. Available: http://www.w3.org/TR/wsdl20/

[12] M. Gudgin et al. (2007, Apr) SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). Member submission.

W3C. [Online]. Available: http://www.w3.org/TR/soap12-part1/

[13] D. Box et al. (2004, Aug 10) Web Services Addressing (WS-Addressing). Member submission. W3C. [Online]. Available:

http://www.w3.org/Submission/ws-addressing/

[14] OASIS. (2004, March) Web Services Security: SOAP Message Security 1.0. OASIS Standard. OASIS. [Online]. Available:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

[15] D. Box et al. (2006, Mar) Web Services Eventing (WS-Eventing). Member Submission. W3C. [Online]. Available:

http://www.w3.org/Submission/WS-Eventing/

[16] The Apache Software Foundation. (2008, Aug 24) Apache Axis2. Project documentation. The Apache Software

Foundation. [Online]. Available: http://ws.apache.org/axis2/

[17] D. Mulvey, “HSPA,” Communications Engineer, vol. 5, no. 1, pp. 38–41, February-March 2007.

[18] C. E. Fossa et al., “An overview of the IRIDIUM (R) low Earth orbit (LEO) satellite system,” in Proc. IEEE 1998 National

Aerospace and Electronics Conference, (NAECON 1998), Dayton, OH, USA, Jul 1998, pp. 152–159.

[19] Hi-G-Tek. (2009, Mar 17) Hi-G-Tek—Company. Corporate website. Hi-G-Tek. [Online]. Available: http://www.higtek.com/

25

[20] The Apache Software Foundation. (2007, Sep 1) Apache log4j. Project documentation. The Apache Software Foundation.

[Online]. Available: http://logging.apache.org/log4j/

[21] EsperTech. (2009, Feb 11) Esper – Complex Event Processing. Project documentation. EsperTech. [Online]. Available:

http://esper.codehaus.org/

[22] DataReader and DataSeal : User’s Manual, UM4710, Hi-G-Tek Ltd., 2001, ver. A5.

[23] Google. (2009, May 6) Google Maps. Web mapping service. [Online]. Available: http://maps.google.com

[24] D. L. Mills, “Internet Time Synchronization: the Network Time Protocol,” Communications, IEEE Transactions on, vol. 39,

no. 10, pp. 1482–1493, Oct 1991.

[25] J. Clark and S. DeRose. (1999, Nov 16) XML Path Language (XPath). W3C Recommendation. W3C. [Online]. Available:

http://www.w3.org/TR/xpath

[26] D. T. Fokum, “Optimal Communications Systems and Network Design for Cargo Monitoring,” To appear in Proc. Tenth

Workshop Mobile Computing Systems and Applications (HOTMOBILE 2009). Santa Cruz, CA: ACM Press, Feb 2009.

[27] D. T. Fokum et al., “Experiences from a Transportation Security Sensor Network Field Trial,” University of Kansas,

Lawrence, KS, ITTC Tech. Rep. ITTC-FY2009-TR-41420-11, June 2009.

[28] S. Nadarajah, “A Review of Results on Sums of Random Variables,” Acta Applicandae Mathematicae: An International

Survey Journal on Applying Mathematics and Mathematical Applications, vol. 103, no. 2, pp. 131–140, Sep 2008.

[29] E. Komp et al., “Implementing Web Services: Conflicts Between Security Features and Publish/Subscribe Communication

Protocols,” University of Kansas, Lawrence, KS, ITTC Tech. Rep. ITTC-FY2010-TR-41420-19, Feb. 2010.

[30] M. C. Edwards et al., “Improving Freight Rail Safety with on-board Monitoring and Control Systems,” in Proceedings of

the 2005 ASME/IEEE Joint Rail Conference, Pueblo, CO, USA, Mar 2005, pp. 117–122.

[31] J. Fernandez et al., “Transf-ID: Automatic ID and Data Capture for Rail Freight Asset Management,” Internet Computing,

IEEE, vol. 13, no. 1, pp. 22–30, Jan.-Feb. 2009.

[32] J. Ove Lauf and H. Sauff, “Secure Lightweight Tunnel for Monitoring Transport Containers,” in Third Int’l Conf. Security

and Privacy in Communications Networks (SecureComm 2007), Nice, France, Sep 2007, pp. 484–493.

[33] L. Ruiz-Garcia et al., “Review. Monitoring the intermodal, refrigerated transport of fruit using sensor networks,” Spanish

Journal of Agricultural Research, vol. 5, no. 2, pp. 142–156, 2007.

Transportation Security SensorNet:
A Service Oriented Architecture

for Cargo Monitoring

Martin Kuehnhausen and Victor S. Frost

ITTC-FY2010-TR-41420-22

April 2010

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Table of Contents

Table of Contents.. i
List of Figures... i
Abstract.. 1
I. Introduction .. 1
II. Problem Area .. 2

A. Proprietary Solutions .. 2
B. Variety of Open Standards.. 2
C. Service Oriented Architecture... 3

III. Related Work ... 4
A. Microsoft - An Introduction to Web Service Architecture ... 4
B. Adobe - Service Oriented Architecture... 4
C. Open Sensor Web Architecture... 5
D. Electronic Freight Management.. 5
E. Globus - Open Grid Services Architecture.. 5
F. Service Architectures for Distributed Geoprocessing ... 5
G. Web Services Orchestration.. 5
H. Summary... 6

IV. Proposed Solution.. 6
A. Overview... 6
B. TSSN Common Namespace.. 10
C. Mobile Rail Network .. 10
D. Virtual Network Operation Center ... 11
E. Trade Data Exchange .. 13
F. Open Geospatial Consortium Specifications... 13

V. Results... 13
VI. Conclusion ... 14
VII. Future Work ... 14
Acknowledgment ... 14
References.. 14

List of Figures

Figure 1: Service message overview... 7
Figure 2: Service cloud ... 7
Figure 3: Service composition. ... 8
Figure 4: Mobile Rail Network message overview .. 11
Figure 5: Mobile Rail Network Sensor Node. .. 10
Figure 6: Mobile Rail Network Alarm Processor ... 10
Figure 7: Virtual Network Operation Center message overview.. 12
Figure 8: Virtual Network Operation Center Sensor Management .. 11
Figure 9: Virtual Network Operation Center Alarm Processor .. 11
Figure 10: Virtual Network Operation Center Alarm Reporting ... 12
Figure 11: Trade Data Exchange message overview .. 13
Figure 12: Trade Data Exchange Service ... 13

1

Transportation Security SensorNet:
A Service Oriented Architecture

for Cargo Monitoring
Martin Kuehnhausen, Graduate Student Member, IEEE and Victor S. Frost, Fellow, IEEE

Abstract—This paper describes a system architecture for a
Transportation Security SensorNet (TSSN) that can be used to
perform extensive cargo monitoring. It is built as a Service
Oriented Architecture (SOA) using open web service specifications
and Open Geospatial Consortium (OGC) standards. This allows
for compatibility, interoperability and integration with other web
services and Geographical Information Systems (GIS).

The two main capabilities that the TSSN provides are remote
sensor management and alarm notification. The architecture and
the design of its components are described throughout this paper.
Furthermore, the specifications used and the fundamental ideas
behind a SOA are explained in detail.

The system was evaluated in real world scenarios during
field trials and performed as specified. The alarm notification
performance throughout the system, from the initial detection
at the Sensor Node service to the Alarm Reporting service, is
on average 2.1 seconds. Location inquiries took 4.4 seconds on
average. Note that the majority of the time, around 85% for most
of the messages sent, is spent on the transmission of the message
while the rest is used on processing inside the web services.

Finally the lessons learned are discussed as well as directions
for future enhancements to the TSSN, in particular to security,
complex management and asynchronous communication.

Index Terms—Telemetry, Transport protocols, Intermittently
connected wireless networks, Communication system software,
Data communication, Software engineering

I. INTRODUCTION

THE theft and tampering of cargo are common problems
in the transportation industry. According to Wolfe [1] the

“FBI estimates cargo theft in the U.S. to be $18 billion” and
the Department of Transportation “estimated that the annual
cargo loss in the U.S. might be $20 billion to $60 billion”.
Wolfe [1] also gives good reason to believe that the actual
number may be even higher than $100 billion because of two
reasons. First it is assumed that about 60 percent of all thefts
go unreported and second the indirect costs associated with a
loss are said to be three to five times the direct costs.

With the advances in technology, this problem has evolved
into a cat-and-mouse game where thieves constantly try to
outsmart the newest cutting edge security systems.

In terms of securing cargo, there are usually two aspects:
first ensuring the physical safety of the cargo and second

M. Kuehnhausen and V. S. Frost are with the Information and Telecommu-
nication Technology Center, The University of Kansas, Lawrence, KS, 66045,
USA; Corresponding author: mkuehnha@ittc.ku.edu

This work was supported in part by Oak Ridge National Laboratory
(ORNL)—Award Number 4000043403. This material is also partially based
upon work supported while V. S. Frost was serving at the National Science
Foundation.

monitoring and tracking it. The latter especially has become of
more interest as of late because many shipments cross national
borders and cargo may be handled by a multitude of carriers.
All of this leads to a huge demand for tracking and monitoring
systems by the cargo owners, carriers, insurance companies,
customs and many others.

This paper is part of a series that describe the design,
various components and conducted experiments of the TSSN.
In particular we focus on the software architecture here and
refer to papers that deal with the other parts of the TSSN in the
following. [2] gives an overview of the hardware utilized and
describes in detail truck trials and a short haul train trial. [3]
presents a new and flexible approach to deal with challenges
such as intermittent and low-bandwidth communication in
mobile monitoring environments and a long haul train trial in
Mexico. Furthermore [4] discusses a framework for analyzing
and visualizing SOAP messages to overcome the challenges
of complexity and disparity that web service monitoring and
management approaches face. Security associated with the
TSSN and specifically issues that arose when integrating
elements from the Web Services Architecture (WSA) led
by the World Wide Web Consortium (W3C), specifically
publish/subscribe communication and service security are de-
scribed in [5].

Here, a framework is introduced which builds on open
standards and software components to allow “monitoring cargo
in motion along trusted corridors”. The focus lies on the
use of a Service Oriented Architecture and Geographical
Information System specifications in order to allow an industry
wide adoption of this open framework.

In the following we discuss the problems of proprietary
systems, the advantages of open standards and the approach
of using a Service Oriented Architecture in the transportation
industry. We introduce the design and architecture of the
framework and explain the individual components as well
as the software parts and specifications that are used in the
implementation.

The discussion of proprietary systems in contrast to open
standards in the following section provides an overview of the
challenges that trade and shipping partners face. It explains
why it is important to design an open system that is based on
standards. Some of the main advantages are a decrease in cost,
more efficient shipment management, and enhanced visibility
and tracking capabilities. This paper presents the architecture
of the TSSN that was implemented to show that such an open
system can be built and deployed successfully.

2

II. PROBLEM AREA

In order to address the problem of cargo security, the
Transportation Security SensorNet project has been created. Its
goal is to promote the use of open standards and specifications
in combination with web services to provide cargo monitoring
capabilities. The main question is the following:

“How can a Service Oriented Architecture, open
standards and specifications be used to overcome the
problems of proprietary systems that are currently
in place and provide a reusable framework that
can be implemented across the entire transportation
industry?”

The three main aspects of this question are discussed next.

A. Proprietary Solutions

Current commercial systems in the transportation industry
are often proprietary. This is because a lot of effort is spent on
research and development in order to create intellectual prop-
erty. The assumption is then that as long as the competitors
do not have access to the system and its protocols that intel-
lectual property is safe and provides a competitive advantage.
Another common “benefit” of keeping the systems closed is
the perceived additional security since in order to successfully
attack the system its implementation and protocols have to be
reverse engineered.

The problem with this is that these advantages are often
one-sided and lead to stove pipe systems provided by a single
vendor. Once a proprietary system has been implemented it
has to be maintained. What happens if a customer that uses
the system invested a lot of money into a its infrastructure and
the training of its employees and the company that provides
the system releases a new version of it which of course costs
money again. The customer has several choices:

1) Upgrade: Throughout the literature this is often consid-
ered the most expensive option because of the cost for the
upgrade to the new version and the additional training to the
employees that has to be provided. The benefits of upgrading
are the use of new technology, potential gains in efficiency
through new features and the latest bug fixes.

2) Do Not Upgrade: By many regarded as the most cost
efficient solution, choosing not to upgrade compromises new
features and updates for the ability to save costs. An ap-
proach that is taken by some companies is the skip a version
technique. This allows companies to plan better as internal
processes and systems often have to interoperate and need to
remain compatible to each other.

3) Change Vendor: In this situation, the new version of the
system that is provided by company A does not provide the
necessary features or is simply too expensive. Furthermore,
a different company B offers a similar product with more
features or for less money. The move to the new system
is now dependent on the following things: How big are the
estimated savings and what are the direct and indirect costs of
the transition? It often happens that after careful consideration
the costs outweigh the estimated gains and the customer goes
back to considering whether or not to simply upgrade. If a

transition is made, the process could be time consuming and
turn out to be more complicated than expected.

Picture this extreme case as well. What happens if the
vendor goes out of business? All of the sudden, the short-
term goal is to maintain support for the system and to keep
it running while in the long-term to look for a suitable
replacement and be forced to transition. Even if this case does
not happen the dependency on the vendor can be crucial. If the
system has errors or a particular enhancement is desperately
needed, the vendor decides what to do about it. For big
companies that are major customers this may not be such a
big problem because they often get preferential treatment. But
for small and medium businesses the wait might be too long
and lose them customers and revenue.

The main point here is that many customers are locked
into proprietary solutions that are incompatible with similar
solutions offered by competitors. In a 2003 survey by the
Delphi Group [6] it was found that 52% of developers and 42%
of consumers see standards enabling the “approval of projects
otherwise threatened by concerns over proprietary system
lock-in”. Furthermore, an overwhelming 71% of developers
and 65% of consumers feel that the use of open standards
“increases the value of existing and future investments in
information systems”.

The problem of non-interoperability with regard to geospa-
tial processing is the topic of a paper by Reichard [7]. Because
Geographical Information Systems are often immensely com-
plex, companies that invest heavily into this area often only
support their product. As described in the sample scenario, this
leads to a lack of coordination among entities such as the Fed-
eral Emergency Management Agency (FEMA), the National
Transportation Safety Board (NTSB) and the Environmental
Protection Agency (EPA) because of the inability to share vital
information which is the key to fast decision making and data
analysis

B. Variety of Open Standards

1) Standards principles: The idea of open standards and
specifications is to define interfaces and protocols that can be
used as references for the implementation of a system. There
are many standards committees and industry groups that aim
to define them, most often focused on a particular area. Some
of the most well-known ones include the World Wide Web
consortium (W3C), the Organization for the Advancement of
Structured Information Standards (OASIS), the International
Telecommunication Union (ITU) and the International Orga-
nization for Standardization (ISO).

The main principles that govern the development of stan-
dards are usually the same across all organizations. The
following is an overview according to ISO:

a) Consensus: All parties that are affected by the pro-
posed standard get the chance to voice their opinions. This
includes initial ideas and continues with feedback and com-
ments during the standardization process.

b) Industrywide: The idea is to develop global standards
that can be used worldwide by entire industries.

3

c) Voluntary: The standardization process is driven by
the people that are interested in it and that see its future
benefits across a particular industry. It is often based on best
practices that are already commonly in use.

2) Aspects of Open Standards: The importance of open
standards is emphasized in a paper by McKee [8]. It provides
the evolution and success of the Internet as the “perfect
example” for the use of open standards. In particular it explains
that since the Internet is based upon communication and
communication means “transmitting or exchanging through a
common system of symbols, signs or behavior”, the process of
standardization can basically be seen as “agreeing on a com-
mon system”. The other parts of the paper are focused on how
openness can help Geographical Information Systems (GIS)
but many of the points mentioned apply to open standards in
general.

In particular the following aspects are associated with open
standards:

a) Compatibility: This includes the ability to share data
across vendors and systems in a uniform and non-proprietary
form. It allows processes to use essentially the same data in
order to perform their specific task without the need of costly
conversions or interpretation errors. Most common formats
are also backward compatible which means that no particular
version of the system is needed to interpret the data. Only a
certain subset of functionality might be provided when using
in older versions though. Another advantage of open formats
is the fact that even if a particular version of a format is
completely outdated and only used in legacy systems, its
specification is still accessible to everyone. Hence systems can
still be designed to use the format.

b) Freedom of Choice: A major problem of proprietary
solutions that was described earlier was the vendor lock. Once
a customer implements a proprietary system and builds its
infrastructure around it, choices in the future are limited. Open
standards by definition are vendor independent. Furthermore
many of them support a broad variety of implementation
scenarios. These implementations often are not even limited
to a particular platform, operation system or programming
language. This is especially true for most of the web standards.

c) Interoperability: Through the use of clearly defined
interfaces, standards dramatically enhance interoperability.
The standards that define interface specifications do not pro-
vide a specific implementation but provide references to best
practices and implementation patterns instead. Companies
choose what kind of system implementation they prefer. This
allows them to make use of existing infrastructure and capa-
bilities that might otherwise have to be changed when using
a proprietary system. The uniform access to functionality and
data enables companies to connect a multitude of systems and
make more use of them. Also, in case one part of the system
has to be replaced, another one that simply provides the same
interface can take its place. This allows great flexibility in
terms of the overall system design.

d) Leverage: For companies the standardization of con-
cepts, frameworks and common approaches provides a number
of benefits. Since research and development can be extremely
cost intensive, companies want to make sure there is a guar-

anteed return on investment for them. Open standards do not
necessarily lead to increased revenue but they do provide
insurance to the companies that they are on the “right” track
and what they implement is actually used industrywide. This
is very important because customers are aware that when they
purchase a system from company A that uses a proprietary
or non-standard implementation they might become a victim
of vendor lock. Acquiring a system that is build on open
standards allows them to choose the best and most cost effec-
tive solution from a variety of independent implementations.
Another advantage is that once different implementations by
the main vendors have been established, there is room for
custom solutions by smaller vendors, often in the form of
extensions or plugins.

e) Open Source: The biggest benefit of using open
standards is that fact it leads to innovation. This is because
everybody can contribute, suggest enhancements, outline best
practices and address mistakes. In terms of software this
approach is often referred to as open source.

However, there are several problems that can be associ-
ated with non-proprietary systems. Implementations are based
upon the interpretation of the standards which may differ
significantly. Furthermore, some implementations only support
a subset of the original specification, are slower than the
reference implementation or use incompatible sub systems.

C. Service Oriented Architecture

The concept of information processing and sharing across
various applications using web services is the main focus of
this paper. The basic idea is to define components of a system
as services and users as clients that can retrieve data from
them. Note that interaction between services is done using
embedded clients. The services take care of things such as
information processing, data analysis and storage. With all
business logic embedded into services and interaction between
them clearly defined using open standards an infrastructure is
built that is called the Service Oriented Architecture (SOA).

The Internet allows the following two things that are rel-
evant to information processing: a common means of com-
munication and the ability for efficient information sharing.
There exist many standards on how to transmit, receive, encode
and decode data. SOA builds on top of them to provide
new specifications that enable the design, implementation and
use of web services. Through these web services companies,
government agencies and others have the ability to share and
process information in a uniform manner which cuts costs,
time and resources and improves efficiency.

Now why is SOA such an “enabler”? What is possible
now that was not possible before? According to Irmen [9]
automation and efficient communication with partners are the
two most important things in supply chain management which
represents the core of the transportation industry. Let us take a
look at how the Service Oriented Architecture addresses both
of them in regard to the individual topics outlined in [9].

1) Automation: A vital part in transportation is the screen-
ing process. Companies that transport goods must ensure
safety and therefore check all parties involved in the trade.

4

An important aspect of this is the use of a denied trade
list which lists items and companies that are not allowed to
import or export into specific countries. With the reduction in
manual labor and transition to a web services based system
that automatically performs these checks, efficiency could be
greatly increased.

A closely related topic is accountability. Who is responsible
if something goes wrong during the trade process? Since goods
are often handled by many different parties, it must be possible
to monitor the location of cargo and handovers tightly. This
is especially important in cases of tampering or even theft of
the cargo.

Furthermore, agencies and customs more and more require
electronic trade information instead of paper documents in
order to track trade. Because of different formats and legacy
applications that are often unable to provide this information
in its entirety, additional resources have to be allocated in
order to remain compliant with current practices. Web services
and open standards can overcome this problem with uniform
interfaces and common data formats.

Having the ability to monitor the location not just for
perishable goods but also for high value goods is of great
importance in the transport chain. Current processes should
be able to automatically route cargo based on its needs and
cost effectiveness.

Irmen [9] also points out that “the lack of integration
between products causes users to deal with multiple systems
having disparate data and non-uniform input and output” and
calls for the use of a single platform. Using the Service Ori-
ented Architecture this “call” becomes less necessary because
it is platform independent and at the same time able to provide
integration of multiple systems and standardized data formats.

2) Efficient Communication: Building a virtual network
among the parties involved in the trade process establishes
efficient means of communication. It allows the coordination
between otherwise disparate entities that is essential to provide
cost effective and reliable shipping of cargo. The Internet
provides the communication layer but it is the standards of
web services that enable the integration of different systems.

Irmen [9] mentions the Software-as-a-Service (SaaS) ap-
proach which allows software to run on a per-use basis without
the costs of complex hardware infrastructure. This works very
well with SOA as the interfaces defined by those services are
often web services interfaces that are essentially part of SOA.

Security within the transportation industry plays a big
role because trade data is to be kept confidential and only
distributed on a need-to-known basis. This puts an additional
burden on the parties that are involved, as the parties must
exchange data confidentially at each point of interaction. If
open standards are used for this, security is implemented based
on interfaces and policies that are easy to manage.

In order to manage the transportation chain in its entirety,
a global view is often needed. This is problematic since indi-
vidual parties often only deal with their respective neighbors.
Using open standards and the Service Oriented Architecture
approach each party could provide an uniform information
interface that is accessible to other parties in the chain. This
allows consistent reporting, monitoring and analysis at each

step during the shipping process.
The reporting part especially has gained more attention over

the past years as the focus has shifted towards more ethical
and socially responsible business practices. Accountability
coincides with this social visibility and therefore improvements
in monitoring cargo not only lead to increased revenue on the
business side but better public relations as well.

Overall the paper by Irmen [9] gives excellent reasons
for open systems in terms of accountability, coordination,
scalability and cost, these important aspects that need to be
taken into consideration when designing an architecture such
as the Transportation Security SensorNet.

III. RELATED WORK

In the following sections related work that is relevant to
various aspects of the Transportation Security SensorNet such
as Service Oriented Architecture, web services, communica-
tion models, the Open Geospatial Consortium specifications
and sensor networks is analyzed.

A. Microsoft - An Introduction to Web Service Architecture

Cabrera et al. [10] outline concepts that led to the imple-
mentation of Service Oriented Architectures and development
of the web services specifications that surround them and are
used by the TSSN. A lot of the main approaches have been
standardized in various committees and organizations by now
but were only in the early stages when Cabrera et al. first
discussed them.

B. Adobe - Service Oriented Architecture

An Adobe technical paper by Nickul et al. [11] outlines gen-
eral architecture approaches that can be taken when transition-
ing business processes to the Service Oriented Architecture.
It mentions a widely used technology called the Enterprise
Service Bus (ESB) that provides a standardized means of
communication for all services that connect to it. For the
TSSN this is of importance when it comes to asynchronous
communication as the Java Message Service (JMS) uses
queues that are on the ESB for message exchanges (see [3]
reference, IV-A6).

In addition to the basic Request-Response, several other
message exchange patterns that go beyond the standardized
ones are described. A registry keeps track of service metadata.
The service provider is responsible for updating it whenever
a change occurs and the service consumer subscribes to the
registry for any of these changes. The metadata that is provided
is then used to configure a service client. Hence, the client can
issue requests and receive responses.

The TSSN essentially uses a very similar approach with the
UDDI. Web services automatically register with the UDDI
when they are started and clients are able to use specific
services by looking them up in the UDDI.

5

C. Open Sensor Web Architecture

An approach to implement the proposed standards of the
Sensor Web Enablement (SWE) that are described in [12]
is outlined by Chu et al. [13]. A more detailed definition
of the system and its core services is provided in the thesis
by Chu [14]. The system is called NICTA Open Sensor Web
Architecture (NOSA) and is focusing on the combination of
sensor networks and distributed computing technologies.

The TSSN uses a similar approach but has some significant
differences. The goal of both implementations is to integrate
a sensor network into a web services architecture using open
standards. NOSA uses a sensor application that is tightly
integrated into the Sensor Operating System and then provides
sensor data and control to web services in a non-standard for-
mat. TSSN on the other hand implements sensor management
and monitoring functionality inside a single service, the Sensor
Node (see IV-C1) and allows different sensors to be “plugged
in”. This allows other services to use standard web service
interfaces and SOAP messages in order to access sensors.

Furthermore, the web services used by NOSA are imple-
mented manually according to the OGC specifications which
causes them to be limited as not everything that is specified is
also implemented. In contrast, the TSSN uses automatic code
generation (see IV-A1d) that enables it to use all OGC specifi-
cations. Since their elements and interfaces are generated the
only thing that has to be implemented is functionality. This
approach significantly reduces development efforts.

D. Electronic Freight Management

The Electronic Freight Management (EFM) initiative [15] is
a project that focuses on the improvement of communication
between supply chain partners using web technologies. One of
the main goals is to provide a common and open technology
platform for sharing cargo information among smaller and
medium size trade partners. The idea is that the information
is only entered once and then shared among members of the
supply chain.

EFM because of its SOA approach provides a common elec-
tronic communication platform that maintains cargo related
information on a web service basis. This information is then
shared with authorized users while digital certificates and web
service security ensure data integrity and confidentiality. The
key benefit here is the improved visibility of shipment informa-
tion which enables all supply chain members to perform their
processes more efficiently and plan ahead better [16]. The data
exchange is standardized and based on the Universal Business
Language (UBL). Furthermore each individual transaction is
uniquely identifiable by a Unique Consignment Reference
(UCR).

The TSSN approach is similar but deals in particular with
cargo monitoring in mobile environments. The Trade Data
Exchange (TDE) as described later is responsible for managing
and sharing shipment information.

E. Globus - Open Grid Services Architecture

Globus is an architecture that is based on grid computing.
It focuses on providing capabilities as services in a grid

environment using standard interfaces and protocols. An initial
paper by Foster et al. [17] gives an overview of the architecture
and design decisions. In particular, Globus supports “local
and remote transparency with respect to service location and
invocation” and “protocol negotiation for network flows across
organizational boundaries”. Its service approach is similar to
the Service Oriented Architecture that is used by the Trans-
portation Security SensorNet. Additionally, security concepts
that work inside a grid are applicable to SOA and vice versa.

The current architecture of Globus is still based on the
same principles that were initially described by Foster et
al. [17]. The combination of custom components and web
services components provides an architecture for security, data
management, execution management, information services and
a common runtime in a grid environment.

In contrast to the TSSN, Globus makes use of web service
specifications in some of its components but also provides
custom implementations and interfaces as for service discovery
and notifications. The TSSN uses web services specifications
and OGC standards almost exclusively which ensures stan-
dards compliance and compatibility. For service discovery the
UDDI [18], [19] is used and for notifications WS-Eventing
[20].

F. Service Architectures for Distributed Geoprocessing

A research article by Friis-Christensen et al. [21] outlines
the implementation of an application that analyzes the impact
of forest fires using web services. The main focus is the
transition from a client application to a flexible web services
architecture using Open Geospatial Consortium specifications.
The components include multiple data sources that are made
available through data access services like the Web Map
Service and the Web Feature Service. A geoprocessing service
performs the analysis of the data and provides it to a client.
Furthermore a discovery service serves as the registry for all
services and their metadata.

The prototype implemented uses synchronous communica-
tion in between services. The problem in this case is that the
actual processing can take quite a long time. In the future the
authors want to transition to an asynchronous communication
model that is similar to the OGC Web Notification Service.

In addition, it is pointed out that even though standardized
interfaces allow for a combination of services which provides
flexibility, the transport of high volumes of data is often not
feasible in geoprocessing scenarios which can lead to highly
specialized but not very reusable services.

The implementation is interesting in the sense that it exclu-
sively uses OGC specifications which makes it compatible to
other Geographical Information Systems. The TSSN aims to
be OGC compliant as well but includes specifications that deal
with sensor networks such as the Sensor Observation Service
and the Sensor Alert Service, something that Friis-Christensen
et al. [21] does not address.

G. Web Services Orchestration

The problem of reusability of services and “next generation
challenges” was addressed by Kiehle et al. [22]. The idea

6

here is to increase transparency and reusability by splitting
processes into smaller more reusable processes and utilizing
a work flow management system called Web Services Orches-
tration. This is especially important for the integration of the
Transportation Security SensorNet into systems used in the
transportation industry. Its modular design and architecture
allow single components to be reused and and information
flows to be created.

The Web Processing Service specification describes how
services can be arranged and combined into service chains that
form a process. Two alternatives are commonly used in order
to achieve this. A Web Processing Service can be set up to
combine and “encapsulate” other individual web services and
therefore provide the desired abstraction. However, the best
way to define work flows is using the Business Process Execu-
tion Language (BPEL). BPEL enables complex service chains
to be defined without the need for custom and potentially
not reusable Web Processing Services that just “encapsulate”
services.

H. Summary
The related work addresses the following key technologies

that play an important part in the Transportation Security
SensorNet:

1) Service Oriented Architecture: The development of SOA
and its web services specifications has come a long way
but is still far from over. Even though specifications exist,
organizations and businesses often implement components
that are similar to the specification but not compliant. As
discussed before, this is the case for service discovery and
notifications in Globus. Two common reasons behind this are
the following. First, the specification may be available but
there are hardly any reference implementations that can be
used. Second, extensions to the specification that are necessary
for a particular implementation or in a specific environment
such as the grid are not covered by the standard.

2) Open Geospatial Consortium: The OGC specifications
are often complex and there is significant development effort
necessary to implement the elements, interfaces and func-
tionality they define. Automatic code generation as described
IV-A1d and used by the TSSN can facilitate their implemen-
tations but is not used very often.

3) Sensor Networks: The implications on communication
models that sensor networks have, in particular asynchronous
message exchanges, are often ignored in web service architec-
tures. As seen in NOSA, the focus is on the implementation of
a subset of OGC standards for a particular sensor network, but
the link to an overall SOA seems to be missing. It is evident
that current systems seem to lack the combination of SOA,
OGC specifications and sensor networks. The TSSN combines
all these technologies and bridges the gap between implemen-
tations that just deal with SOA and OGC specifications and
systems that use OGC standards in sensor networks.

IV. PROPOSED SOLUTION

A. Overview
This section describes the architecture of the Transportation

Security SensorNet (TSSN). It provides an in-depth discussion

of design aspects and the implementation.
1) Service Oriented Architecture:

“Service Oriented Architecture (SOA) is a paradigm
for organizing and utilizing distributed capabilities
that may be under the control of different ownership
domains.” [23]

Building a “Service Oriented Architecture for Monitoring
Cargo in Motion Along Trusted Corridors” makes sense.
According to a study by the Delphi Group [6], companies
that collaborate usually request compliance for the following
standards: XML 74%, J2EE (Java) 44% and SOAP 35%. The
architecture used for the implementation of the TSSN utilizes
all three technologies by separating functionality into web
services. This allows for high flexibility and is cost effective.

Haas et al. [24] early on proposed various models for web
service architectures. The Message Oriented Model focuses
on message relations and how they are processed. An ap-
proach that centers around resources and ownership is the
Resource Oriented Model. The Policy Oriented Model defines
constraints and focuses on security and quality of service.
Ideas from all these models have been combined with the
Service Oriented Model into what has become SOA. Of the
proposed models it has been the most widely implemented.

A book that provides an excellent overview of Java and
web services is written by Kalin [25]. Note that SOA by
definition is programming language and platform independent.
It is built on the basis of requests and responses and the
independence of web services. The choice to use Java for the
implementation was made because the TSSN is built on top
of previous research on the Ambient Computing Environment
for SOA by Searl [26] which is written in Java.

The main components of the TSSN are sensor management
and alarm notifications. An overview of the services and
relevant message exchanges is shown in Figure 1.

The Trade Data Exchange (TDE) (see IV-E) provides
shipment, route, logistics and relevant cargo information. It
is managed externally and used by the system only through
its specified interface. The Virtual Network Operation Center
(VNOC) (see IV-D) is responsible for the processing of sensor
data and alarms. One of the major capabilities that it provides
is alarm notification. The Mobile Rail Network (MRN) (see
IV-C) deals with the actual management of sensors on a
mobile platform, e.g. a train. Web services at the Mobile Rail
Network capture sensor data from the sensors and “preprocess”
that data. A detailed description of each individual service is
provided later in this section.

The architecture consists of web services that are separated
into service clouds. These service clouds represent the differ-
ent geographically distributed locations (e.g. Overland Park,
KS for the TDE; Lawrence, KS for the VNOC and on a
moving train for the MRN) where services are deployed and
are shown in Figure 2.

The web services are developed according to the web service
specifications and the standards provided by the OGC. This
means that they aim to be standards compliant. Since the
OGC specifications are at times very complex, the Geography
Markup Language (GML) for example defines over 1000
elements, the basis for the framework was implemented using

7

TDE
MRN

TradeDataExchange

SensorNodeAlarmProcessor

VNOC

AlarmProcessor

AlarmReporting

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

Alert
SensorNodeEvent

MRN_Alarm

SensorManagement

Client

SensorNodeStatus
Location

getAllContacts
getAllAlarmContactMappings
getAllSmsProviders
getAllAlarms

Contacts
AlarmContactMappings
SmsProviders
Alarms

NOC_Alarm

startMonitoring
stopMonitoring
getLocation
setAlarmSecure

Status
Location
startMonitoring
 ServiceException

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Subscription

Fig. 1. Service message overview

VNOC

AlarmReporting

AlarmProcessor

SensorManagement

TDE

TradeDataExchange

MRN

AlarmProcessor

SensorNode

Fig. 2. Service cloud

custom interface definitions first and adding the OGC ones
later. This enabled fast prototyping and testing of the system.

The following sections explain in-depth the approaches and
technologies used in the architectural prototype and implemen-
tation of the TSSN.

a) Ambient Computing Environment for SOA: The in-
frastructure described by Searl [26] called Ambient Computing
Environment for SOA (ACE SOA) forms the basis of the im-
plementation of the TSSN. It provides a complete SOAP stack
using Apache Axis2 and a variety of other useful programs
that assist in the development of a SOA. ACE SOA deals with
multiple ownerships and federations that provide web services.
In particular it covers the following aspects:

• Service Discovery across different federations
• Authentication of clients and services
• Authorization of clients and services
• Subscriptions

The implementation of the capabilities provided is based on
Apache Axis2 and web service specifications. It is explained
in detail in the following sections.

b) Apache Axis2: Apache Axis2 is a software stack that
allows the development and running of web services and
clients. Its architecture as described by Chinthaka [27] consists
of the following main components:

AXIs Object Model (AXIOM): AXIOM is an XML object
model that aims for high performance while requiring low
amounts of memory. The idea behind it is the application of
a pull parser. This allows objects to be built from XML only
up to the information that is needed by the user while the rest
of it is deferred. The advantage of this is that the memory that
an object requires is significantly reduced. Furthermore, this
approach also increases performance since the entire object
model does not have to be constructed before information can
be retrieved, which is the case in the Document Object Model
(DOM) parser.

Extensible Messaging Engine: Axis2 provides a very
modular architecture that allows for a variety of different
implementations of web services as long as they adhere to
certain specifications. A variety of transports such as HTTP,
SMTP, JMS and TCP can be used for message exchanges.
Inside the engine each message goes through phases that are
part of the piping model which is used to implement Message
Exchange Patterns (MEP). Inside these phases messages can
be modified, filtered or processed. The advantage of doing

8

this inside a phase is that it applies to all messages. This
allows for service independent processing implementations.
The message receiver will then be responsible for handing over
the actual message to the service implementation accordingly.
They also take care of synchronous and asynchronous message
communication.

Context Model: Axis2 provides a hierarchical context
model that distinguishes between the following levels:

• Configuration of Axis2
• Service Group which is a collection of services
• Service which contains several operations
• Operation that consists of messages
• Message that is sent or received
These contexts are important in the implementation of web

service specifications such as WS-Security and WS-Policy. It
means that these specifications can be applied on a level basis
which provides great flexibility.

Pluggable Modules: In order to provide even more flex-
ibility and to make the implementation of web service speci-
fications easier to use, Axis2 provides modules. These allow
an implementation of message processing that is common and
useful for many web services to be shared. Modules can also
be engaged or disengaged on the following levels:

• System which means that every service makes use of the
module such as WS-Addressing

• Service which useful for WS-Eventing
• Operation that for example allows fine grained security

using WS-Security
More information about the modules that are used in the

TSSN see IV-A4.
Data Binding: Since a majority of data processing,

element definitions and interface specifications are in XML,
Axis2 provides a variety of data binding frameworks such as
XMLBeans [28], Java Architecture for XML Binding (JAXB)
[29] and JiBX [30]. In addition, the Axis2 Data Binding (ADB)
can be used, which due to its tight integration with Axis2
is highly performant. For instance, every object contains a
factory that is able to transform XML into the specific object
and vice versa.

Further development was done by the author on this data
binding to support a full range of OGC specifications such
as the Sensor Observation Service, Sensor Alert Service and
most notably the Geography Markup Language.

As part of this work several changes to the initial version of
Axis2 were made in order to either fix bugs or support more
functionality. In particular the build structure was adapted to
work better with the TSSN development. It makes extensive
use of Apache Ant for the automatic generation of elements
from their respective XML schema definitions, the compilation
of Java classes and the deployment of web services and clients.

c) SOAP: Service Oriented Architectures make use of
SOAP [31] as a flexible message format. The TSSN does the
same since web service specifications can easily be integrated
and applied to SOAP messages.

d) WSDL: All services in the Transportation Security
SensorNet are defined using the Web Services Description
Language (WSDL) version 2.0. An in-depth introduction is

Service Java Classes

WSDL

Service
Skeleton

External Service
Stub B

WSDL2Java

External Service
Stub A

Schema
Elements

Service
XML Schema

External
XML Schemas

External library A

External library B

Data A

Data B

Service

Service Implementation

Fig. 3. Service composition

provided in [32]. This section explains how the combination
of WSDL files and XML schemas make up the foundation of
a web service.

Utilizing the automatic code generator of Axis2 called
WSDL2Java, all elements defined in the XML schemas are
available as Java classes. Furthermore a skeleton is created
that contains the operations of the web service as methods. In-
teraction with other services is achieved using their respective
stubs which provide methods for each of its defined operations.
They allow clients to perform requests directly using Java.
This is because Axis2 provides the entire SOAP stack from
the message format to the parsing into elements all the way
up to the invocation of a method that represents a service
operation. The composition of the generated parts, data and
external libraries then forms the actual service implementation
(see Figure 3).

2) Services: The services that are implemented in the
TSSN make use of a variety of components. For long term
information storage, a MySQL database is used. A object-
relational mapping tool called Hibernate [33] enables objects
to be stored and retrieved transparently without the need
of complicated database interactions. Esper [34] provides
complex event and alarm processing and is used at the VNOC.
The Alarm Processor at the MRN currently uses a less
complex approach. The Sensor Node is responsible for the
actual communication with the sensors. It must use a device
specific protocol [35] and a serial connection library for Java
called RXTX.

Each component and its particular use is explained in the
later sections when each individual service is described. At
a high level, one of the main aspects when dealing with
web services is the definition of whether they are stateless
or stateful:

a) Stateless: By default web services are meant to be
stateless. This is because most message exchanges are com-
pletely independent of each other. Web services usually offer
calculations, information or capabilities that only require the
service to perform a specific action and give a response. This
is part of the autonomy approach of web services.

Even in the case where a web services provides data, the
service is still considered stateless since the retrieval of the
data at any given time is not dependent on the internal state

9

of the service but only on the underlying data. If the data
changes there is no state change in the web service and it still
provides the same functionality.

b) Stateful: The need for stateful web services has been
identified for the TSSN because there are certain limitations in
just using stateless web services. Given a online data processor
that analyzes sensor data; using a stateless web service, it is
impossible to react to trends and complex events because the
service is limited to single data objects that it receives.

Let us say that a web service is monitoring whether seals
that lock cargo containers are broken and is supposed send out
warning messages whenever they are. The service has limited
capacity in terms of storing historic data but should still be
able to intelligently determine if a sensor reading that shows
that a seal is broken is just a misreading or a real threat. This
is only possible if the service keeps track of previous states.
In contrast, a stateless service would only be able to react
to the current reading and is forced to make decisions based
on this single piece of data. Another example is the Alarm
Processor service (see IV-C2) at the MRN that is used in the
TSSN implementation. It classifies sensor data from containers
either as information or security depending on whether one is
currently allowed to open the container or not.

3) Clients: Clients are able to make use of the operations
provided by the web services. They usually utilize the same
modules as the service. This means that in theory all web
services could have clients. Since a lot of the services in the
TSSN interact independently from users, the number of clients
that are available to users is actually smaller.

One of the aspects of clients in the TSSN is the management
of the sensors. The Sensor Management service (see IV-D1)
provides this among other things like retrieving the location of
a particular Sensor Node. Another aspect is the management
of alarm notifications. For this purpose the Alarm Reporting
service (see Figure 10) defines various management operations
for clients.

To facilitate the use of those clients, a Command Center
Graphical User Interface was implemented that works just like
a desktop application. This is in addition to the command line
interface that every client provides using the Apache Commons
Command Line Interface (CLI) library.

4) Modules: Axis2 provides the possibility to “plug in”
modules that add functionality or change the way a service
behaves. This allows a specific capability to be shared among
different services without having to implement it in each of
them. In general, the web service specifications that are used
in Axis2 are implemented as modules. For more information
see IV-A1b.

a) Ping: In order to check the status of a particular
service Axis2 provides a module that adds an operation called
pingService to a service. This can be used to check the status
of either a specific operation or all operations that the service
defines. The client part that actually uses this operation was
not part of Axis2 and had to be implemented by the author.

b) Logging: Especially for debugging purposes and per-
formance evaluations, it is of great benefit to be able to see
the raw SOAP messages that are sent and received. A logging
module was implemented to provide this functionality. In

particular the following information is captured of each SOAP
message:

• Time when the message was sent or received
• Service which is used
• Operation that is being executed
• Direction of the message, which can be either incoming

or outgoing. Note that there are special directions that
deal with incoming and outgoing faults.

• From address of the message
• Reply to address that may differ from the From address
• To address of the message
• Schema element that is being “transported” as part of

the operation containing the request parameters or the
response elements

• Size of the message in bytes
• Message which represents the entire SOAP message in a

readable form
In terms of analyzing the Transportation Security SensorNet

and its performance the logging module was engaged in
all services. Quantitive results obtained using the logging
capability can be found in [2], [3], [4]; a tool to visualize
and animate the timing of the messages is described in [4].

c) Addressing: An implementation of the WS-Addressing
specification as described in [36], [37] comes as part of the
addressing module in the Axis2 core. It fully supports all
components of the standard and its ReplyTo and RelatesTo
fields are used among other things to allow for asynchronous
communication (see IV-A6) in the TSSN.

d) Savan: The Savan module enables web services and
clients in Axis2 to make use of various forms of subscription
mechanisms as defined by the WS-Eventing specification [20].

e) Rampart: In order to provide security according to
the WS-Security specification [38] for the TSSN the Rampart
module was developed by Axis2. It makes extensive use of
the WS-SecurityPolicy standard described by Lawrence et al.
[39].

5) Subscriptions: Subscriptions are a fundamental part of
the overall architecture of the TSSN. They are used by the
Alarm Processor at the VNOC as well as in the MRN.
These web services, that act as information publishers, utilize
the Savan module to provide the operations defined in WS-
Eventing.

6) Synchronous and asynchronous communication: By de-
fault Axis2 uses request-response in a synchronous manner.
This means that the client has to wait and is therefore blocking
until it receives the response from the service. In certain
scenarios, for instance when the service needs a large amount
of processing time, the client can experience timeouts. Fur-
thermore, in the TSSN where the MRN is only intermittently
connected to the VNOC, synchronous communication shows
its limitations. A better option is to make the communication
between services asynchronous. This resolves timeout issues
and deals with connections that are only temporary. The
following aspects need to be taken into consideration when
using asynchronous communication:

a) Client: The client needs to make changes in regard to
the how the request is sent out. Axis2 provides a low-level non-
blocking client API and additional methods in the service stubs

10

that allow callbacks to be registered. These AxisCallbacks need
to implement two methods, one that is being invoked whenever
the response arrives and the other to define what happens in
case of an error.

b) Transport Level: Depending on the transport protocol
that is being used, Axis2 supports the following approaches.

• One-way uses one channel for the request and another
one for the response such as the Simple Mail Transfer
Protocol (SMTP)

• Two-way allows the same channel to be used for the
request and the response, for example HTTP

For asynchronous communication to work the two-way
approach was modified through the Axis2 client API which
provides the option of using a separate listener. This tells
the service that it is supposed to use a new channel for the
response. In order to correlate request and response messages
Axis2 makes use of the WS-Addressing specification, in par-
ticular the RelatesTo field.

c) Service: The final piece of asynchronous communica-
tion is to make the service processing asynchronous as well.
This is done by specifying asynchronous message receivers in
the services configuration in addition to the synchronous ones.
Axis2 then uses the ReplyTo field of the WS-Addressing header
in the client as a sign to send an immediate acknowledge of
the request back to it. Furthermore it processes the request
in a new thread and sends the response out when it is done,
allowing the communication to be performed in asynchronous
manner completely.

There exist various forms of transport protocols that are
suitable for asynchronous communication. Axis2 by default
supports HTTP, SMTP, JMS and TCP as transports but other
transports can easily be defined and plugged in. The Java
Message Service (JMS), for instance, makes use of queues
which allow clients and services to store on them and retrieve
messages in a flexible manner. This is essential for satellite
communication which and discussed in detail in [3].

B. TSSN Common Namespace

Elements are often shared among a variety of services. Since
defining the same element over and over again is neither a
scalable nor maintainable approach, it makes sense to specify
a common namespace for them and let the web services that
want to use them, include them. In the TSSN these shared
elements are part of the TSSN Common namespace.

C. Mobile Rail Network

The MRN is a collection of services that is located on a
train or in a rail yard. Its services provide the abilities to
manage sensors, monitor them and propagate sensor alerts to
the VNOC. This section describes them in detail.

1) Sensor Node: The Sensor Node contains the actual
sensor monitoring and management application and its com-
ponents are shown in Figure 5. It provides several abstraction
layers that allow various forms of sensors to be used. The
current implementation makes use of cargo cable seals from
Hi-G-Tek (HGT) [35]; these are considered one type of sensor

Sensor Node

Sensor Data
Processing

HGT Sensor

SAS Interface

Location Interface

Sensor Management
Interface

AVL Reader

GPS Sensor Subscription
Registry

Notification Process

Sensor
Registry

Sensor
Data

HGT Sensor

HGT Sensor

HGT Sensor

SOS Interface

Fig. 5. Mobile Rail Network Sensor Node

Alarm Processor

Alert
Processing

SAS Interface

Alert Interface

Monitoring State
Interface

Subscription
Registry

Notification Process

Monitoring
State

Sensor Event
Interface

Fig. 6. Mobile Rail Network Alarm Processor

in the TSSN. Interaction with these sensors is performed
using a (HGT) Automatic Vehicle Location (AVL) reader. The
Sensor Node implements the functionality that allows higher
level management of the sensors, e.g., here a collection of
intelligent cargo seals connected to a series of containers, and
the data that they provide through the use of a sensor registry,
the sensor data storage and sensor data processing. Attaching
a GPS sensor to the Sensor Node allows sensor events to
be tagged with the specific location that they appeared at.
The core functionality of the Sensor Observation Service that
allows the service to offer its capabilities and observations is
implemented. Furthermore, a subscription registry is available
for alert notifications.

2) Alarm Processor: The Alarm Processor on the MRN
performs an initial filtering of sensor events generated by the
Sensor Node. It subscribes to of all events of the Sensor Node,
providing interfaces for generic sensor events as well as sensor
alerts. Alerts reported to the Alarm Processor include potential
alarms that the Sensor Node reports, GPS acquisitions and
losses, and status messages of the monitoring application such
as when it is started and stopped. In case the data is not
as complex as an alert, the event element provides a simple
structure with a timestamp and a data field.

The Alarm Processor handles alerts and events that it

11

MRN

SensorNodeAlarmProcessor

VNOC

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

Alert
SensorNodeEvent

MRN_Alarm

SensorNodeStatus
Location

Subscription

Fig. 4. Mobile Rail Network message overview

Sensor Management

Message Relay
Process

Location Interface

Monitoring State
Interface

Sensor Management
Interface

Fig. 8. Virtual Network Operation Center Sensor Management

receives from the Sensor Node and classifies them into ei-
ther information or security alarms depending on its current
monitoring state. It is also responsible for deciding whether or
not to forward the alarm to the VNOC for further processing
and possible transmission to the decision maker.

D. Virtual Network Operation Center

The VNOC as shown in Figure 7 represents the management
facility of the TSSN and consists of services that receive
and process alerts received from MRN. It works with the
TDE to associate shipment and trade information with a
particular alert. Furthermore, the Alarm Reporting service
provides clients with the ability to be notified upon specific
events. The processes that are involved in performing these
tasks are the topic of this section.

1) Sensor Management: The Sensor Management service
(Figure 8) is responsible for controlling sensors and alarm
reporting. It provides methods for starting and stopping sensor
monitoring. Additionally the monitoring state which defines
how alerts are interpreted and processed can be specified. The
Sensor Management service essentially relays these “control”
messages to the according MRN. Another functionality that is
provided is the ability to query for a specific MRN’s location.

Alarm Processor

SAS Interface

Alarm Interface

Subscription
Registry

Notification Process

Esper
Event

ProcesingEsper
Rules

Fig. 9. Virtual Network Operation Center Alarm Processor

The implementation details of the interfaces that it provides
to clients are described in the following.

The Sensor Management service allows the control of
Sensor Nodes and their monitoring state. Additionally, it is
able to retrieve the location of Sensor Nodes.

2) Alarm Processor: In contrast to the “basic” processing
that is performed by the Alarm Processor at the MRN, the
Alarm Processor as shown in Figure 9 at the VNOC has
more resources such as the associated shipment and trade
information available which is provided by the TDE and
can therefore process alarms in a more complex way. This
advanced filtering and processing is done using a complex
event processing system called Esper developed by Bernhardt
et al. [40].

Esper works on the basis of sliding windows in which events
that are close together on the time axis are analyzed and
correlated. It also supports using historical data from a variety
of sources. An efficient query and filtering language called
Event Processing Language allows for the most complex
scenarios to be implemented. In the TSSN it is used for
instance to filter out alarms for which shipment information
could not be retrieved from the TDE and mark them as security
notifications.

The MRN Alarm operation is used as a notification interface

12

MRN

VNOC

AlarmProcessor

AlarmReporting

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

MRN_Alarm

SensorManagement

Client

SensorNodeStatus
Location

getAllContacts
getAllAlarmContactMappings
getAllSmsProviders
getAllAlarms

Contacts
AlarmContactMappings
SmsProviders
Alarms

NOC_Alarm

startMonitoring
stopMonitoring
getLocation
setAlarmSecure

Status
Location
startMonitoring
 ServiceException

Subscription

TDE

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Fig. 7. Virtual Network Operation Center message overview

Alarm Reporting

Reporting Management
Interface

Alarm History
Interface

Notification Process

Alarm
Database

Alarm Interface

Reporting Management
Process

Reporting
Database

Hibernate
Reporting
Mappings

Hibernate
Alarm

Mapping

Fig. 10. Virtual Network Operation Center Alarm Reporting

for alarms from the Alarm Processor on the MRN. The Alarm
Processor service subscribes to alarms from its counterpart on
the MRN. Upon receiving an alarm, shipment data is retrieved
from the TDE and attached to the original alarm. Esper then
processes the alarm and passes it on to the Alarm Reporting
service.

The Alarm Processor at the VNOC primarily provides
functionality for the MRN to deliver alert notifications. It
uses Esper to perform complex event processing, taking into
consideration alert data and information from the TDE, and to
forward alarms to the Alarm Reporting service.

3) Alarm Reporting: The Alarm Reporting service (Figure
10) deals with the following two aspects. First, it stores alarms
long term to allow for in-depth reporting and analysis. Second,
clients that want to be notified of particular alarms can register
with the Alarm Reporting service. Whenever alarms occur
notifications are sent out to the registered clients via email
and/or SMS accordingly.

For long term data storage and to maintain a registry of the
client notifications the Alarm Reporting service makes use of
the MySQL database. In order to remain flexible and provide
an abstraction layer to the core database functionality a tool
called Hibernate [33] was utilized. An excellent introduction
to the object-relational mapping is provided by Bauer et al.
[41]. The main advantage is that objects referenced in code can
easily be persisted into a relational database and vice versa.
The only thing that needs to be defined is the mapping. Once
that has been defined Hibernate takes care of the rest.

Since the objects that are being stored in the database are
defined using XML schemas and then automatically compiled
into Java objects during the build process, it makes sense to
specify the mappings in XML as well. This is done in the
TSSN. Another approach that is supported by Hibernate is
using annotations within the Java objects themselves. This is
not possible because of the aforementioned build process as
the objects would have to be reannotated at every build.

The registry that is used for notifications contains alarm
contact mappings that specify what kind of alarms a specific
contact wants to be notified of. In case the contact wants to

13

TDE

TradeDataExchange

VNOC

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Fig. 11. Trade Data Exchange message overview

Trade Data Exchange

Shipment Information
Interface

Alarm Interface

Shipment
Information

Alarm
Database

Fig. 12. Trade Data Exchange Service

receive SMS notifications, a SMS provider has to be specified
as well.

The Alarm Reporting service receives alarm notifications
from the Alarm Processor at the VNOC. It provides a notifi-
cation interface primarily for the subscription of alarms from
the Alarm Processor. The Alarm Reporting service subscribes
to alarms and provides this operation for its notifications. An
alarm here is a combination of the tssn:MRN AlarmBean and
shipment and trade information received from the TDE.

E. Trade Data Exchange

The Trade Data Exchange [42], as shown in Figure 11, in a
sense represents a shipment and other trade data information
provider. It aims to be a collection of heterogeneous systems
that stores and manages the business aspects of a transport
of goods. This is due to the fact that there is a variety of
different systems implemented by the parties that participate
in the transport chain (see II-A and II-C). Some provide route
information while others manage contracts and shipment data.
For the current implementation of the TSSN this “collection”
of information and management services is combined into a
single service, the TDE service.

The TDE service (Figure 12) interacts with the Alarm
Processor at the VNOC. Upon request it provides shipment

and trade information for a specified alarm. It also provides
functionality that can be used for long term alarm storage,
although in its current implementation fairly limited. Since
the service was designed externally, the elements used are not
compatible to the TSSN common elements or any of the other
services.

F. Open Geospatial Consortium Specifications

As described before, the amount of work that is required
to fully implement OGC specifications such as the Sensor
Observation Service and the Sensor Alert Service is immense.
The focus of the first stage of the implementation of the TSSN
is on the sensor management and alarm notification capa-
bilities. However, at the MRN the Sensor Node provides an
implementation for the Sensor Observation Service as defined
by the OGC. Furthermore, services in the TSSN that utilize
subscriptions, in particular the Alarm Processor, are able to
receive subscribe requests and publish alerts in a manner that
is similar to the Sensor Alert Service. The difference to the
proposed SAS specification is that the services that subscribe
are already aware of the capabilities, sensor types and alert
types. Therefore the operations that allow the retrieval of
this information need to be implemented in order to be fully
compliant.

V. RESULTS

Several experiments were performed at various development
stages of the TSSN. First, lab tests were conducted in order
to ensure the functionality of the individual web services and
their interactions.

Then, as described in [2], truck trials were completed to
test basic interaction of the implemented web services and
feasibility of hardware components and sensors in a mobile
environment. The message exchanges between web services
were correct and the system was able to recover from dropped
communication links and lost GPS fixes. In addition, it was
found that the read range of the sensors used is about 400
meters.

A short haul rail trial was conducted after the successful
completion of truck tests. Results of the short haul rail trial
are found in [2]. One of the goals was to determine the
performance of the TSSN when detecting events on intermodal
containers in a rail environment. Furthermore SMS message
and email notification of events was investigated and data
collected that could be used in the modeling of system trade-
offs and communication models. The system performed well:
the time it took from detecting an event to generating an alert
was about 2 seconds and the average delivery time of the
alert was about 12 seconds. This is well within the bounds
of the requirements of the transportation industry for efficient
tracking and monitoring of cargo. Note that for the short haul
trial a GSM communication link was used that proved to be
stable and reliable. This allowed the web services to interact
synchronously with each other.

Enhancements made to the TSSN to work well in low band-
width mobile bandwidth limited and intermittently connected
monitoring environments are described in [3]. In particular, the

14

communication link between the MRN and the VNOC was
changed to a dial-up satellite connection and the web services
were adapted to utilize a distributed queuing approach and
hence communicate asynchronously. The viability of these ad-
justments was tested in a long haul rail trial in Mexico. Again
the TSSN worked well and was able to transmit messages in
about 12 seconds whenever connectivity was established. In
case the satellite link was down and needed to be established
it took about 10 minutes on average to deliver messages from
the MRN to the VNOC. However the average case of about 7
minutes per message transmission through the system is found
to be in range of mobile monitoring environments.

VI. CONCLUSION

The implementation of the Transportation Security Sensor-
Net using a Service Oriented Architecture works. Testing has
been completed in a lab environment as well as in the real
world and TSSN was evaluated in [2], [3], [4]. The complete
system provides a web services based sensor management
and alarm notification infrastructure that is built using open
standards and specifications. Particular functionality within the
system has been implemented in web services that provide
interfaces according to their respective web service specifica-
tions.

Using standards from the Open Geospatial Consortium al-
lows the integration of the system into Geographic Information
Systems. Although not all the interfaces are fully implemented
as of summer 2009, the basic Sensor Observation Service and
Sensor Alert Service are. Other OGC specifications can be
integrated a lot easier now because enhancements to the Axis2
schema compiler have been made by the author (see IV-A1b).

WS-Eventing plays an important role in the Transportation
Security SensorNet as it is essential for the alarm notification
chain. The specification that is used by all the clients and
services is WS-Addressing. Note that HTTP, which represents
the underlying transport layer of most the web services,
already provides an addressing scheme. This however, is not
as useful as it seems because web services may change their
transport layer and messages sometimes require complex
routing. The reasoning behind this and other things have been
explained in detail.

Overall the TSSN provides a Service Oriented Architecture
for Monitoring Cargo in Motion Along Trusted Corridors.
This web services based approach allows for platform and pro-
gramming language independence and offers compatibility and
interoperability. The integration of SOA, OGC specifications
and sensor networks is complex and difficult. As described
in III-H, most systems and research focuses either on the
combination of SOA and OGC specifications or on OGC
standards and sensor networks. However, the TSSN shows
that all three areas can be combined and that this combination
provides capabilities to the transportation and other industries
that have not existed before. In particular, web services in a
mobile sensor network environment have always been seen
as slow and producing a lot of overhead. The TSSN, as
shown by the results in [2], [3] demonstrates that with proper
architecture and design the performance requirements of the
targeted scenario can be satisfied.

Furthermore, the Transportation Security SensorNet and its
Service Oriented Architecture allow sensor networks to be
utilized in a standardized and open way through web services.
Sensor networks and their particular communication models
led to the implementation of asynchronous message transports
in SOA and are supported by the TSSN.

VII. FUTURE WORK

After evaluating the current implementation, several points
of improvement were identified.

a) Security: The current system only provides entry
points for the WS-Security in terms of the Rampart module.
There are several issues in the current implementation of
the module, especially with regard to attaching policies to
web services and clients. This is discussed in [5]. Further
development is underway to implement WS-Security. In be-
tween the Virtual Network Operation Center and the Mobile
Rail Network communication is secured by establishing a
Virtual Private Network (VPN). However, this is not practical
using a satellite link because of performance reasons. Sensors
management is done at the Sensor Node but as of now there
is no support for the secure handover to other Sensor Nodes.
The remote management systems need to be improved in this
area.

b) Service Discovery: Due to several problems in the
specific implementation of the UDDI that was used, for the
trials most of the services were made aware of the other
services through the means of configuration instead of service
discovery. Since using a UDDI provides far better scalability,
it is an essential piece of future versions of the TSSN.

c) Multiple service clouds: During the trials all services
were unique which in an operational system this is not the
case. There are issues that need to be explored in dealing with
multiple versions not only of single web services but multiple
VNOC’s and MRN’s. This is especially important when it
comes to managing policies and subscriptions properly.

ACKNOWLEDGMENT

This work was supported in part by Oak Ridge National
Laboratory (ORNL) Award Number 4000043403. This mate-
rial is also partially based upon work supported while V. S.
Frost was serving at the National Science Foundation.

The authors wish to acknowledge Kansas City Southern
Railway for their participation in the rail trials. We would also
like to acknowledge the support of EDS, an HP company, and
Kansas City SmartPort, Inc. our partners on this project.

REFERENCES

[1] M. Wolfe, “In this case, bad news is good news,” Journal of Com-
merce, July 2004, www.ismasecurity.com/ewcommon/tools/download.
aspx?docId=175.

[2] D. Fokum, V. Frost, D. DePardo, M. Kuehnhausen, A. Oguna, L. Searl,
E. Komp, M. Zeets, D. Deavours, J. Evans, and G. Minden, “Experiences
from a transportation security sensor network field trial,” in GLOBE-
COM Workshops, 2009 IEEE, 30 2009-Dec. 4 2009, pp. 1–6.

[3] M. Kuehnhausen and V. S. Frost, “Application of the Java Message
Service in Mobile Monitoring Environments,” Information Telecommu-
nication and Technology Center, University of Kansas, Lawrence, KS,
Tech. Rep. ITTC-FY2010-TR-41420-18, February 2010.

15

[4] ——, “Framework for Analyzing SOAP Messages in Web Service
Environments,” Information Telecommunication and Technology Center,
University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-
41420-20, March 2010.

[5] E. Komp, V. S. Frost, and M. Kuehnhausen, “Implementing Web
Services: Conflicts Between Security Features and Publish/Subscribe
Communication Protocols,” Information Telecommunication and Tech-
nology Center, University of Kansas, Lawrence, KS, Tech. Rep. ITTC-
FY2010-TR-41420-19, February 2010.

[6] D. Group, “The value of standards,” Delphi Group, Ten Post Office
Square, Boston, MA 02109, Survey, Jun. 2003, www.ec-gis.org/sdi//ws/
costbenefit2006/reference/20030728-standards.pdf.

[7] M. Reichardt, “The Havoc of Non-Interoperability,” OGC, OGC
White Paper, Dec. 2004, http://portal.opengeospatial.org/files/?artifact
id=5097.

[8] L. McKee, “The Importance of Going “Open”,” OGC, OGC White
Paper, Jul. 2005, http://portal.opengeospatial.org/files/?artifact id=6211.

[9] M. Irmen, “10 ways to reduce the cost and risk of global trade
management,” Journal of Commerce, March 2009, http://www.joc.com/
node/410216.

[10] L. F. Cabrera, C. Kurt, and D. Box, “An Introduction to the Web Services
Architecture and Its Specifications,” Microsoft, Microsoft Technical
Article, Oct. 2004, http://msdn.microsoft.com/en-us/library/ms996441.
aspx.

[11] D. Nickul, L. Reitman, J. Ward, and J. Wilber, “Service Oriented
Architecture (SOA) and Specialized Messaging Patterns,” Adobe, Adobe
Article, Dec. 2007, www.adobe.com/enterprise/pdfs/Services Oriented
Architecture from Adobe.pdf.

[12] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC Sensor Web
Enablement: Overview And High Level Architecture,” OGC, OGC
White Paper, Dec. 2007, http://portal.opengeospatial.org/files/?artifact
id=25562.

[13] X. Chu, T. Kobialka, and R. Buyya, “Open sensor web architecture:
Core services,” in In Proceedings of the 4th International Conference
on Intelligent Sensing and Information Processing. Press, 2006, pp.
1–4244, http://www.gridbus.org/papers/ICISIP2006-SensorWeb.pdf.

[14] X. Chu, “Open sensor web architecture: Core services,” Master’s the-
sis, University of Melbourne, Australia, 2005, http://www.gridbus.org/
reports/OSWA-core%20services.pdf.

[15] D. Fitzpatrick, D. Dreyfus, B. A. Hamilton, M. Onder, and J. Sedor,
“The electronic freight management initiative,” U.S. Department of
Transportation, Federal Highway Administration, Tech. Rep. FHWA-
HOP-06-085, April 2006.

[16] K. Troup, , D. Newton, M. Wolfe, and R. Schaefer, “Columbus electronic
freight management evaluation - achieving business benefits with efm
technologies,” Science Applications International Corporation (SAIC),
Tech. Rep., March 2009.

[17] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “The physiology of
the grid: An open grid services architecture for distributed systems inte-
gration,” in Open Grid Service Infrastructure WG, Global Grid Forum,
Jun. 2002, http://www.globus.org/alliance/publications/papers/ogsa.pdf.

[18] T. Bellwood, L. Clement, D. Ehnebuske, A. Hately, M. Hondo, Y. L.
Husband, K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von
Riegen, “UDDI Version 3.0,” OASIS, OASIS Specification, Jul. 2002,
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm.

[19] T. Bellwood, “Rocket ahead with UDDI V3,” IBM, IBM Article,
Nov. 2002, http://www.ibm.com/developerworks/webservices/library/
ws-uddiv3/.

[20] D. Box, L. F. Cabrera, C. Critchley, F. Curbera, D. Ferguson, S. Graham,
D. Hull, G. Kakivaya, A. Lewis, B. Lovering, P. Niblett, D. Orchard,
S. Samdarshi, J. Schlimmer, I. Sedukhin, J. Shewchuk, S. Weerawarana,
and D. Wortendyke, “Web services eventing (ws-eventing),” W3C, W3C
Member Submission, Mar. 2006, http://www.w3.org/Submission/2006/
SUBM-WS-Eventing-20060315/.

[21] A. Friis-Christensen, N. Ostländer, M. Lutz, and L. Bernard,
“Designing service architectures for distributed geoprocess-
ing: Challenges and future directions.” Transactions in GIS,
vol. 11, no. 6, pp. p799 – 818, 20071201. [On-
line]. Available: http://search.ebscohost.com.www2.lib.ku.edu:2048/
login.aspx?direct=true&db=aph&AN=28048261&site=ehost-live

[22] C. Kiehle, K. Greve, and C. Heier, “Requirements for
next generation spatial data infrastructures-standardized web
based geoprocessing and web service orchestration.” Transactions
in GIS, vol. 11, no. 6, pp. p819 – 834, 20071201.
[Online]. Available: http://search.ebscohost.com.www2.lib.ku.edu:2048/
login.aspx?direct=true&db=aph&AN=28048260&site=ehost-live

[23] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and
B. A. Hamilton, “Reference Model for Service Oriented Architecture
1.0,” OASIS, OASIS Standard, Oct. 2006, http://docs.oasis-open.org/
soa-rm/v1.0/.

[24] H. Haas, D. Booth, E. Newcomer, M. Champion, D. Orchard, C. Ferris,
and F. McCabe, “Web services architecture,” W3C, W3C Note, Feb.
2004, http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[25] M. Kalin, Java Web Services: Up and Running. O’Reilly, February
2009.

[26] L. S. Searl, “Service Oriented Architecture for Sensor Networks Based
on the Ambient Computing Environment,” ITTC, ITTC Technical
Report, Feb. 2008, www.ittc.ku.edu/sensornet/trusted cooridors/papers/
41420-07.pdf.

[27] E. Chinthaka, “Web services and Axis2 architecture,” IBM, IBM
Article, Nov. 2006, https://www.ibm.com/developerworks/webservices/
library/ws-apacheaxis2/.

[28] A. S. Foundation, “XMLBeans,” Jul. 2008. [Online]. Available:
http://xmlbeans.apache.org/

[29] J. Fialli and S. Vajjhala, “Java architecture for xml binding (jaxb) 2.0,”
Java Specification Request (JSR) 222, October 2005.

[30] D. Sosnoski, “JiXB,” Mar. 2009. [Online]. Available: http://jibx.
sourceforge.net/

[31] Y. Lafon and N. Mitra, “SOAP version 1.2 part 0: Primer (second
edition),” W3C, W3C Recommendation, Apr. 2007, http://www.w3.org/
TR/2007/REC-soap12-part0-20070427/.

[32] D. Booth and C. K. Liu, “Web services description language (WSDL)
version 2.0 part 0: Primer,” W3C, W3C Recommendation, Jun. 2007,
”http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626.

[33] R. Hat, “Hibernate Reference Documentation 3.3.1,” Tech. Rep.,
Sep. 2008, http://www.hibernate.org/hib docs/v3/reference/en-US/pdf/
hibernate reference.pdf.

[34] EsperTech, “Esper - Event Stream and Complex Event Processing for
Java.” [Online]. Available: http://www.espertech.com/

[35] Hi-G-Tek. [Online]. Available: http://www.higtek.com/
[36] M. Gudgin, M. Hadley, and T. Rogers, “Web services addressing 1.0

- core,” W3C, W3C Recommendation, May 2006, http://www.w3.org/
TR/2006/REC-ws-addr-core-20060509.

[37] M. Gudgin, M. Gudgin, M. Hadley, T. Rogers, T. Rogers, and
M. Hadley, “Web services addressing 1.0 - SOAP binding,”
W3C, W3C Recommendation, May 2006, http://www.w3.org/TR/2006/
REC-ws-addr-soap-20060509.

[38] K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, and P. Hallam-Baker,
“Web Services Security: SOAP Message Security 1.1 (WS-Security
2004),” OASIS, OASIS Standard, Feb. 2006, http://docs.oasis-open.org/
wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

[39] K. Lawrence, C. Kaler, A. Nadalin, M. Goodner, M. Gudgin, A. Bar-
bir, and H. Granqvist, “WS-SecurityPolicy 1.2,” OASIS, OASIS Stan-
dard, Jul. 2007, http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/
ws-securitypolicy.pdf.

[40] T. Bernhardt and A. Vasseur, “Event-driven application servers,” 2007.
[Online]. Available: http://dist.codehaus.org/esper/JavaOne TS-1911
May 11 2007.pdf

[41] C. Bauer and G. King, Hibernate in Action. Manning, 2005.
[42] K. SmartPort, “Trade Data Exchange - Nothing short of a logistics

revolution,” Journal of Commerce, November 2008. [Online]. Available:
http://www.joc-digital.com/joc/20081110/?pg=29

A Dual-Resonant Microstrip-Based
UHF RFID “Cargo” Tag

Supretha Aroor and Daniel D. Deavours

ITTC-FY2010-TR-41420-23

March 2008

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

1

A Dual-Resonant Microstrip-Based UHF RFID “Cargo” Tag

Supreetha Aroor and Daniel D. DeavoursInformation and Telecommunications Technology

Center

University of Kansas, Lawrence, KS

Email: {saroor,deavours}@ittc.ku.edu

Abstract

We present a novel passive UHF RFID “cargo tag” capable of operating in two different graphic

regions such as Europe and North America. The tag utilizes a dual-resonant, dual-polarized, microstrip

antenna. The resulting tag operates efficiently over ETSI and FCC frequency ranges and achieves excellent

efficiency. The tag antenna eliminates any cross-layer structures such as a via and may be manufactured

efficiently using traditional, low-cost “inlay” technology. We estimate the free-space read distance to be

between 9.3 and 13.1 meters (30 and 43 feet).

Index Terms

Antennas, RFID, Antenna feeds, Microstrip antennas, Multifrequency antennas, Impedance matching.

This work was supported by the Information and Telecommunications Technology Center at the University of Kansas, the

Office of Naval Research through Award Number N00014-07-1-1042, Oak Ridge National Laboratory via Award Number

4000043403, and the KU Transportation Research Institute.

May 7, 2010 DRAFT

2

CONTENTS

I Introduction 3

II Background and Related Work 3

III Antenna Design 5

IV Measurements 7

V Conclusion 9

References 10

LIST OF FIGURES

1 Dual-resonant, dual-polarized planar microstrip-based RFID tag. 6

2 Simulated currents on antenna. 6

3 Power wave Smith chart of measured antenna impedance (normalized to 13 − j65 Ω). The

90% and 50% power transfer efficiency circles are also plotted. 7

4 Radiation pattern. 9

May 7, 2010 DRAFT

3

I. INTRODUCTION

Inexpensive, passive UHF RFID antennas are typically constructed using stripline dipole antennas [1].

The antennas are often electrically short in order to fit on a 4-inch label and narrow in order to minimize

cost. Dipole antennas experience degraded performance when they are placed on or close to metal objects

[2], [3], [4], and thus are not well suited for tracking large metal assets.

One of the practical advantages of modern, efficient UHF RFID ICs is the ability to identify tags

at long distances. This is particularly useful for identifying metal containers, such as cargo containers.

Such assets are ideal applications of UHF RFID for many reasons: they tend to have a long useful life,

allowing the tag cost to be amortized over many uses; the contents change frequently, so associations

with a unique identifier is useful; they frequently cross organizational boundaries, making a common

mode of identification useful; and they are physically large, requiring identification at distance. Further,

cargo containers are commonly shipped between large geographic regions, and different regions have

different frequencies allocated for RFID. Worldwide, the UHF RFID frequency spectrum ranges roughly

between 860–960 MHz range. Practical considerations require a low profile and moderate form factor,

and cost is often a primary driver in such systems.

In this paper, we present a nearly four-inch square microstrip antenna placed over a six-inch square

dielectric and ground plane adopted for low-cost RFID tagging of large, metal objects such as cargo

containers. The antenna is dual-resonant so as to operate in two of the three frequency bands used for

UHF RFID worldwide. Finally, due to a large antenna gain from the microstrip antenna, e.g., 5 dB larger

than a dipole, we were able to validate the tag performance informally by reading the tag over 60 feet

(18.3 meters) away in an outdoor environment using a commodity RFID reader (likely utilizing a ground

reflection for 3 dB performance improvement). We estimate the free-space read distance to be between

9.3 and 13.1 meters.

II. BACKGROUND AND RELATED WORK

Microstrip “patch” antennas are a well-known class of antennas (e.g., [5]). A microstrip antenna consists

of: the primary radiating element (“antenna”), a dielectric substrate, a ground plane, and a feeding element.

Common feeds include a probe feed from a coaxial cable or edge feed with a microstrip transmission

line, although proximity feeds and coupling through a slot in the ground plane are also possible.

Traditional approaches to microstrip-based RFID tags take these familiar structures and adapt them to

the particularities of RFID. Unfortunately, the most common feed structures are based on some sort of

unbalanced transmission line, whether it be a coaxial cable with a probe feed, or a microstrip transmission

May 7, 2010 DRAFT

4

line with an edge feed. The need to establish an electrical reference (“ground”) complicates the structure,

usually requiring a via to the ground plane (e.g., [6]).

The via significantly complicates the manufacturing process. The UHF RFID industry commonly uses

high-speed, web-based processing to manufacture “inlays.” An inlay is a printed or etched antenna on a

flexible substrate with a RFID chip attached, which can be manufactured with a web-based process in high

volumes and at low cost. Another challenge with traditional microstrip antennas is a narrow bandwidth

and single resonant frequency. Unfortunately, different regions utilize different frequency ranges within

the UHF spectrum for RFID use. For example, North America uses 902–928 MHz, Europe has allocated

865–868 MHz, and Japan allocated 952–954 MHz. Most other countries of the world utilize some subset

of 865–868 or 902–928 MHz. It becomes a significant challenge to make a tag operate well over the

entire 902–928 MHz frequency range and retain a low profile, small form factor, and high performance.

Operating over two bands, e.g., cargo containers shipping supplies between North America and Europe,

becomes especially challenging.

By feeding a rectangular microstrip antenna along the diagonal (with a probe feed), one can excite

both the TM 01 and TM 10 modes [7], where the two modes have orthogonal polarization, if the two

modes are sufficiently separated. The antenna dimensions can be shortened and the resonant frequencies

controlled by cutting a cross-shaped slot into the antenna [8].

Commonly, antennas are designed to match to a substantially real load, e.g., a 50 or 75 Ohm trans-

mission line, in order to minimize standing waves along the transmission line. With RFID antennas, the

load is both in close proximity to the antenna and substantially reactive. Thus, the objective to optimize

RFID tag performance is not to minimize the voltage reflection coefficient, but rather to maximize the

power transferred to the IC (load). The remainder of this section follows from [9], [10].

Let Za and Zc be the antenna and chip impedance respectively. Maximum power transfer is achieved

when Za = Z∗
c , in which half the power is transferred to the load and half is scattered. The power

transfer efficiency is the ratio of the actual power transferred to the maximum possible power transferred

(a conjugate match), which is given by

τ =
4RaRc

|Za + Zc|2
.

Similarly, a power wave reflection can be defined as

s =
Zc − Z∗

a

Za + Zc
,

so that τ + |s|2 = 1. Here, s plays a similar role to S11 in the traditional antenna matching problem.

May 7, 2010 DRAFT

5

Let

ẑa = r + jx =
Ra

Rc
+ j

Xa + Xc

Rc
.

It can be shown that s = ẑa−1
ẑa+1 , i.e., s is a Smith chart transformation. The antenna (source) impedance

can be plotted on a Smith chart and the distance from ẑa to the center of the Smith chart is |s|. We call

the Smith chart normalized in this way a power wave Smith chart.

III. ANTENNA DESIGN

The inspiration for the antenna design comes from a combination of three factors. First, we draw from

the dual-resonant rectangular antennas closely exciting the TM 01 and TM 10 modes and feeding in such

a way to excite both modes [7]. Second, we draw from the use of microstrip transmission lines to build a

completely planar microstrip antenna [11]. Third, we note the use of a cross-shaped slot in a microstrip

antenna originally used to reduce the size of the antenna [8], but instead we use the cross as space to

place our matching circuit and IC. The slots can also be used to resize the antenna as necessary to control

the form factor.

Fig. 1 shows the antenna geometry, where the darkened area represents the metalized area. The antenna

was designed to operate over a polypropylene substrate 5.08 mm thick and a dielectric constant of 2.28

and loss tangent estimated to be 0.001. The substrate and ground plane are 6 inches (15.2 cm) square.

The initial design to use a simple cross resulted in a matching circuit with a reactance that was too

large for our IC. To reduce the reactance, we shortened the transmission lines in the matching circuit by

imposing a diamond-shape cut-out within the cross.

The cross segments have a length of 34 mm and width of 8 mm. The diamond is approximately

19.8 mm per side. The center of the feed lines are 15 mm from the center and 2 mm wide in order to

achieve the desired input resistance, and the length of the feeds can be adjusted to achieve a reactance

of approximately j65 Ω at resonance. The matching circuit was designed to obtain a perfect conjugate

match to 13 − j65 Ω at 867 MHz, and a slightly larger real resistance at 915 MHz to to achieve larger

bandwidth.

When the first resonant mode is excited, one of the feeds acts as an inset microstrip feed, while the

other feed lies primarily along the axis of symmetry and thus acts as a feed from an electrical reference,

i.e., the virtual ground. When the second mode is excited, the role of the two feeds reverse. Fig. 2 illustrate

the simulated currents on the antenna at the two resonant frequencies. One can see that the TM 01 and

TM 10 modes are clearly excited with only a minor diagonal component excited at each frequency.

May 7, 2010 DRAFT

6

L

W

152.4 mm

5.08 mm

IC

IC

Fig. 1. Dual-resonant, dual-polarized planar microstrip-based RFID tag.

(a) 870 MHz. (b) 915 MHz.

Fig. 2. Simulated currents on antenna.

The two resonant frequencies can be easily adjusted by adjusting L and W . Here, we present resonant

frequencies of 867 and 915 MHz using L = 103 mm and W = 97 mm. To achieve resonant frequencies

of 915 and 953 MHz, set L = 97 mm and W = 92.5 mm. For resonant frequencies at 867 and 953 MHz,

set L = 103 mm and W = 92.5 mm. Matching to a larger or smaller resistance is achieved by placing

the feed lines further apart or closer together, respectively. If the impedance is too small, the size of the

cross may need to be expanded to facilitate a larger Ra. A smaller Xa can be achieved by shortening

the feed lines, and a larger Xa by longer feed lines. In this way, the antenna can be adjusted to work

May 7, 2010 DRAFT

7

90%

50%
830

915
930

875

900

865

Fig. 3. Power wave Smith chart of measured antenna impedance (normalized to 13−j65Ω). The 90% and 50% power transfer

efficiency circles are also plotted.

at any two of the three major frequencies of operation worldwide and with most commercially-available

RFID ICs.

IV. MEASUREMENTS

As the antenna impedance is considerably reactive and balanced, it is difficult to use standard microwave

measurement techniques. We constructed a measurement apparatus using a chip balun to measure the

impedance using a network analyzer. The balun is mounted on a small PCB that converts a SMA signal

to a differential signal to short pins, which are used to probe the IC connection pads. The apparatus yields

only modest accuracy, but sufficient for our purposes here. The impedance measurements are taken over

the range of 830 to 960 MHz. Note also that the impedance is near the edge of a 50 Ohm Smith chart,

and thus the accuracy of the network analyzer is likely to be relatively poor. The power wave Smith chart

(cf. Section II) using the normalized impedance 13− j65 Ω is plotted in Fig. 3.

Note that we are able to achieve an almost perfect conjugate match at 870 MHz. the 90% transfer

efficiency spans between 864 and 875 MHz, and between 915 and 930 MHz. At 900 MHz, τ = 70%.

By making the antenna slightly less inductive, the 1 dB bandwidth would span between 860 and 940

May 7, 2010 DRAFT

8

MHz, and the 3 dB bandwidth would cover from less than 830 to more than 960 MHz.

The simulated results of the antenna using a finite element analysis code [12] indicates a directivity

of 6.2 and 6.1 dBi and radiating efficiency of −0.36 and −0.31 dB at 870 and 915 MHz, respectively.

The measured impedance indicates τ ≈ 0 dB at 870 MHz and -0.4 dB at 915 MHz. Combining terms,

we would expect a realized gain (the product of antenna gain and power transfer efficiency) of 5.9 and

5.4 dBi, respectively.

The free-space Friis equation can be modified for RFID transponders [13].

r =
λ

4π

√
PtGtGrτρ

Pth

We following the convention of [13] that the subscript t represents the transmitter (reader) and the subscript

r represents the receiver (tag); τ is the power transfer efficiency, ρ is the polarization mismatch, and Pth

is the minimum (threshold) power to operate the IC. Commonly, readers use 6 dBi circularly polarized

antennas and tag antennas are linearly polarized, leading to a polarization loss of 0.5. Using a published

value of Pth = −13 dBm [14], the maximum read distance of the tag from a commodity reader with

Pt = 30 dBm and Gr = 5.4 dBi is approximately 9.7 meters (32 feet). Utilizing a 3 dB ground reflection,

one could expect 13.7 meters (45 feet).

We performed an informal read distance experiment outdoors in an open field. The tag was first

affixed to an expanded polystyrene sheet and held approximately one meter above the ground and far

from any other object. We used a commodity reader at maximum FCC power settings (36 dBm EIRP)

with a bistatic circularly-polarized antenna. The tag was moved away from the reader until we found the

maximum distance at which the tag was detectable (maximum detectable distance). We anticipate a 3

dB increase in received power from a ground reflection. We found the maximum detectable distance to

be 18.3 meters (60 feet). This exceeds our estimated maximum detection distance by 2.5 dB. Next, we

placed the antenna over a large ground plane (approximately 2 feet square) and observed the maximum

detection increase to 20.5 meters (67 feet). The difference of about 1 dB change in directivity agrees with

predictions based on simulation. Given those results, we would predict a free-space maximum detection

distance of 12.9 and 14.5 meters (42 and 47 feet) without and with a large ground plane, respectively.

As a second method of validation, we placed the tag two meters from a different reader in a laboratory

environment. The tag was placed on an expanded polystyrene block 2 meters from the reader. The reader

frequency was fixed to 915 MHz, and the power was varied until we found the minimum power that

was able to read the tag. Based on -13 dBm IC turn-on power, we would predict the minimum reader

power would be 16.5 dBm. We measured 17.0 dBm. Given that result, we would predict a free-space read

May 7, 2010 DRAFT

9

������ ������ ������ ��

��

��

��

�

���

���

���

���

(a) E-plane, 870 MHz.

������ ������ ������ ��

��

��

��

�

���

���

���

���

(b) H-plane, 870 MHz.

������ ������ ������ ��

��

��

��

�

���

���

���

���

(c) E-plane, 915 MHz.

������ ������ ������ ��

��

��

��

�

���

���

���

���

(d) H-plane, 915 MHz.

Fig. 4. Radiation pattern.

distance of 9.3 meters (32 feet). However, we have reason to believe that the system is not forward-link

limited [4], and thus results in a conservative estimate. Regardless, we can conclude that the free-space

read distance will be between 9.3 and 13.1 meters, and 10.4 and 14.7 meters on a large metal ground

plane. Obviously, matched linearly polarized reader antennas will add 3 dB of link margin.

The measured radiation pattern of the tag in both the E- and H-plane at both 870 and 915 MHz are

shown in Fig. 4. Note that since the antenna is dual-polarized, the planes reverse at the two resonant

frequencies. The radiation pattern was measured with the provided (not infinite) ground plane, and show

good agreement with simulated results.

V. CONCLUSION

In this paper, we present a high-performance, dual-resonant, dual-polarized microstrip antenna. The

antenna is a completely planar structure (avoids any cross-layer connections) so that the antenna may be

easily manufactured using a traditional inlay. The antenna is designed to perform efficiently within the

865–868 and 902–928 MHz frequency bands, but we show how to modify the design to operate at any

two of the three frequency bands used worldwide. We show measured impedance results using the power

wave Smith chart, showing excellent power transfer efficiency across the frequency bands of interest.

Measured results show an estimated free-space detection distance of between 9.3 and 13.1 meters.

May 7, 2010 DRAFT

10

ACKNOWLEDGMENT

We are grateful for the helpful remarks from Kenneth R. Demarest and Daniel M. Dobkins.

REFERENCES

[1] D. M. Dobkins, The RF in RFID: Passive UHF RFID in Practice. Burlington, MA: Newnes, 2007.

[2] D. M. Dobkins and S. Weigand, “Environmental effects on RFID tag antennas,” in IEEE MTT-S International Microwave

Symposium, Long Beach, CA, Jun. 2005, pp. 4–7.

[3] J. Griffin, G. Durgin, A. Haldi, and B. Kippelin, “Radio link budgets for 915 MHz RFID antennas placed on various

objects,” in Proc. 2005 Texas Wireless Symposium, Austin, TX, Oct. 2005, pp. 22–26.

[4] S. R. Aroor and D. D. Deavours, “Evaluation of the state of passive UHF RFID: An experimental approach,” IEEE Systems

Journal, vol. 1, no. 2, pp. 168–176, 2007.

[5] P. Bhartia, I. Bahl, R. Garg, and A. Ittipiboon, Microstrip Antenna Design Handbook. Artech House Publishers, Nov.

2000.

[6] H. Kwon and B. Lee, “Compact slotted planar inverted-F RFID tag mountable on metallic objects,” Electronics Letters,

vol. 41, no. 24, pp. 1308–1310, Nov. 2005.

[7] J. S. Chen and K.-L. Wong, “A single-layer dual-frequency rectangular microstrip patch antenna using a single probe feed,”

Microwave and Optical Technology Letters, vol. 11, pp. 83–84, Feb. 1996.

[8] K.-L. Wong and K.-P. Yang, “Small dual-frequency microstrip antenna with cross slot,” Electronics Letters, vol. 33, no. 2,

pp. 83–84, Nov. 1997.

[9] K. Kurokawa, “Power waves and the scattering matrix,” IEEE Transactions on Microwave Theory and Technique, vol. 13,

no. 3, pp. 194–202, Mar. 1965.

[10] P. V. Nikitin, K. V. S. Rao, S. F. Lam, V. Pillai, R. Martinez, and H. Heinrich, “Power reflection coefficient analysis

for complex impedances in rfid tag design,” IEEE Transactions on Microwave Theory and Technique, vol. 53, no. 9, pp.

2721–2725, Sep. 2005.

[11] M. Eunni, M. Sivakumar, and D. D. Deavours, “A novel planar microstrip antenna design for UHF RFID,” Journal of

Systemics, Cybernetics and Informatics, vol. 5, no. 1, pp. 6–10, Jan. 2007.

[12] Ansoft Corporation, HFSS Online Help, Ansoft Corporation, Pittsburg, PA, 2006.

[13] P. V. Nikitin and K. V. S. Rao, “Reply to ‘Comments on “Antenna design for UHF RFID tags: A review and a practical

application”’,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 6, pp. 1906–1908, Jun. 2006.

[14] T. Instruments, TI UHF Gen2 IC — Reference Guide, 1st ed., Dallas, TX, Jun. 2006.

May 7, 2010 DRAFT

Unified SensorNet Architecture with Multiple
Owners: An Implementation Report

Pradeepkumar Mani, Satyasree Muralidharan,
Victor S. Frost, Gary J. Minden, and David W. Petr

ITTC-FY2010-TR-41420-24

May 2010

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Abstract

In practical sensor networks, it is possible that various components of the sensor network are

owned and maintained by different organizations. This complicated scenario renders provision of security

and management of these components as a challenging task. A framework for assured and controlled

access for sensor networks is needed. In this paper, we describe such an architecture which integrates

various component technologies into a unified framework. We also describe details of a proof-of-concept

implementation, a standards - based multi-hop wireless sensor network application that demonstrates the

salient features of our unified multi-ownership architecture.

ii

CONTENTS

I Introduction 1

II Challenges in a Multi-Owner Scenario 3

III Related Work 3

IV Proposed Architecture 4

IV-A Device Layer . 5

IV-B Repository Layer . 7

IV-C Application Layer . 7

V The ACE Architecture 9

V-A Key Features of ACE for the Architecture for Sensor Networks 10

V-B Access Protocol in ACE . 12

VI Demonstration of Multi-owner Unified Architecture 13

VI-A Choice of Sensor . 14

VI-A1 Using the Nose . 14

VI-B Choice of Standardized Sensor Interface . 15

VI-C Choice of Sensor Network . 16

VI-D Sensing Application . 16

VI-E Proof-of-Concept Implementation . 18

VI-E1 Hardware Specifications . 19

VI-E2 Software Specifications . 20

VI-F Demonstration Procedure . 20

VI-G Summary of Experiences . 21

VII Conclusions 23

References 24

iii

LIST OF FIGURES

1 Proposed Unified Multi-Ownership Sensor Network Architecture 5

2 ACE Architecture showing the various components and their communications 10

3 Access Protocol showing the sequence of actions when an ACE Client contacts the Service

Directory . 12

4 Nose Server - Nose Communication via Multi-hop Wireless Mote Network 18

5 Sequence of Message Exchange between Nose Server and Nose 18

6 Various Components of Prototype Architecture . 19

7 Demonstration Architecture showing Secure Access and Control of Sensor Capabilities in a

Multi-Ownership Scenario . 19

8 Demonstration Set up showing the various hardware components 21

9 User A successfully fetches profile from the Smell profile Database 22

10 User A successfully executes LOAD PROFILE, but cannot run START IDENTIFICATION 22

11 User B successful in executing START IDENTIFICATION, but unsuccessful in executing

LOAD PROFILE . 22

1

I. INTRODUCTION

SENSOR networks have been identified as being key technology in monitoring and detecting threats.

These systems face critical technical challenges in providing a security and management architecture

in scenarios representative of a large class of applications. Although the design and architecture of sensor

networks [1], [2] and [3] have been studied and many networks have already been deployed [4], the

development of a unified architecture for these systems when network elements are owned by disparate

organizations is yet to be created.

As a motivating example, consider the following scenario, where a unique requirement is consideration

of multiple owners of data and infrastructure: hazardous chemicals are often transported in trains. If the

train meets with an accident, there is the possibility of a leak of one or more of the hazardous chemicals,

which puts the inhabitants around the accident site at serious risk. It is very critical that the leaking

chemical(s) and the extent of the leaks be identified as quickly as possible, so that evacuation procedures

can be initiated in a timely manner, if required. A monitoring team (MT) could be assigned the task

of identifying and monitoring the nature and extent of chemical leaks. Once the initial assessment of

the MT is complete, a containment team (CT) can be assembled to contain the leak. The MT, at the

very least, would require one or more chemical sensors deployed (either manually or through some other

means) that can identify the nature and extent of the chemical leaks, and report the data to one or more

authorized data collectors. To detect the presence of a chemical, the MT would probably need to upload

(into the chemical sensor) an electronic profile of the chemical substance. This information could be

obtained from a database of chemical profiles owned by the vendor e.g. the company initializing the

transport of the chemical. In addition to the chemical sensors, there could be an assortment of sensing

hardware composed of weather sensors, video feed, etc., that provide additional sensing data to the MT.

Each type of sensing equipment (including the database of profiles) could be owned by a different

organization. Since the nature of the data could be sensitive, the MT would need to have the appropriate

authorization to access the sensor data. The MT might also have to verify the authenticity of the data

to counter the possibility of malicious attackers. The access level for the MT could vary by each device

and database in this system. For example, the owner of the database of profiles could limit access of

the MT only to those chemicals that are currrently being transported in the train. In addition to having

permission to read the chemical sensing data from the chemical sensors, the MT would also need to have

write permissions to the chemical sensors to upload the chemical profiles. The MT would also need read

permissions to access data from the weather sensor and video cameras. Once the nature and extent of

2

the leaks have been identified, a CT can then proceed to contain the leaks. The CT could be a different

entity from the MT, and would require access to the sensing data from the assortment of sensors. The

access permissions provided to the CT could differ from the ones provided to the MT. For example, the

CT would not require write permissions to the chemical sensors, but may require write permissions to

the camera to be able to tune the position of the camera appropriately.

Clearly, any authorization that is required needs to be acquired in real-time, spanning multiple adminis-

trative boundaries. This requirement can be circumvented by providing restriction-free access (super-user

or administrative privileges) to the sensors and sensing data to any entity (MT and/or CT). Unfortunately,

such a strategy is not only a blind approach, but could also be dangerous. For maximum flexibility and

scalability, all sensors, data collection entities and databases need to expose standardized interfaces to be

able to achieve seamless flow of data.

Simply placing sensors and cameras at the venue does not satisfy these requirements. Sensors must

be integrated into an overall architecture to provide the responsible authorities both on- and off-site with

situation awareness. Situation awareness includes: the location of personnel and assets (e.g., CT and

health professionals), the state of the venue, and past experiences. A command center facility staffed

from multiple agencies needs to be able to direct the collection of information to meet their immediate

needs, translating the information into knowledge to be used as the basis of decisions on how best

to maintain the safety of the venue. Information would flow to the headquarters facility from sensors,

cameras, voice communications, and data archives, where each of these may be owned by separate

entities. Situation awareness applications would facilitate transforming this information into knowledge.

The decision-makers would then use this knowledge to direct the allocation of resources, e.g., point

cameras or reposition personnel.

The remainder of this paper is organized as follows: We identify some key challenges in the develop-

ment of a unified architecture for sensor networks with multiple owners in Section II. In Section III, we

discuss related research. We discuss our proposed architecture in Section IV and in Section V we briefly

describe the Ambient Computational Environment (ACE) [5] [6] architecture and its extensions that form

the heart of our unified multi-ownership architecture. In Section VI, we describe, in detail, the prototype

sensor network that we implemented to demonstrate proof-of-concept of our unified architecture; we also

include some lessons learned in the process. Finally, in Section VII, we present the conclusions of our

work.

3

II. CHALLENGES IN A MULTI-OWNER SCENARIO

The development of a unified architecture for sensor networks with multiple owners has not yet been

fully explored and validated. Design, development, construction, deployment, and evaluation of a sensor

network to enhance the safety and security pose significant research and technical challenges. From

our experience with the prototype implementation of our proposed architecture, we are able to provide

answers to the following questions:

1) What kind of access/control/security mechanisms need to be developed to facilitate the participation

of multiple organizations? These mechanisms must allow for different policies for observing and/or

controlling sensors.

2) What software systems and hardware are required to assist in the rapid and easy deployment,

management, use, and redeployment of sensor networks?

3) To make the system affordable, how can commercial-off-the-shelf (COTS) wireless technologies

be leveraged for use in an environment characterized by the heavy use of wireless communications

equipment?

III. RELATED WORK

There is growing literature concerning the architecture and design of sensor networks [1], [2], [3],

as well as the Open Geospatial Consortium Sensor Web Enablement (OGC- SWE) efforts [7] and Oak

Ridge National Lab’s SensorNet Information Architecture [8]. Several sensor networks have already

been deployed [4]. Clearly, many of the component technologies required to realize the above chemical

sensing scenario exist: sensors (especially chemical and radiological), cameras, communications systems

and networks, data archives, GPS (or other location identification methods), GIS systems, and situation

awareness applications. It would be a straightforward engineering task to design a “one-off” deployment,

owned and controlled by one organization that may satisfy the needs of one venue. However, this is a

point solution, and not a resuable one. A suitable integrated system architecture that could be reused

across many venues is desirable in this case.

Our proposed Multi-Ownership Sensor Network (MOSN) architecture is an agents-based, tiered net-

work architecture that supports internet connectivity, similar to the IrisNet architecture [9]. In addition,

the MOSN is standards-based, and supports open standards such as OGC-SWE [7] and IEEE-1451 [10].

A premise of this research is that elements of the system will be owned by multiple organizations and

communicate across administrative domains. Thus, there is a need for mechanisms that facilitate access

to and control of sensors across multiple organizations as well as a requirement for rapid deployment.

4

Ownership by a wide variety of administrative domains is briefly mentioned in [9]. Unlike the IrisNet, the

MOSN provides a secure system that facilitates the participation of multiple organizations in supplying

needed component/subsystem functionality. Also, while SensorML [11] has sensor schemas that include

security, user limitations and access constraints (like documentConstrainedBy), and schemas that identify

the responsible party (like operatedBy), the integration of these into an overall system remains to be

explored. A model of the new system has been implemented and evaluated. For a detailed comparison

of the MOSN with existing sensor network architectures, the readers are referred to [12].

Our key contribution can be summarized as follows: we propose MOSN, a unified architecture for

systems that have network elements owned by multiple organizations, which incorporates well-defined

interfaces between different components with appropriate authorization/authentication mechanisms that

are secure and suited for disseminating and analyzing sensor information. We also demonstrate the salient

features of our architecture through a proof-of-concept implementation consisting of a standards-based,

multi-hop wireless sensor network application. To the best of our knowledge, there is no other architecture

that addresses the unique issues of multiple ownership in a sensor network.

IV. PROPOSED ARCHITECTURE

The objective here is to develop a unified architecture that has elements owned/controlled by a variety

of organizations which can communicate across across administrative domains. Our proposed architecture

is general (not a point solution), scalable (in size and evolution of technologies), flexible (able to mix and

match technologies based on the venue requirements), economical (based on COTS technologies), and

leverages standards where possible. The proposed approach facilitates multiple organizations providing

different services, enabling the development of a business model based on sensor network technologies.

The key features of the proposed architecture include assured and controlled access to sensor nodes in a

multi-owner environment, archiving and information dissemination.

The architectural components are divided into three layers as shown in the Fig. 1 based on their

functionality:

1) Device Layer

2) Repository Layer

3) Application Layer

5

Fig. 1. Proposed Unified Multi-Ownership Sensor Network Architecture

A. Device Layer

Device Layer comprises all the physical sensor endpoints together with the first level of data access

and management points for the entire architecture. This consists of:

• Sensors

• Sensor nodes

• Sensor services

• Collectors

6

A Sensor is a device that responds to an environmental quantity (e.g. light, temperature, etc.) by

generating a functionally related output usually in the form of an electrical or optical signal. Sensors

communicate the collected data to the node that controls them in the sensor network. The sensors could

be of different types such as radiological, mechanical, optical or chemical sensors. Often sensors are

characterized by small size and low energy consumption. Sensors can be broadly classified into two

types: active sensors, and passive sensors. Active sensors usually engage in two-way communication

with the data collecting host. They can accept commands from the sensor node in real time, and send

appropriate responses back. Passive sensors, on the other hand, simply send back (periodic/event-driven)

data to the collecting node. They usually do not support a Request- Reply type of communication with

the control node.

A sensor node is a computer that typically manages one or more sensors through a set of services.

The sensors could be directly connected to the sensor node either through serial or parallel ports or

through a multi-hop network. The communication between the sensors and the node may or may not

incorporate a secure communication. The security of this link depends upon the nature of the connectivity.

If the sensors are plugged to the node directly through serial or parallel ports, then the communication

is inherently secure. With a multi-hop wireless network, security should be explicitly incorporated in the

communication links.

Sensor services are programs that control the sensors attached to the node. There could be one or more

services per node, with each service dealing with one sensor. In this proposed architecture, we assume

that each sensor service (program) controls exactly one sensor. In practical applications, a single service

could control more than one sensor. The architecture proposed here could be extended so that one service

supports multiple sensors.

Collectors are programs that collect data from these services and transport them to the repository

layer for further use. There could be one or more collectors depending on the number of devices in the

device layer. The communication between the collectors and the sensor services follow the access control

mechanism discussed later in this document. Collectors must authenticate and authorize themselves with

the service, before tasking or configuring a sensor. Collectors gather data in one direction (from device

to repository) while the sensor services load data or commands in the other direction (from repository to

device) e.g., load commands from the Sensor Databases to the sensors. Collectors talk to the devices which

typically belong to their organization or domain; our solution is not restricted for such a communication

but spans across different organizational domains.

7

B. Repository Layer

This forms a link between the lower device and the upper application layer allowing dissemination of

information. This consists essentially of databases of two types:

• Infrastructural databases that are mandatory and store information required to support the system:

– Service Directory - database of current services available such as Temperature Sensing Service,

Chemical Sensing Service.

– Regional Database - database of location of sensors.

• Sensor Databases that store and retrieve sensor data, e.g., database of images captured by cameras

used for surveillance.

There could be multiple repositories (sensor and infrastructural databases) within this layer, each owned

by a different organization. Within a given administrative boundary, the services from the device layer

register themselves with the Service Directory when they come online, necessitating each organization to

maintain a list of currently available services. This is illustrated in Fig. 1, which shows two organizations,

A and B, with their corresponding administrative boundaries. Each organization has its own set of devices

and repositories. Each organization might implement redundancy in its repositories and devices for fault

tolerance and robustness.

C. Application Layer

The application layer provides a unified view of the various components of the architecture to the

user. A user in this architecture is a human being who uses the infrastructure for various applications.

Applications are programs that can either talk to the organizer to get the processed data or talk to

the services directly, and comply with the open standard implemented by the system. An organizer is

a program that fetches data from the repository layer and presents meaningful interpretations to the

requesting application. Consider the chemical sensing application described in section I. The MT at

the accident site could have temperature sensors as part of the weather sensors deployed to monitor

various threats such as fire, etc. An agent program collects raw temperature data, converts them into

location-centric values, and writes them into the database of temperature values. The system could also

have cameras deployed at various locations in the venue to provide on-demand, live video feed. The

temperature sensors, cameras and the database could be owned by different organizations. A security

officer has a monitoring application program that shows the location of the various temperature sensors,

and the temperature values recorded by them (retrieved from the database). The monitoring application

8

raises an alarm whenever any sensor shows a temperature value that is outside a specified range. The

security officer uses the monitoring application to request video feed for the location of the suspected

fire. Based on the contents of the video feed, the office can then initiate appropriate actions.

The architecture described here could be applied directly to this scenario. Referring to the architecture,

the agent program in this example plays the role of the collector and organizer- it transports sensor data

(temperature, video) from the device layer to the repository later, and from the repository layer to the

application layer (monitoring application program used by the inspector). The owner of each of these

components (sensor, camera, database, etc.) is an organization and the security officer is the user.

This 3-tier architecture is layered with organized communication between the layers using the inter-

mediaries such as collectors and organizers. However, we anticipate that some scenarios might require a

user talking directly to a device without having to pass through this layered architecture.

Consider a situation where the user takes direct control over the sensors of all organizations and may

wish to control them without having to talk to the organizer or the collector. In such a case, the user will

need authorization to interact with devices from all organizations. The user will use the applications to

talk to the sensor services controlling the devices through an out-of-band communication. Our solution

also provides a way to have this Direct Communication between the user and the devices as in Fig. 1.

With reference to the chemical sensing security system described above, the video feed from the camera

requires direct communication between the user and the camera.

The description of the unified architecture (MOSN) is not yet complete. We still have not discussed

the following issues:

1) Inter-layer communication

2) Policies for the following:

a) Secure, controlled and authorized access to a specific component (sensor, database, etc) in a

multi-owner heterogeneous sensor network. These policies will be important if we would like

to restrict access to only a specific instance of the component, in the presence of multiple

similar components (e.g. temperature sensor # 43)

b) Secure, controlled and authorized access to a specific functionality of a specific component

in a multi-owner heterogeneous sensor network. These policies are required if we would like

the client to have access to only a subset of functionalities offered by a specific component.

(e.g. only READ function from Temperature Database, but no WRITE privileges)

3) Propagation and enforcement of these policies

9

We address all the above-mentioned issues by borrowing components from the ACE [5], [6] architecture.

The device control and data flow mechanisms developed for ACE are used here to manage/control con-

nections between applications and sensor nodes. The ACE control mechanisms provide for authentication

by the device of the controlling application, authorization to access and control the device based on an

established security policy, confidential transmission, and integrity checks. The ACE data flow mechanism

supports real time exchange of data between applications and devices that is private and checked for

integrity. ACE supports establishing services within the environment to archive data flows, replicate data

flows to multiple receivers, and play back archived data. Since the ACE architecture is a key component

in the MOSN, the next section discusses the ACE architecture in some depth.

V. THE ACE ARCHITECTURE

ACE provides a secure communication fabric between the various components in the various layers

of the unified architecture. The ACE architecture was developed to be the basis for a pervasive system,

where the users have long-lived workspaces and mobility within the environments irrespective of rooms

or machines. In other words, in the ACE system, the users can roam anywhere, while still preserving

their sessions with the resources.

ACE supports two types of communication channels between the client and the service:

1) Control channel: Provides a way for communicating control messages. It is a reliable in-order

channel.

2) Media channel : Provides a way for communicating audio and video. Reliability and in-order

delivery are not important in this channel.

In the ACE architecture, services constitute the atomic level of computation. The most important

services are the three core services - Service Directory service, User Database service, and Regional

Database service. These core services are programs that inter-operate as shown in the Fig. 2, performing

user authentication and verifying user authorization to allow a client to only access resources that he is

permitted to. The Service Directory is a directory service that locates all available services as well as

their characteristics (Name, Location, and Service Class). All services register and un-register with this

service. Since this is the directory for all the other services, the location of this service is fixed. The User

Database is a database of all users in the system. The information includes Public Key, Name, Login

name and Login characteristics. In ACE, the login characteristics include information like passwords,

finger prints and iButton identifiers that can identify the user. The Regional Database is a database of the

10

Fig. 2. ACE Architecture showing the various components and their communications

information of all the service locations in the system (e.g. rooms containing various sensors, geographical

co-ordinates of the accident site and associated sensors, etc.).

A. Key Features of ACE for the Architecture for Sensor Networks

We have already mentioned that the architecture for sensor networks demands secure communication

between the various components of the system (client, services, etc.), component-level access control

to each and every component in the network, and method or function-level access control to every

functionality of a given component. We briefly discuss the features of ACE that are suitable to the

requirements of this architecture.

1) Client Server communication using Enhanced RMI:

Whenever a client wants to talk to the Service, the client provides his credential showing that he

has permissions to talk to the service to access the resources. The service validates his credential

before providing the resource. The authorization not only provides access to the resource, but also

extends to every method that the client requests to perform on the device.

The services present themselves as Java remote objects. The functionalities that the services adver-

tise are given in the Java Interface. The client obtains the remote object to the service and performs

actions using the Java RMI. This feature can be directly applied to the target architecture with the

collectors being the clients, sensors being the devices, and the sensor service being the gateway

between the collectors and the sensors.

11

2) Secure communication using TLS:

Transport Layer Security (TLS) provides authentication of the user and security of the message

exchanges in the control channel. The users are identified by public key of the asymmetric key

(either RSA or DSA). The public key is certified by a Certificate Authority to verify the validity of

the key. A Certificate Authority (CA) is an entity that issues digital certificates. Each organization

will have its own CA to issue certificates for users within that organization. The role of the CA is

to issue 1) certificates to identify the users and, 2) credentials to identify the actions that can be

performed by the users.

If a user wants to talk to devices from multiple organizations, then he/she needs to contact the CAs

of different organizations individually to get certificates. The user presents this signed certificate

to any service for authentication. At the end of the handshake between the client and the server,

a session key is negotiated and all the messages are encrypted with this key using any symmetric

key algorithm such as AES or DES. In this architecture, security of the message exchanges

between the collectors and the sensor services is important. This TLS and AES encryption of

the ACE framework provides authentication of client-server, secured communication by encrypting

the message exchanges and provides error-free delivery as required here.

3) Access Control using KeyNote Trust Management System:

Once user authentication is complete, the service programs determine the actions that the user can

perform based on the exact permissions assigned to the user - i.e., the service must authorize the

actions requested by the user based on these permissions. ACE uses KeyNote Trust Management

[13] to provide access control on the actions requested by the users. KeyNote provides a simple

language for describing and implementing security policies, trust relationships and digitally-signed

credentials to control potentially dangerous actions over untrusted networks. The policies are

specified using the KeyNote language, which are then signed by the CA, and given to the client

as a credential file. The user presents this credential file to any service that he wishes to access.

This trust management allows the system to control access to the actions performed by a collector on

the sensors. Each method that the client is trying to access through the remote object of the service

can be checked for authorization by querying the KeyNote engine. If the collector does not have

a valid credential, it cannot perform the requested action on the sensor and an exception is raised.

Since this authorization is implemented within the service infrastructure, all services inherently

implement the authorization procedure. Detailed descriptions of the KeyNote trust management

system and the KeyNote description language are beyond the scope of this paper. Interested readers

12

Fig. 3. Access Protocol showing the sequence of actions when an ACE Client contacts the Service Directory

are referred to [13] and [14] respectively.

B. Access Protocol in ACE

In our architecture, the ACE framework provides the required client-server authentication, secure

communication (by encrypting the message exchanges), and error-free delivery. The ACE architecture

contains the KeyNote mechanism, which enables formulation and enforcement of policies.

The user presents the signed certificate from the CA to any service for authentication. The sequence of

actions when an ACE user talks to an ACE Service is described below. Each time a new client contacts

a service, the service spawns a new thread dedicated to the communication with the specific client.

Typically the following happens when a client wishes to access a resource, as shown in Fig. 3:

1) User contacts the service (the client thread of the service) for establishing a session.

2) The service replies with its certificate for authentication, key exchange for establishing session key

and requests the user for his certificate.

3) The user replies with his certificate and session key exchange. The user verifies the Server’s

certificate. The client sends Finished.

4) The service contacts the user database to verify the user’s certificate. Once verified, the service

sends Finished. The TLS authentication is completed and a session is established.

5) The service creates a new KeyNote Session that will be used for user’s authorization.

13

6) The service provides the required policy to KeyNote database to be used to verify the client’s

credentials later.

7) The client provides his credential to the service.

8) The service adds this credential to the KeyNote database.

9) The service replies the result of adding the credentials to the user.

10) The client requests the service to list the available services.

11) The service provides to KeyNote the current set of action attributes such as domain in which this

application is used, room in which the service runs, current Time and the method requested by the

client.

12) The Service queries KeyNote for authorizing the action requested by the client.

13) The KeyNote engine verifies the credential against its current set of attributes and returns the result

to the Service.

14) The Service determines whether to perform the action requested by the client or not depending on

the result from the KeyNote engine. If the Service performs the action, it returns the result to the

client. Else, it returns an Access Denied exception to the client.

VI. DEMONSTRATION OF MULTI-OWNER UNIFIED ARCHITECTURE

We wanted to choose a simple, yet powerful application to demonstrate the salient features of our

multi-owner unified sensornet architecture, namely secure access and control of the various entities in a

heterogeneous network of sensors. To this end, we chose a simplified version of the chemical detection

sensing application described in Section I. Initially, a database was populated with profiles of the various

chemicals of interest. An authorized client can retrieve the profile corresponding to a specific chemical, and

load it into the detection sensor. Another authorized client (or perhaps the same client as the initial one)

can issue commands enabling the sensor to detect the presence of a chemical. Note that the database (and

perhaps the individual profiles themselves), and the sensor need not be owned by the same organization.

To build this system, we had to choose a number of components. First, we had to decide on the

specific sensor we were going to use. Based on the requirements of the sensor (bandwidth, processing

power, etc), we then had to choose a wireless sensor network technology to build the network. For future

extensibility with minimal system reconfiguration, we chose a standard sensor interface. All the hardware

and software components associated with the sensor, the wireless network and the software library that

provides the standardized interface belonged to the Device Layer. To support this architecture, we needed

databases for the core services. We also needed databases that stored the sensor-related data (e.g. chemical

14

profiles, video, etc.). These databases formed part of the Repository layer. Finally, we needed application

programs that allowed a client to interact with the components in the system. This software was part

of the application layer. Below, we briefly describe our choices for the various components, and some

issues that we faced with our choices.

A. Choice of Sensor

To realize the application, the first task at hand was to choose a sensor that was easy to operate and

program, while at the same time had a sufficiently rich set of features that would allow us to demonstrate

secure control and access under a variety of multiple ownership scenarios. It is apparent that we would

require an active sensor for the application under consideration. We chose the Cyranose 320 Electronic

Nose sensor [15] (referred to simply as Nose henceforth), which met all of our requirements. The Nose

is a handheld sensing device that can be trained to identify the presence of certain chemical compounds

or substances.

1) Using the Nose: The training procedure is a rigorous process, and has to be conducted in controlled

environments. The training procedure consists of a series of controlled exposures of the Nose to the target

substance. Each exposure results in a smell print, and the result of the training procedure results is a

series of smell prints, collectively called as a smell profile (corresponding to the target substance). The

Nose stores the smell profile in its internal memory. This smell-profile can be retrieved from the Nose,

stored externally in the form of a file, and can be loaded into the Nose at a future date. The identification

procedure requires the Nose to be exposed to unknown substance for a brief period of time. The Nose

compares the smell-print that is created due to this exposure against the smell profile (series of smell

prints) already stored in the Nose. The result is a percentage match between the unknown substance and

the known substance (the substance corresponding to the smell profile loaded into the Nose). During the

training process, we realized the following:

• The accuracy of the smelling process depended heavily on the accuracy of the training process.

• The Nose is not a suitable device for real-time scenarios (such as smoke detection, etc.) due to the

time to generate results. It is targeted as a hand-held device that requires operation in a controlled

environment.

Despite these disadvantages, the Nose was still the preferred sensor to demonstrate proof-of-concept of

the architecture due to its simplicity of operation and rich set of control features. For our experiments, we

trained the Nose to distinguish between Isopropyl Alcohol and Water. The following subset of commands

were the focus of the demonstration:

15

1) LOAD PROFILE - loads the provided smell profile from the file provided

2) START IDENTIFICATION - starts to “smell” the sample provided to match it to one of the possible

candidates in the smell profile

3) FETCH RESULTS - returns the result of the latest identification along with a confidence measure

B. Choice of Standardized Sensor Interface

To support a heterogeneous mix of sensors, a standardized interface was necessary to communicate

with the sensors. Such standards ensure that a standardized software interface will be exposed by the

architecture to the sensors/devices in the system. These interfaces minimize developmental efforts required

when new sensors need to be integrated into the system in the future.

The IEEE 1451 standard [10] is one such standard that has been developed precisely for this purpose.

Also the ORNL SensorNet architecture [8] has selected the IEEE 1451 standard for this effort and

its services. The IEEE 1451 standard was also chosen as an example for the prototype architecture -

the system designers could use any competing standard such as Microsoft’s Universal Plug and Play

(UPnP) [16], or Optical Sensor Interface Standards [17] in case of optical sensors. We do not make any

recommendations on the choice of the standard. For more details on the IEEE 1451 standard, readers are

referred to [10].

A key challenge in this task was to efficiently integrate the developed framework and IEEE 1451,

so that standardized interfaces are exposed to the sensors by the Nose Server. An IEEE 1451-compliant

server is also called a Network Capable Application Processor (NCAP)[18]. We chose the Java Distributed

Data Acquisition and Control (JDDAC) library [19] to build our custom Nose NCAP. Though the JDDAC

was not 100% compliant with IEEE 1451, it was deemed sufficient due to lack of alternative IEEE 1451

software in Java (Java was preferred because the bulk of the ACE code was written in Java), and also to

demonstrate proof-of-concept.

One of the main obstacles in using the Nose as a sensing device in a IEEE 1451 environment was that

the Nose was not an IEEE 1451 - compliant device. We overcame this obstacle by placing a Nose-1451

interface in the NCAP [18] module, that did the following:

1) convert incoming IEEE 1451 compliant messages from the client to Nose-Specific commands and

send it to the Nose, and

2) convert incoming Nose-specific message from the Nose into a IEEE 1451 message, and send it to

the client

16

In addition, the JDDAC library did not support a Request-Reply type of communication, which is critical

in future sensor networks, and thus to our application. We overcame this by extending the JDDAC IEEE

1451 library by implementing the necessary features from the IEEE 1451.0 [18] standards document to

support a Request-Reply type of communication.

C. Choice of Sensor Network

The next step in our research was to set up a wireless sensor network to study and demonstrate

secured and controlled access to sensors with multiple owners. After investigating some sensor network

technologies, we decided to construct the wireless network using MICA2 motes developed by Crossbow

Technologies [20]. The following were the salient features of the MICA2 motes:

• Processor: Atmel ATmega 128L MicroProcessor (7.37 MHz clock)

• Memory: 4KB data RAM, 128KB Program Flash, 512 KB (serial) Flash

• Radio: ChipCon model CC1000 multi-channel transceiver (868/916MHz, 433 or 315MHz)

• Data Rate: Up to 38.4 Kb/s

• Range: ∼30m (indoors), ∼150m(outdoors)

• External Interface: 51-pin expansion connector

• Power Source: 2 AA batteries

• Operating System: TinyOS (TOS)

The popularity of motes and TinyOS in the sensor network community and a rich set of libraries that

facilitates quick application-building were the primary motivations for selecting them. For high-bandwidth

applications like video, the motes-based sensor network would not be a good choice. In such cases, one

could use a 802.11-based wireless mesh network.

D. Sensing Application

We developed an application using NesC in the TinyOS platform [21] that would manage message

transfer between the Nose and the Nose server via multiple hops of motes. The Nose was directly

connected to the destination mote via a serial port connection. TinyOS supplies a serial port communi-

cation module that uses a framed message format, which would not be understood by the Nose. This

complication was overcome by writing a custom serial port communication module that transfers raw

data across the serial port without any framing, using low-level TinyOS routines.

Another problem with TinyOS was that the default message size was 29 bytes, while the message sizes

generated by the Nose was of the order of few hundreds of bytes, sometimes even greater than the largest

17

message size supported by TinyOS (128 bytes). So, we decided to fragment the large Nose messages at the

source to fit the default TinyOS packets, and reassemble the fragments at the destination. Fragmentation-

Reassembly could be implemented by increasing the default message size to the maximum message

size (128 bytes). However, TinyOS messages were the de facto mode of message exchange between the

various layers in the TinyOS stack, and thus increasing the default message size was not viable because

it resulted in an overall RAM requirement that exceeded the available RAM capacity. Given that the

application was not particulary time-sensitive or bandwidth intensive, there was no need to increase the

size of the fragment. Fragmentation/Reassembly (FR) was thus implemented as follows, using the default

TinyOS message size (29 bytes) as the maximum fragment size:

A fragmentation layer was introduced between the application layer and routing layer of the source, and

a reassembly layer was introduced between the application layer and routing layer of the destination. The

FR module was been designed in a very modular fashion, so that any routing protocol can be “plugged”

into the application. A simple stop-and-wait protocol with positive acknowledgement was introduced for

error recovery, in the event that a fragment was lost in transit. If an ACK is not received at the source

within a dynamically determined time frame, the fragment is assumed to be lost, and a retransmission

procedure is initiated. The number of retransmissions is limited to a predetermined maximum to recover

from a loss of route to the destination.

Multi-hop communication in our application was made possible by using TinyAODV [22] as the routing

protocol. TinyAODV is derived from the well-known Mobile Ad hoc NETworking (MANET) [23] routing

protocol, the Ad hoc On-demand Distance Vector (AODV) [24] routing protocol. TinyAODV retains only

a subset of AODV’s features so that it can fit within the memory constraints imposed by the motes (and

thus tiny). TinyAODV was chosen because it was simple, and it came bundled with the library supplied

by Crossbow.

Fig. 4 shows the multi-hop communication schematic between Nose Server and the Nose in the

Nose Service application. With reference to our architecture, the Nose Service plays the role of the

collector, while the motes network and the Nose sensor form part of the device layer. We only used

the following three commands: LOAD PROFILE, START IDENTIFICATION, and FETCH RESULT.

These commands were issued by the Nose service and were transmitted to the Nose via the multi-hop

wireless motes network. Fig. 5 shows the sequence of message exchanges between the Nose Server and

the Nose.

The following section describes the use of a proof-of-concept prototype, and the resulting lessons

learned.

18

Fig. 4. Nose Server - Nose Communication via Multi-hop Wireless Mote Network

Fig. 5. Sequence of Message Exchange between Nose Server and Nose

E. Proof-of-Concept Implementation

Fig. 6 shows the various components of the prototype unified mutli-owner sensor network architecture.

There are no performance measurements associated with these demonstration experiments. Instead, the

objective of our prototype implementation was to demonstrate the interaction of various entities (owned

by multiple vendors) in a secure, controlled-access environment.

Fig. 7 shows the schematic of the multiple-ownership architecture. Two clients, user A and user B

are used here, and the clients were each assigned different permissions to access and control the Nose.

The client programs of both users were run on the same machine. We had server-1 running the ACE

Core Services: the ACE Service directory, ACE User database service, and the ACE Regional database

service. To demonstrate that the various components of the architecture could function in a distributed

manner, we ran the Nose (chemical sensor) service on server-2. The nose server, which was built to IEEE

1451 specifications, was connected to an electronic nose via a multi-hop MICA motes network. Here,

19

Fig. 6. Various Components of Prototype Architecture

Fig. 7. Demonstration Architecture showing Secure Access and Control of Sensor Capabilities in a Multi-Ownership Scenario

we showed that the clients could successfully execute only the commands that they were permitted to

execute on the Nose, and were not able to execute commands for which they did not have the necessary

permissions. Fig. 8 shows the actual demonstration configuration.

1) Hardware Specifications:

• Server 1- Pentium III 750 MHz processor, 256 MB RAM, 10 GB HDD, Red Hat Enterprise Linux

WS release 4

• Server 2- Dell Latitude D820, Pentium Dual Core T2500 2.0 GHz, 1 GB RAM, 80GB HDD, Fedora

20

Core 5 (2.6.16)

• Client Host - Pentium III 933 MHz processor, 512 MB RAM, 80 GB HDD, Red Hat Enterprise

Linux WS release 4

• motes - MICA2 motes, 915 MHz, programmed using nesC (TinyOS 1.1.7) on a mib510 board (serial

port). The transmission power level of the motes was reduced by 20 dB to reduce the range of the

radios to ∼5 ft, to demonstrate multi-hop routing.

• Electronic Nose - Cyranose 320, serial # B001203158, mounted on a chemistry lab stand

2) Software Specifications:

• Server Application - The server application or the Nose service could issue commands to, and receive

responses from the Nose. It contained the Nose NCAP mentioned above, so that all communication

between the client, server and sensor was IEEE 1451 compliant. We used the JDDAC library, which

has been built around IEEE 1451 specifications, to build our Nose NCAP. It involved designing

a new Function Block to process and issue Nose-specific commands and a Transducer Block to

provide serial port IO capability. The ACE communication channels provided the communication

fabric between the client and the server. The Nose server exposed standard ACE interfaces to the

client, so that the Nose service could leverage the ACE security, authentication and authorization

mechanisms that are critical to our architecture.

• Client Application - The sole purpose of the Nose Client was to issue IEEE 1451-compliant com-

mands to the server, based on the user input. The client application was a simple GUI which simply

lists the commands that can be executed on the Nose. To ensure inter-operability with ACE, all client

applications were written in Java and used Remote Method Invocation (RMI) [25] to communicate

with the sensor services. With JAVA-RMI, the services present themselves as remote objects. The

applications get handles to these remote objects and use them to talk to the services. As recommended

in the JDDAC documentation [19], Eclipse IDE was used to build the Client and Server applications.

The version of Java that we used was JDK 1.5.0.8.

F. Demonstration Procedure

As mentioned earlier, here we model each of components of the network (Nose, Smell profile Database,

etc.) as belonging to a different organization, and the clients were not necessarily associated with any

of these organizations. This lends itself to a truly multi-ownership scenario, where the clients require

access to resources that span multiple administrative boundaries. The clients already possess the necessary

authorization (credential files). We do not discuss how each client obtained the credential files from an

21

Fig. 8. Demonstration Set up showing the various hardware components

appropriate CA - we simply assume that the authorization was obtained via some legitimate method. The

following were the permissions assigned to each user:

1) User A: LOAD PROFILE,

2) User B START IDENTIFICATION and FETCH RESULT.

In addition to these permissions, the credential file contains other relevant information such as the time

frame within which the user is permitted to execute these commands, the room that contains the Nose

(regional information), etc.

To execute LOAD PROFILE, first a profile had to fetched from the smell profile database (repository

layer), and then loaded into the Nose. Using the simple client GUI provided (client application), user

A was able to successfully retrieve the file corresponding to “Isopropyl Alcohol - Water” profile from

the database of smell profiles. Fig. 9 shows the sequence of associated message exchanges that leads to

fetching the smell profile. As a second step, user A could successfully load the smell profile into the Nose

by executing the LOAD PROFILE command. User A then tried to execute START IDENTIFICATION

command, but received an “Access Denied” error message due to lack of permissions. Fig. 10 shows

the sequence of message exchanges that lead to successful execution of LOAD PROFILE, and an

unsuccessful attempt in executing START IDENTIFICATION.

G. Summary of Experiences

The above-mentioned demonstration validates the design of the proposed architecture. Our experience

with the prototype implementation provided a better understanding of some of the issues that we listed

in Section II. Lessons learned include:

22

Fig. 9. User A successfully fetches profile from the Smell profile Database

Fig. 10. User A successfully executes LOAD PROFILE, but cannot run START IDENTIFICATION

• Scalability: The architecture does not require the control components to be co-located with one

another or with the devices, and functions in a very distributed fashion. Thus, the architecture

is scalable. However, we have not conducted any formal studies to assess the scalability of our

architecture, and such evaluation is definitely an area of future work.

• Security/Access/Control Policies for Multiple Organizations: The KeyNote trust management system

turned out to be an excellent choice for formulating and enforcing security, control and access policies

for components belonging to different organizations. However, the policy specification language

lacked structure and proved to be cumbersome when specifying policies for a large number of

heterogenous sensors, each with multiple functionalities. A new policy specification language, with

Fig. 11. User B successful in executing START IDENTIFICATION, but unsuccessful in executing LOAD PROFILE

23

a hierarchical structure is being considered to overcome this problem.

• Software Support: The ACE architecture software is perhaps the most critical software component

of the system. ACE provided authentication, authorization and secure communication services. The

other major software component was the IEEE 1451 library. IEEE 1451 enabled future extensibility

of supported sensors with minimum software developmental effort. However, integrating the IEEE

1451 library into the ACE architecture required significant effort. We expect that similar effort levels

will be required if we wish to integrate other sensor interface standards into the system. A convenient

improvement will be to enhance the system to support these standards as simple plug-in modules,

so that deployment of this architecture is simplified and rapid.

• Device Reconfiguration: The use of a standardized interface to communicate with the sensors greatly

reduces the need for device as well as system reconfiguration. The IEEE 1451-compliant sensors

are also called smart transducers - they have the ability for self-identification, and can be configured

during service start-up. Sensors can be reconfigured, added or removed from the system with great

ease.

• Device Naming/Addressing: The use of the regional database in the developed architecture ensures

that the addresses or names assigned to the devices only have local significance. This greatly

simplifies the addressing or naming of the devices. If the sensors are moved to a different location,

then the corresponding entry in the regional database will be updated, and (possibly) the device will

be assigned a new address.

• Hardware Support: For our implementation, we entirely used COTS wireless sensor components

(motes), which are not only affordable, but also easy to deploy. The limiting factor of motes is that

it requires programming using NesC in the TinyOS platform. A more attractive alternative could be

to use SunSpots [26] or gumstix [27] that allow for programming in Java. We are currently exploring

these technologies as possible wireless sensor network building components.

VII. CONCLUSIONS

In this paper, we described a sensor network architecture which integrates various component technolo-

gies into a unified framework that is rapidly deployable, scalable and owned by variety of organizations.

We also created a proof-of-concept implementation, which is a standards-based multi-hop wireless sensor

network application. In our framework, the control mechanisms provide for authentication of the client

(by the device of the controlling application), authorization to access and control the device based on

an established security policy, confidential transmission, and integrity checks. The data flow mechanism

24

supports real time exchange of data between applications and devices that is private and checked for

integrity. Security policies are specified and enforced via a KeyNote Trust Management System. This

prototype demonstrated the salient features of our unified multi-ownership architecture, namely assured

access and fine-grained control to the various components in the system across multiple administrative

domains. In particular, we showed that the users could access and control resources (devices, functions

of devices) belonging to multiple owners, provided they had the necessary authorization to do so.

Unauthorized users were denied access to the resources.

REFERENCES

[1] A. Hac, Wireless Sensor Network Designs. West Sussex, England: Wiley & Sons, 2003.

[2] D. Estrin et al., “Connecting the Physical World with Pervasive Networks,” IEEE Pervasive Computing, pp. 59–69, January-

March 2002.

[3] I. F. Akyildiz et al., “Wireless Sensor Networks: A Survey,” Computer Networks, vol. 38, pp. 393–422, September 2002.

[4] R. Szewczyk et al., “Lessons from a Sensor Network Expedition,” in European Workshop on Wireless Sensor Networks

(EWSN ’04), Berlin, Germany, 2004, pp. 66–80.

[5] G. J. Minden et al., “Architecture and Prototype of an Ambient Computational Environment: Final Report,” Univ. of

Kansas, Tech. Rep. ITTC-FY2004-TR-23150-09, July 2003, http://www.ittc.ku.edu/publications/documents/Minden2003

23150-09.pdf.

[6] J. Mauro, “Security Model in the Ambient Computational Environment,” Master’s thesis, Dept. of EECS, The University

of Kansas, USA, 2004, http://www.ittc.ku.edu/research/thesis/documents/james mauro thesis.pdf.

[7] M. Botts et al., “OGC Sensor Web Enablement: Overview and High Level Architecture, OGC 06-050r2,” http://www.

opengeospatial.org/pt/06-046r2.

[8] B. L. Gorman et al., “Advancing Sensor Web Interoperability,” Sensors, vol. 22, no. 4, pp. 14–18, April 2005,

http://www.sensorsmag.com/sensors/Homeland+Security/Advancing-Sensor-Web-Interoperability/ArticleStandard/Article/

detail/185897.

[9] P. B. Gibbons et al., “IrisNet: An Architecture for a Worldwide Sensor Web,” IEEE Pervasive Computing, pp. 22–33,

Oct-Dec 2003.

[10] “The IEEE 1451 Standard,” http://ieee1451.nist.gov/.

[11] M. Botts, “Technical Specification for Sensor Model Language (SensorML) - Version 0.0, Open Geospatial Consortium,

OGC 05-086r2,” http://portal.opengeospatial.org/files/?artifact id=13879.

[12] D. T. Fokum et al., “A Taxonomy of Sensor Network Architectures,” University of Kansas, Tech. Rep. ITTC-FY2008-TR-

41420-07, January 2008.

[13] M. Blaze et al., “The KeyNote Trust-Management System Version 2,” RFC 2704, September 1999.

[14] S. Muralidharan et al., “SensorNet Architecture with Multiple Owners,” University of Kansas, Tech. Rep. ITTC-FY2008-

TR-41420-02, July 2007.

[15] “Cyranose 320 Handheld Electronic Nose,” http://www.smithsdetection.com/eng/1383.php.

[16] “Microsoft’s Universal Plug and Play (UPnP),” http://technet.microsoft.com/en-us/library/bb457049.aspx.

[17] “Optical Sensor Interface Standard,” http://www.ntb.ch/pub/bscw.cgi/d18647/OSIS WG2 Standard Documentation.pdf.

25

[18] “The IEEE 1451.0 Standard: A Smart Transducer Interface for Sensors and Actuators - Common Functions, Communica-

tions Protocols and Transducer Electronic Data Sheets (TEDS) Formats,” http://grouper.ieee.org/groups/1451/0/.

[19] “Java Distributed Data Acquisition and Control (JDDAC),” https://jddac.dev.java.net/.

[20] “MICA MOTES from Crossbow Technologies,” http://www.xbow.com/Products/productdetails.aspx?sid=164.

[21] “TinyOS,” http://www.tinyos.net/.

[22] “TinyAODV,” http://tinyos.cvs.sourceforge.net/tinyos/tinyos-1.x/contrib/hsn/.

[23] “Mobile Ad hoc Networking (MANET) Charter,” http://www.ietf.org/html.charters/manet-charter.html.

[24] C. E. Perkins et al., “Ad hoc On-demand Distance Vector (AODV) Routing,” IETF RFC 3561.

[25] Sun Microsystems, “Java Remote Method Invocation (Java RMI),” http://java.sun.com/products/jdk/rmi/.

[26] “Sun Small Programmable Object Technology (SunSpots),” http://www.sunspotworld.com/.

[27] “GumStix,” http://gumstix.com/.

Modeling for Analysis and Design of
Communications Systems and Networks for

Monitoring Cargo in Motion Along Trusted Corridors

Daniel T. Fokum and Victor S. Frost

ITTC-FY2010-TR-41420-25

May 2010

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Abstract

Exports from Asia to the United States have increased significantly in recent years, causing congestion

at ports on the Pacific coast of the United States. To alleviate this congestion, some groups want to ship

goods by rail directly from ports to inland intermodal traffic terminals. However, for such an effort

to succeed, shippers must have “visibility” into the rail shipment. In this research we seek to provide

visibility into shipments through optimal placement of sensors and network elements. We formally define

the notion of visibility and then develop models to identify and locate network elements and containers

on trains. Two models have been developed—one for use when all network elements are on the train

and the other for use when some are located trackside—to determine sensor placements and network

design. The models show that, under reasonable assumptions, sensor deployment reduces the overall

system cost; therefore, sensor networks make sense for monitoring cargo. These models also enable the

study of system trade-offs while achieving the desired level of visibility into cargo shipments.

ii

CONTENTS

I Introduction 1

I-A Visibility . 1

I-B Problem Statement . 2

I-C Metrics . 3

II A System Description for Identifying and Locating System Elements 4

II-A Identification . 4

II-B Location . 4

III Parameters and Variables 5

III-A Parameters . 6

III-A1 Container Assignment Parameters . 6

III-A2 Communications Systems Assignment Parameters 6

III-A3 Distributions for Decision Maker Notification 7

III-B Communications Systems Assignment Variables 12

III-B1 Train-Mounted Deployment Variables 12

III-B2 Trackside Deployment Variables . 14

IV Model Descriptions 15

IV-A Train-mounted Deployment . 16

IV-A1 Objective Function . 16

IV-A2 Constraints . 16

IV-B Trackside Deployment with Fixed Train Speeds . 17

IV-B1 Objective Function . 18

IV-B2 Constraints . 18

IV-C Trackside Deployment with Variable Train Speeds 18

IV-D Extending the Sensor Placement Models . 19

IV-E Container Placement . 23

V Model Growth and Validation 23

V-A Model Growth and Computational Complexity . 23

V-B Model Validation . 24

iii

V-B1 Train-Mounted Model . 24

V-B2 Trackside Model with Fixed Speeds . 25

VI Related Work 27

VI-A Mixed Integer Linear Programs . 28

VI-B Mixed Integer Nonlinear Programs . 28

VII Conclusion 29

Acknowledgments 29

References 30

LIST OF FIGURES

1 Unit with Two 20 ft. Containers and One 40 ft. Container 5

2 Two Well-cars with Load Indices Identified . 6

3 Container Seal . 9

4 Sequence Diagram with Messages Involved in Decision Maker Notification 10

5 Example Train With Sensors Assigned . 20

6 Problem Growth in Number of Variables and Constraints 24

7 Train-mounted Model: Sensor Locations and Cost Metric Variation with Number of Visible

Containers . 25

8 Train-mounted Model: Trip Duration and Pr[Event Occurrence] versus Cost Metric 26

9 Trackside Model: Reporting Deadline versus Reader Separation and Cost Metric 26

10 Trackside Model: Train Speed versus Cost Metric and Sensor Transmission Range 27

LIST OF TABLES

I Train-related Parameters . 8

II Sensor and Communications Equipment-related Parameters 8

III Message-related Parameters . 8

IV Communications System Probability Parameters . 9

V Cost Parameters . 9

VI Statistics for Time Taken in Seconds Between Seal Events and Decision Maker Notification

for Short-haul Trial and Empirical Data . 11

iv

VII Estimated Gamma Distribution Parameters for Time Taken Between Seal Events and Deci-

sion Maker Notification . 11

VIII Train-Mounted Deployment Variables . 12

IX Trackside Deployment Variables . 14

X Parameters used in Validating Models . 21

XI Additional Parameters used in Validating Models . 25

1

I. INTRODUCTION

IN recent years exports from Asia to the USA have increased significantly, resulting in bottlenecks

at certain key ports on the West Coast. Some groups involved in freight transportation have sought

to get around the bottlenecks at Pacific Coast ports by using inland ports. To this end, they seek to

offload cargo from ships directly onto trains destined for an inland intermodal traffic terminal. Once at

the terminal, the freight can be processed by Customs and then distributed within the United States.

For the success of the scheme described above, shippers need to gain “visibility” into freight and

cargo movement, particularly in intermodal ‘black holes,” where freight changes hands across modes

and carriers. Visibility will only be possible through real-time integration of sensor data with carrier,

shipper, broker, importer, exporter, and forwarder information. Unfortunately, different complex systems

are currently used in the container transport chain [1].

To achieve the objective of providing visibility into cargo shipments, trains, railcars, and containers

will be equipped with sensors and devices that communicate sensor status, sensor ID, and train location.

Breaking a sensor on a container would generate a signal that is communicated to a reader over a

network and then to train personnel and/or to an operations center as an alarm message in near real-

time. In addition, location information will be sent with the alarm so that the geographic location of

the breakage event can be identified. Shipment information from a Trade Data Exchange (TDE) [2] will

be included in the alarm so that the the rail car, container, and its contents can be identified. While

sensors will present a non-negligible initial cost, their use could allow the sensing system to demonstrate

shipment integrity. It is also expected that the use of such systems may help reduce the risk of cargo

theft, which the Federal Bureau of Investigation (FBI) estimates costs the U.S. economy $15–$30 billion

dollars every year [3].

The objective of the research presented here is to develop models to find the “best” system design

including communications network and locations for sensors in a rail-based sensor network, as well as

to guide the design of future cargo monitoring systems. These models can also be applied to determine

system trade-offs when monitoring cargo in motion.

A. Visibility

In this section we provide a formal definition of visibility. Events are recorded in the cargo monitoring

sensor network whenever an attempt is made to open, close, or tamper with a seal. The seal also generates

other events during normal operations. Informally the integrity of a cargo shipment has state. These states

will include locking the container and closing the seal, opening the seal and then the container, and

2

ν(j, t, τ , TRj , Pε, Ej , Pα, Fj) =





1 if (Pr(t ≤ τ) ≥ TRj AND Pε ≥ Ej AND Pα ≤ Fj)

0 otherwise
(1)

tampering with the seal. A critical event is generated whenever the integrity of a shipment changes states.

Examples of critical events include messages indicating that seals are opened, closed, or tampered with.

Messages are also generated during normal operation of the cargo monitoring system. These messages

denote maintenance events and examples include alerts indicating an armed seal or a seal warning of a

low battery. The set of messages will also include items such as a seal incorrectly reporting a tamper

event, incorrectly being detected as missing, or an incorrect low battery report. This latter group of

events will be considered false alarms. Important aspects of visibility include the likelihood of a sensor

detecting an event at a container, the time taken by a sensor to notify decision makers of an event, and

the likelihood of a false alarm from a sensor. We define visibility as a binary variable that relates the

probability of detecting an event at a container with the time taken to report that event to the decision

maker and the probability of false alarm for that container. More formally we define a container j, as

visible if ν(j, t, τ , TRj , Pε, Ej , Pα, Fj) = 1, where the visibility function is defined as in equation (1)

and the parameters of the function are:

• An event can be detected at container j, and made known to the decision maker with a probability

Pε, that is greater than or equal to some threshold, Ej .

• The time t, taken to notify the decision maker of an event, must lie within an interval of length τ ,

with probability greater than or equal to some threshold TRj , i.e., Pr(t ≤ τ) ≥ TRj .

• The probability of false alarm at container j, Pα, must be kept less than or equal to some threshold

Fj .

The system design determines Pε, Pα, and Pr(t < τ). The combination of Pε, Pα and Pr(t < τ) can be

mapped into a visibility space.

B. Problem Statement

In this section we introduce a generalized problem statement. We may be able to achieve visibility into

a cargo shipment on a train by placing sensors, readers, and backhaul communication devices on every

container on a train (as is done today for high-value cargo, e.g., hazardous material), or by deploying

sensors on every container on the train and closely placing readers with backhaul communications

3

capabilities at the trackside. However, the cost and system trade-offs for such approaches are unknown.

As a result this research is aimed at answering the following system design question:

Given a collection of containers and a collection of end-to-end information subsystems

(including sensors, seals, readers, and networks); how do we design an end-to-end system

that provides “visibility” (meeting given Ej , Fj , and TRj constraints for all containers) while

minimizing overall system cost?

In our specific rail scenario, our overall design question spawns the following issues:

1) How to map and analyze a “system” description of containers on railcars, train scenario—including

train speed and trips per time unit—and associated communications infrastructure into the visibility

space? Thus an appropriate system model needs to be developed.

2) How to assign a cost to every position in the visibility space?

3) How to use 1) and 2) to find minimum “cost” systems for providing visibility into a rail shipment?

4) How to use 1) and 2) to determine system trade-offs when seeking visibility into rail shipments?

C. Metrics

Metrics are needed to compare the “goodness” of two or more proposed system designs. In this section

we present our metrics, which include:

• System operational cost. This metric is computed per trip, and it consists of each sensor’s false

alarm cost, the cost of deploying the sensors, repeaters and readers, network, and the backhaul

communications devices, as well as the cost of reporting events. The costs of missing an event at a

given container as well as the costs of a communications failure at a sensor are also components of

this metric.

• Visibility metric. We declare that container j is visible if the sensor placed on j meets all the

system designer-imposed constraints for visibility of the container.

The rest of this paper is laid out as follows: in Section II we present a scheme for identifying containers,

sensors, and the locations that they occupy on trains. Section III introduces the parameters and variables

in our model for analysis and design of communications systems for cargo monitoring. We describe

our models for optimal sensor and communications system assignment in Section IV. Section V presents

arguments for validating our models as well as discussing model growth. In Section VI we discuss related

work. Concluding remarks are provided in Section VII.

4

II. A SYSTEM DESCRIPTION FOR IDENTIFYING AND LOCATING SYSTEM ELEMENTS

Notation is needed to identify sensors and containers in models to analyze and design communications

systems and networks for monitoring cargo in motion along trusted corridors. In this section we present

one scheme for identifying containers and the locations that they occupy on a train. We focus first on

container identification and then turn our attention to indexing container and sensor locations on trains.

A. Identification

The containers that are to be placed on the train typically come in a variety of lengths ranging between

20 ft. (6.1 m) and 53 ft. (16.2 m). We propose sorting the loads by length and numbering each container

with a unique index j, that is sufficient for accessing the container’s properties, such as its length, weight,

value, and other intrinsic attributes of the container that might be necessary to solve the sensor placement

problem and identify system trade-offs. For example, suppose we have two 20 ft. (6.1 m) containers,

two 40 ft. (12.2 m) containers, and one 45 ft. (13.7 m) container, then j ranges from 1 . . . 5, with each

container bearing a unique j index. The container types can then be identified by using a function that

returns the length of a container when given an integer j, i.e., the container lengths could be stored in a

vector L, so that Lj indicates the length of container j.

Every sensor, repeater, and backhaul communications device that is to be placed on the containers is

identified with a unique index, i. This index, which starts off with value 1, is sufficient for reading the

parameters, e.g, transmission range, associated with each communications element.

B. Location

Each railcar consists of one or more permanently attached units, where a unit is a frame that can

support one or more slots [4]. Each unit is uniquely identified by an integer k, where k starts off with

value 1. The index k = 0 is reserved for the locomotive.1

Review of the Association of American Railroads Loading Capabilities Guide [5] indicates that railcars

used for intermodal transportation have at most two positions (layers) for carrying intermodal loads.

Within each position, slots are available for holding containers. For example, [5] indicates that two 20 ft.

containers can be placed in the bottom position and a 40 ft. container is placed over both 20 ft. containers

in the top position, as shown in Fig. 1.

1The issue of having to deal with several locomotives on a train is not part of this model. If more than one locomotive is

present, all the locomotives are treated as one with respect to the goals of this system.

5

Fig. 1. Unit with Two 20 ft. Containers and One 40 ft. Container

In general, the first available slot in a unit, i.e., the first slot in the bottom position is marked with

index q = 0. All other slots in the bottom position have even q indices. The first slot in the top position

is always indexed with index q = 1, while all other slots in the top position will have odd indices.2

From above we see that the integer triple (j, q, k) is sufficient for identifying the unit and slot occupied

by container j. For instance, using the five container example presented in Section II-A, the integer triple

(1, 0, 2) implies that container 1 is found in slot 0 of unit 2. Similarly, (5, 1, 1) implies that container

5 is found in slot 1 of unit 1.

In this section we presented an orthogonal indexing system for containers on a train. This numbering

scheme is based on assigning containers with a unique integer j, that is used to identify containers and

to retrieve additional container attributes, an index k, that is used to identify railcars, and an integer q,

used to identify slots on a railcar.

III. PARAMETERS AND VARIABLES

In this section we use the container identification and location scheme from Section II to introduce

the parameters and variables in two models for computing the system cost metric for a cargo monitoring

system. Parameters will be given to the system designer for a specific placement problem, while the

optimization process will assign appropriate values to the variables such that the objective is attained

while satisfying any design constraints. To facilitate the presentation of the variables and parameters,

throughout this section we use the five container example shown in Fig. 2. The rest of this section is laid

out as follows: Section III-A introduces the parameters for the models. For the sake of completeness there

is a very brief discussion on container assignment parameters in Section III-A1 while the communications

system parameters are presented in Section III-A2. Section III-A3 uses probability distributions to deter-

2A review of the Association of American Railways Loading Guide [5] indicates that we will rarely have more than one

container in the top position.

6

Fig. 2. Two Well-cars with Load Indices Identified

mine the likelihood of timely decision maker notification. The variables for the models are introduced in

Section III-B.

Suppose that we have a train with a locomotive and two well-cars as shown in Figure 2. Furthermore,

assume that we have two 20 ft. containers, two 40 ft. containers, and one 45 ft. container. Recall that

each container (load) is uniquely identified by an integer j, while the railcars are uniquely identified by

an index k. Assume that the containers are indexed3 such that j = 1 refers to the most expensive 20 ft.

container, while j = 2 refers to the least expensive 20 ft. container, j = 3 and j = 4 refer to the 40 ft.

containers. Finally, j = 5 is used to denote the 45 ft. container.

A. Parameters

This section introduces the parameters for models. First, we discuss the container assignment pa-

rameters, which indicate valid container assignments as well as information on container and railcar

attributes. Next, we discuss the communications systems assignment parameters. Finally, we present

some distributions to model the time taken to notify decision makers of events on a train.

1) Container Assignment Parameters: This section introduces the container assignment parameters for

our model. The length of the kth unit is represented by Uk and the length of the jth container is given

by Lj . The binary parameter yjqk indicates a given container’s location on the train, and it is defined as:

yjqk =





1 if jth container is assigned to slot q in unit k,

0 otherwise

2) Communications Systems Assignment Parameters: In this section we introduce parameters that

are necessary to address the system design, including the sensor assignment portion of the container

assignment and sensor assignment problem.

3Note that we are not required to index the containers by value. The indices could be randomly assigned as long as each

number is used exactly once.

7

Suppose each of the containers has a value vj , Furthermore, suppose that each time the decision maker

receives notification of an event at a container within a time interval τj we get a savings σj (Note that

σj can be greater than vj .). These savings can be viewed as the value of a detected event to the decision

maker. We assume that all the repeaters and backhaul communications devices on the train are arranged

in a linear topology.

Backhaul communications devices in our system are used to transmit event reports from the train to

the decision maker (possibly via an operations center). We use the binary parameter Bqk to indicate when

a backhaul communications device is placed in slot q of unit k. This parameter is defined as:

Bqk =





1
if backhaul communications device is placed

in slot q of unit k,

0 otherwise

In our system, sensors have a limited transmission range, and they are interrogated by more powerful

radios called “repeaters/readers.” The repeaters can communicate with each other over longer distances

to get event reports to a backhaul communications device. We use the binary parameter Aqk to indicate

when a repeater is placed in slot q of unit k. This parameter is defined as:

Aqk =





1 if repeater is placed in slot q of unit k,

0 otherwise

There are other communications systems assignment parameters used in the optimal placement model.

These parameters are shown as follows: Table I presents train-related parameters, sensor and communica-

tions equipment-related parameters are listed in Table II, Table III presents message-related parameters,

communications system probability parameters are defined in Table IV, and all the cost parameters in

the model are listed in Table V.

3) Distributions for Decision Maker Notification: In parallel with the modeling work being described

here we have also built a Transportation Security Sensor Network (TSSN) for monitoring rail cargo in

motion [6]. In the context of this work we envision that sensors will be placed on intermodal containers

that are being shipped by rail, as shown in Fig. 3.

The sensors on the containers will allow the TSSN to detect events at shipping containers and report

those that are important to decision makers using commercial networks. Experiments have been carried

out with the prototype TSSN and empirical data has been collected [6], [7]. The empirical data will be

used to enhance the models described here.

8

TABLE I

TRAIN-RELATED PARAMETERS

Parameter Comment

D Rail trip duration in hours.

dT Length of rail journey in kilometers.

ẋ Train-speed in kilometers per hour.

tf Number of trains passing a given trackside reader per hour.

tL Number of trips per locomotive per hour.

ζ Probability of event occurrence during a trip.

TABLE II

SENSOR AND COMMUNICATIONS EQUIPMENT-RELATED PARAMETERS

Parameter Comment

LTA Useful lifetime of trackside reader in hours.

LTc Useful lifetime of cellular communications device in hours.

LTs Useful lifetime of satellite communications device in hours.

FP2 Weight of sensor cost allocated to improving event detection.

FP3 Weight of sensor cost allocated to improving timely reporting or successful commu-

nications in train-mounted and trackside cases, respectively.

FP4 Weight of sensor cost allocated to reducing false alarms.

FP5 Weight of sensor cost allocated to improving sensor transmission range.

FP6 Weight of sensor cost allocated to reducing sensor read time.

TABLE III

MESSAGE-RELATED PARAMETERS

Parameter Comment

l Average message length in bytes between sensor and operations center.

λi Message generation rate for sensor i.

RTTc Communications round trip time in seconds from train to operations center over the

cellular link.

RTTs Communications round trip time in seconds from train to operations center over the

satellite link.

One of the critical metrics for TSSN performance—and also for visibility—is the time between event

occurrence and decision maker notification. Due to the proposed definition for visibility, we need to

9

TABLE IV

COMMUNICATIONS SYSTEM PROBABILITY PARAMETERS

Parameter Comment

Pr(H) Probability of successfully transmitting a message from the train to the operations

center over the cellular link.

Pr(I) Probability of successfully transmitting a message from the train to the operations

center over the satellite link.

TABLE V

COST PARAMETERS

Parameter Comment

Cα Cost of one false alarm.

Cs Cost of sending one byte by satellite.

Cc Cost of sending one byte by cellular.

CA Acquisition cost of one reader/repeater.

CF Fixed cost of acquiring a sensor.

CBC Acquisition cost of one backhaul communications device (cellular).

CBS Acquisition cost of one backhaul communications device (satellite).

CHL Installation cost of one sensor/seal.

CAL Installation cost of one reader/repeater.

CAD Installation cost of one trackside reader.

CBD Installation cost of one trackside cellular communications device.

Fig. 3. Container Seal

10

Fig. 4. Sequence Diagram with Messages Involved in Decision Maker Notification

create models that can predict the probability that a decision maker will be notified within a specified

time interval. Please refer to Fig. 4 for a sequence diagram showing the messages that are exchanged

within the TSSN to notify a decision maker.

In Fig. 4 the electronic seal, Mobile Rail Network (MRN) SensorNode, and MRN AlarmProcessor are

on the train. The VNOC AlarmProcessor and Virtual Network Operating Center (VNOC) AlarmReporting

services run on a server off the train. Finally, the Trade Data Exchange (TDE) is outside the shipper’s

network. As shown in Fig. 4 there are five epochs between an event taking place and decision maker

notification on a mobile phone.

We would like to generate a distribution that measures the likelihood of timely decision maker

notification of an event occurrence. It is reasonable to assume statistical independence of the epochs

shown in Fig. 4 because the time taken to break a seal and generate an alert message is independent

of the time taken to transfer a message from the MRN to the VNOC. Thus, the probability distribution

of the time from event occurrence to decision maker notification is the convolution of the probability

distributions for the five epochs listed above.

Based on our experiments we have calculated means and variances for the time taken to transmit a

message in each of the epochs listed above. These statistics are summarized in Table VI.

The time epochs shown in Fig. 4 are random. We assume that these random variables can be modeled

11

TABLE VI

STATISTICS FOR TIME TAKEN IN SECONDS BETWEEN SEAL EVENTS AND DECISION MAKER NOTIFICATION FOR

SHORT-HAUL TRIAL AND EMPIRICAL DATA

Epoch Description Min. Max. Mean Median Std. Dev.

1 Event occurrence to alert generation 0.81 8.75 2.70 2.13 1.86

2 Alert generation to MRN AlarmProcessor

Service

0.01 0.08 0.02 0.01 0.01

3 One-way delay from MRN AlarmProcessor

to VNOC AlarmProcessor

0.45 2.90 1.89 1.94 0.62

4 MRN Alarm arrival at VNOC to AlarmRe-

porting Service

0.01 3.01 0.17 0.05 0.32

5 Elapsed time from VNOC AlarmReporting

Service to mobile phone

5.2 58.7 11.9 9.8 7.4

TABLE VII

ESTIMATED GAMMA DISTRIBUTION PARAMETERS FOR TIME TAKEN BETWEEN SEAL EVENTS AND DECISION MAKER

NOTIFICATION

Epoch Description α̂ θ̂

1 Event occurrence to alert generation 4.01 0.60

2 + 4 Alert generation to MRN AlarmProcessor Service and

MRN Alarm arrival at VNOC to AlarmReporting Service

1.13 0.13

3 One-way delay from MRN AlarmProcessor to VNOC Alarm-

Processor

13.95 0.14

5 Elapsed time from VNOC AlarmReporting Service to mobile

phone

10.44 1.00

using Gamma4 probability density functions. The parameters for the distributions are estimated from

the collected data and shown in Table VII, where α̂ and θ̂ represent the shape and scale parameters

respectively. Using the results from [8] we see that there is 99.9 % chance that a decision maker is

notified of an event within 4 minutes.

4This distribution assumption is based on the positive values and the asymmetric histograms of the observed data. However,

this assumption is based on a limited number of samples and additional experiments are needed to validate this claim.

12

TABLE VIII

TRAIN-MOUNTED DEPLOYMENT VARIABLES

Variable Comment

α Probability of false alarm for sensor.

ε Probability of event detection by sensor.

ϕ Probability of successful end-to-end communications from sensor to operations center.

CH Acquisition cost of one sensor/seal.

Γk Cost of false alarms per railcar.

∆k Cost of missed detection per railcar.

Ξk Cost of reporting an event outside of desired deadline for container visibility.

Λk Cost of transmitting messages generated by all the sensors on a railcar.

Ψk Cost of acquiring and installing sensors on each railcar.

Υk Cost of acquiring and installing repeaters on each railcar.

Ωk Cost of acquiring and installing one backhaul communications device on each railcar.

B. Communications Systems Assignment Variables

This section presents the variables used to indicate communications system assignment in our models.

These variables are either integers or positive real numbers. Appropriate values will be assigned to these

variables such that the best objective function value is attained. First, we present the variable that is

common to the trackside and train-mounted cases. Next, we present the other variables that are unique

to each case. In general, whenever a variable or parameter is indexed by q = 0, and k = 0 it is assumed

that we will be referring to the locomotive. For example, A00 = 1 and B00 = 1 will indicate that a reader

and a backhaul communications device, respectively, are located on the locomotive. In our discussion, a

“sensor” refers to the combination of sensing and communication devices, e.g., the seal shown in Fig. 3.

The binary variable Sijqk indicates when sensor i is assigned to the jth container. This variable is defined

as:

Sijqk =





1 if sensor i is attached to jth container in slot q of unit k,

0 otherwise

1) Train-Mounted Deployment Variables: There are other variables, in addition to Sijqk, used for the

case when the sensors and related communications infrastructure are on the train. Table VIII presents

these variables and equations (2)–(9) show how the variables are computed.

13

Γk = Cα

∑

∀ i,j,q

αSijqkyjqk (2)

∆k = ζ

(∑

∀ j,q

σjyjqk −
∑

∀ i,j,q

εσjSijqkyjqk

)
(3)

Ξk = ζ

(∑

∀ j,q

σjyjqk −
∑

∀ i,j,q

ϕσjSijqkyjqk

)
(4)

Λk = D(Pr(H)Cc + Pr(I)(1− Pr(H))Cs)l
∑

∀ i,j,q

λiSijqkyjqk (5)

CH = CF + εFP2 + ϕFP3 + (1− α)FP4 (6)

Ψk =
∑

∀ i,j,q

(CH + CHL)Sijqkyjqk (7)

Υk =
∑

∀ q

(CA + CAL)Aqk (8)

Ωk =
(

CBC

tL × LTc
+

CBS

tL × LTs

) ∑

∀ q

Bqk (9)

The cost of false alarms per rail car is given by equation (2). This is given by the cost of each false

alarm times the sum of probabilities of false alarm for all the sensors that are currently used. Assume

that if an event is detected and reported in a timely manner, then there is no loss to the decision maker. In

addition, assume that the probability of an event occurring at a container is independent of the probability

of a sensor detecting that event or reporting it in a timely manner. Equation (3) computes the cost of a

missed detection per railcar, which is given by the probability of event occurrence times the savings that

are lost if an event is not detected. Similarly, equation (4) computes the cost of reporting an event outside

the required deadline for container visibility. This cost is given by the probability of event occurrence

times the savings that are lost if the event is not reported in a timely manner. Equation (5) computes

the cost of transmitting messages generated by all the sensors on a railcar. This cost is given by the rail

trip duration times the mean cost of transmitting one byte times the sum of message generation rates for

all sensors in use. The unit cost of acquiring a sensor for the train-mounted deployment is captured in

equation (6). This cost is given by adding up the fixed cost of acquiring each sensor, plus the cost of

getting a sensor with specified probabilities of detection, timely reporting, and false alarm. The cost of

acquiring and installing the sensors on a railcar is given by substituting equation (6) into (7). Repeater

acquisition and installation costs per unit are computed with equation (8). Finally, equation (9) calculates

the cost of acquiring and installing a backhaul device on each rail car. We assume that the backhaul

14

TABLE IX

TRACKSIDE DEPLOYMENT VARIABLES

Variable Comment

α Probability of false alarm for sensor.

ε Probability of event detection by sensor.

ρ Probability of successful communications between trackside reader and sensor.

β Rate of change of probability of unsuccessful communications with train speed.

η Probability of unsuccessful communications between trackside reader and sensor

when both are stationary.

θ Real number that specifies the minimum sensor transmission range in meters.

tRead Real number that states the maximum time in seconds available to read the sensors.

CH Acquisition cost of one sensor/seal.

Γk Cost of false alarms per railcar.

∆k Cost of missed detection per railcar.

Ξk Cost of unsuccessful communications between a trackside reader and the sensors on

a railcar.

Λk Cost for transmitting messages generated by all the sensors on a rail car.

Ψk Cost of acquiring and installing sensors on each railcar.

devices are reused for several trips, thus we amortize this cost over the expected number of trips in the

device’s lifetime.

2) Trackside Deployment Variables: The variable Sijqk, which is defined above, is also used when the

sensors are mounted on the train and the readers are at the trackside. The rest of the variables for the

trackside deployment case are defined in Table IX and equations (2), (3), (7), and (10)–(13) show how

the variables are computed.

ρ = 1− (η + ẋβ) (10)

CH = CF + εFP2 + ρFP3 + (1− α)FP4 + θFP5 +
FP6

tRead
(11)

Ξk = ζ

(∑

∀ j,q

σjyjqk −
∑

∀ i,j,q

ρσjSijqkyjqk

)
(12)

Λk =
(

dT

ẋ

)
Ccl

∑

∀ i,j,q

λiSijqkyjqk (13)

15

Suppose that we are given that the probability, ρ, of successful communications from a sensor to a

reader varies with train speed according to equation (10). In the trackside case the optimization process

will determine appropriate values for α, ε, ρ (including η and β), θ, and tRead. The cost of acquiring one

sensor for the trackside case is given by equation (11). The cost, Ψk, of acquiring and installing sensors

on each railcar in the trackside case is given by substituting equation (11) into (7). The values for the Γk

and ∆k variables are computed using equations (2) and (3), respectively. As we did above we assume

that the likelihood of an event occurring at a container is independent of a sensor detecting that event or

the timely notification of that event. In this case we assume that events will get to the operations center

in a timely manner if the sensors are read by a trackside reader. The cost of trackside reader failing to

read a sensor is given by equation (12). This cost is given by the probability of an event times the cost

of a trackside reader failing to read a sensor. Equation (13) computes the cost of transmitting all the

messages generated by all the sensors on a railcar. This cost is given by the rail trip duration times the

cost of transmitting one message times the message generation rates for all the sensors on a railcar.

IV. MODEL DESCRIPTIONS

In this section we present two models for computing the cost metric for a system that uses sensors

for cargo monitoring. The models that we develop here are robust enough to handle the following sensor

deployment cases:

• A deployment of sensors and a backhaul communications device on the train. This case can be

further divided into two subcases:

– The sensors cannot engage in multihop communications. Instead, they can only communicate

with the repeaters or the backhaul communications device. We call this the hierarchical deploy-

ment case.

– The sensors can engage in multihop communications to forward messages to the backhaul

communications device. As a result, this case does not contain any dedicated repeaters. We call

this the ad hoc deployment case.

• A deployment of sensors to the train, while the readers and backhaul communications devices are

at the trackside. This case can also be split into two subcases for when the train speed is fixed and

when it is allowed to vary.

The first model, which is presented in Section IV-A, is used when the backhaul communication devices

and repeaters are placed on a train. Section IV-B presents the second model, which is used when the train’s

speed is fixed and backhaul communication devices and readers are placed trackside. Section IV-C shows

16

how the trackside model can be applied in the case where the train speed is allowed to vary. The models

discussed in this section are presented using the following general optimization problem formulation:

minimize fo(x; p)

subject to fi(x; p) ≤ bi, i = 1, . . . , m

The objective function, fo(x; p), will be the system cost metric function, which depends on a vector of

variables, x, and a vector of parameters, p. The constraints of the optimization problem are defined by

the m fi equations. When necessary we provide comments relevant to the equations inline.

In Section IV-D we show how the hierarchical sensor deployment can be mapped to the ad hoc sensor

deployment case. Our analysis in the next four subsections assumes that the containers on the train are

already placed in fixed locations on the train. Thus, Section IV-E briefly mentions an optimization-based

approach which can be used to place containers on trains.

A. Train-mounted Deployment

In this subsection we present a model to minimize the system cost metric of a cargo monitoring system

when the sensors and backhaul communications device are on the train. First, we present the objective

function and then we discuss the model’s constraints, which define valid container and sensor placements.

1) Objective Function: Equation (14) computes the system cost metric over the duration of a trip:

minimize
∑

k

(Γk + ∆k + Ξk + Λk + Ψk + Υk + Ωk) (14)

The objective function sums the cost of false alarms over a rail journey, cost of missing a detection at a

given container, the cost of a sensor failing to communicate in a timely manner, the cost of communica-

tions across a rail journey, the material and installation costs of sensors and repeaters, respectively. Finally,

the last term in the sum computes the material and installation cost of the backhaul communications

device.

2) Constraints: The following constraints must be valid for any given optimal deployment of sensors

to containers on a train.

subject to
∑

∀ j,q,k

Sijqk ≤ 1 ∀ i (15)

∑

∀ i,q,k

Sijqk ≤ 1 ∀ j (16)

17

Certain attributes (for example, transmission range, detection probability, and false alarm rate) of the

sensors, repeaters, and backhaul communications devices are unique to the network elements. Thus, if a

given sensor, for example, is placed on a certain container that same sensor cannot be used on another

container. Equation (15) ensures that each sensor cannot be simultaneously assigned to more than one

container, while equation (16) ensures that each container has no more than one sensor.

ϕ = Pr(t ≤ τ) (17)
∑

∀ i,q,k

ϕSijqkyjqk ≥ TRj ∀ j (18)

In equation (17) we use the probability distribution defined in Section III-A3 to look up the probability

of timely notification. Equation (18) enforces one of the visibility requirements for container j. In (18)

we require that t, the time taken by a sensor to notify a decision maker of an event, must lie within an

interval τ , with probability exceeding some threshold TRj .

∑

∀ i,q,k

εSijqkyjqk ≥ Ej ∀ j (19)

Equation (19) requires that events are detected at container j with a probability ε, that exceeds some

threshold Ej .

∑

∀ i,q,k

αSijqkyjqk ≤ Fj ∀ j (20)

Equation (20) enforces the third component of the visibility requirement. In (20) we require that the

probability of false alarm at container j, α must be kept lower than some threshold Fj . Equations (18)–

(20) ensure that only solutions in the visibility space are considered.

B. Trackside Deployment with Fixed Train Speeds

In this subsection we present a model to minimize the system cost metric of a cargo monitoring system

when the backhaul communications devices and readers are trackside. In this case the train’s speed is

fixed; however, the probability of successful communications from the sensors to the readers varies with

train speed. We intend to study the system trade-offs that exist when monitoring rail-borne cargo. This

second model facilitates exploration of the trade-off space by capturing the metrics of a different cargo

monitoring methodology, which can be compared with the metrics of the first model. As was done above,

the objective function is presented first followed by a discussion of the constraints for this model.

18

1) Objective Function: Equation (21) computes the system cost metric for a trackside-based freight

monitoring system over the duration of a trip:

minimize

∑

k

(Γk + ∆k + Ξk + Λk + Ψk) +

((
CA + CAD

tf × LTA
+

CBC + CBD

tf × LTc

)
×

⌊
dT

dA

⌋)
(21)

The sum in the objective function captures the cost of false alarms over a rail journey, the savings

that are lost when a sensor either fails to detect that an event has occurred at a container, the cost of

communications across a rail journey, and the material and installation costs of sensors. Finally, the last

term captures the cost of setting up trackside readers along a given route.

2) Constraints: Equation (15) holds in this case because no sensor can be placed simultaneously on

more than one container. We also require that each container can have no more than one sensor, thus,

equation (16) is also valid in this case. In addition, equations (19) and (20) are visibility requirements,

thus they are also applicable in this case. Finally, the following constraints must also apply:

subject to

2θ − ẋtRead ≥ 0 (22)

Equation (22) says that the minimum time that a sensor is within range of a trackside reader must be

greater than the time taken to read a sensor. This constraint allows the train’s speed to be limited such

that the trackside reader has enough time to read the sensor.

2θ − ẋMaxtRead ≤ 0 (23)

Equation (23) states that sensor view time must be less than or equal to the read time if the train is

passing the trackside reader at the maximum speed at which a sensor can be read.

dA ≤ 2ẋρ
(τ − RTT)

(2− ρ)
(24)

The trackside readers are spaced according to equation (24) so that the expected time for end-to-end

communications from any sensor plus the time taken to cover the distance between trackside readers

must be less than the message reporting deadline.

C. Trackside Deployment with Variable Train Speeds

In this subsection we present a model to minimize the system cost metric of a cargo monitoring system

when the backhaul communications devices and readers are trackside and the train speed can be varied

19

based on sensor parameters. In this case we are optimizing over sensor locations, train speed, and reader

separations. This change can be accommodated using equation (21) as the objective function.

Constraints: Equations (15), (16), (19), (20), (22), and (24) also hold in this case for the same reasons

advanced in Section IV-B2. On the other hand equation (23) does not hold since the train speed is not

fixed.

D. Extending the Sensor Placement Models

The presence of repeaters in any system deployment for cargo monitoring adds one more layer of

complexity. In Section IV we claimed that a deployment where the sensors can only communicate with

repeaters or a backhaul communications device on the train is related to a deployment in which the

sensors can engage in multihop communications to forward messages to the backhaul communications

device. In this section we discuss how to map the hierarchical deployment case to an ad hoc deployment.

In demonstrating this mapping we make the following assumptions:

• The sensor deployment in the hierarchical case is dense enough to have, in the ad hoc case, a fully

connected network of sensors with multihop communications capabilities.

• The visibility constraints are the same in all cases and these constraints determine which containers

get sensors.

• The probabilities of detection, timely reporting, and false alarm for the sensors do not change as we

go from the hierarchical to the ad hoc deployment case.

• Each case contains the same number of backhaul communications devices.

• The ad hoc deployment case does not contain any repeaters.

Suppose that CMHier and CMAD represent the cost metrics for the hierarchical and ad hoc deployment

cases respectively. Observe that no changes need to be made to the objective function because it simply

returns a cost metric when presented with sensor and communications infrastructure locations and their

characteristics.

Definitions: Let CH and CHL represent the acquisition and installation costs for the sensors used in the

hierarchical case, while C ′
H and C ′

HL represent the acquisition and installation costs for the sensors used in

the ad hoc case. Let JHier and JAD represent the sets of containers assigned sensors in the hierarchical and

ad hoc deployment cases respectively. Let IHier and IAD represent the sets of communications devices

(sensors, repeaters, and backhaul communications) which are assigned in the hierarchical and ad hoc

deployment cases, respectively. Furthermore, define SHier and SAD as the set of sensors in the hierarchical

and ad hoc deployment cases. BHier and BAD and RHier and RAD are the sets of backhaul communications

20

Fig. 5. Example Train With Sensors Assigned

(BXX) and repeaters (RXX) for the hierarchical and ad hoc deployment cases. Then:

IHier = SHier ∪RHier ∪BHier

IAD = SAD ∪RAD ∪BAD

We claim that, given the assumptions above, the hierarchical sensor deployment case can be mapped

to the ad hoc case. This mapping is based on the assumption that sensors which were previously assigned

in the hierarchical deployment case are not moved to other containers in the ad hoc case. This mapping

is shown in equation (25).

CMAD = CMHier + Cα

∑

i∈ IAD\IHier
j ∈ JAD\JHier

∀ q,k

αSijqkyjqk − ζ
∑

i∈ IAD\IHier
j ∈ JAD\JHier

∀ q,k

σjSijqkyjqk

(
ε + ϕ

)

+ D(Pr(H)Cc + Pr(I)(1− Pr(H))Cs)l
∑

i∈ IAD\IHier
j ∈ JAD\JHier

∀ q,k

λiSijqkyjqk

+
∑

i∈ IAD
j ∈ JAD
∀ q,k

(C ′
H + C ′

HL)Sijqk −
∑

i∈ IHier
j ∈ JHier
∀ q,k

(CH + CHL)Sijqk −
∑

∀ q,k

(CA + CAL)Aqk

(25)

When proving our claim we will use the example train shown in Fig. 5 to illustrate the proof. The

train consists of a locomotive and four well cars, with each car bearing two containers. The savings

resulting from detecting an event at a container is 8,000 units. The following components are deployed

in hierarchical mode for cargo monitoring: a backhaul communications device, a repeater, and seven

sensors. The small rectangles on each of the containers in Fig. 5 indicate sensor assignments, while a

repeater is on container 6 on railcar 3, and the backhaul communications device is in the locomotive.

Finally, assume that we are given the parameter values shown in Table X.

Proof:

1) If we map the hierarchical sensor deployment case to the ad hoc deployment case, then we must

get rid of any repeaters in the deployment (Recall that the ad hoc deployment case does not contain

any repeaters.). Therefore, RAD = ∅, and any repeaters in the hierarchical case are replaced with

sensors in the ad hoc case.

21

TABLE X

PARAMETERS USED IN VALIDATING MODELS

Parameter Value Comments

D 20 Rail trip duration in hours.

ζ 0.2 Probability of event occurrence during trip.

Fj 3× 10−3 Visibility requirement for probability of false alarm at a container.

Ej 0.85 Visibility requirement for probability of detection at a container.

TRj 0.85 Visibility requirement for making a timely event report to decision makers.

α 1× 10−3 Probability of false alarm for each sensor.

ε 0.90 Probability of detection for each sensor.

ϕ 0.90 Probability of timely event reporting for each sensor.

l 690 Message length in bytes.

λi 9.0× 10−2 Message generation rate for a sensor. This results in 90 messages every 1,000 hours.

Pr(H) 0.90 Probability of train being in cellular coverage.

Pr(I) 0.90 Probability of train being in satellite coverage.

Cc 5× 10−5 Cost in units of sending one byte over a cellular link.

Cs 2× 10−4 Cost in units of sending one byte over a satellite link.

CHL + CH 46 Cost to acquire and install each sensor in the hierarchical case.

C′HL + C′H 51 Cost to acquire and install each sensor in the ad hoc case.

CA + CAL 101 Cost to acquire and install each repeater.

Cα 20000 Cost per false alarm.

14.6 Amortized cost of backhaul communications device.

Using Fig. 5 as an example we assume, without loss of generality, that sensor 1 is assigned

to container 1, sensor 2 is assigned to container 2, etc. Then, in the hierarchical deployment

RHier = {6}, i.e., the repeater with id code 6 is assigned, while RAD = ∅ in the ad hoc case. In

addition, assume that in both the hierarchical and ad hoc cases BHier = BAD = {9}.

2) Since we assume that the same visibility conditions hold in both cases, then we can conclude that

the ad hoc deployment case contains at least as many sensors as the hierarchical case, with equality

being achieved if the hierarchical case did not contain any repeaters. This condition is captured

below:

|SHier|+ |RHier| ≤ |SAD| (26)

Referring to Fig. 5, the set of sensors assigned in the hierarchical case is SHier = {1, 2, 3, 4, 5, 7,

8}. The set of sensors assigned in the ad hoc case is SAD = {1, 2, 3, 4, 5, 7, 8, 10}. Thus, we see

22

that the claim from equation (26) holds with equality.

3) The set of containers that that has sensors in the ad hoc deployment case, but which was not

assigned sensors in the hierarchical case is defined as:

JAD \ JHier (27)

Observe that this set is empty if no additional containers are assigned sensors in the ad hoc

deployment case. Similarly the set of communications devices used in the ad hoc deployment

case, but not in the hierarchical case is defined as:

IAD \ IHier (28)

As with the containers, this set is empty if no additional communications devices are used in the

ad hoc deployment case. Note that, since we assume that both cases contain just one backhaul

communications device while the ad hoc deployment case contains no repeaters, then equation (28)

simplifies to:

SAD \ SHier (29)

Using Fig. 5 as an example, then JAD\JHier = {6} since container 6 is the only container that has a

sensor assigned in the ad hoc deployment case, but which did not have a sensor in the hierarchical

deployment. Similarly, SAD \ SHier = {10}, since sensor 10 is the new sensor assigned in the ad

hoc case.

4) From equations (14) and (21) we observe that false alarm and communications costs increase as

additional sensors are added, while the savings lost due to missed detections and late event reports

decrease. The cost metric of the ad hoc case is the cost metric of the hierarchical case plus the false

alarm costs of any new sensors minus the costs of missed detection and untimely reporting due to

the new sensors plus any savings from detecting and reporting an event in the desired notification

window. To this sum we add the increase in communications costs for the new sensors as well

as the installation and material costs for the new sensors. Finally, we subtract the material and

installation costs of the repeaters and sensors that were included in the hierarchical deployment.

This mapping is summarized in equation (25).

Returning to the example train shown in Fig. 5 let us assume that we are given the parameter values

in Table X and that all the containers on the train have low values. Then, the cost metric for the

initial hierarchical deployment is 14,178.4 units while the cost metric for the ad hoc deployment

is 6,983.5 units. The following costs can be computed for the additional sensor in the ad hoc

23

deployment: false alarm cost for the additional sensor is 20 units, additional savings in event

detection due to the new sensors is 3,600 units, savings resulting from decision maker notification

in a timely manner is 3,600 units, the additional communication cost is approximately 0.11 units,

cost of acquiring and installing the eight new sensors is 408 units, and the amount gained by not

deploying a reader is 101 units. It can be shown that 6983.5 = 14178.4 + 20 − (3600 + 3600)

+0.11 + 408− 322− 101, which confirms equation (25).

E. Container Placement

For the purposes of this research we assume that containers have been placed in fixed locations on the

train such that the aerodynamic efficiency of the train is maximized. We assume that container placement

is done using Lai et al.’s [4] method. Please consult [4] for details on the objective function and constraints

for this container placement methodology.

V. MODEL GROWTH AND VALIDATION

In this section we review model validation and the growth of the sensor placement problem with train

size. Model validation seeks to determine if a given mathematical abstraction matches a real system.

This task is generally hard to accomplish. Kleindorfer et al. [9] provides a more complete discussion

on validation of models, especially simulation models. By validating our models we can have greater

confidence in the optimization results reported by our models.

A. Model Growth and Computational Complexity

In this subsection we examine the growth of our models with different problem inputs. The optimization

models described in Section IV have been solved using the Bonmin [10] solver running on the NEOS

optimization server [11], [12]. Both models have been run for trains with 7, 14, 20, 27, and 33 containers

(this translates to 3, 6, 9, 12, and 15 units respectively). The computational complexity of our models

depends on the number of variables and constraints, with the problem becoming more complex with

more variables and constraints. The growth in the number of variables and constraints is summarized in

Fig. 6. From Fig. 6a it is clear that the train-mounted and trackside models have about the same number

of variables. Note that the trackside model with fixed train speeds has additional variables, e.g., sensor

transmission range and sensor read time, that are not found in the train mounted model. From Fig. 6b

we see that the number of constraints in all three models increases gradually with train size. This growth

24

0 20 40 60 80 100
0

5

10

15x 10
5

Containers

V
ar

ia
bl

es

Train−Mounted
Trackside, Fixed Speed
Trackside, Var. Speed

(a) Variables

0 20 40 60 80 100
0

250

500

750

1000

1250

Containers

C
on

st
ra

in
ts

Train−Mounted
Trackside, Fixed Speed
Trackside, Var. Speed

(b) Constraints

Fig. 6. Problem Growth in Number of Variables and Constraints

is partially due to the fact that there is one instance of equation (15) for every sensor and one instance

each of equations (16), (19), and (20) for each container. The rapid growth in the number of variables

motivates us to consider using heuristics to assign sensors and related communications infrastructure. In

our future work we specify a heuristic for assigning sensors to containers in fixed positions on a train. In

the rest of this paper and our future work we only consider the train-mounted and the trackside model

with fixed train speeds.

B. Model Validation

In this subsection we construct arguments for validating the train-mounted and trackside models by

studying trends in the behavior of the optimization models at the boundaries of the visibility space. For

the sake of discussion we will use an example train to illustrate our claims. We use the parameter values

from Tables X and XI in our discussion.

1) Train-Mounted Model: Suppose we have a train with 15 units and 33 containers; where 20 of the

containers have a low value, 9 have a medium value, and 4 have a high value. If the train-mounted model

achieves an optimal result, it returns the cost metric at the optimal solution as well as the final sensor

assignment.

Assume that there are initially enough sensors for each of the containers. Suppose that the visibility

conditions on the containers are relaxed such that: TRj = 0.0, Ej = 0.0, and Fj = 1.0, for some of

the containers. In addition assume that there are exactly enough sensors available to satisfy the visibility

constraints. Fig. 7a shows the slot and unit locations when only 12 of the 33 containers are visible.

25

TABLE XI

ADDITIONAL PARAMETERS USED IN VALIDATING MODELS

Parameter Value Comments

σj 200, 000 Average savings resulting from event detection at high value container. Reference

[13] indicates that in 2006 the average container entering the US had a value of

66,000.

σj 100, 000 Average savings resulting from event detection at medium value container.

σj 20, 000 Average savings resulting from event detection at low value container.

0 4 8 12 16

0

1

2

S
lo

t

Unit ID

(a) Sensor Locations, where Locomotive = Unit 0, slot 0

is in the bottom level of the railcar, and slot 1 is in the top

level.

0 10 20 30 40
0

1

2

3

4

5

6x 10
5

Visible Containers

C
os

t M
et

ric
 [U

ni
ts

]

(b) Visibility vs. Cost

Fig. 7. Train-mounted Model: Sensor Locations and Cost Metric Variation with Number of Visible Containers

Fig. 7b shows the relationship between the number of visible containers and the cost metric. As we have

fewer sensors the cost metric per trip increases as more containers are not “protected” by any sensors.

As the rail trip duration is increased the cost metric per trip should increase as there is greater

opportunity for messages to be transmitted. Fig. 8a shows that as the rail trip duration is increased

the system cost metric also increases. Fig. 8b shows the relationship between the probability of event

occurrence and the system cost metric. As events become more likely, the system cost metric per trip

also increases. Figs. 7b and 8 show that the train-mounted model exhibits correct trends.

2) Trackside Model with Fixed Speeds: As stated in Sections III-B and IV-B the outputs of the trackside

model include the system cost metric, sensor locations, maximum sensor read time, and minimum sensor

26

0 20 40 60 80 100
4.2

4.205

4.21

4.215

4.22

4.225x 10
4

Trip Duration [Hours]

C
os

t M
et

ric
 [U

ni
ts

]

(a) Trip Duration vs. Cost

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5x 10
5

Pr[Event Occurrence]

C
os

t M
et

ric
 [U

ni
ts

]

(b) Prob. of Event Occurrence vs. Cost

Fig. 8. Train-mounted Model: Trip Duration and Pr[Event Occurrence] versus Cost Metric

0 100 200 300
0

1

2

3

4

5

Expected Reporting Deadline [s]

R
ea

de
r

S
ep

ar
at

io
n

[k
m

]

(a) Deadline vs. Reader Separation

0 100 200 300
2.7

2.8

2.9

3

3.1x 10
5

Expected Reporting Deadline [s]

C
os

t M
et

ric
 [U

ni
ts

]

(b) Deadline vs. Cost

Fig. 9. Trackside Model: Reporting Deadline versus Reader Separation and Cost Metric

transmission range. In addition we also compute reader separation given the reporting deadline and

probability of successful communications from a sensor to a trackside reader.

For the trackside model the cost metric for the entire system will increase, as was the case for the

train-mounted model, as fewer sensors are available to be used on the train. This is because more and

more of the containers are not protected by sensors. Assume that we have the same train configuration

mentioned in Section V-B1, with each container being assigned a sensor while the readers are at the

trackside.

27

20 40 60 80 100
4.18

4.2

4.22

4.24

4.26x 10
4

Train Speed [km/h]

C
os

t M
et

ric
 [U

ni
ts

]

(a) Train Speed vs. Cost Metric

20 40 60 80 100
19

20

21

22

23

24

Train Speed [km/h]

R
eq

ui
re

d
T

x
R

an
ge

 [m
]

(b) Train Speed vs. Sensor Transmission Range

Fig. 10. Trackside Model: Train Speed versus Cost Metric and Sensor Transmission Range

Fig. 9 shows the effect of changes in the expected reporting deadline on reader separation and system

cost metric when the train speed is fixed at 45 km/h. Fig. 9a shows the relationship between reporting

deadline and reader separation. As the reporting deadline is reduced the trackside readers need to be

placed closer together. Since more readers are required, the cost metric increases significantly as the

reporting deadline is shortened. Fig. 9b shows the change in cost metric with the reporting deadline.

Fig. 10a shows that the cost metric decreases as the train speed is increased. As the train speed is

increased the train can cover the distance between its origin and destination in a shorter time implying

that the trackside readers can be placed further apart while satisfying the reporting deadlines. Finally,

suppose that the system specifications state that each sensor is read in at most 3 s. As the train speed

is increased equation (22) shows that the sensor transmission range must increase so that each sensor

can be read in the specified interval. Fig. 10b shows that the sensor transmission range increases as

expected. This relatively simple example shows that equation (22) correctly captures system operation

for the trackside model.

In this section we have shown that our optimization models exhibit correct trends matching a real

system. Therefore, we can have confidence in our results.

VI. RELATED WORK

In this section we provide an overview of solution techniques for mixed integer linear and mixed

integer nonlinearly constrained problems; two classes of optimization problems that we have encountered

in our modeling work.

28

A. Mixed Integer Linear Programs

A mixed integer linear program (MILP) is an optimization problem where the objective function and

all of the constraints are linear functions, while some of the variables are integer-constrained [14]. Darby-

Dowman and Wilson [15] state that integer program models are generally harder to solve than linear

program models of the same size, while Bonami et al. [16] state that MILP are NP-Hard problems.

Mixed integer linear programs are either solved by branch-and-bound, branch-and-cut, or branch-and-price

methods.

When solving integer programs a tree of the entire solution space is created, the root node of the tree

is the entire state space, S, while all other nodes represent smaller partitions of the solution space. With

branch-and-bound the branching is done by selecting a variable x with a fractional value k and then

creating two sub-problems with the additional constraints x ≤ k and the other x ≥ k + 1. This is called

the Linear Programming Relaxation (LPR) At a selected node of the tree the integer program LPR is

solved. If there is no feasible solution to the problem at that node, the node is eliminated. Otherwise if

the solution of the linear programming relaxation is integer feasible and the objective function solution is

less than the previous upper bound then the objective function value for this subproblem is set as the new

upper bound for the objective function. Branching continues until the best integer feasible solution found

is shown to be optimal. With branch-and-cut at each stage in the development of the solution space tree

an equation called the cut is added to the set of constraints when carrying out the linear programming

relaxation. The cut has the added requirement that it must not exclude any integer solutions at that

node or any of its descendants; however, it may exclude integer solutions for preceding nodes. With

branch-and-price an auxiliary problem is solved to identify which columns should be added to the linear

programming relaxation. The relaxation is optimized and more columns are identified for addition to the

LPR [15].

B. Mixed Integer Nonlinear Programs

A mixed integer nonlinear program (MINLP) is an optimization problem with some integer-constrained

and continuous variables as well as nonlinear constraints and/or objective function. If all the variables are

continuous, then we have a nonlinear program. MINLPs are a superset of mixed integer linear programs,

where the reduction to MILP takes place when all of the functions in the optimization problem are linear

[14].

Mixed Integer nonlinear programs are worse than NP-Hard [14]. However convex MINLPs can be

solved using the following techniques: branch-and-bound, extended cutting plane, outer approximation,

29

generalized Benders decomposition, LP/NLP-based branch-and-bound, and branch-and-cut [14], [16].

This section provides an overview of each of these techniques. More detailed explanations of the solution

methods are found in [16]. Branch-and-bound for MINLPs is done just as for mixed integer linear

programs, except that a nonlinear program is now solved at each node of the tree [14]. The extended

cutting plane method constructs a mixed integer linear program relaxation and solves it. If the solution

is not feasible, then a cutting plane of the most violated constraint at the optimal solution is added to

the relaxation and the problem is re-solved and the process is repeated [14], [16]. Outer approximation

(OA) is based on the observation that a MINLP is equivalent to a MILP of finite size. The MILP can be

generated by linearizing both the objective and constraint functions. The linearized function is then solved

and the integer solution from this step is used as a bound on the optimal value of the NLP. This process

is repeated until the upper and lower bounds of the optimal value of the non-linear program are within a

specified tolerance [16]. Generalized Benders decomposition is very similar to the outer approximation

method except that it has only one continuous variable [14]. LP/NLP-based branch-and-bound is an

extension of the OA method. It uses LPR to find an integer solution in a branch-and-bound tree and then

solves the nonlinear program to get upper bounds on the solution [14], [16]. Branch-and-cut has been

adapted to solving MINLPs [14]. This method is similar to branch-and-bound, but it adds cutting planes

at each node of the tree to strengthen the NLP relaxation [14].

VII. CONCLUSION

This paper presented two models that can be used to find the optimal cost metric for a rail-borne cargo

monitoring system. We presented the parameters and variables for our models. The models presented

in Section IV are suitable to enable quantitative evaluation of the trade-offs that can be made when

monitoring rail-borne cargo. In addition this paper has also shown that we a hierarchical deployment of

sensors can be mapped to an ad hoc sensor assignment, given that the sensors assigned in the initial case

are not moved to other containers. Finally, this paper has shown that there is a large number of variables

involved in the models for sensor assignment. As a result, future work will determine if heuristics can

yield near-optimal performance for sensor assignment.

ACKNOWLEDGMENTS

This work was supported in part by Oak Ridge National Laboratory (ORNL)—Award Number

4000043403. This material is also partially based upon work supported while V. S. Frost was serving at

the National Science Foundation.

30

REFERENCES

[1] European Conference of Ministers of Transport, Container Transport Security Across Modes. Paris, France: Organisation

for Economic Co-operation and Development, 2005.

[2] KC SmartPort. (2008, Nov. 10) Trade Data Exchange—Nothing short of a logistics revolution. Digital magazine. [Online].

Available: http://www.joc-digital.com/joc/20081110/?pg=29

[3] Federal Bureau of Investigation. (2006, Jul. 21) Cargo Theft’s High Cost. Headline. Federal Bureau of Investigation.

[Online]. Available: http://www.fbi.gov/page2/july06/cargo theft072106.htm

[4] Y.-C. Lai et al., “Optimizing the Aerodynamic Efficiency of Intermodal Freight Trains,” Transportation Research Part E:

Logistics and Transportation Review, vol. 44, no. 5, pp. 820–834, Sep. 2008.

[5] Intermodal Committee, Loading Capabilities Guide, Association of American Railroads Std., Jun. 26 2003. [Online].

Available: http://www.aar.org/AARPublications/∼/media/AARPublications/FreePubs/AAR%20Loading%20Capabilities%

20Guide.ashx

[6] D. T. Fokum et al., “Experiences from a Transportation Security Sensor Network Field Trial,” University of Kansas,

Lawrence, KS, Tech. Rep. ITTC-FY2009-TR-41420-11, Jun. 2009.

[7] M. Kuehnhausen and V. S. Frost, “Application of the Java Message Service in Mobile Monitoring Environments,” University

of Kansas, Lawrence, KS, USA, Tech. Rep. ITTC-FY2010-TR-41420-18, Dec. 2009.

[8] S. Nadarajah, “A Review of Results on Sums of Random Variables,” Acta Applicandae Mathematicae: An International

Survey Journal on Applying Mathematics and Mathematical Applications, vol. 103, no. 2, pp. 131–140, Sep. 2008.

[9] G. B. Kleindorfer et al., “Validation in Simulation: Various Positions in the Philosophy of Science,” Manage. Sci., vol. 44,

no. 8, pp. 1087–1099, Aug. 1998.

[10] P. Bonami. (2010, May) Bonmin. Project wiki. [Online]. Available: https://projects.coin-or.org/Bonmin

[11] (2010, Feb.) NEOS Solvers. Solver listing. Argonne National Labs. Argonne, IL, USA. [Online]. Available:

http://neos.mcs.anl.gov/neos/solvers/index.html

[12] J. Czyzyk et al., “The NEOS Server,” Comput. Sci. Eng., IEEE, vol. 5, no. 3, pp. 68–75, Jul.-Sep. 1998.

[13] S. E. Flynn. (2006, Jan.–Feb.) Port Security Is Still a House of Cards. Article. Council on Foreign Relations. [Online].

Available: http://www.cfr.org/publication/9629/

[14] A. N. Letchford, “Mixed-Integer Non-Linear Programming: A Survey,” presented at the 1st LANCS Workshop on Discrete

and Non-Linear Optimisation, Southampton, United Kingdom, Feb. 2009.

[15] K. Darby-Dowman and J. M. Wilson, “Developments in Linear and Integer Programming,” The Journal of the Operational

Research Society, Special Issue: Applications and Developments in Mathematical Programming, vol. 53, no. 10, pp.

1065–1071, Oct. 2002. [Online]. Available: http://www.jstor.org/stable/822966

[16] P. Bonami et al., “Algorithms and Software for Convex Mixed Integer Nonlinear Programs,” Computer Sciences Department,

University of Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1664, Oct. 2009.

	Abstract
	 Table of Contents
	List of Figures
	 List of Tables
	2. Background
	3. Completed Tasks
	4. Description of Student Activities
	5. Conclusions
	 6. References
	 List of Appendices
	appendices 7-25_TR-41420-26.pdf
	title-page.pdf
	final-v14.pdf
	Abstract
	 Table of Contents
	List of Figures
	 List of Tables
	2. Background
	3. Completed Tasks
	4. Description of Student Activities
	5. Conclusions
	 6. References
	 List of Appendices

	appendix_v1.pdf
	41420-01_PMani_DPetr.pdf
	41420-03.pdf
	41420-04.pdf
	41420-05.pdf
	41420-06.pdf
	41420-07.pdf
	41420-08.pdf
	41420-09.pdf
	41420-10.pdf
	41420-11-Fokum.pdf
	41420-11 cover.pdf
	41420-11-07-14-09.pdf

	41420-12-Frost.pdf
	41420-12-2_cover.pdf
	KU_Summary_of_Status_Dec_2008pg1-2.pdf
	KU_Summary_of_Status_Dec_2008pg1-5.pdf

	41420-13-Kuehnhausen.pdf
	Abstract
	Table of Contents
	List of Figures
	List of Listings
	List of Tables
	Introduction
	Statement of Problem
	Proprietary Solutions
	Variety of Open Standards
	Service Oriented Architecture
	Summary

	Background
	Extensible Markup Language
	Overview
	Descriptive power
	Ease of transformation
	Information storage and retrieval
	Flexible transmission

	Open Geospatial Consortium
	Sensor Web Enablement (SWE)
	Geography Markup Language (GML)
	Catalogue Service for Web (CSW)
	Observations & Measurements (O&M)
	Sensor Observation Service (SOS)
	Sensor Alert Service (SAS)

	Service Oriented Architecture
	Representational State Transfer (REST)
	Traditional Definition
	Current Use
	Further Development

	SOAP
	Message format
	Faults
	Further development

	Web Service Specifications
	WS-Addressing
	WS-Eventing
	WS-Security

	Service Directory
	Web Services Description Language (WSDL)
	Description
	Types
	Interface
	Binding
	Service

	Message Exchange Patterns
	In-Only
	Robust In-Only
	In-Out
	In-Optional-Out
	Out-Only
	Robust Out-Only
	Out-In
	Out-Optional-In

	Related Work
	Microsoft - An Introduction to Web Service Architecture
	Adobe - Service Oriented Architecture
	Request-Response via Service Registry (or Directory)
	Subscribe-Push
	Probe and Match

	Open Sensor Web Architecture
	Globus - Open Grid Services Architecture
	Service Architectures for Distributed Geoprocessing
	Web Services Orchestration
	Summary

	Design & Architecture
	Overview
	Service Oriented Architecture
	Services
	Clients
	Modules
	Subscriptions
	Synchronous and asynchronous communication

	TSSN Common Namespace
	Mobile Rail Network
	Sensor Node
	Alarm Processor

	Virtual Network Operation Center
	Sensor Management
	Alarm Processor
	Alarm Reporting

	Trade Data Exchange
	Trade Data Exchange Service

	Open Geospatial Consortium Specifications

	Implementation Results
	Logging Module
	Log Parser
	Abstraction Layer Model
	Message Types

	Visualization
	Performance and Statistics
	Road Tests with Trucks
	Short Haul Rail Trial

	Conclusion
	Current Implementation
	Future work
	Acknowledgment

	References

	41420-14-Deavours.pdf
	41420-14_cover.pdf
	deavours-reportpg1-2.pdf
	deavours-report3.pdf

	41420-15-Frost.pdf
	41420-16-EDS Final Report.pdf
	41420-17-Oguna.pdf
	41420-18-Kuehnhausen.pdf
	41420-19-Komp.pdf
	41420-20-Kuehnhausen.pdf
	41420-21-Fokum.pdf
	41420-22-Kuehnhausen.pdf
	41420-23-Aroor.pdf
	41420-24-Mani.pdf
	41420-25-Fokum.pdf

