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Abstract 
 

This thesis details the development of an Orthogonal Frequency Division 

Multiplexing (OFDM) reference design system based off of the IEEE 802.16-2004 

OFDM PHY standard. This system consists of a separate transmitter and receiver and 

has been implemented in VHDL for use on the Kansas University Agile Radio 

(KUAR).  

The KUAR is an experimental software-defined radio platform that is intended 

for research in frequency-agile and cognitive radios. OFDM is a pertinent modulation 

technique for frequency-agile and cognitive radios, in that it can facilitate the ability 

to perform dynamic spectrum access communications over a wide transmission 

bandwidth without interfering with incumbent license holders.  

This thesis contributes an actual implementation of the basic components required 

for an OFDM system. Timing and frequency synchronization, channel estimation, 

and pilot carrier phase tracking are mandatory components of a packet-based OFDM 

system and pose the most significant implementation challenge. The VHDL modules 

provide a proof of concept and a framework unto which more sophisticated 

algorithms can be later developed and tested.  

Another key contribution is the demonstration of a design-flow for developing 

and validating communication systems in VHDL. A sequence of testing and 

validation phases is discussed, progressing from Matlab simulation to VHDL 

simulation to synthesized VHDL testbenches and eventually to across-the-air 
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transmission on the radios. This design in particular is validated against the Matlab 

simulation for a baseband AWGN channel.  
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Chapter 1: Introduction 
 

1.1 Research Motivation - Spectrum Scarcity 
 

 
In the design of a communications system, there are essentially three factors that 

limit the performance of a system: bandwidth, transmit power, and complexity. The 

combination of these three factors determines how much data can be reliably 

transmitted from one radio to another [1].  To some extent, one can be exchanged for 

the other. A radio could employ more complex algorithms in order to conserve 

transmit power and bandwidth, or it could transmit with a very high power level and 

conserve bandwidth and complexity, and so on.  However each of these three factors 

is constrained by a practical limit. A cell-phone handset can only transmit so much 

power safely, and they are limited by having a finite source of energy from the 

battery. The complexity of a device is constrained by costs of research and 

development, and the processing ability of modern semiconductor technology. These 

limitations and tradeoffs of complexity and transmit power can differ from user to 

user, but transmission bandwidth is the one commodity that all wireless users must 

share. This is one of the reasons that bandwidth is by far the most precious 

commodity in the current wireless industry.   

There is a finite amount of bandwidth available for use. Although the electro-

magnetic spectrum theoretically is infinite in size, there is a sub-set of those 

frequencies that are actually practical for wireless communications systems. The size 
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of the antenna for transmission and reception must be proportional to the wavelength 

of the radio wave. This imposes limits on extremely low and extremely high 

frequencies. In addition, as frequencies increase, the propagation loss increases and 

the need for line-of-sight communication becomes more of an issue.  Transmit 

frequencies greater than 10 GHz are very difficult to operate without a line-of-sight 

path from the transmitter to receiver [2]. Frequencies greater than 50 GHz begin to be 

absorbed by oxygen in the atmosphere and may even become unusable in the 

presence of rain [3]. Additionally, RF hardware becomes more expensive and 

difficult to implement as frequencies increase.  

Fortunately, bandwidth is reusable spatially – a key example being a network cell, 

allowing two users to use the same spectrum, provided they spatially separated in two 

different cells. Bandwidth is also reusable temporally, where different users can 

operate in the same bandwidth, but not at the same time. Bandwidth can also be 

shared among users in both time and frequency, such as with code division multiple 

access (CDMA) systems, however, there is still a limit to the number of users who 

can simultaneously use the same bandwidth.  

The wireless communications industry is growing rapidly both in the number of 

users and in the amount of bandwidth required by each user. Cellular technology is 

advancing from voice communications, which requires relatively little bandwidth, to 

data and video communications, which requires much more bandwidth. Wireless 

internet access is evolving from WiFi systems, which have ranges of tens of meters, 

to WiMAX systems which have ranges measured in kilometers. The increase in data 
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rate and range both require the consumption of bandwidth resources. These two 

competing forces – the finite amount of available bandwidth and the increasing 

demand for bandwidth – are exacerbated by the way in which spectrum is allocated to 

consumers. 

Radio spectrum is a natural resource. In the United States, the Federal 

Communications Commission (FCC) is responsible for allocating this resource in 

what is known as a “command-and-control” regulatory structure. In this system, the 

spectrum is divided into frequency bands and allocate to various entities, such as 

wireless service providers, which have exclusive rights to its use. As a result, there is 

very little spectrum for unlicensed used.   

When the initial spectrum allocations were made, radio technology was much 

more primitive relative to today’s standards and the concept of users sharing the same 

spectrum and geographic location was probably considered impractical. Moreover, 

very strict rules prevented anyone other than the license holder from using this 

spectrum. Unfortunately, numerous spectrum surveys show that much of the licensed 

spectrum is severely underutilized [4]. Figure 1.1 depicts a spectrum measurement 

performed in the 900 kHz to 1 GHz band. Since much of this band is television 

stations, there is very little change in the spectrum over time. Note how there are 

large gaps of unused spectrum in the figure. If these white spaces could be used by a 

secondary unlicensed user, it would open up a large reservoir of unused spectrum that 

could help accommodate the growing demand for additional bandwidth. The ability 
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for secondary (unlicensed), users to efficiently and intelligently exploit this unused 

bandwidth is known as dynamic spectrum access (DSA).  

         

Figure 1.1: Spectrum measurement from 900 kHz to 1 GHz [5] 

 

1.2 Cognitive and Software-Defined Radios  
 

One solution to the spectrum scarcity issue is the implementation of radios that 

can automatically perform dynamic spectrum access with little or no assistance from 

the user. A radio that can perform this task is known as a frequency agile radio, 

which falls under the broader category of a cognitive radio [6]. An agile radio must 

be able to sense its spectral surroundings and classify frequency bands as either signal 

or noise [5]. Thus, any band classified as being only noise can then be exploited. 

A cognitive radio would have all the properties of an agile radio plus the ability to 

reconfigure itself for different applications and to adapt to the constraints placed by 

the user. The cognitive radio would automatically adapt to the environment and user 

constraints in an intelligent or cognitive manner by changing transmit power, center 

frequency, coding rate, and other tunable parameters to meet user requirements 
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regarding error robustness, bandwidth requirements, and transmit power restrictions. 

The reconfiguration process would involve changing basic system components, such 

as the modulation or error control coding.     

The reconfigurability and adaptability aspects of a cognitive radio necessitate a 

software, rather than pure hardware, platform. The platform commonly used to 

implement a cognitive radio is known as software-defined radio (SDR). A software- 

defined radio performs all baseband operations and sometimes intermediate-

frequency (IF) operations entirely in software and/or in reconfigurable hardware such 

as a field-programmable gate array (FPGA).  

The University of Kansas has a software defined radio platform, known as the 

Kansas University Agile Radio (KUAR), which is equally capable of implementing 

radio components in software or in reconfigurable hardware. Work is currently in 

progress to test advanced modulation schemes that are applicable to dynamic 

spectrum access, as well as artificial intelligence algorithms that will eventually make 

the KUAR a full cognitive radio platform. The work conducted in this thesis applies 

to the modulation schemes. 

1.3 Orthogonal Frequency Division Multiplexing 
 

The primary goal of this thesis is the implementation of a high data-rate 

modulation scheme on the KUAR that is capable of supporting dynamic spectrum 

access communications. This modulation scheme is known as orthogonal frequency 

division multiplexing (OFDM) [7]. OFDM is a multi-carrier modulation technique 

that is spectrally efficient, extremely robust to harsh wireless channel environments, 
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and is well-suited to selectively populate areas of spectrum to avoid interfering with 

primary users [8]. When broadcasting across a specific bandwidth, OFDM subcarriers 

can be selectively disabled to prevent interfering with other users. This technique is 

known as non-contiguous orthogonal frequency multiplexing (NC-OFDM) [9]. The 

spectrum of a four subcarrier OFDM system is shown in Figure 1.2. Note how the 

subcarriers overlap, yet are completely orthogonal, i.e. zero interference, at the peak 

amplitude of each subcarrier.  

 

Figure 1.2: Four subcarrier OFDM spectrum 
 

1.4 Research Objectives and Contributions 

The objective of this thesis is to implement an OFDM reference design based on 

the IEEE 802.16-2004 OFDM PHY standard on the KUAR. The IEEE 802.16 
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standard is a specification for technology known more generally as WiMAX 

(Worldwide Interoperability for Microwave Access). IEEE 802.16-2004 employs 

OFDM transmission in what is currently the most advanced standard for fixed 

wireless access. Note that although IEEE 802.16e is more recent than IEEE 802.16-

2004, it is designed to support mobile systems, and thus is outside the scope of this 

thesis since the KUAR is not designed to be mobile during radio operation. Rather, 

the KUAR units were designed to be nomadic, such that the radio is portable and can 

be moved from location to location but it does not operate during movement.  

Utilizing 256 subcarriers, the IEEE 802.16-2004 standard is higher performance 

than previous generations of systems, such as the IEEE 802.11 WiFi family, which 

utilized 64 subcarriers. In general, as data-rates increase, the number of subcarriers 

must also increase to preserve the characteristics of OFDM in terms of its ability to 

cope with distortion introduced by a wireless channel. Therefore, this standard 

represents the benchmark by which all other stationary OFDM systems will be 

compared. Moreover, the OFDM implementation in this thesis demonstrates the 

processing ability of the KUAR, as well as serves as framework for NC-OFDM 

system development.  The main objectives of this thesis are as follows: 

• Research, design, and validate in Matlab simulations, the algorithms that are 

necessary for transmission across a wireless channel and that are applicable 

for the structure of the IEEE 802.16-2004 standard. These include: 

o Frame synchronization 

o Frequency offset estimation and compensation 
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o Channel estimation and equalization 

o Pilot carrier phase tracking and compensation 

• Implement an OFDM transmitter and receiver on the KUAR and verify that it 

can transmit reliably in a stationary, indoor environment.    

•  Validate the bit-error rate (BER) of the simulated OFDM system in an 

AWGN channel, and then empirically evaluate the BER performance of the 

implemented VHDL system. 

 

The contributions of this thesis are as follows: 

• The first known IEEE 802.16-2004 based OFDM design for a FPGA-based 

software-defined radio that has actually been tested across an air medium with 

RF hardware. There are many other IEEE 802.16-based FPGA designs, some 

even implementing the entire standard [10], but none have yet been tested 

with actual RF transmission and reception.  

• Contributes a significant amount of design experience with the KUAR, Xilinx 

tools, and design verification that is documented to serve as a framework 

towards further development of the KUAR project.  

• Establishes a hardware testbed foundation for advanced modulation schemes 

employed in DSA networks. 
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1.5 Thesis Outline 
 
 

The remainder of this thesis is organized as follows: 
 

In chapter 2, background material on dynamic spectrum access, cognitive radios, 

and the KUAR is presented. Following this is an overview of OFDM is presented, 

covering the mathematical background, specific OFDM issues, and an explanation of 

the challenges in timing and synchronization. The last section of the chapter covers a 

brief analysis other similar work in cognitive radio, software defined radio, and any 

OFDM systems implemented on these radios.  

In chapter 3, the proposed research and design necessary to eventually implement 

the reference design in VHDL is discussed. Design constraints and goals are outlined, 

followed by block diagrams of the top level design. The mathematical description of 

how each block should operate is then considered, with special attention given to the 

synchronization algorithms, which are then outlined including how they are designed 

around the IEEE 802.16-2004 OFDM preamble. Throughout this chapter, examples 

are supplied from the Matlab simulations to aid in the explanation.  

In chapter 4, details of the actual implementation outlined in chapter 3 are 

covered. This includes a top level design of the transmitter and receiver in terms of 

the VHDL modules, followed by a detailed description of the IP cores and processes 

that implement each of these modules. Chapter 4 concludes by comparing the bit-

error rate of the Matlab simulations with the actual VHDL implementation. 
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In chapter 5, concluding remarks reached from the implementation and validation 

processes presented in chapter 4 are made. Several ideas and direction for future work 

are also outlined.  
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Chapter 2: Background Literature  
 

2.1 Dynamic Spectrum Access 
 

As briefly introduced in Chapter 1, DSA is one approach to alleviating the 

spectrum scarcity problem. Comprehensive measurements [4] and analysis of 

spectrum data throughout the United States [11] have shown that large amounts of 

spectrum is unused and could be exploited by secondary users, particularly in the TV 

bands (approximately 50-700 MHz). It should be noted that DSA is not currently 

permitted, as the FCC does not allow secondary users in licensed spectrum. 

Nevertheless, this is expected to change as the FCC continues investigate this 

approach [12].   

While relatively straightforward in concept, there are a number of challenges in 

implementing practical DSA systems. The band in which the radio wishes to transmit 

in must be carefully examined before transmission to ensure that there is no 

interference with the primary user. However, there are many different types of 

signals, and detecting them requires different algorithms. For instance, spread 

spectrum or ultra wide-band signals would be particularly difficult to detect and 

measure, especially compared to signals such as a FM radio or TV station that have 

well-pronounced spectral properties. Additionally, primary users may vary their 

spectrum usage significantly with time. Some users may only transmit bursts of data 

at statistically random intervals, while others may transmit continuously. Obviously, 
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many characteristics of the primary users must be measured and accounted for before 

employing DSA.  

Another challenge with DSA is assessing the viability of a particular band of 

spectrum. Some unoccupied bands of spectrum may have poor propagation and 

multipath characteristics, making them nearly unusable. One method of assessing the 

channel conditions is to use a channel sounder, such as a swept time delay cross-

correlator (STDCC). However, if wideband channel sounding is employed within a 

bandwidth occupied by primary users, this presents another interference problem. 

One solution to this is the use of a spread spectrum channel sounder, where the degree 

of spreading is dictated by the primary user’s tolerance to interference [13].  

Another important issue is the need to accomplish wideband communications in 

the DSA context within a band of spectrum populated by narrow-band primary users. 

One approach would be to use a standard spread spectrum technique, but this would 

inevitably raise the noise-floor, affecting the primary user’s communications. Another 

proposed technique, known as spectrum pooling [8], would use a wide-band OFDM 

signal with specific subcarriers disabled in order to prevent interference with the 

primary user. This technique is also known as non-contiguous orthogonal frequency 

division multiplexing (NC-OFDM) [9]. This technique enables one radio to transmit 

over multiple, non-contiguous frequency bands all in one channel. This concept, 

complimented with ability to mitigate the effects of harsh multipath channel 

environments, makes NC-OFDM a very important modulation scheme for agile and 
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cognitive radios. An illustration of the concept of spectrum pooling and NC-OFDM is 

provided in Figure 2.1.  

 

 
 

Figure 2.1: Illustration of an NC-OFDM system taking advantage of unused 
spectrum [14] 

2.2 Cognitive radios  

A cognitive radio is a wireless communications device that can change both its 

own parameters to maximize performance given user constraints, as well as perform 

DSA in order to avoid interference with licensed users and other unlicensed users. A 

cognitive radio would be able to adapt its parameters, such as transmit power, coding 

rating, frame size, bandwidth, and center frequency, in real time to maximize 

performance in a given environment. The radio would also be reconfigurable in order 

to conform to any wireless standard. The cognitive radio could, with equal ability, 

transmit and receiver AM radio, WiFi, WiMAX, GSM, WCDMA, and other well-

defined access schemes.  

In order to adapt to the channel conditions and user constraints efficiently without 

user guidance, the radio must have some capacity of artificial intelligence. Several 
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methods for artificial intelligence employed by cognitive radios include expert or 

knowledge based systems, neutral networks, and genetic algorithms [15]. Knowledge-

based reasoning systems are simple to implement, but require large amounts of 

memory storage and are not capable of adapting to unique situations. Neural networks 

are a promising solution in that they are highly adaptable and need little storage 

space. They analyze information in a highly parallel way, loosely modeled after the 

human brain. However, neural networks can be extremely unpredictable, and the 

reasoning they use to arrive at a solution can be very difficult to ascertain, making 

debugging a very undesirable prospect. Genetic algorithms are good at finding near 

optimal solutions when the problem has many degrees of freedom, making an 

analytical solution impossible and a knowledge-based system impractical.  

Within the cognitive radio research community, genetic algorithms have been 

receiving a significant amount of attention [15], [16]. A genetic algorithm would 

control a cognitive radio as follows: First a fitness function must be defined, which 

scores each solution provided. The fitness function would consist of a set of 

objectives that are important to the user, such as minimize BER, maximize data rate, 

minimize power consumption, or any other quantitative measure of performance. The 

user could determine the importance of each objective by assigning a weight to it, 

which would be accounted for in the fitness function. The algorithm would then begin 

generating a fixed number of random solutions and scoring each via the fitness 

function. Solutions that provided the highest scores would then be combined with 

each other by swapping or averaging parameters between pairs and discarding the 
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solutions that scored the poorest. Additionally, random mutations would be added by 

randomly adjusting parameters in each generation to prevent the solutions from 

converging to local maxima.  

2.3 Kansas University Agile Radio 
 

The KUAR is a software-defined radio developed at the Information and 

Telecommunication Technology Center (ITTC) at the University of Kansas [17]. It is 

designed as an experimental platform for research in wireless radio networks, 

cognitive radios, and dynamic spectrum access. As seen in Figure 2.2, the KUAR 

composed of three separate printed circuit boards: the digital signal processing board, 

power supply board, and RF board.  

 

 
Figure 2.2: KUAR Hardware [17] 

 
The digital signal processing board features a PC composed of a 1.4 GHz Pentium 

M processor, 1 GB DDR2 SDRAM, and an 8 GB MicroDisk for data storage. This 
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processor connects to the digital board itself via a PCI Express bus. The PC uses 

Linux for the operating system and features a VGA, USB 2.0, PCI Express, and 

Gigabit Ethernet (10/100/1000 Mbps). The large processing resources allow the 

KUAR to be used as a genuine software-defined radio.  

In addition to the processing resources, the KUAR features a Xilinx Virtex II Pro, 

a field-programmable gate array (FPGA), which can be employed to program radio 

components in hardware. Hardware implementations of radio components have the 

ability to take advantage of performing operations in parallel. This is particularly 

advantageous to OFDM systems, which require Fast Fourier Transform (FFT) 

operations. A FFT implemented in the FPGA will execute far more quickly than if it 

were implemented in software, allowing much higher data rates.   

All radio components so far implemented in the KUAR have been exclusively 

accomplished using the FPGA. The addition of the high performance PC has been a 

recent addition which will allow for combination hardware/software designs or for 

entirely software designs. Despite the advantages of hardware or hardware/software 

designs, most current software-defined radio research is done in pure software, such 

as the case with the GNU Radio software, which the KUAR is designed to support.  

The RF board is designed to operate in the frequency range of 5.25-5.85 GHz, 

selecting 30 MHz sections of bandwidth. This frequency range was selected for 

compatibility with the Unlicensed National Information Infrastructure (UNII) and 

Industrial, Scientific, and Medical bands. The digital signal processing board 

interfaces with the RF board through a dual 16-bit Digital to Analog Converter 
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(DAC) and two 14-bit Analog to Digital Converters (ADC). The DAC converts the I 

and Q channels separately into analog signals, which are then passed to a quadrature 

modulator which combines them into a real signal. On the receive side the I and Q 

channels are digitized separately by the two ADCs.  

This is one advantage built into the KUAR – the FPGA isn’t burdened by any 

down-conversion from IF frequencies, freeing the logic resources to be devoted 

entirely to baseband processing. This also helps separate baseband and RF 

functionality, so that baseband radio designs can, which the exception of receiver 

filtering, ignore the RF functionality. 

The reader is encouraged to read reference [17] for a more detailed description of 

the KUAR. 

2.3 OFDM Overview 
 

2.3.1 What is OFDM? 
 

OFDM is a digital modulation scheme that is used in both wireline and wireless 

systems to transmit numerous modulated carriers that are mathematically orthogonal 

to each other. In other words, the subcarriers ideally exhibit zero mutual inference. 

OFDM is similar to frequency division multiplexing (FDM) in that it multiplexes 

carriers across frequency, but with two important differences. First, FDM is the 

traditional method to separate signals intended for different radios. When it is used to 

allow multiple users to share the same channel it is called frequency-division multiple 

access (FDMA). OFDM is often used for multiple access as well, but the primary 
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motivation for using OFDM is to increase performance over using a single carrier 

modulation. Secondly, OFDM differs from traditional FDM in its subcarrier spacing. 

In OFDM, the carriers overlap to a great degree, as previously shown in Figure 1.2.  

Each carrier is ideally represented mathematically by a sin(x)/x pulse, which have 

nulls at a spacing of 1/Ts where Ts is the symbol time of each subcarrier. In OFDM, 

the carrier spacing is 1/Ts, which is precisely the location of nulls in a sin(x)/x pulse 

and thus, ideally, there is zero inter-carrier interference (ICI). This is a secondary 

advantage of OFDM, in that it is more spectrally efficient than standard FDM. The 

spectrum and power spectral density of OFDM and FDM are contrasted in Figure 2.3.  

 

 

 

Figure 2.3: Spectrum and power spectral density of OFDM and FDM transmissions 
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2.3.2 Mathematical Representation 
 

At baseband, an OFDM signal can be represented by a sum of modulated complex 

exponentials, 
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where Xk is a complex number representing a BPSK, QPSK, or QAM baseband 

symbol modulating the kth subcarrier and Δf is the subcarrier spacing. If this signal is 

sampled as in Equation (2.2),  
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then the sampled signal is exactly equivalent to an inverse N-point discrete Fourier 

transform (DFT), taking the Xk as the frequency bin arguments [18]. The DFT and 

the inverse DFT are given in Equations (2.3) and (2.4). 
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The Fast Fourier Transform (FFT) is simply a computationally efficient 

implementation of the DFT. The IFFT and FFT are the core modulation and 

demodulation operations used in OFDM.  
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2.3.3 OFDM versus Single Carrier Modulation  
 

Wireless communications systems at the physical layer level must deal with a 

potentially hostile channel environment. Among these are additive white Gaussian 

noise (AWGN), multi-path propagation, large-scale fading and shadowing, non-linear 

interference introduced by amplifiers and filters, and analog-to-digital conversion. By 

far the most serious of these corruptions is multipath propagation, where the radio 

signal arrives at the receiver via two or more paths. Understanding the wireless 

channel and multipath propagation is crucial in the justification of using OFDM. 

The phenomenon of multiple signal paths arriving and interfering at the antenna is 

generally known as small-scale fading [19]. This is opposed to large-scale fading, 

which occurs when large obtrusive objects (or simply large distances between radios) 

drastically reduce received signal power [19]. Large scale fading is typically 

compensated for by varying the transmit power accordingly. Small-scale fading can 

be broken down into roughly two concepts: (i) fading due to Doppler spread, and (ii) 

fading due to multi-path delay spread. The effect of the multipath channel can be 

fully characterized by Equation (2.5), where y is the received signal, x is the 

transmitted signal, and h is the channel transfer function [19]. 

),()()( tdhtxty ⊗=                                                     (2.5) 

The channel impulse response varies both as a function of delay, d, and time, t. Signal 

paths will arrive at the antenna at different delays and the magnitude and phase of 

these paths will change over time.  

20 



Doppler spread refers to the dispersion in frequency caused by the motion of one 

or both radios while communicating with each other. The motion of the radios causes 

a Doppler shift, the degree of which can be characterized by a Doppler bandwidth. 

The greater the Doppler bandwidth, the greater the variations of h(d, t) with time. 

Fading due to multi-path delay spread is due to different paths arriving at different 

times at the antenna. If all the significant paths (in terms of power) arrive within the 

time of a single symbol period, the net effect is a random complex attenuation of the 

symbol. This type of distortion is known as flat fading.  If the significant paths arrive 

at time intervals greater than a symbol period, in addition to the random complex 

attenuation, there is inter-symbol interference (ISI) in the time domain. Each path 

effectively acts as a tap in an FIR filter, which smears the signal in the time domain 

and filters it in the frequency domain. This is known as frequency selective fading.  

ISI and frequency-selective fading are the crucial bottlenecks for very high data-

rate systems using single carrier modulation. It can be compensated for using 

complex adaptive multi-tap equalizers and error control coding, but there comes a 

certain point at which the cost of combating ISI and frequency-selective fading 

outweigh the benefits of using a single-carrier modulation technique. An OFDM 

system can alleviate the ISI and frequency selective fading problem without the need 

for complex equalization.   

The primary advantage of OFDM is that by using multiple distinct subcarriers, a 

frequency selective fading channel can be transformed into multiple approximately 

flat-fading channels. This principle is best understood graphically by Figures 2.4 and 
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2.5. In each figure, the transmitted signal is filtered by the transfer function of 

channel, leading to distortion of the signal. Clearly, the distortion imparted to the 

OFDM signal is much less severe.  

 

 
Figure 2.4: Single carrier signal undergoing frequency selective fading 
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Figure 2.5: Approximately flat fading sub-channels in a frequency selective channel 
 

Figure 2.4 demonstrates a situation where the channel frequency response due to 

multi-path is varying in frequency more quickly than the signal is. The bandwidth 

over which the magnitude response of the channel is basically flat is known as the 

coherence bandwidth. Obviously, the bandwidth of the signal in Figure 2.4 is greater 

than the coherence bandwidth of the channel. Conversely, in the OFDM signal in 

Figure 2.5, each subcarrier has a bandwidth smaller than the coherence bandwidth of 

the channel.  If the bandwidth of each signal passing over the channel is smaller than 

the coherence bandwidth, the signal will undergo flat fading. 

When designing an OFDM system, the individual subcarrier bandwidth is set to 

be significantly smaller than the coherence bandwidth. OFDM is essentially a 
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solution to severe frequency-selective fading, which is one of the most significant 

challenges for single-carrier systems attempting to achieve higher data rates.     

2.3.4 Guard Interval & Cyclic Prefix 
 

Although a properly designed OFDM system will exhibit flat-fading (and thus no 

ISI) in each sub-channel, the OFDM symbols as a whole are still vulnerable to ISI. In 

an OFDM system, ISI causes severe interference that is difficult to recover from. 

Therefore, the issue is usually avoided entirely by inserting a guard interval between 

OFDM symbols in the time domain that is designed to be longer than the maximum 

delay spread of the channel, thus eliminating the possibility of ISI. However, there is 

a trade off between the guard interval and the data throughput.   

The most common form of guard interval is a cyclic prefix, where a certain 

number of samples at the end of the time-domain OFDM symbol are copied to the 

beginning. The cyclic prefix is used in a variety of ways in different OFDM system 

implementations, including timing synchronization, frequency synchronization, and 

carrier equalization. Another benefit of the cyclic prefix is that if the FFT is 

windowed earlier than the optimal sampling time, it will still “catch” all of the 

required samples and symbol energy to reproduce the original frequency domain 

symbols without ISI. 

2.3.5 Peak-to-Average Power Problem 

Single carrier systems using BPSK, QPSK, or QAM have known envelope 

signals, and thus known output power levels as well. Conversely, OFDM is a sum of 
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modulated subcarriers and therefore can exhibit a widely varying signal envelope. 

The maximum peak-to-average power ratio (PAPR) of an OFDM system is 

approximately equal to the number of subcarriers, N [20]. This large variation in 

signal power has two possible consequences. During the actual IFFT and FFT 

calculations, the output of the transform requires more bits to represent the sample 

than those of the input samples. If these output samples are truncated to the same 

number of bits as the input samples, there is a loss of precision which leads to a 

degradation in the signal-to-noise ratio. The second more commonly referenced 

problem is that the RF amplifiers used to transmit the OFDM signal must either have 

really large dynamic range, or must be operated with a large back-off, which will also 

lead to a degradation of the signal-to-noise ratio.  

PAPR reduction is not investigated nor implemented in this thesis, but it is a very 

important characteristic to keep in mind when considering the merits of OFDM. If 

low-cost non-linear amplifiers are the only RF equipment available for a given 

design, one must reconsider choosing OFDM transmission, regardless of the benefit 

from combating frequency-selective fading.  

2.4 Synchronization Issues 
 

Synchronization is a critical task for any radio receiver and is sometimes over-

looked in academic discussions of communication systems. However, since this thesis 

is based around building an OFDM system in hardware, the synchronization problem 

is not only relevant but, it is the most important issue. There are two primary 

problems in synchronization – sample clock timing offsets and carrier frequency 
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offsets. Additionally, there are issues introduced from clock jitter and phase noise 

which can manifest itself as common phase error (CPE),  a random rotation of the 

entire signal constellation that must be accounted for and compensated as well. 

2.4.1 Timing Offsets 
 

The term timing offset refers to differences in ideal sampling time for a received 

signal and the actual sampling time for a transmitted symbol. In a single carrier 

system, the receiver tries to correct for timing offsets by attempting to recover the 

transmitter’s symbol clock. Once the receiver acquires an estimate of the symbol 

clock, it can either realign its own symbol timing clock using a phase-lock loop 

(PLL) or it can use an interpolator to estimate the received symbol without correcting 

the symbol clock offset.  

In OFDM, timing offsets can be divided into two categories: fractional and 

integer. Fractional offsets refer to a phase offset in the sampling clock of the analog-

to-digital converter (ADC) of the receiver as compared to the phase of the transmitted 

signal.  Integer offsets refer to offsets greater than one sample period, which cause the 

FFT window to be misaligned. If the FFT is taken early, some of the cyclic prefix 

samples from the current symbol are used to calculate the FFT. If the FFT is taken too 

late, part of the cyclic prefix of the following symbol is used, leading to ISI. 

Neglecting any possible ISI, both integer and fractional timing offsets manifest as 

sub-carrier rotation. This carrier rotation is easily conceptualized by the following 

Fourier Transform property: 
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( ) ( ) ( )ωωτ Ftjtf −↔− exp                                             (2.6) 
 

Equation (2.6) describes how a time delay in the time domain implies a phase 

rotation in the frequency domain. Also, the degree of the phase shift is determined by 

the expression –jωt, meaning that the phase shift is proportional to both the time 

delay and the frequency component being rotated. Therefore, in an OFDM signal, the 

timing offsets manifest as progressive subcarrier rotations, where the further the 

carrier is from the DC, the more the subcarrier is rotated. Equation (2.7) describes 

how the carriers are rotated, where n is the carrier index, N is the total number of 

carriers, and C is the carrier prior to rotation, RC is the rotated carrier, and Δt is the 

timing offset in samples (both integer and fractional).  

⎟
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⎞

⎜
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⎛ Δ−

=
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tnjCRC nn
π2exp        n = (-N/2), …., N/2 - 1                   (2.7) 

 
Also note that a baseband OFDM signal has carriers from –N/2 to N/2 - 1. For 

example, a 256 subcarrier OFDM signal has carriers indexed from -128 to +127, 

including a 0 index “DC” carrier.  

Carrier rotations are also caused by multipath channels such that the two effects, 

fading and timing offsets, are indistinguishable at the receiver. Therefore, the two 

corruptions are both handled by a channel estimator. The plots below in Figure 2.6 

demonstrate the effects of uncompensated timing offsets on a single 256 subcarrier 

OFDM symbol utilizing QPSK subcarriers. Each plot depicts a constellation diagram 

for one 256 subcarrier OFDM symbol using QPSK subcarrier modulation for various 

fractional timing offsets in a noiseless system. 
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Figure 2.6: OFDM symbol with zero, 0.1, 0.25 and 0.5 sample period fractional 
timing offsets 

 
As can be seen, the effects of timing offsets are quite catastrophic, so BER plots 

are not very informative. Implementation of the channel estimation algorithm used to 

correct timing offsets is discussed further in Chapter 3.  

2.4.2 Frequency Offsets 
 

The term frequency offset refers to a non-zero carrier frequency seen at baseband 

in the receiver. Carrier offsets are caused by imperfect demodulation from RF, as well 

as frequency drift caused by Doppler shift. Both of these cause the OFDM subcarriers 

to be viewed at the receiver as slightly different frequencies than intended and must 

be compensated for in order to avoid either inter-carrier interference or having 
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subcarriers end up in the completely wrong frequency bin post-FFT. OFDM is 

extremely sensitive to frequency offsets, given the highly dense spectral 

characteristics of OFDM. Since the carriers are overlapping on each other, small 

frequency offsets cause large amounts of interference. This is depicted in Figure 2.7. 

With no frequency offsets, an FFT applied to the signal below will sample the value 

at the peak of each 
x

x)sin(  pulse. However, with a frequency offset, each frequency 

bin of the FFT will capture energy from many of the carriers added together. Each 

square marker in Figure 2.7 represents a contribution of ICI.  

 

 
Figure 2.7: Inter-carrier interference caused by a frequency offset of 20% of a 

subcarrier spacing 
 

As can be seen, the adjacent subcarrier introduces an interference component that 

is about half the amplitude of the subcarrier of interest. All other subcarriers introduce 
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an interference component of much lower amplitude. This is known as a loss of 

orthogonality, and must be compensated for in order to properly demodulate the 

OFDM symbol.  

The effect of frequency offsets in the time domain can easily be understood by 

taking the Fourier transform pair from Equation (2.6), which is repeated here for 

convenience:  

( ) ( ) ( )ωωτ Ftjtf −↔− exp  
 

By swapping the frequency and time domains, it can be shown that a shift in 

frequency causes an evolving phase shift in the time domain. The time domain 

samples are rotated according to Equation (2.8), 

 
( ) ( )NfnjnSnS /2exp)(' Δ−= π                             (2.8) 

 
where S’ are the rotated samples, S are the original samples, n is the sample index, Δf 

is the frequency offset in subcarrier spacings, and N is the number of subcarriers. The 

effects of uncompensated frequency offsets are demonstrated in Figure 2.8.  Each plot 

depicts one 256 sub-carrier OFDM symbol using QPSK subcarrier modulation for 

various frequency offsets in a noiseless system.  
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Figure 2.8: OFDM symbol with zero, 0.05, 0.1 and 0.25 subcarrier spacing fractional 

frequency offsets 
 

As can be seen, OFDM is quite sensitive to even small frequency offsets. Small 

offsets cause dispersion in the constellation points similar to AWGN, but also cause a 

general rotation in the constellation points. If there are multiple data symbols in the 

packet, even this small offset will cause constellation points to drift over the decision 

boundaries, as can be seen in Figure 2.9 below.  
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Figure 2.9: Uncompensated 0.05 subcarrier spacing frequency offset over 5 
consecutive data symbols 

 

In the presence of noise, an actual system will not perfectly measure frequency 

offsets, so there will inevitably be some small residual frequency offset, such as in 

Figure 2.9. The constellation rotation caused by residual frequency errors is usually 

indistinguishable from constellation rotation caused by phase noise, which is 

discussed in the next section. Correcting constellation rotation is usually done with 

pilot carriers, which is covered in Chapter 3. 

 

2.4.3 Phase Noise 
 

Phase noise is introduced by imperfections in the local oscillators or by clock 

jitter in the sampling clock. In either case, phase noise manifests as two different 

phenomenon: common phase error and inter-carrier interference [21]. The overall 

effect is determined by the bandwidth of the phase noise is relation to the bandwidth 

of the OFDM system. If the phase noise is changing significantly faster than the 
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duration of an OFDM symbol, there will be loss of orthogonality, and thus, inter-

carrier interference. However, if the phase is changing more slowly than the duration 

of the OFDM symbol, there will be a constant phase term added to each sample. This 

will result in common carrier error (CPE) [21] – each carrier in the OFDM symbol 

will be rotated by the same amount. However, unlike the effects of timing errors, 

there will be a different constant carrier rotation for each OFDM symbol. This is 

similar to the effect of residual frequency offsets, covered in the previous section. As 

stated previously, the constellation rotations are typically corrected for using pilot 

carriers that are embedded in each data symbol. The implementation of this is 

discussed in Chapters 3 and 4.  

2.5 Current Technology and Research 
 

This section is designed to provide the reader with brief overview of the current 

research into SDR-based OFDM systems. The following is not an exhaustive list of 

all current research, but it should give the reader some insight into how the KUAR 

and this thesis fit into the current research community.  

2.5.1 SDR and OFDM 
 
GNU Radio 
 

The most ubiquitous SDR is GNU radio, which is a free software toolkit. 

Although there are no known OFDM implementations using GNU radio, it still bears 

mention being the mostly commonly known SDR platform. GNU radio isn’t intended 

for any one particular hardware platform, but it is often used with the Universal 
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Software Radio Peripheral (USRP), built by the GNU radio project. The USRP 

includes four DACs and four ADCs and a USB interface. It supports RF 

daughterboard add-ons for various frequency bands. The USRP has an imbedded 

FPGA, but it is not used for radio components. Rather, it is used for digital up-

conversion and down-conversion. GNU radio is intended to be an entirely software 

based system that does the baseband processing on a PC and then uses a separate RF 

front-end.  

Trinity College Dublin 

The Networks and Telecommunications Research Group (NTRG) at Trinity 

College focuses on implementations of software radios on general purpose processors 

(PCs) [22]. Their SDR platform consists of a receiver and transmitter consist of 

minimal RF front end, IF amplifiers, A/D and D/A cards, and a PC [23].  They have 

developed an XML based software tool called IRIS (Implementing Radio is 

Software) that they have used to build an OFDM system on their SDR platform [24]. 

They are also investigating “dynamically reconfigurable radios” [23], which seem to 

implement some of the key functionality of cognitive radios without emphasizing the 

actual AI cognition.  

University of Laval 
 

Sebastian Roy and Paul Fortier from the University of Laval have implemented an 

FPGA implementation of an uncoded OFDM transmitter and receiver with a feedback 

link [25]. Their design uses different QAM modulation constellation depending on 

the current channel conditions. The receiver can automatically determine which 
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constellation is currently being transmitted. Synchronization between the transmitter 

and receiver is assumed, as the research is more concerned with adaptive modulation. 

The system is implemented in a Virtex II XC2V6000 and tested at baseband with a 

wireless channel model to validate the design  

INAOE Puebla, Mexico 
 

Joaquin Garcia and Rene Cumplido have published several papers including [26] 

and [27] on the implementation of 802.11a and 802.16-2004 modulators implemented 

in an FPGA. A key emphasis of their work is using Xilinx System Generator for very 

high level abstract design.  

Lattice Semiconductor UK Ltd.  
 

Lattice Semiconductor has fully implemented the 802.16-2004 standard in an 

OFDM transceiver on a Lattice ECP33 FPGA [28]. The system has been validated 

using a Matlab program to generate test data that accounts for quantization effects, 

timing and frequency offsets, SUI (Stanford University Intermim) model multipath, 

phase noise, and AWGN. It has been vetted for receiver sensitivity tests and 

minimum BER required for full 802.16-2004 validation. It is not clear from the 

available literature whether it has been tested in a full SDR system. They have 

produced several white papers including [29] that investigate synchronization issues. 

The design presented in [29] evidently uses a slightly more advanced version of the 

Schmidl and Cox algorithm [30] used in this thesis. They also present alternate 

algorithms that should be reviewed for future work. 
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IMEC  
 

IMEC is an exclusively R&D company in Belgium that research includes 

everything from nanotechnology to wireless communications to solar cells.  In [31] 

they presented an FPGA based OFDM design. Their OFDM design is based on a 

previous ASIC (Application Specific Integrated Circuit) design they built to conform 

to the IEEE 802.11a standard. Their design implemented in a Xilinx Virtex II 

XC2V6000 FPGA (which has considerably more logic resources than the Virtex II 

used in the KUAR: 33,792 logic slices compared to 9,280) and is capable of the full 

20 MHz bandwidth and 72 Mbps data rate specified in the standard.  The VHDL code 

was generated from a dataflow model in C++ using software that is normally used for 

generating ASIC designs.  

IAF 

IAF is a German company that specializes in cutting-edge wireless 

communications technology. They have built several FPGA-based OFDM testbed 

platforms, including one based on IEEE 802.11a [32]. Much of their work is on 

OFDM systems for potential 4G technology, including a system that claims to hold 

the world record in radio transmission speeds, with data throughput over 1 Gigabit 

per second.    

2.6 Chapter Summary 
 

This chapter has provided an introduction to dynamic spectrum access, software-

defined radios, cognitive radios, the KUAR, as well as an overview of OFDM. This 

provides the reader context and motivation behind the research conducted in this 
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thesis. Additionally, a brief overview of current research and technology in the 

academic as well as industrial sectors was provided.  
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Chapter 3: Proposed Research and Design 
 

The primary goal of this thesis is to build an IEEE 802.16-2004 OFDM reference 

design on the KUAR, implementing as much of the standard as is practically possible, 

given the available hardware resources. The following chapter outlines the design 

constraints and goals, the top level system design including block diagrams, the 

preamble and symbol structure used in the IEEE 802.16-2004, and the theory behind 

the individual modules that compose the OFDM system. The IEEE 802.16-2004 

standard has been selected since it is currently the most advanced standard for fixed 

OFDM transmission. This standard will soon be the benchmark upon which all other 

OFDM systems and standards will be compared. The IEEE 802.16e standard is more 

recent, but it is intended for mobile radios. As stated in Chapter 1, the KUAR is 

portable but it is not designed for mobile communications. 

3.1 Design Requirements and Specifications: 
 
 

The OFDM system employed in this work is intended as a reference design that 

could be potentially modified and scaled to be compliant with IEEE 802.16-2004 

However, this design must be able to operate on the current version of KU Agile 

Radio. This imposes limits on hardware complexity and speed within the constraints 

of the Xilinx Virtex II PRO FPGA unit built into the KUAR. Additionally, the 

bandwidth is limited by the speeds of the ADC, DAC, and their corresponding analog 

filters. 
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3.1.1 System Requirements 
 

Taking into consideration these hardware constraints, as well as the general 

complexity and scope of the project and manpower devoted to it (one graduate 

student), some requirements for the reference design were formulated early in this 

thesis research and updated as needed as the project progressed. These requirements 

are stated (with justification) as follows: 

1. The transmitter and receiver designs do not necessarily need to fit on the 

FPGA simultaneously.  It became apparent early in the OFDM design process 

that the receiver alone would consume nearly all available FPGA resources. 

Moreover, this requirement reduced the complexity of the project 

considerably. An OFDM transceiver would require simultaneously sharing of 

the FFT between the transmitter and receiver modules.  

2. Error control coding, interleaving, and bit randomization are omitted. All of 

error control functionality operates at the bit level, so it can be easily 

integrated after the rest of the physical layer design was implemented. 

However, this would require reducing the logic size of the proposed design 

and/or using a larger FPGA.   

3. The transmitter and receiver would be constrained to using only QPSK 

modulation for the subcarriers even though (the standard supports BPSK, 

QPSK, 16-QAM, and 64-QAM. Utilizing only QPSK eases the complexity of 

the receiver in terms of the channel estimator and dynamic range 
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requirements. QAM subcarrier modulation also requires gain control that is 

not currently optimized for OFDM on the KUAR.  

4. A cyclic prefix length of 32 samples was employed, even though the standard 

supports 8, 16, 32, and 64 samples. The cyclic prefix of 32 samples is 

arbitrary since the maximum delay spread indoors is less than one sample 

period for the proposed system.   

5. For purposes of channel estimation, the channel is assumed to be AWGN and 

flat fading on each subcarrier. Additionally, the fading is assumed to be very 

slow such that channel estimates calculated during the preamble will apply to 

the rest of packet. These two assumptions are implicit in OFDM and IEEE 

802.16-2004. OFDM systems are always designed such that each carrier 

undergoes flat fading. The IEEE 802.16-2004 standard assumes that the 

channel conditions do not change significantly over the period of a packet. 

The number of data symbols per packet can be adjusted accordingly.  

 
6. Integer frequency estimation and compensation is not implemented. Due to 

the RF hardware and oscillator requirements imposed by the IEEE 802.16-

2004 standard [2] (also discussed in [34]), frequency offsets greater than one 

subcarrier spacing should not occur and therefore can be safely ignored.  

 

These constraints were taken into consideration and along with the IEEE 802.16-

2004 OFDM-PHY standard, the following specifications were generated: 
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3.1.2 Transmitter Specifications  
 

1. The transmitter implements an OFDM modulation with 256 subcarriers 

with carrier mappings defined by the IEEE 802.16-2004 standard.  

2. The guard interval is composed of a 32 sample cyclic prefix.  

3. The data is modulated onto data carriers using QPSK.  

4. Before each packet, the transmitter transmits the 2 OFDM symbol 

downlink preamble as defined in the 802.16-2004 standard.  

5. Constant valued pilot symbols are modulated onto the OFDM carriers of 

the data symbols on the index dictated by the IEEE 802.16-2004 standard.  

3.1.3 Receiver Specifications 
 

1. The receiver parameters are designed around the specifications from the 

transmitter (QPSK, 32 sample cyclic prefix, known data preamble). 

2. The receiver implements a frame detection algorithm, that estimates the 

first sample of the preamble 

3. The receiver implements a fractional frequency offset estimation 

algorithm which estimates the carrier frequency offset. This algorithm can 

estimate frequency errors that are smaller than one subcarrier spacing.  

4. The receiver implements a channel estimation algorithm, which compares 

known data from the second preamble with the received second preamble 

and calculates the complex attenuation estimates for each subcarrier and 
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applies these estimates to the same subcarriers on subsequent OFDM data 

symbols.  

5. The receiver implements a common phase error (CPE) correction 

algorithm that corrects constellation rotation using the data symbol pilot 

carriers.  

3.2 OFDM System Block Diagrams 
 

The following block diagrams describes the proposed structure of the OFDM 

transmitter and receiver. These designs serve as template which aides in the design of 

the individual modules. These diagrams are meant to be a generic framework for any 

packet-based OFDM system, in addition to IEEE 802.16-2004.   

3.2.1 OFDM Transmitter 
 
 

 
 

Figure 3.1: OFDM Transmitter Block Diagram 
 

The transmitter, shown in Figure 3.1, operates as follows. At the beginning of 

every frame, the preamble generator generates the two preamble symbols which the 
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bin-loader maps directly to the IFFT. After the preamble, the QPSK modulator begins 

mapping every 2 bits to QPSK symbols. These symbols are passed to the bin-loading 

module that maps the QPSK symbols to data carriers, as well as producing the pilot 

carriers and guard carriers. These carriers are loaded into the IFFT, which converts 

the carriers into an equal number of time domain samples. The final step is to add the 

cyclic prefix to form the OFDM symbol. The cyclic prefix is formed by taking the 

last 32 time domain samples of each OFDM symbol and copying them to the front of 

the symbol. 

3.2.2 OFDM Receiver 

 

Figure 3.2: OFDM Receiver Block Diagram 
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Figure 3.2 illustrates the functionality of the OFDM receiver. Time domain 

baseband samples are constantly being digitized by the ADCs and passed to the 

OFDM receiver. The frame synchronization module processes this data until it detects 

the beginning of a frame. Once it detects the beginning of a frame it asserts the ‘start 

of frame’ signal and passes the correlation metric ‘P’ to the fractional frequency 

estimation block. Using this correlation information, the fractional frequency 

estimation module calculates the frequency offset estimate and passes this to the 

phase rotation module. The phase rotation module uses the estimate to produce the 

proper angle in which to de-rotate the packet. Recall from section 2.4.2 that a 

frequency offset causes an evolving phase rotation that changes every sample. The 

phase rotation block calculates this evolving phase rotation. The frequency offset 

compensation block uses this phase rotation calculation to de-rotate the time domain 

samples. The purpose of the buffer block is to store the time domain data while the 

previously mentioned blocks are processing the data. This ensures that the frequency 

offset compensation will begin rotating the packet from the very beginning, instead of 

somewhere in the middle.  

Once the time domain data has been compensated for carrier frequency offsets, it 

is passed to the FFT block, which converts it to frequency domain subcarriers. The 

FFT module includes a counter and begins to increment when the start of frame signal 

is asserted, so it will know when to begin processing the first OFDM symbol. The 

cyclic prefix does not need to be explicitly removed since the FFT can be turned on 

and off at regular intervals to ‘skip over’ the cyclic prefix. The channel estimation 

44 



and compensation block performs two functions. First, it uses the second preamble 

and internally stored data to calculate the carrier equalizer taps. Since each carrier is 

undergoing flat fading, at worst, only one tap per carrier is required. After this is 

completed, it uses these taps to equalize all the data symbols in the packet.  

Once the carriers are equalized, they are then passed to the CPE estimation and 

compensation module. This module uses the pilot carriers in each data symbol to 

estimate the rotation of the carriers due to phase noise and residual frequency offset, 

and then de-rotates the carriers appropriately. Finally, these carriers are passed to the 

carrier de-mapping  / QPSK demodulator which filters out all the non-data carriers 

and demodulates the data carriers into a bit stream and asserts a ‘data valid’ flag, 

which serves as a write enable to any logic reading the bits out of the system.  

3.3 IEEE 802.16-2004 OFDM Symbol Structure 
 

The first step towards implementing the logic and mathematics required to build 

the modules from the above block diagrams is to analyze the structure provided by 

the IEEE 802.16-2004 standard. The table below dictates the assignment of the guard, 

data, and pilot subcarriers. The index of each subcarrier corresponds to the frequency 

bin the subcarrier would occupy going into the IFFT in the transmitter.  
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Table 3.1: Subcarrier index assignment [2] 
 

Guard Carriers Data Carriers Pilot Carriers 
-128 : -101 
+101 : +127 

-100: -89, -87 : -39,  
-37 : -14, -12 : 1 
1 : 12, 14 : 37 
39 : 62, 64 : 87 

89 : 100 

-88, -63, -38, -13, 13, 38, 
63, 88 

Note: The index 0 subcarrier is the “DC subcarrier” and is left unmodulated.  
  
 
 

 
 

Figure 3.3: Illustration of the subcarrier assignments [2] 
 
Note: The pilot subcarriers are not actually transmitted at a higher power level than 
the data carriers – they are exaggerated to note their location in the spectrum.  
 

3.4 IEEE 802.16-2004 OFDM Preamble Structure 
 

All synchronization and channel estimation functionality of the OFDM receiver is 

based entirely on the two preamble symbols. Each preamble is a full 256 subcarrier 

symbol. The preamble subcarriers shown in figure 3.4 are derived from the following 

sequence supplied in the IEEE 802.16-2004 standard.  
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Figure 3.4: Base preamble sequence [2] 
 

Using this preamble sequence, the carriers of the short preamble are defined by [2], 
where k is the carrier index and PALL is as defined in Figure 3.4: 

 

                      0))((22 4mod)(644 =⋅⋅= kforkPconjP ALLkx           (3.1)   

                              00 4mod)(644 ≠= kforP kx

 
Similarly, carriers of the long preamble are defined by [2]: 
 
 

      0)(2 2mod)(1282 =⋅= kforkPP ALLkx                         (3.2)                               

                     00 2mod)(1282 ≠= kforP kx              
 
 

The first preamble only populates every fourth subcarrier in the frequency 

domain. This causes the time domain representation of the first preamble to repeat 

every 64 samples. This is called the “short preamble”, since in the time domain, it 

appears to be four shorter symbols, each 64 samples in length.  

The second preamble populates all the even numbered carriers, leaving the rest at 

zero. This similarly causes the second preamble in the time domain to be composed 

of two identical sets of 128 samples, i.e. the “long preamble”. Each preamble is also 
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transmitted with a cyclic prefix. In the time domain, the entire preamble known as the 

“full preamble” can be visualized with Figure 3.5.   

 

 
 

Figure 3.5: Time domain representation of full preamble 
 

The IEEE 802.16-2004 standard does not explicitly state how the preambles are to 

be utilized to achieve synchronization and channel estimation. However, Kishore and 

Reddy [33] show a variety of algorithms that work well with the 802.16-2004 

preamble, including those of Schmidl and Cox [30] which were implemented in this 

project.  After reviewing the literature on OFDM synchronization, in every case the 

first preamble is used for frame detection and frequency offset estimation and the 

second preamble is used exclusively for channel estimation.  

The first preamble can be detected using a correlator with a delay of 64. This will 

lead to a large correlation during the first preamble, yet very small correlation during 

the second preamble. This correlation operating on the complex time domain samples 

results in a complex value. The magnitude peaks of this can be used to estimate the 

first sample of the frame, and the phase information can be used to estimate the 

frequency offset. The first preamble can also be detected using a correlator with a 

delay of 128. This produces a more reliable result but will also produce a correlation 

in the second preamble.   
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The second preamble better suited for channel estimation. Having all even 

numbered subcarriers populated gives it better frequency resolution than with the 

short preamble, which only has every fourth subcarrier populated. Channel estimates 

of the odd-numbered carriers can be copied to adjacent carrier estimates or 

interpolated from the two adjacent estimates.  

3.5 OFDM Module Design 
 

In the following sections, the design of the modules presented in the block 

diagrams is detailed. In some instances, multiple methods or algorithms are presented 

and then compared and contrasted for their advantages and shortcomings. A few 

sections encapsulate two modules where appropriate, such as when one module 

estimates an error and another corrects for it.  

3.5.1 Frame Synchronization  
 

The task of the frame synchronizer is to estimate the first location of this first 

sample of the frame. During the first phase of design, several algorithms were 

examined and two of them are covered in this section. The first algorithm to be 

considered was proposed by Kishore and Reddy [33]. Their algorithm requires that 

the receiver have knowledge of the time domain preamble. A cross-correlation metric 

P is calculated based on the locally stored time domain preamble, and the received 

preamble [33],  
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where ‘r’ is the received samples, ‘a’ is the locally stored time domain preamble, i is 

the index of summation, d is the sample index, and M is the correlation delay, which 

is 64 in this case.  

A second metric, R, that calculates average power is also used to form a 

normalized cross-correlation metric M [33].  
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The Kishore and Reddy algorithm is an extremely precise method for frame 

synchronization. The cross correlation produces three distinct spikes at the boundaries 

between the 64 sample blocks of the short preamble. Figures 3.6 and 3.7 are plots of 

M versus the sample index d for this algorithm operating on the full preamble in the 

absence of noise and SNR = 10 dB, respectively.  The large spikes at the end of the 

plots are due to the R metric approaching zero at the end of the preamble.   
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Figure 3.6: Kishore and Reddy algorithm operating in the absence of noise 
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Figure 3.7: Kishore and Reddy algorithm operating at SNR = 10 dB 
 
 

The Kishore and Reddy algorithm is extremely precise even at relatively low 

SNR. The start of the frame can be calculated by waiting for a certain threshold to 

occur, then searching the nearby symbols for the local maxima. This method yields 

and extremely reliable start of frame estimate.  

However, it is very computationally complex. Every block of 64 complex samples 

must be first cross correlated with ‘a’, and then auto-correlated with itself delayed by 
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64 samples. At minimum this algorithm requires 128 complex multiplications per 

sample. With only 88 real 18x18 bit multiply blocks available, implementing this 

algorithm, if possible at all, would require a great deal of FPGA resources. 

The second frame synchronization algorithm to be considered was proposed by 

Schmidl and Cox [30]. This algorithm uses a simple auto-correlation instead of a 

cross-correlation. In a similar manner to Kishore and Reddy, there is a P correlation 

metric, R average power metric, and M normalized correlation, or timing metric 

[30]]: 
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One major advantage of using a simple auto-correlation metric is that the metric P 

can be computed iteratively. Instead of evaluating the summation from Equation (3.6) 

for every sample d, the expression can instead be evaluated as follows [30]:  

                                              (3.9) )()()()1( *
2

*
LddLdLd rrrrdPdP +++ ⋅−⋅+=+

 
Equation (3.9) implements a sliding window approach to a running summation. 

Once the first L terms have been summed to form P(d), P(d+1) can be calculated by 
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adding the next autocorrelation term and subtracting out the very first autocorrelation 

term. This process is evaluated iteratively.  

Figures 3.8, 3.9, and 3.10 demonstrate plots of M versus the sample index d for 

the implementation of above algorithms processing the full preamble with L = 128 for 

SNR = 1000 dB, 20 dB, 10 dB and 5 dB, respectively. L = 128 gives a better result 

than L = 64 because there are more samples over which to average over to reduce the 

noise variance. This yields a more accurate estimate of the start of the frame, as well 

as a more accurate estimate of the fractional frequency offset.  

 
Figure 3.8: Schmidl and Cox algorithm operating in the absence of noise 
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Figure 3.9: Schmidl and Cox algorithm operating at SNR = 10 dB 
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Figure 3.10: Schmidl and Cox algorithm operating at SNR = 5 dB 

 
From the above figures one key observation is that the peaks associated with the 

full preamble decrease in value as the SNR decreases. This is completely expected 

since as the noise variance increases, correlation between the two 128 sample 

sequences will decrease, but the signal power will not. The consequence of this is that 

if the threshold value is held constant to some value such as 0.8, then the first sample 

of the frame will be calculated differently depending on SNR.   

The more sophisticated way to handle this problem (and a strongly suggested first 

step in future work) is to estimate the received SNR and scale the threshold 

appropriately. The timing metric itself can be used itself to estimate the SNR [30]. 

Another method suggested by the authors of [30] is once a specific threshold is 

reached, search the surrounding samples for the maximum value and choose that 

calculate the start of the frame. 

 A simpler approach to deal with this issue, for the purpose of the thesis, is to first 

empirically calculate the average value of the first plateau of M for the minimum 

expected SNR. This minimum SNR could also be the approximate minimum SNR 
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where satisfactory BER is still achievable. This method relies on the cyclic prefix to 

handle the uncertainty in where the frame begins. For example, if a threshold value of 

0.8 is used where the SNR is very high, the threshold will be triggered on the slope of 

the graph before the plateau is reached. This will result in the estimated start of frame 

beginning during the cyclic prefix. This is known as the maximum integer timing 

error, where the timing error is an integer number of samples. This is contrasted from 

fractional timing errors, where the phase of the sampling clock of the ADC differs 

from the phase of the transmitter’s sampling clock. More sophisticated methods, such 

as searching for the maximum peak of the timing metric were later investigated as 

well, but as the design progressed it was apparent that there were not enough logic 

resources left to implement any of them.   

These integer timing offsets are acceptable, so long as care is taken to ensure that 

the cyclic prefix is longer than the maximum delay spread in addition to the 

maximum integer timing offset. This concept is illustrated in Figure 3.11.  

 

Figure 3.11: Accounting for the maximum integer timing error in the cyclic prefix 
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So long as the first sample of the FFT occurs inside the cyclic prefix (but after the 

maximum delay spread) no ISI will occur. The only detrimental effect is carrier 

rotation, which is indistinguishable from carrier rotation caused by fractional timing 

errors and flat fading. The carrier rotation introduced by these various mechanisms is 

all accounted for by channel estimation, provided it has high enough resolution. This 

caveat is covered in detail in Section 3.5.3. However, if integer timing error places the 

estimated first sample before the cyclic prefix, or after the actual first sample, ISI will 

occur and will result in significantly degraded performance.  

3.5.2 Frequency Offset Estimation and Compensation  

 
As shown earlier in Chapter 2, OFDM is extremely sensitive to frequency offsets. 

Most single-carrier communication systems use some sort of phase-lock loop 

feedback system to synchronize the carriers. However, phase-lock systems are 

generally not fast enough for packet transmission [20]. The frequency offset must be 

measured quickly and accurately, and then compensated for digitally.  

Both Kishore and Reddy, as well as Schmidl and Cox, employed the same 

technique to estimate fractional frequency offsets. Fractional frequency offsets, where 

the offset is less than one subcarrier spacing, can be estimated from the P(d) metric 

used for frame synchronization. The P(d) metric correlates identical samples of the 

preambles, 128 samples apart in time. If there are frequency offsets present, P(d) 

contains this phase information. The fractional frequency offset Δf is calculated by 

[30]: 
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                      π/))128__(( +−=Δ indexframeStartPanglef                             (3.10)   
 
The time domain samples are then de-rotated, 
 

)(*)/2exp()(' nSNfnjnS Δ−= π                                       (3.11) 
 
where S’ are the de-rotated time domain samples, S are the original samples, n is the 

sample index, and N is the number of subcarriers.  

If the frequency offset is greater than one subcarrier, this technique will restore 

orthogonality to the subcarriers, but the carriers will end up in the wrong FFT bin, 

shifted in index corresponding to the integer frequency offset.   

3.5.3 Channel Estimation and Compensation 
 

The task of channel estimation and compensation is to use known preamble data 

to calculate the effects of the channel on each OFDM subcarrier, and then use the 

results of the calculations to correct the magnitude and phase of the subcarriers in the 

OFDM data symbols. There are two key assumptions under which the channel 

estimation task is considered: 

1. The channel may exhibit frequency selective fading, but each individual 

subcarrier is always undergoing flat fading. This means that a single-tap 

equalizer is sufficient for each subcarrier to compensate for the effects of the 

channel. 

2. The Doppler bandwidth is very negligible compared to the bandwidth of the 

OFDM signal. This means that channel estimates calculated for one symbol 

can apply to the rest of the OFDM symbols in a packet.  
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If X is the transmitted signal in the frequency domain, H is the channel transfer 

function, N is the AWGN, n is the subcarrier index and Y is the received frequency 

domain signal,  

 
)()()()( nNnHnXnY +⋅=                                  (3.12) 
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=                                                  (3.13) 

 
The channel transfer function can only be estimated by Equation (3.14). This is the 

simplest type of carrier equalization, where noise statistics are not calculated or 

utilized.   

)(
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                                                     (3.14) 

 
H
)

is a vector of values  that yields a single complex value for each subcarrier. H
)

can 

calculated by taking Y to be the received second preamble and X known second 

preamble, which has a locally stored value for all even-numbered subcarriers. The 

odd numbered carrier estimates could be formed from taking the average of the two 

adjacent carriers. The simplest method would be to simply copy the estimates from 

the even numbered carriers unto the adjacent odd-numbered carriers. This cuts back 

on logic requirements for the VHDL implementation, and is the method proposed for 

this design. After calculating the equalization taps H
)

, they are used to estimate the 

transmitted carriers as in Equation (3.15). 
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Channel estimation and equalization attempts to correct for fading and timing 

offsets. However, large integer timing offsets have the ability to rotate adjacent 

carriers to a non-negligible degree. The consequence of this is demonstrated in the 

Figure 3.12 below. Each plot is a constellation diagram that illustrates effect of 

integer timing offsets after channel equalization has been performed. The rotation of 

some of the constellation points are due to the odd-numbered carriers using the same 

estimate as the adjacent even-numbered subcarriers.  However, with significant 

integer timing offsets, adjacent subcarriers may differ significantly in phase.   
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Figure 3.12: Residual carrier rotations to due integer timing frequency offsets with 

proposed channel estimation algorithm for offsets of 0, -2, -10, and -20 samples 
respectively. 

 
 On the other hand, if the integer timing offsets occur such that the FFT 

window is late, instead of early, ISI will occur in addition to the carrier rotations. This 

is demonstrated in Figure 3.13.   
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Figure 3.13: ISI due to integer timing offsets with proposed channel estimation 
algorithm for offsets of 0, 2, 5, and 10 samples respectively 

 

3.5.4 Common Phase Error Estimation and Compensation 
 

As stated before, the purpose of this block is to compensate for residual frequency 

offsets and phase noise that may cause the QPSK constellation points to be rotated in 

phase. The term common phase error comes from [21] which uses pilot carriers to 

correct from the phase noise induced common phase error. In this design, the 

estimation is simplified by using the same pilot carrier in all locations in the OFDM 

symbol. Each pilot carrier is the QPSK baseband symbol 1 + j. Therefore, the CPE 
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estimation is accomplished with a simple averaging of the pilot carrier phases and 

comparing it to the phase of π/4.  By averaging the carriers, the effect of noise upon 

each individual carrier is diminished.  
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The CPE estimate is the estimate angle by which the entire constellation is rotated. 

The phases of the carriers are corrected then by Equation (3.17), where Carrieri is the 

ith subcarrier before CPE compensation, and Carrieri
’ is the ith subcarrier after CPE 

compensation.  

256....,3,2,1)exp(' =⋅−⋅= iforEstimateCPEjCarrierCarrier ii          (3.17)                 

3.6 Chapter Summary 
 

This chapter outlined the design requirements and specifications, the top level 

system design including block diagrams, and mathematical concepts behind many of 

the key algorithms necessary to build the proposed OFDM system. This chapter 

explicitly stated what is being built and why. The mathematical description of the 

synchronization and channel estimation/equalization algorithms serve as a reference 

for the actual implementation details in Chapter 4.  
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Chapter 4: Implementation 
 

This chapter details the hardware implementation of the OFDM transmitter and 

receiver in the KUAR. The level of detailed presented is intended to provide an 

understanding of the hardware design given a passing knowledge of VHDL and 

digital logic. The design of the receiver is covered first, starting with the top-level 

design including a port map, top-level FPGA design, and a block diagram of the 

receiver sub-modules. The design of each sub-module is then presented in detail. The 

transmitter design is then given a similar treatment. Finally, the validation and 

verification processes are then presented, including a comparison of the BER rates of 

the Matlab simulation and the VHDL implementation in an AWGN channel, followed 

by an example of an actual laboratory transmission between two KUAR radios.  

4.1 VHDL Design 
 

All VHDL design in this thesis was performed in the Xilinx ISE (Integrated 

Software Environment) version 7.1 for Windows. ISE combines a VHDL text editor, 

IP core support, behavioral simulation, and synthesis support in one program. 

  The primary challenge in writing the VHDL components is translating the 

software operations of the Matlab code into digital logic for hardware. Each Matlab 

module is able to store the entire frame in memory, perform the necessary operations, 

stored the result in memory, and then pass the result to the next module. A practical 

receiver must process the data in real time. The VHDL implementation operates on 

the data a sample at a time and only stores intermediate results when absolutely 
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necessary. Future work may be able to optimize the design by storing intermediate 

results and running certain algorithms at higher clock rates in order to reuse logic. 

However, neglecting this possibility, the challenge lies in implementing the same 

algorithms present in the Matlab implementation where commonplace software 

concepts, such as while loops and multi-dimensional arrays, are either impossible or 

impractical.  

The strategy for developing the VHDL modules involves using Xilinx IP cores 

wherever possible followed by using behavioral code in the context of VHDL 

processes for the remaining logic. The objective of this project was not to make the 

most efficient OFDM implementation possible, but rather a rapid prototype. 

Behavioral VHDL resembles C or Java code, lending itself to quick implementation 

for a programmer lacking in VHDL expertise. The justification for using IP cores is 

that they are very efficient designs in terms of resources and performance, as well as 

being well documented and easy to use.  

IP cores utilized in this work include the pipelined FFT, CORDIC (COordinate 

Rotation Digital Computer), BRAM (Block Random Access Memory), and FIFO 

(First In, First Out) memory. The pipelined FFT consumes more logic resources than 

any other component. This is due in part to it being a pipelined implementation, in 

that samples can be written and read to/from it in a continuous, uninterrupted stream. 

This prevents the need for any intermediate memory storage. The CORDIC is used to 

accomplish many trigonometric functions. Among these are inverse tangent (or 

arctangent), which is used to find the angle of a complex number, and vector rotation, 
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which is used to change the angle of a complex number.  The BRAMs are useful in 

that they are built into the FPGA, thus requiring very few logic resources for a large 

amount of fast memory. The FIFO memories serve two purposes. First, they can be 

used as adjustable delay elements. By writing x number of samples to a FIFO, and 

then beginning to read from it, implements a delay of x samples. Secondly, the FIFO 

can be used to store data for read/write from the onboard processor. A FIFO is used 

on the transmitter to store bits to be transmitted. The bits are then read out as needed 

to populate data carriers. Similarly, on the receiver, the output of the Carrier 

Demapper / QPSK detector writes bits to a FIFO, using the data_valid signal as a 

write enable.  

As each receiver module design was completed, it was integrated with the other 

receiver components and tested in behavioral VHDL simulation, using Matlab 

simulation data to verify its functionality. Similarly, during the development of the 

transmitter, the behavioral simulation was used to generate transmitted data that was 

then tested in the Matlab simulation for verification.  

The following sections present the VHDL design aided with block diagrams. First 

the receiver module is covered, demonstrating a port map of the receiver, followed by 

the receiver within the top-level FPGA design, followed by the internal design of the 

receiver itself. It is broken down into many sub-modules, which are covered in detail 

themselves. After this, a similar treatment is given to the transmitter. With respect to 

the port maps, the width of each signal (in bits) is explicitly stated. Moreover, logic 
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lines in the block diagrams are represented by a thin line whereas busses are 

represented by a thick black line 

It should also be noted that the block diagrams do not represent every detail of the 

VHDL code. The level of detail is intended to, along with the comments in the actual 

VHDL code, aid in the understanding of the VHDL. Also, much of the VHDL is 

implemented in behavioral process statements. The blocks that make up the detailed 

block diagrams, other than the IP cores, usually represent an individual process 

statement, but there is not always a one-to-one correspondence. The block diagrams 

are designed to strike a balance between an accurate description of the VHDL 

module, as well as giving as much conceptual insight as possible. 

4.2 Receiver Design 
 
 Figure 4.1 presents the port map of the VHDL receiver module. 
 

Receiver

sys_clock

sym_per_frame(16)

bit_clock

bit_clock90

fd_threshold(8)

Din_I(16)

Din_Q(16)

data_valid

bits

Dout_I(16)

Dout_Q(16)

 
 

Figure 4.1: Receiver module port map 
  

The receiver module requires three different clocks: a 4 MHz system clock, and 

two 8 MHz clocks , one in phase with the 4 MHz clock, and the other shifted by 90 

degrees. The ports Din_I and Din_Q are the 16-bit inputs from the ADC (Note: The 
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ADC outputs are actually 14 bits – the two least significant bits are padded with 

zeros). The threshold port is the adjustable threshold for the frame detection 

algorithm, discussed in Section 3.5.1. The sym_per_frame port dictates the number of 

symbols expected in each transmitted frame. The data_valid port is used as a write 

enable for an external memory element connected to the bits port. The Dout_I and 

Dout_Q  ports are provided to capture the constellation points in addition to the 

output bits, if desired.    

Figure 4.2 presents the external logic necessary for the receiver module to operate 

on the KUAR.  

 

Figure 4.2: External logic for top-level FPGA design 
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The Dual DCM block represents two cascaded Xilinx digital clock managers 

(DCM). The DCMs are built into the Xilinx Virtex II-Pro FPGA. A 16 MHz clock 

reference built into the KUAR drives the DCMs to generate all clock signals. The 

first DCM divides the clock by a factor of four to generate the 4 MHz primary system 

clock, and multiplies the clock by five to generate an 80 MHz clock, as well as an 80 

MHz clock shifted by 90 degrees. These two 80 MHz clocks supply the differential 

clock input required by the ADC. The first DCM generates a copy of the 16 MHz 

input clock at the output, which drives the second DCM. Xilinx design software 

imposes a constraint that if a clock signal drives a DCM, it cannot drive any other pin 

in the device. Therefore, to use the 16 MHz clock signal again, the first DCM must 

generate a copy of it. The second DCM divides the 16 MHz clock by two, generating 

two 8 MHz clock signals. These two clocks are required in the Carrier Demapping / 

QPSK Demod module.  

The FIFO is used to store output bits so that they may be read by the CPU on the 

KUAR. The CPU interface also writes to a control register that can used to adjust the 

frame detection threshold as well as the number of symbols per frame.  

Figure 4.3 presents the top level design of the receiver. This block diagram is 

based off the generic architecture presented in Figure 3.2. The only signals that are 

not explicitly represented are the clock and reset signals for each module. 
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Figure 4.3: Receiver module top level design 
  

The only major change from the generic diagram in Figure 3.2 is the addition of 

the FIR filter and some extra control signals. These control signals are explained in 

detail during the description of the sub-modules.  

4.2.1 Frame Synchronization Module
 

Figure 4.4 illustrates the input and output ports of the frame synchronization 

module. A block diagram of the VHDL implementation of this module is presented in 

Figure 4.5. 
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Figure 4.4: Inputs and outputs of the frame synchronization module 
 

 

Figure 4.5: Implementation of Frame Synchronization Module 
 

Each FIFO block represents a FIFO IP core with 128 samples of memory storage.  

A FIFO can be turned into a simple delay element by first writing samples to it where 

the number of samples equals the desired delay. After that, the read enable is asserted, 

thus reading a sample every time a sample is written. Before the complex multiplier, 
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the FIFO instances are 16 bits wide. After the complex multiply, the FIFOs must act 

as delays for the products, which are 32 bits wide. The Z-1 blocks represent one clock 

cycle delays. They are implemented in a process statement with a variable, which are 

synthesized as a register.   

The multiplication and comparator functionality were all implemented using 

behavioral VHDL statements. To minimize resources, some of the results and factors 

were truncated prior to multiplication. The reset signal is asserted by top level design 

whenever a frame has ended. This forces the start_of_frame signal low and the 

module immediately begins searching for the next frame.  

The two branches in the upper right-hand corner represent the output of the P 

metric which is required by the fractional frequency estimation module. Intermediate 

results such as R and |R|2 are notated and correspond to the equations from Section 

3.5.1.  

4.2.2 Fractional Frequency Estimation Module 
 

Figure 4.6 illustrates the input and output ports of the fractional frequency 

estimation module. A block diagram of the VHDL implementation of this module is 

presented in Figure 4.7. 
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Figure 4.6: Inputs and outputs of the fractional frequency estimation module 

 

Figure 4.7: Implementation of Fractional Frequency Estimation Module 
 

The Din_I and Din_Q signals are connected to the correlation metric P from the 

frame detect module. The CORDIC IP core is set to implement arctangent 

functionality, which constantly calculates phase_out based on the current value of the 

correlation. Phase_out is supplied in radians strictly between –π and +π. When the 

start of the frame is detected, the frame_start signal goes high. The module then 

latches the current value of phase_out and holds it until reset is asserted at the end of 

the frame. The ff_estimate signal is then passed to the phase rotation module.  
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4.2.3 Phase Rotation Module  
 

Figure 4.8 illustrates the input and output ports of the phase rotation module.  

 
 

Figure 4.8: Phase rotation module input and output ports 
 
 

The implementation of this module is done entirely with behavioral VHDL. This 

module takes the ff_estimate signal from the fractional frequency estimation module, 

and uses it to generate the angle theta required each sample by the frequency offset 

compensation module. Equation (4.1) provides the angle required to calculate theta at 

each sample, where ff_estimate is the fractional frequency offset estimate signal in 

radians, n is the current sample index, and N is the number of carriers. In each 

iteration, the only variable that changes is n, so the multiplication / division need only 

be done once. The remaining calculations of angle require only a simple addition 

operation.    

 
N

nestimateffangle ⋅
=

_2                                                     (4.1) 

The CORDIC IP core requires angle inputs be in twos compliment, 3QN fixed 

point notation strictly between –π and +π. 3QN is defined as a fixed point number that 
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has 3 integer bits, and the remaining bits are used for the fractional portion. In this 

design, 16 bits are used in total, i.e. 3 integer and 13 fractional bits. The requirement 

that the number be between –π and +π implies that the result of Equation (4.1) must 

be modulo 2π, with angles greater than π and less than 2π mapped from –π to zero. 

The following pseudo-code accomplishes this operation, where current_angle is the 

current output signal theta from the module, and Δangle is the incremental difference 

in angle between every sample.  

 
if current_angle > 0 
 if  (current_angle + Δangle) > π 
  current_angle = current_angle – 2π + 
Δangle 
 else 
  current_angle = current_angle + Δangle 
 end if 
else 
 if (current_angle + Δangle) < -π 
  current_angle=current_angle + 2π+Δangle 
 else 
  current_angle=current_angle + Δangle 
 end if 
end if 

 
Figure 4.9: Phase rotation algorithm pseudo-code 

 
The pseudo-code checks to see if the sum of the current angle plus the next 

incremental angle value will be greater than π or less than –π. If this is the case, then 

the angle is rotated back by 2π before adding the incremental angle value. This 

incremental angle value is calculated by Equation (4.1), where n is the incremental 

variable. For this design, 2 / N = 1/128, which in fixed point 3QN notation is 2-7 =  

000.000000010000. The multiplication of the result of the factor 2 / N and the 
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ff_estimate will produce a 32 bit number with 6 integer bits. The result is then 

truncated to 16 bits, keeping the 3 least significant sign bits and the 13 most 

significant fractional bits to retain the 3QN format.  

The signal start_frame instructs the module to begin calculating the output phase. 

This is required to prevent the module from starting off in an incorrect state. If an 

undefined value of ff_estimate is used to begin calculating the output phase, every 

value of output phase thereafter will therefore be undefined.   

4.2.4 Frequency Offset Compensation Module  
 

Figure 4.10 illustrates the input and output ports of the frequency offset 

compensation module. A block diagram of the VHDL implementation of this module 

is presented in Figure 4.11.  

 
 

Figure 4.10: Frequency offset compensation module inputs and outputs 
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Figure 4.11: Implementation of Fractional Frequency Compensation Module 
 

The FIFO block in Figure 4.11 represents two 16-bit FIFO IP cores. The FIFOs in 

this module implements the buffer required to store the time domain data while the 

frame synchronization is processing the frame. Without the FIFO, the beginning of 

the frame will not be compensated for frequency offsets. The counter asserts a read 

enable signal to in the FIFO. When the design is flashed to the FPGA, the counter 

begins counting up to the programmed number of clock cycles, which sets the sample 

delay of FIFO.  The delayed samples are then passed to a CORDIC operating in 

vector rotation mode. In this mode, the CORDIC requires a complex input, where x 

and y are the real and imaginary parts, respectively. This complex number is then 

rotated by the angle theta supplied by the phase rotation module, forming the output 

signals Dout_I and Dout_Q.  

4.2.5 FFT Module
 

Figure 4.12 illustrates the input and output ports of the FFT module. A block 

diagram of the VHDL implementation of this module is presented in Figure 4.13.  

76 



 
 

Figure 4.12: Port map of FFT module 
 

 
 

Figure 4.13: Implementation of FFT module 
 
 

This module is essentially an FFT IP core with some auxiliary logic used to skip 

over the cyclic prefix. When the start_frame signal is first asserted, the FFT Timing 

Logic block instructs the FFT IP core to begin calculating the first FFT. As the FFT 

IP core loads samples to calculate the FFT, it outputs the current input index on the 

port xn_index which is passed back to the FFT Timing Logic block via the 

fft_in_index signal. When the last sample has been loaded, the FFT Timing Logic 

block turns off the FFT IP core and initiates a counter. When the counter reaches the 

length of the cyclic prefix (32 clock cycles in this design), it turns the FFT back on 
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again. The Timing Logic block also keeps track of the number of FFT symbols that 

have been processed, and then disables the FFT IP core completely when the last 

symbol has been processed. The entire FFT module remains in this state until reset 

has been asserted. 

The FFT IP core ports fwd_in controls whether or not the operation is an FFT or 

IFFT. This port is set to ‘0’ on the FFT used in the transmitter. It doesn’t matter 

which transform is implemented, so long as the transmitter and receiver use the 

opposite transform. The fwd_in_we is simply a write enable for the fwd_in port.  

 For detailed descriptions of the ports of the FFT IP core, see Xilinx 

documentation [34].  

 

4.2.6 Channel Estimation and Equalization Module

 
Figure 4.14 illustrates the input and output ports of the channel estimation and 

equalization module. A block diagram of the VHDL implementation of this module is 

presented in Figure 4.15.  

 

Figure 4.14: Port map of channel estimation 
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Figure 4.15: Implementation of Channel Estimation and Equalization module 
 

Like the phase rotation module, the channel estimation and equalization module is 

largely implemented in behavioral VHDL. The fft_out_index signal is used to 

determine when the second preamble sequence has begun, upon which it begins 

reading data from the preamble data block to calculate the equalization taps, as in 

previously shown in Equation (3.14). The only difference in this implementation is 

that an actual divide operation is avoided. The real operations required to perform a 

complex division, where X and Y are both complex numbers is given by: 
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If the terms in the divisor are neglected, the result retains the phase information 

but loses the amplitude information. Decision boundaries in a QPSK system are 

determined entirely by the symbol phase, so the amplitude is not important in this 

79 



case. However, to implement a QAM system, an actual divide operation is necessary. 

In the VHDL implementation, the equalizer taps are defined in Equation (4.3), where 

X are the known carrier values, Y are the received carriers, and X̂ are the estimated 

data carriers, n is the subcarrier index, and H
)

are the equalizer taps given as: 

    ( ) ( ))()()()()()()()()(ˆ nYnXnXnYinYnXnYnXnH IRRIIIRR ⋅−⋅+⋅+⋅≡    (4.3)      

This operation is denoted in the block diagram as a modified complex multiply, 

because the operation is exactly the same as a complex multiply with the exception of 

the subtraction operating on a different term.     

As the subcarriers from the second preamble are processed, the results of 

Equation (4.3) are written to the BRAMs. There is one BRAM each for the real and 

imaginary parts of the equalizer taps. The address used for write and read operations 

on the BRAMs corresponds to the fft_out_index signal, such that the index of the 

memory in the BRAMs corresponds to the subcarrier index supplied by the FFT. 

Once the behavioral logic determines that the second preamble has passed, the write 

enabled is set low and BRAMs begin reading out the equalization taps, which are 

used to equalize the subcarriers in the subsequent OFDM data symbols. The 

equalization is the exact same operation as used in Equation (4.3), and is given in as: 

( ) ( ))(ˆ)()(ˆ)()(ˆ)()(ˆ)()(ˆ nHnYnHnYinHnYnHnYnX IRRIIIRR ⋅−⋅+⋅+⋅≡      (4.4)                        
 
where X̂ represents the estimated, or equalized, data subcarriers . Once this module 

begins outputting the equalized carriers, it asserts the data_start signal and also 

provides the signal Eq_symbol_index, which is the index of the equalized carriers.  
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4.2.7 CPE Estimation and Compensation Module
 

Figure 4.16 illustrates the input and output ports of the CPE estimation and 

compensation module. A block diagram of the VHDL implementation of this module 

is presented in Figure 4.17.  

 

Figure 4.16: CPE estimation and compensation module port map 
 
 

 
 

Figure 4.17: VHDL implementation of CPE estimation and compensation module 
 

The input data to the CPE Estimation and Compensation module is divided into 

two streams. The pilot carrier extraction block uses the Eq_symbol_index signal to 
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extract the pilot carriers and add their complex values together, which essentially 

averages their phases. The result of this addition is passed to the CORDIC in the 

upper branch, which uses the arctangent function to calculate the angle of the sum of 

the pilot carriers. The signal -theta is negative of the angle produced by the CORDIC. 

In the lower branch, the OFDM subcarrier samples are stored in a 256-sample 

FIFO while their pilot carriers are being extracted and processed. The module is 

timed via the FIFO and the corresponding counter such that when a new value of  –

theta arrives at the CORDIC in the lower branch, the carrier samples are beginning to 

appear at the output of the FIFO. These samples are then de-rotated according to the 

signal –theta. The port Derotated_symbol_index signal is calculated from the 

Eq_symbol_index. The two indexes are not identical in value due propagation delay 

from the vector rotation CORDIC.  

4.2.8 Carrier Demapping / QPSK Demodulation Module
 

Figure 4.18 illustrates the input and output ports of the Carrier Demapping / 

QPSK demodulation module. A block diagram of the VHDL implementation of this 

module is presented in Figure 4.19.  
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Figure 4.18: Carrier Demapping / QPSK Demodulation module port map 
 

 

Figure 4.19: VHDL implementation of Carrier Demapping / QPSK demodulation 
module 

  

 This is the only module that uses more than one clock signal, so these clocks are 

explicitly shown in the VHDL implementation block diagram. The clock signal is the 

standard 4 MHz clock used by every other module in the system. The signals 

bit_clock and bit_clock90 are both run at 8 MHz, but bit_clock90 is shifted in phase 

by 90 degrees with respect to bit_clock. 
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The Carrier Demapping block uses the index of the subcarrier to determine 

whether it is a data subcarrier or not. The data_valid signal changes on the falling 

edge of bit_clock. It is asserted high when the current subcarrier is a data subcarrier 

and low when it is a guard or pilot subcarrier. The data_start signal is asserted by the 

channel estimation and equalization module when the OFDM data symbols begin, to 

prevent the preamble symbols from being demodulated as data.  

The QPSK Demod block clocks in the data subcarrier samples from the Data_in 

ports at the normal system clock rate of 4 MHz. The bits are determined on the falling 

edge of bit_clock90. The rising edge of bit_clock is intended to be used to write the 

bits to external memory, such as a FIFO.  

The symbol counter block keeps track of the number of OFDM data symbols that 

have been processed. When this number reaches the number of symbols_per_frame, it 

sets the frame_done signal high. This signal instructs the top level design to reset all 

of the modules to prepare for the next frame.   

4.3 Transmitter Design 
 

Being far less complex than the receiver, the transmitter VHDL design does not 

require a hierarchal design of a top level and individual modules. Figure 4.20 presents 

the port map for VHDL transmitter, Figure 4.21 presents the top-level FPGA design, 

and Figure 4.22 presents the detailed design of the transmitter module.   
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Figure 4.20: Port Map of VHDL Transmitter 
 

The transmitter requires three separate clocks: an 8 MHz clock for reading bits, 

and two 4 MHz clocks, one in-phase and one shifted 90 degrees in phase. The start 

transmit port instructs the transmitter to send one frame, where the number of data 

symbols in that frame is dictated by the sym_per_frame port. The bits are read from 

an external FIFO, into the port bits. The bit_fifo_rd_en port instructs the external 

FIFO when to read bits into the transmitter. The time domain OFDM symbols are 

output at 4 MHz on the data_outI and data_outQ ports.  

 

Figure 4.21: Top level FPGA design for OFDM transmitter 
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A Xilinx digital clock manager produces all the required clock signals from the 16 

MHz clock reference on the KUAR. The DAC requires two differential 80 MHz 

clocks for operation. The bit_clock signal is required by the transmitter, and is also 

used to read bits from the bit FIFO. This FIFO uses asynchronous clocks, such that it 

can be read bits from the transmitter module and have bits written to it from the 

KUAR’s onboard CPU using different clocks for read and write. The CPU interface is 

also used to write a status register that controls when the transmitter transmits a 

frame, and how many symbols are in that frame. When the transmitter is instructed to 

transmit a frame, it only reads out as many bits as necessary from the FIFO. 

Therefore, the FIFO can be buffered with many frames worth of data at a time. The 

detailed design of the transmitter module is presented next.  
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Figure 4.22: Detailed design of OFDM transmitter 
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The core of this transmitter design is the FFT IP core, and input and output index 

signals it produces. The fft_in_index drives the FFT Timing Logic block, which 

controls the FFT start signal that instructs the FFT to start a new transform. When the 

start_transmit port is asserted, the FFT processes a symbol, waits for 32 clock 

periods, then processes another symbol until it has processed the number of symbols 

dictated by the sym_per_frame signal. The fft_in_index also drives the Data Valid 

Logic block. Based on the carrier index, the bit_fifo_rd_en is asserted to read bits in 

which to populate the data subcarriers with.   

The fft_in_index also drives the Bin Loading / QPSK Modulation block, which 

determines the subcarrier values to feed the FFT. Using this index, the FFT is 

supplied with the proper value for whether it is a guard subcarrier, data subcarrier, or 

guard subcarrier. This block also uses the start_transmit signal to keep track of when 

the frame begins, and therefore determine whether the current OFDM symbol is a 

preamble symbol or a data symbol. During the preamble symbols, the block populates 

the carriers directly with data from the Preamble Data block.  

The fft_out_index signal drives the Cyclic Prefix Logic block, which drives the 

four BRAM IP cores, as well as the multiplexer block. There are two sets of BRAMS, 

where each set requires a different BRAM for the I and Q channels. At any one time, 

a time domain OFDM symbol is being written to one set of BRAM, while the other 

set is reading out an OFDM symbol. When an OFDM symbol is being written to a set 

of BRAMS, the address port of the BRAM is derived from the fft_out_index such that 

the BRAM index corresponds to the sample index (1 to 256). Once the time domain 
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OFDM symbol has been written, the write enable is set low. The address of the 

BRAM is then set to (256 – cyclic prefix length), which in this design is 224. The 

BRAM reads out the values from address 224 through 256, and then reads out the 

values from address 1 through 256, thus adding the cyclic prefix. The Cyclic Prefix 

Logic block also instructs the multiplexer which BRAM to read output data from.  

4.4 Design Validation / Verification 
 

The purpose of this thesis is to implement an OFDM transmitter and receiver in 

VHDL for a software radio experimental testbed. Once the design is implemented, it 

must be validated in order to ensure that it functions properly. This validation is 

presented in several steps: 

1. Demonstrate that the Matlab simulation of the OFDM system has the same 

BER performance as a QPSK system in a pure AWGN channel. For this 

purpose, synchronization algorithms are disabled. This demonstrates that the 

noise is generated properly. 

2. Measure the BER performance of the Matlab simulation in an AWGN channel 

with all synchronization algorithms enabled.   

3. Test the VHDL receiver in the FPGA using data generated from Matlab used 

in Step 2. 

4. Compare the BER curves from Steps 2 and 3.  
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Following the BER validation, an example laboratory transmission is performed to 

demonstrate that the synchronization algorithms work in a real-life system. BER 

validation for over-the-air transmission is beyond the scope of this thesis.  

 

4.4.1 BER Performance in AWGN Channel 
 

For an AWGN channel, OFDM will have the exact same BER performance as the 

single carrier modulation being used to modulate the subcarriers [35]. This is due to 

the fact that an AWGN channel does not introduce any distortion that could violate 

the orthogonality of the subcarriers, therefore the OFDM signal is merely a set of 

independently modulated single carrier signals. In order to validate the BER 

performance in the presence of timing offsets, frequency offsets, fading, ect., the 

design was first be validated in an AWGN channel. In an AWGN channel, the BER 

should be identical to that of QPSK (the modulation used on each subcarrier in this 

particular design).   

For QPSK for probability of bit error is defined as [36]: 
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Where Eb is the energy per bit, and N0 is the single-sided noise power spectral 

density. The function Q is defined as [36]:  
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 To make an equivalent comparison between OFDM and single-carrier QPSK, the 

following things must be considered: 

1. While the bit energy is spread equally across 256 time domain samples, there 

are only 192 subcarriers utilized. This means that each subcarrier has more 

energy than if each of the 256 subcarriers were modulated. 

2.  When calculating the signal power of the time domain signal, the cyclic 

prefix contributes to this power, but does not contribute to the bit energy.   

3. If the pilot carriers are utilized, they consume transmit power that does not 

contribute to bit energy.  

Considering these points, the SNR per time domain sample can be derived given a 

value as: 
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A Matlab simulation was used to verify the BER performance. For this purpose, no 

frequency or timing offsets were introduced and the frequency compensation and 

channel compensation were disabled. The reason for this is that at low SNR, a non-

zero frequency estimate will be erroneously calculated, leading to a further 

degradation in BER performance unrelated to the AWGN. The channel compensation 

is disabled because it will amplify the effects of noise.  
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The simulation was run for each value of Eb/N0 for a sufficient number of 

iterations to reach 100 bit errors. This a rule of thumb under which the bit error rate 

can be estimated with a 95% confidence interval [37]. The result of the simulation is 

presented in Figure 4.23, which presents the BER vs. Eb/N0 of the analytical results 

versus the simulation results. As can be seen, the results are indistinguishable. 

 
 

Figure 4.23: Validation for BER of OFDM design in pure AWGN channel 
 
 

4.4.2 Simulated BER Performance with Timing and Frequency 
Offsets  
 

In this section, Matlab simulations are used to provide insight into effects of 

timing offsets, frequency offsets, and channel estimation. When running the full 

system in VHDL, all of these effects are superimposed upon each other and cannot be 
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distinguished. Using the Matlab simulation, the net effect of each can be determined, 

which aids in the understanding of the system as a whole and illustrates what can be 

gained in BER performance with future improvements on the algorithms. 

Additionally, these BER measurements are used to validate the VHDL system in the 

following section.  

First, the Matlab simulation is performed in the presence of frequency offsets. 

Perfect FFT windowing is assumed and channel estimation is disabled. Then a 

simulation is performed with no frequency offsets or timing errors and channel 

estimation is enabled. Then another simulation is performed with frequency offsets 

and channel estimation present. Finally a simulation with timing errors, frequency 

offsets, and channel estimation. Note that not all permutations are possible because 

channel estimation is required to correct for timing errors. The simulations were all 

run for 1000 OFDM frames of one OFDM data symbol each. The BER over multiple 

data symbols in any one frame does not change, so more than one data symbol per 

frame is unnecessary. Figure 4.24 presents the results.  
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Figure 4.24: BER performance of Matlab simulations 
 

Figure 4.24 gives key insight into how BER performance is degraded by the 

necessary algorithms to operate in a wireless channel. Frequency estimation and 

compensation incurs a quite small penalty. Even with no frequency offsets present, 

the algorithm will still calculate an small offset due to noise, which degrades 

performance. At 1 dB Eb/N0, the average error in calculating the frequency offset was 

only 1.9% of a subcarrier spacing, which produces a very negligible effect, especially 

at low SNR. The average frequency offset error at 10 dB Eb/N0 is 0.6% of a subcarrier 

spacing, which begins to have a more significant effect despite the increased accuracy 

due to very low BER ( better than 10-5).  
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The largest penalty of any of the synchronization algorithms is the channel 

estimation / equalization. In a QPSK system, the purpose of the channel estimation is 

to compensate for carriers rotations caused by timing offsets, fading, and AWGN. 

The only point of reference the channel estimator has is the second preamble symbol 

and how its carriers compare to the locally stored data for the second preamble. Noise 

can rotate carriers during the second preamble in ways entirely independent from the 

way it affects future symbols, causing the channel estimator to de-rotate data carriers 

into the entirely wrong decision boundary. However, without the channel estimator, 

the data received across a wireless channel would be completely unrecoverable.  

A simulation is also performed for combining the effects of frequency offset 

estimation and channel estimation. Clearly, the channel estimation completely 

overwhelms any contribution to BER from frequency offset estimation. Any 

deviation between the BER for channel estimation and channel estimation combined 

with frequency offset estimation was undetectable after simulating each with 1000 

frames.  

The final Matlab simulation combines all the previous algorithms plus frame 

synchronization. Inaccurate frame synchronization incurs a penalty second only to the 

channel estimation algorithm. Unfortunately, the effects of the algorithms cannot be 

separated because the channel estimation partially corrects for carrier rotations caused 

by imperfect frame synchronization. These effects are illustrated in detail in Section 

3.5.3.  

95 



One very crucial caveat in BER performance penalty for frame synchronization is 

that the timing metric threshold. For each value of Eb/N0, the value of the threshold is 

adjusted to empirically find which threshold produces the lowest BER. If the 

threshold for any particular frame is set too low, the first sample of the frame will be 

detected too late, resulting in ISI, or the frame may be even missed entirely. If the 

threshold is set too high, the first sample of frame will be detected too early, resulting 

in carrier rotation as demonstrated in Section 3.5.3. The threshold value used for each 

value of Eb/N0 is shown in Table 4.1. These values may not be optimal – they were 

merely the best metric for a particular set of data used at the time.  

Table 4.1: Threshold values for each value of Eb/N0: Simulation 
 

Eb/N0 (dB) 1 2 3 4 5 6 7 8 9 10 

Threshold 0.38 0.43 0.48 0.52 0.58 0.62 0.66 0.68 0.7 0.73

 

One of the first steps in future work would be to adjust the threshold dynamically 

by estimation the signal-to-noise ratio. One method to accomplish this is covered in 

Chapter 5.  

4.4.3 VHDL Implementation BER Performance 
 

The VHDL receiver is validated by using Matlab data generated to test the 

simulated receiver in the previous section. Testing the receiver with data generated 

from Matlab, instead of receiving an actual signal from another radio, ensures that the 
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signal to noise ratio seen at the receiver is precisely known. The results from Section 

4.4.1 prove that the noise introduced has been calculated properly.  

In an actual received signal, there are a number of problems that introduce 

unknowns that would make design verification difficult. On the current version of the 

KUAR, there are DC offsets present at the output of the ADC converters that are 

significant in magnitude and appear to vary over time. Also, the linearity of the RF 

components has not been evaluated yet.  

The VHDL receiver is tested by use of a VHDL testbench module that is very 

similar to the top-level FPGA design presented Figure 4.2. The only difference is that 

the data input to the receiver module comes from a FIFO that stores data samples 

produced by the Matlab simulation. Using this testbench, about 12 frames (preamble 

plus one data symbol) could be processed at once. Due to practical time limitations, 

only the numbered of frames required to collect 100 bit errors were processed for 

each value of Eb/N0. The results of these measurements are demonstrated in Figure 

4.25. The timing metric threshold for each value is supplied in Table 4.2. Six bits of 

precision is available for programming the threshold in the VHDL model, so each 

value is expressed as a faction with a denominator of 64.  
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Figure 4.25: VHDL system versus Matlab simulation BER 
 

Table 4.2: Threshold values for each value of Eb/N0: VHDL 
 

Eb/N0 (dB) 1 2 3 4 5 6 7 8 9 10 

Threshold 24/64 27/64 30/64 33/64 36/64 40/64 41/64 42/64 44/64 47/64

 

Surprisingly, the VHDL system seemed to perform better than the Matlab system 

for some values of Eb/N0, but the discrepancies are quite small and from empirical 

evidence, seem to fall within the range of uncertainty for the number of frames 

processed. Clearly, any loss of performance due to fixed point error is so small as to 

be undetectable without performing a more rigorous BER evaluation. This result 
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clearly shows that logic space could be saved in the VHDL design by using fewer bits 

to represent numbers in certain places.   

4.4.4 Laboratory Results: Example Transmission 
 

The final test of any communication system is its performance on actual radios. In 

this section, an example transmission in the laboratory between two KUAR radio 

units is presented. A thorough error analysis is not performed – the baseband results 

from Sections 4.2.2 and 4.2.3 serve as a validation for the scope of this thesis.  

Since the OFDM signal is being transmitted across the air now, the affects of 

DAC, ADC, and RF hardware must now be considered. First, it must considered that 

this OFDM system operates at 4 MHz, but the DAC and ADC operate at 80 MHz. If 

the OFDM signal is sent to the DAC, the spectrum has many spectral copies spaced at 

4 MHz intervals within the 40 MHz of bandwidth sampled by the ADC. This is 

demonstrated in Figure 4.26. The spectrum plot is produced by the KUAR Spectrum 

Analyzer, which takes samples straight from the ADC and applies an FFT.  
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Figure 4.26: Received OFDM signal with no filtering 
 

Fortunately, the DAC used on the KUAR, the Analog Devices AD9777, has the 

option of using interpolating filters. These filters first upsample the supplied signal 

with zero padding, and then apply a low pass filter to eliminate spectral copies caused 

by the digital-to-analog conversion. Using an interpolating filter that upsamples by a 

factor of eight produces the following spectrum at the receiver: 
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Figure 4.27: Received OFDM signal with 8x interpolating filter 
 

The interpolating filter suppresses the adjacent spectral copies significantly, leaving 

the only significant spectral copies out at 32 MHz, just above the noise floor. These 

spectral copies are then eliminated completely at the receiver with two basic 7-tap 

FIR filters. 

An example constellation is presented in Figure 4.28 to prove that the receiver 

design works with a real transmitted signal. This transmission is of a frame with the 

full preamble and 7 OFDM data symbols. The constellation presents the 1344 QPSK 

data subcarriers. In total, 2688 bits were transmitted in this frame, with zero errors.  
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Figure 4.28: KUAR “across the room” laboratory transmission and reception of 1 
frame including 7 OFDM data symbols. 2688 bits, BER = 0. 

 

4.5 Chapter Summary 
 

This chapter described the implementation of the hardware OFDM system, using 

the generic design and mathematic descriptions supplied in Chapter 3. Port maps and 

block diagrams were provided for each module, indicating their dependencies in 

terms of input/output, as well as a detailed operation at the level of IP cores and 

behavioral VHDL processes. The performance of the OFDM receiver was evaluated 

after verifying that test data was being properly generated, and finally an example of 

an actual KUAR transmission was presented. Being impractical to cover every detail 

of the VHDL design here, the reader is encouraged to look at the actual VHDL code 

for all the modules, using the block diagrams to gain a conceptual idea of their 

operation, and then use the code comments for a greater level of detail. This VHDL 
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code can be provided by the author in the form of a series of technical reports, upon 

request.  

Chapter 5: Conclusion 
 

This thesis has two primary purposes. First, it detailed the development and 

implementation of an OFDM system in a FPGA-based software-defined radio. 

Second, it merged this development with the background and motivation for utilizing 

OFDM modulation in a dynamic spectrum access context. This is an important 

consideration, since DSA is the primary motivation for research into frequency agile 

and cognitive radios.  

This thesis provides a framework for further research on the KUAR, or any other 

FPGA-based software-defined radio. First, it is a starting point for future 

development of FPGA-based OFDM systems. If this system is not explicitly 

expanded, it will hopefully provide guidance to future development of other OFDM 

systems. Secondly, this thesis outlined procedures for validating the BER of a 

communications system in a baseband, purely AWGN environment.   

5.1 Future Work Suggestions 
 

There are several relatively modest ways to augment the performance of this 

system. At present, this system will not perform nearly as well as a single-carrier 

system on the KUAR. The following presents a few suggestions for improvement that 

will close the performance gap between this OFDM system and single-carrier 

modulation.  
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5.1.1 Channel Estimation Improvement 
 

The current channel estimation does not take advantage of the statistics of the 

channel, and it uses no interpolation between sub-carrier estimates. The first step 

towards improvement would be to interpolate the in-between subcarrier channel taps. 

In the current method, described in Section 3.5.3, only the even-numbered subcarrier 

equalizer taps are directly calculated. These values are simply copied over to adjacent 

odd-numbered subcarriers. By interpolating the in-between values, the detrimental 

effects of imperfect frame synchronization can be greatly mitigated. These effects 

were discussed and illustrated in Section 3.5.3.  

The next step in improvement would be use a channel estimator that utilizes 

channel statistics, known as minimum mean-squared error estimation (MMSE). 

Reference [38] would serve as a good starting point for MMSE channel estimators.  

5.1.2 Frame Synchronization Improvement 
 

The current system frame synchronization algorithm could be augmented in 

several different ways. The first approach would be to modify the existing auto-

correlation method based off of [30]. To fully implement the method proposed in 

[30], once the timing metric threshold has been reached, the surrounding values of P 

would be searched to find the maximum value, which would then be used to calculate 

the first sample of the frame. The current system is simply triggered with the 

threshold has been reached; it does not search for the local maxima. Alternatively, the 

timing metric M can be used to estimate the current SNR over the channel, as shown 
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in [30]. The SNR estimate could then be used to adjust the timing metric threshold 

dynamically via a look-up table to match levels of SNR versus maxima values of M.     

The second approach would be to use a cross-correlation approach as in [33]. The 

cross-correlation approach is very computationally complex, but provides an 

extremely accurate estimate for frame synchronization.   

5.1.3 Support for QAM Subcarrier Modulation 
 

Support for QAM subcarrier modulation requires two modifications. First, the 

channel estimation algorithm would have to be modified to use a genuine complex 

divide operation, instead of the modified complex multiply operation, as covered in 

Section 4.2.6. The reason for this is that QAM modulation requires that the channel 

estimator account for attenuation as well as phase-rotation incurred by the channel.  

The second modification involves the actual QAM modulation algorithm. The 

QAM decision module would need to compute the Euclidian distance of each QAM 

symbol and compare it to each constellation point. The received signal power need 

not be measured to accomplish demodulation, since the system is assumed to be 

stationary during operation. Hence, it is assumed that received power will not 

fluctuate over the period of a frame. A mobile system would need to constantly 

account for the received signal power in order to accurate demodulate QAM. This 

could be done using the R average power metric, discussed in 3.5.1.   
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5.1.4 Forward Error Correction 
 

A further step in scaling this design to be fully IEEE 802.16-2004 compatible 

would be to implement the standard’s error control coding scheme [2]. Adding error 

control coding is a relatively simple upgrade to any system, since most error control 

schemes operate on the level of bits (prior to modulation and post demodulation), so 

the internal functionality of the transmitter and receiver components remains 

unchanged. Additionally, Xilinx supplies IP cores that implement the decoding 

operations [39], such as the Viterbi algorithm, which is one method of decoding a 

convolutional code.  
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