
 OFDM Physical Layer Implementation for the
Kansas University Agile Radio

Jordan Douglas Guffey

ITTC-FY2008-TR-31620-06

February 2008

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
National Science Foundation

Computer and Information Science and
Engineering Directorate

Technical Report

The University of Kansas

Abstract

This thesis details the development of an Orthogonal Frequency Division

Multiplexing (OFDM) reference design system based off of the IEEE 802.16-2004

OFDM PHY standard. This system consists of a separate transmitter and receiver and

has been implemented in VHDL for use on the Kansas University Agile Radio

(KUAR).

The KUAR is an experimental software-defined radio platform that is intended

for research in frequency-agile and cognitive radios. OFDM is a pertinent modulation

technique for frequency-agile and cognitive radios, in that it can facilitate the ability

to perform dynamic spectrum access communications over a wide transmission

bandwidth without interfering with incumbent license holders.

This thesis contributes an actual implementation of the basic components required

for an OFDM system. Timing and frequency synchronization, channel estimation,

and pilot carrier phase tracking are mandatory components of a packet-based OFDM

system and pose the most significant implementation challenge. The VHDL modules

provide a proof of concept and a framework unto which more sophisticated

algorithms can be later developed and tested.

Another key contribution is the demonstration of a design-flow for developing

and validating communication systems in VHDL. A sequence of testing and

validation phases is discussed, progressing from Matlab simulation to VHDL

simulation to synthesized VHDL testbenches and eventually to across-the-air

iii

transmission on the radios. This design in particular is validated against the Matlab

simulation for a baseband AWGN channel.

iv

Acknowledgements

I would like to offer my sincere thanks to Dr. Gary Minden for giving me an

opportunity to attend graduate school, to serve as a Graduate Research Assistant

under him, and for helping me formulate this thesis. Without him, I may not have had

the opportunity to gain the experience and expertise I have gathered in graduate

school.

Dr. Alexander Wyglinski has been a tremendous help in assisting the editing of

the thesis, and refining my thoughts and general approach during the writing process.

His expertise in OFDM as well as his rigorous editing skills has been invaluable.

I would like to thank Dr. Erik Perrins for the expertise he has lent at this school,

in particular his class on digital communication system implementation. While most

of the concepts from the class are mainly applicable to singe-carrier systems, the class

contributed significantly to my confidence in implementing the work of this thesis.

The other single-carrier systems implemented in the KUAR would probably not exist

if not for his shared expertise.

I would like to thank my colleague Ted Weidling for his guidance in VHDL

programming. There were numerous impediments during the design process that I

encountered, due to a lack of experience in VHDL design. Without his help, I may

have been stuck for very long periods of time with little progress. Ted also wrote the

VHDL for the CPU interface, used to read and write data between the CPU and

FPGA.

v

I would like to thank Leon Searl and Dan DePardo for their hardware expertise.

They are the primary designers of the KUAR hardware, and were of great help in

attempting to debug hardware related issues that affect my design.

Lastly I would like to thank Rakesh Rajbanshi and Anupama Veeragandham for

their expertise in OFDM that guided me, especially in the early stages of my research.

vi

Table of Contents:

Title Page i
Acceptance Page ii
Abstract iii
Acknowledgements v

Chapter 1: Introduction..1

1.1 Research Motivation - Spectrum Scarcity .. 1
1.2 Cognitive and Software-Defined Radios .. 4
1.3 Orthogonal Frequency Division Multiplexing.. 5
1.4 Research Objectives and Contributions .. 6
1.5 Thesis Outline ... 9

Chapter 2: Background Literature ...11
2.1 Dynamic Spectrum Access ... 11
2.2 Cognitive radios .. 13
2.3 Kansas University Agile Radio... 15
2.3 OFDM Overview .. 17

2.3.1 What is OFDM?... 17
2.3.2 Mathematical Representation... 19
2.3.3 OFDM versus Single Carrier Modulation.. 20
2.3.4 Guard Interval & Cyclic Prefix.. 24
2.3.5 Peak-to-Average Power Problem... 24

2.4 Synchronization Issues.. 25
2.4.1 Timing Offsets ... 26
2.4.2 Frequency Offsets .. 28
2.4.3 Phase Noise.. 32

2.5 Current Technology and Research.. 33
2.5.1 SDR and OFDM .. 33

2.6 Chapter Summary ... 36
Chapter 3: Proposed Research and Design..38

3.1 Design Requirements and Specifications: .. 38
3.1.1 System Requirements... 39
3.1.2 Transmitter Specifications ... 41
3.1.3 Receiver Specifications.. 41

3.2 OFDM System Block Diagrams ... 42
3.2.1 OFDM Transmitter .. 42
3.2.2 OFDM Receiver... 43

3.3 IEEE 802.16-2004 OFDM Symbol Structure... 45
3.4 IEEE 802.16-2004 OFDM Preamble Structure .. 46
3.5 OFDM Module Design ... 49

3.5.1 Frame Synchronization .. 49
3.5.2 Frequency Offset Estimation and Compensation 56
3.5.3 Channel Estimation and Compensation ... 57

vii

3.5.4 Common Phase Error Estimation and Compensation................................ 61
3.6 Chapter Summary ... 62

Chapter 4: Implementation ..63
4.1 VHDL Design ... 63
4.2 Receiver Design .. 66

4.2.1 Frame Synchronization Module... 69
4.2.2 Fractional Frequency Estimation Module.. 71
4.2.3 Phase Rotation Module .. 73
4.2.4 Frequency Offset Compensation Module .. 75
4.2.5 FFT Module ... 76
4.2.7 CPE Estimation and Compensation Module.. 81
4.2.8 Carrier Demapping / QPSK Demodulation Module.................................. 82

4.3 Transmitter Design.. 84
4.4 Design Validation / Verification... 89

4.4.1 BER Performance in AWGN Channel .. 90
4.4.2 Simulated BER Performance with Timing and Frequency Offsets 92
4.4.3 VHDL Implementation BER Performance.. 96
4.4.4 Laboratory Results: Example Transmission .. 99

4.5 Chapter Summary ... 102
Chapter 5: Conclusion ...103

5.1 Future Work Suggestions.. 103
5.1.1 Channel Estimation Improvement ... 104
5.1.2 Frame Synchronization Improvement.. 104
5.1.3 Support for QAM Subcarrier Modulation.. 105
5.1.4 Forward Error Correction .. 106

References..107

viii

List of Figures:

Figure 1.1: Spectrum measurement from 900 kHz to 1 GHz .. 4
Figure 1.2: Four subcarrier OFDM spectrum .. 6
Figure 2.1: Illustration of an NC-OFDM system taking advantage of unused
spectrum.. 13
Figure 2.2: KUAR Hardware... 15
Figure 2.3: Spectrum and power spectral density of OFDM and FDM transmissions.... 18
Figure 2.4: Single carrier signal undergoing frequency selective fading 22
Figure 2.5: Approximately flat fading sub-channels in a frequency selective channel... 23
Figure 2.6: OFDM symbol with zero, 0.1, 0.25 and 0.5 sample period fractional
timing offsets .. 28
Figure 2.7: Inter-carrier interference caused by a frequency offset of 20% of a
subcarrier spacing ... 29
Figure 2.8: OFDM symbol with zero, 0.05, 0.1 and 0.25 subcarrier spacing fractional
frequency offsets... 31
Figure 2.9: Uncompensated 0.05 subcarrier spacing frequency offset over 5
consecutive data symbols.. 32
Figure 3.1: OFDM Transmitter Block Diagram .. 42
Figure 3.2: OFDM Receiver Block Diagram... 43
Figure 3.3: Illustration of the subcarrier assignments.. 46
Figure 3.4: Base preamble sequence.. 47
Figure 3.5: Time domain representation of full preamble ... 48
Figure 3.6: Kishore and Reddy algorithm operating in the absence of noise.................. 51
Figure 3.7: Kishore and Reddy algorithm operating at SNR = 10 dB............................. 51
Figure 3.8: Schmidl and Cox algorithm operating in the absence of noise 53
Figure 3.9: Schmidl and Cox algorithm operating at SNR = 10 dB................................ 53
Figure 3.10: Schmidl and Cox algorithm operating at SNR = 5 dB................................ 54
Figure 3.12: Residual carrier rotations to due integer timing frequency offsets with
proposed channel estimation algorithm for offsets of 0, -2, -10, and -20 samples
respectively ... 60
Figure 3.13: ISI due to integer timing offsets with proposed channel estimation
algorithm for offsets of 0, 2, 5, and 10 samples respectively ... 61
Figure 4.1: Receiver module port map .. 66
Figure 4.2: External logic for top-level FPGA design... 67
Figure 4.3: Receiver module top level design ... 69
Figure 4.4: Inputs and outputs of the frame synchronization module 70
Figure 4.5: Implementation of Frame Synchronization Module 70
Figure 4.6: Inputs and outputs of the fractional frequency estimation module 72
Figure 4.7: Implementation of Fractional Frequency Estimation Module 72
Figure 4.8: Phase rotation module input and output ports... 73
Figure 4.9: Phase rotation algorithm pseudo-code .. 74
Figure 4.10: Frequency offset compensation module inputs and outputs 75
Figure 4.11: Implementation of Fractional Frequency Compensation Module............... 76

ix

Figure 4.12: Port map of FFT module ... 77
Figure 4.13: Implementation of FFT module .. 77
Figure 4.14: Port map of channel estimation... 78
Figure 4.15: Implementation of Channel Estimation and Equalization module.............. 79
Figure 4.16: CPE estimation and compensation module port map.................................. 81
Figure 4.17: VHDL implementation of CPE estimation and compensation module 81
Figure 4.18: Carrier Demapping / QPSK Demodulation module port map 83
Figure 4.19: VHDL implementation of Carrier Demapping / QPSK demodulation
module... 83
Figure 4.20: Port Map of VHDL Transmitter.. 85
Figure 4.21: Top level FPGA design for OFDM transmitter .. 85
Figure 4.22: Detailed design of OFDM transmitter... 87
Figure 4.23: Validation for BER of OFDM design in pure AWGN channel 92
Figure 4.24: BER performance of Matlab simulations.. 94
Figure 4.25: VHDL system versus Matlab simulation BER ... 98
Figure 4.26: Received OFDM signal with no filtering.. 100
Figure 4.27: Received OFDM signal with 8x interpolating filter.................................. 101
Figure 4.28: KUAR “across the room” laboratory transmission and reception of 1
frame including 7 OFDM data symbols. 2688 bits, BER = 0... 102

x

List of Tables:

Table 3.1: Subcarrier index assignment... 46
Table 4.1: Threshold values for each value of Eb/N0: Simulation 96
Table 4.2: Threshold values for each value of Eb/N0: VHDL.. 98

xi

Chapter 1: Introduction

1.1 Research Motivation - Spectrum Scarcity

In the design of a communications system, there are essentially three factors that

limit the performance of a system: bandwidth, transmit power, and complexity. The

combination of these three factors determines how much data can be reliably

transmitted from one radio to another [1]. To some extent, one can be exchanged for

the other. A radio could employ more complex algorithms in order to conserve

transmit power and bandwidth, or it could transmit with a very high power level and

conserve bandwidth and complexity, and so on. However each of these three factors

is constrained by a practical limit. A cell-phone handset can only transmit so much

power safely, and they are limited by having a finite source of energy from the

battery. The complexity of a device is constrained by costs of research and

development, and the processing ability of modern semiconductor technology. These

limitations and tradeoffs of complexity and transmit power can differ from user to

user, but transmission bandwidth is the one commodity that all wireless users must

share. This is one of the reasons that bandwidth is by far the most precious

commodity in the current wireless industry.

There is a finite amount of bandwidth available for use. Although the electro-

magnetic spectrum theoretically is infinite in size, there is a sub-set of those

frequencies that are actually practical for wireless communications systems. The size

1

of the antenna for transmission and reception must be proportional to the wavelength

of the radio wave. This imposes limits on extremely low and extremely high

frequencies. In addition, as frequencies increase, the propagation loss increases and

the need for line-of-sight communication becomes more of an issue. Transmit

frequencies greater than 10 GHz are very difficult to operate without a line-of-sight

path from the transmitter to receiver [2]. Frequencies greater than 50 GHz begin to be

absorbed by oxygen in the atmosphere and may even become unusable in the

presence of rain [3]. Additionally, RF hardware becomes more expensive and

difficult to implement as frequencies increase.

Fortunately, bandwidth is reusable spatially – a key example being a network cell,

allowing two users to use the same spectrum, provided they spatially separated in two

different cells. Bandwidth is also reusable temporally, where different users can

operate in the same bandwidth, but not at the same time. Bandwidth can also be

shared among users in both time and frequency, such as with code division multiple

access (CDMA) systems, however, there is still a limit to the number of users who

can simultaneously use the same bandwidth.

The wireless communications industry is growing rapidly both in the number of

users and in the amount of bandwidth required by each user. Cellular technology is

advancing from voice communications, which requires relatively little bandwidth, to

data and video communications, which requires much more bandwidth. Wireless

internet access is evolving from WiFi systems, which have ranges of tens of meters,

to WiMAX systems which have ranges measured in kilometers. The increase in data

2

rate and range both require the consumption of bandwidth resources. These two

competing forces – the finite amount of available bandwidth and the increasing

demand for bandwidth – are exacerbated by the way in which spectrum is allocated to

consumers.

Radio spectrum is a natural resource. In the United States, the Federal

Communications Commission (FCC) is responsible for allocating this resource in

what is known as a “command-and-control” regulatory structure. In this system, the

spectrum is divided into frequency bands and allocate to various entities, such as

wireless service providers, which have exclusive rights to its use. As a result, there is

very little spectrum for unlicensed used.

When the initial spectrum allocations were made, radio technology was much

more primitive relative to today’s standards and the concept of users sharing the same

spectrum and geographic location was probably considered impractical. Moreover,

very strict rules prevented anyone other than the license holder from using this

spectrum. Unfortunately, numerous spectrum surveys show that much of the licensed

spectrum is severely underutilized [4]. Figure 1.1 depicts a spectrum measurement

performed in the 900 kHz to 1 GHz band. Since much of this band is television

stations, there is very little change in the spectrum over time. Note how there are

large gaps of unused spectrum in the figure. If these white spaces could be used by a

secondary unlicensed user, it would open up a large reservoir of unused spectrum that

could help accommodate the growing demand for additional bandwidth. The ability

3

for secondary (unlicensed), users to efficiently and intelligently exploit this unused

bandwidth is known as dynamic spectrum access (DSA).

Figure 1.1: Spectrum measurement from 900 kHz to 1 GHz [5]

1.2 Cognitive and Software-Defined Radios

One solution to the spectrum scarcity issue is the implementation of radios that

can automatically perform dynamic spectrum access with little or no assistance from

the user. A radio that can perform this task is known as a frequency agile radio,

which falls under the broader category of a cognitive radio [6]. An agile radio must

be able to sense its spectral surroundings and classify frequency bands as either signal

or noise [5]. Thus, any band classified as being only noise can then be exploited.

A cognitive radio would have all the properties of an agile radio plus the ability to

reconfigure itself for different applications and to adapt to the constraints placed by

the user. The cognitive radio would automatically adapt to the environment and user

constraints in an intelligent or cognitive manner by changing transmit power, center

frequency, coding rate, and other tunable parameters to meet user requirements

4

regarding error robustness, bandwidth requirements, and transmit power restrictions.

The reconfiguration process would involve changing basic system components, such

as the modulation or error control coding.

The reconfigurability and adaptability aspects of a cognitive radio necessitate a

software, rather than pure hardware, platform. The platform commonly used to

implement a cognitive radio is known as software-defined radio (SDR). A software-

defined radio performs all baseband operations and sometimes intermediate-

frequency (IF) operations entirely in software and/or in reconfigurable hardware such

as a field-programmable gate array (FPGA).

The University of Kansas has a software defined radio platform, known as the

Kansas University Agile Radio (KUAR), which is equally capable of implementing

radio components in software or in reconfigurable hardware. Work is currently in

progress to test advanced modulation schemes that are applicable to dynamic

spectrum access, as well as artificial intelligence algorithms that will eventually make

the KUAR a full cognitive radio platform. The work conducted in this thesis applies

to the modulation schemes.

1.3 Orthogonal Frequency Division Multiplexing

The primary goal of this thesis is the implementation of a high data-rate

modulation scheme on the KUAR that is capable of supporting dynamic spectrum

access communications. This modulation scheme is known as orthogonal frequency

division multiplexing (OFDM) [7]. OFDM is a multi-carrier modulation technique

that is spectrally efficient, extremely robust to harsh wireless channel environments,

5

and is well-suited to selectively populate areas of spectrum to avoid interfering with

primary users [8]. When broadcasting across a specific bandwidth, OFDM subcarriers

can be selectively disabled to prevent interfering with other users. This technique is

known as non-contiguous orthogonal frequency multiplexing (NC-OFDM) [9]. The

spectrum of a four subcarrier OFDM system is shown in Figure 1.2. Note how the

subcarriers overlap, yet are completely orthogonal, i.e. zero interference, at the peak

amplitude of each subcarrier.

Figure 1.2: Four subcarrier OFDM spectrum

1.4 Research Objectives and Contributions

The objective of this thesis is to implement an OFDM reference design based on

the IEEE 802.16-2004 OFDM PHY standard on the KUAR. The IEEE 802.16

6

standard is a specification for technology known more generally as WiMAX

(Worldwide Interoperability for Microwave Access). IEEE 802.16-2004 employs

OFDM transmission in what is currently the most advanced standard for fixed

wireless access. Note that although IEEE 802.16e is more recent than IEEE 802.16-

2004, it is designed to support mobile systems, and thus is outside the scope of this

thesis since the KUAR is not designed to be mobile during radio operation. Rather,

the KUAR units were designed to be nomadic, such that the radio is portable and can

be moved from location to location but it does not operate during movement.

Utilizing 256 subcarriers, the IEEE 802.16-2004 standard is higher performance

than previous generations of systems, such as the IEEE 802.11 WiFi family, which

utilized 64 subcarriers. In general, as data-rates increase, the number of subcarriers

must also increase to preserve the characteristics of OFDM in terms of its ability to

cope with distortion introduced by a wireless channel. Therefore, this standard

represents the benchmark by which all other stationary OFDM systems will be

compared. Moreover, the OFDM implementation in this thesis demonstrates the

processing ability of the KUAR, as well as serves as framework for NC-OFDM

system development. The main objectives of this thesis are as follows:

• Research, design, and validate in Matlab simulations, the algorithms that are

necessary for transmission across a wireless channel and that are applicable

for the structure of the IEEE 802.16-2004 standard. These include:

o Frame synchronization

o Frequency offset estimation and compensation

7

o Channel estimation and equalization

o Pilot carrier phase tracking and compensation

• Implement an OFDM transmitter and receiver on the KUAR and verify that it

can transmit reliably in a stationary, indoor environment.

• Validate the bit-error rate (BER) of the simulated OFDM system in an

AWGN channel, and then empirically evaluate the BER performance of the

implemented VHDL system.

The contributions of this thesis are as follows:

• The first known IEEE 802.16-2004 based OFDM design for a FPGA-based

software-defined radio that has actually been tested across an air medium with

RF hardware. There are many other IEEE 802.16-based FPGA designs, some

even implementing the entire standard [10], but none have yet been tested

with actual RF transmission and reception.

• Contributes a significant amount of design experience with the KUAR, Xilinx

tools, and design verification that is documented to serve as a framework

towards further development of the KUAR project.

• Establishes a hardware testbed foundation for advanced modulation schemes

employed in DSA networks.

8

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

In chapter 2, background material on dynamic spectrum access, cognitive radios,

and the KUAR is presented. Following this is an overview of OFDM is presented,

covering the mathematical background, specific OFDM issues, and an explanation of

the challenges in timing and synchronization. The last section of the chapter covers a

brief analysis other similar work in cognitive radio, software defined radio, and any

OFDM systems implemented on these radios.

In chapter 3, the proposed research and design necessary to eventually implement

the reference design in VHDL is discussed. Design constraints and goals are outlined,

followed by block diagrams of the top level design. The mathematical description of

how each block should operate is then considered, with special attention given to the

synchronization algorithms, which are then outlined including how they are designed

around the IEEE 802.16-2004 OFDM preamble. Throughout this chapter, examples

are supplied from the Matlab simulations to aid in the explanation.

In chapter 4, details of the actual implementation outlined in chapter 3 are

covered. This includes a top level design of the transmitter and receiver in terms of

the VHDL modules, followed by a detailed description of the IP cores and processes

that implement each of these modules. Chapter 4 concludes by comparing the bit-

error rate of the Matlab simulations with the actual VHDL implementation.

9

In chapter 5, concluding remarks reached from the implementation and validation

processes presented in chapter 4 are made. Several ideas and direction for future work

are also outlined.

10

Chapter 2: Background Literature

2.1 Dynamic Spectrum Access

As briefly introduced in Chapter 1, DSA is one approach to alleviating the

spectrum scarcity problem. Comprehensive measurements [4] and analysis of

spectrum data throughout the United States [11] have shown that large amounts of

spectrum is unused and could be exploited by secondary users, particularly in the TV

bands (approximately 50-700 MHz). It should be noted that DSA is not currently

permitted, as the FCC does not allow secondary users in licensed spectrum.

Nevertheless, this is expected to change as the FCC continues investigate this

approach [12].

While relatively straightforward in concept, there are a number of challenges in

implementing practical DSA systems. The band in which the radio wishes to transmit

in must be carefully examined before transmission to ensure that there is no

interference with the primary user. However, there are many different types of

signals, and detecting them requires different algorithms. For instance, spread

spectrum or ultra wide-band signals would be particularly difficult to detect and

measure, especially compared to signals such as a FM radio or TV station that have

well-pronounced spectral properties. Additionally, primary users may vary their

spectrum usage significantly with time. Some users may only transmit bursts of data

at statistically random intervals, while others may transmit continuously. Obviously,

11

many characteristics of the primary users must be measured and accounted for before

employing DSA.

Another challenge with DSA is assessing the viability of a particular band of

spectrum. Some unoccupied bands of spectrum may have poor propagation and

multipath characteristics, making them nearly unusable. One method of assessing the

channel conditions is to use a channel sounder, such as a swept time delay cross-

correlator (STDCC). However, if wideband channel sounding is employed within a

bandwidth occupied by primary users, this presents another interference problem.

One solution to this is the use of a spread spectrum channel sounder, where the degree

of spreading is dictated by the primary user’s tolerance to interference [13].

Another important issue is the need to accomplish wideband communications in

the DSA context within a band of spectrum populated by narrow-band primary users.

One approach would be to use a standard spread spectrum technique, but this would

inevitably raise the noise-floor, affecting the primary user’s communications. Another

proposed technique, known as spectrum pooling [8], would use a wide-band OFDM

signal with specific subcarriers disabled in order to prevent interference with the

primary user. This technique is also known as non-contiguous orthogonal frequency

division multiplexing (NC-OFDM) [9]. This technique enables one radio to transmit

over multiple, non-contiguous frequency bands all in one channel. This concept,

complimented with ability to mitigate the effects of harsh multipath channel

environments, makes NC-OFDM a very important modulation scheme for agile and

12

cognitive radios. An illustration of the concept of spectrum pooling and NC-OFDM is

provided in Figure 2.1.

Figure 2.1: Illustration of an NC-OFDM system taking advantage of unused
spectrum [14]

2.2 Cognitive radios

A cognitive radio is a wireless communications device that can change both its

own parameters to maximize performance given user constraints, as well as perform

DSA in order to avoid interference with licensed users and other unlicensed users. A

cognitive radio would be able to adapt its parameters, such as transmit power, coding

rating, frame size, bandwidth, and center frequency, in real time to maximize

performance in a given environment. The radio would also be reconfigurable in order

to conform to any wireless standard. The cognitive radio could, with equal ability,

transmit and receiver AM radio, WiFi, WiMAX, GSM, WCDMA, and other well-

defined access schemes.

In order to adapt to the channel conditions and user constraints efficiently without

user guidance, the radio must have some capacity of artificial intelligence. Several

13

methods for artificial intelligence employed by cognitive radios include expert or

knowledge based systems, neutral networks, and genetic algorithms [15]. Knowledge-

based reasoning systems are simple to implement, but require large amounts of

memory storage and are not capable of adapting to unique situations. Neural networks

are a promising solution in that they are highly adaptable and need little storage

space. They analyze information in a highly parallel way, loosely modeled after the

human brain. However, neural networks can be extremely unpredictable, and the

reasoning they use to arrive at a solution can be very difficult to ascertain, making

debugging a very undesirable prospect. Genetic algorithms are good at finding near

optimal solutions when the problem has many degrees of freedom, making an

analytical solution impossible and a knowledge-based system impractical.

Within the cognitive radio research community, genetic algorithms have been

receiving a significant amount of attention [15], [16]. A genetic algorithm would

control a cognitive radio as follows: First a fitness function must be defined, which

scores each solution provided. The fitness function would consist of a set of

objectives that are important to the user, such as minimize BER, maximize data rate,

minimize power consumption, or any other quantitative measure of performance. The

user could determine the importance of each objective by assigning a weight to it,

which would be accounted for in the fitness function. The algorithm would then begin

generating a fixed number of random solutions and scoring each via the fitness

function. Solutions that provided the highest scores would then be combined with

each other by swapping or averaging parameters between pairs and discarding the

14

solutions that scored the poorest. Additionally, random mutations would be added by

randomly adjusting parameters in each generation to prevent the solutions from

converging to local maxima.

2.3 Kansas University Agile Radio

The KUAR is a software-defined radio developed at the Information and

Telecommunication Technology Center (ITTC) at the University of Kansas [17]. It is

designed as an experimental platform for research in wireless radio networks,

cognitive radios, and dynamic spectrum access. As seen in Figure 2.2, the KUAR

composed of three separate printed circuit boards: the digital signal processing board,

power supply board, and RF board.

Figure 2.2: KUAR Hardware [17]

The digital signal processing board features a PC composed of a 1.4 GHz Pentium

M processor, 1 GB DDR2 SDRAM, and an 8 GB MicroDisk for data storage. This

15

processor connects to the digital board itself via a PCI Express bus. The PC uses

Linux for the operating system and features a VGA, USB 2.0, PCI Express, and

Gigabit Ethernet (10/100/1000 Mbps). The large processing resources allow the

KUAR to be used as a genuine software-defined radio.

In addition to the processing resources, the KUAR features a Xilinx Virtex II Pro,

a field-programmable gate array (FPGA), which can be employed to program radio

components in hardware. Hardware implementations of radio components have the

ability to take advantage of performing operations in parallel. This is particularly

advantageous to OFDM systems, which require Fast Fourier Transform (FFT)

operations. A FFT implemented in the FPGA will execute far more quickly than if it

were implemented in software, allowing much higher data rates.

All radio components so far implemented in the KUAR have been exclusively

accomplished using the FPGA. The addition of the high performance PC has been a

recent addition which will allow for combination hardware/software designs or for

entirely software designs. Despite the advantages of hardware or hardware/software

designs, most current software-defined radio research is done in pure software, such

as the case with the GNU Radio software, which the KUAR is designed to support.

The RF board is designed to operate in the frequency range of 5.25-5.85 GHz,

selecting 30 MHz sections of bandwidth. This frequency range was selected for

compatibility with the Unlicensed National Information Infrastructure (UNII) and

Industrial, Scientific, and Medical bands. The digital signal processing board

interfaces with the RF board through a dual 16-bit Digital to Analog Converter

16

(DAC) and two 14-bit Analog to Digital Converters (ADC). The DAC converts the I

and Q channels separately into analog signals, which are then passed to a quadrature

modulator which combines them into a real signal. On the receive side the I and Q

channels are digitized separately by the two ADCs.

This is one advantage built into the KUAR – the FPGA isn’t burdened by any

down-conversion from IF frequencies, freeing the logic resources to be devoted

entirely to baseband processing. This also helps separate baseband and RF

functionality, so that baseband radio designs can, which the exception of receiver

filtering, ignore the RF functionality.

The reader is encouraged to read reference [17] for a more detailed description of

the KUAR.

2.3 OFDM Overview

2.3.1 What is OFDM?

OFDM is a digital modulation scheme that is used in both wireline and wireless

systems to transmit numerous modulated carriers that are mathematically orthogonal

to each other. In other words, the subcarriers ideally exhibit zero mutual inference.

OFDM is similar to frequency division multiplexing (FDM) in that it multiplexes

carriers across frequency, but with two important differences. First, FDM is the

traditional method to separate signals intended for different radios. When it is used to

allow multiple users to share the same channel it is called frequency-division multiple

access (FDMA). OFDM is often used for multiple access as well, but the primary

17

motivation for using OFDM is to increase performance over using a single carrier

modulation. Secondly, OFDM differs from traditional FDM in its subcarrier spacing.

In OFDM, the carriers overlap to a great degree, as previously shown in Figure 1.2.

Each carrier is ideally represented mathematically by a sin(x)/x pulse, which have

nulls at a spacing of 1/Ts where Ts is the symbol time of each subcarrier. In OFDM,

the carrier spacing is 1/Ts, which is precisely the location of nulls in a sin(x)/x pulse

and thus, ideally, there is zero inter-carrier interference (ICI). This is a secondary

advantage of OFDM, in that it is more spectrally efficient than standard FDM. The

spectrum and power spectral density of OFDM and FDM are contrasted in Figure 2.3.

Figure 2.3: Spectrum and power spectral density of OFDM and FDM transmissions

18

2.3.2 Mathematical Representation

At baseband, an OFDM signal can be represented by a sum of modulated complex

exponentials,

(ftkjXtS
N

k
k Δ= ∑

−

=

π2exp)(
1

0

)

)

 (2.1)

where Xk is a complex number representing a BPSK, QPSK, or QAM baseband

symbol modulating the kth subcarrier and Δf is the subcarrier spacing. If this signal is

sampled as in Equation (2.2),

(s

N

k
ks fnTkjXnTS Δ= ∑

−

=

π2exp)(
1

0
 (2.2)

then the sampled signal is exactly equivalent to an inverse N-point discrete Fourier

transform (DFT), taking the Xk as the frequency bin arguments [18]. The DFT and

the inverse DFT are given in Equations (2.3) and (2.4).

 1,...,02exp
1

0
−=⎟

⎠
⎞

⎜
⎝
⎛ −= ∑

−

=

Nl
N

lnjxX
N

l
nl

π
 (2.3)

1,...,02exp1 1

0
−=⎟

⎠
⎞

⎜
⎝
⎛= ∑

−

=

Nn
N

lnjX
N

x
N

n
ln

π
 (2.4)

The Fast Fourier Transform (FFT) is simply a computationally efficient

implementation of the DFT. The IFFT and FFT are the core modulation and

demodulation operations used in OFDM.

19

2.3.3 OFDM versus Single Carrier Modulation

Wireless communications systems at the physical layer level must deal with a

potentially hostile channel environment. Among these are additive white Gaussian

noise (AWGN), multi-path propagation, large-scale fading and shadowing, non-linear

interference introduced by amplifiers and filters, and analog-to-digital conversion. By

far the most serious of these corruptions is multipath propagation, where the radio

signal arrives at the receiver via two or more paths. Understanding the wireless

channel and multipath propagation is crucial in the justification of using OFDM.

The phenomenon of multiple signal paths arriving and interfering at the antenna is

generally known as small-scale fading [19]. This is opposed to large-scale fading,

which occurs when large obtrusive objects (or simply large distances between radios)

drastically reduce received signal power [19]. Large scale fading is typically

compensated for by varying the transmit power accordingly. Small-scale fading can

be broken down into roughly two concepts: (i) fading due to Doppler spread, and (ii)

fading due to multi-path delay spread. The effect of the multipath channel can be

fully characterized by Equation (2.5), where y is the received signal, x is the

transmitted signal, and h is the channel transfer function [19].

),()()(tdhtxty ⊗= (2.5)

The channel impulse response varies both as a function of delay, d, and time, t. Signal

paths will arrive at the antenna at different delays and the magnitude and phase of

these paths will change over time.

20

Doppler spread refers to the dispersion in frequency caused by the motion of one

or both radios while communicating with each other. The motion of the radios causes

a Doppler shift, the degree of which can be characterized by a Doppler bandwidth.

The greater the Doppler bandwidth, the greater the variations of h(d, t) with time.

Fading due to multi-path delay spread is due to different paths arriving at different

times at the antenna. If all the significant paths (in terms of power) arrive within the

time of a single symbol period, the net effect is a random complex attenuation of the

symbol. This type of distortion is known as flat fading. If the significant paths arrive

at time intervals greater than a symbol period, in addition to the random complex

attenuation, there is inter-symbol interference (ISI) in the time domain. Each path

effectively acts as a tap in an FIR filter, which smears the signal in the time domain

and filters it in the frequency domain. This is known as frequency selective fading.

ISI and frequency-selective fading are the crucial bottlenecks for very high data-

rate systems using single carrier modulation. It can be compensated for using

complex adaptive multi-tap equalizers and error control coding, but there comes a

certain point at which the cost of combating ISI and frequency-selective fading

outweigh the benefits of using a single-carrier modulation technique. An OFDM

system can alleviate the ISI and frequency selective fading problem without the need

for complex equalization.

The primary advantage of OFDM is that by using multiple distinct subcarriers, a

frequency selective fading channel can be transformed into multiple approximately

flat-fading channels. This principle is best understood graphically by Figures 2.4 and

21

2.5. In each figure, the transmitted signal is filtered by the transfer function of

channel, leading to distortion of the signal. Clearly, the distortion imparted to the

OFDM signal is much less severe.

Figure 2.4: Single carrier signal undergoing frequency selective fading

22

Figure 2.5: Approximately flat fading sub-channels in a frequency selective channel

Figure 2.4 demonstrates a situation where the channel frequency response due to

multi-path is varying in frequency more quickly than the signal is. The bandwidth

over which the magnitude response of the channel is basically flat is known as the

coherence bandwidth. Obviously, the bandwidth of the signal in Figure 2.4 is greater

than the coherence bandwidth of the channel. Conversely, in the OFDM signal in

Figure 2.5, each subcarrier has a bandwidth smaller than the coherence bandwidth of

the channel. If the bandwidth of each signal passing over the channel is smaller than

the coherence bandwidth, the signal will undergo flat fading.

When designing an OFDM system, the individual subcarrier bandwidth is set to

be significantly smaller than the coherence bandwidth. OFDM is essentially a

23

solution to severe frequency-selective fading, which is one of the most significant

challenges for single-carrier systems attempting to achieve higher data rates.

2.3.4 Guard Interval & Cyclic Prefix

Although a properly designed OFDM system will exhibit flat-fading (and thus no

ISI) in each sub-channel, the OFDM symbols as a whole are still vulnerable to ISI. In

an OFDM system, ISI causes severe interference that is difficult to recover from.

Therefore, the issue is usually avoided entirely by inserting a guard interval between

OFDM symbols in the time domain that is designed to be longer than the maximum

delay spread of the channel, thus eliminating the possibility of ISI. However, there is

a trade off between the guard interval and the data throughput.

The most common form of guard interval is a cyclic prefix, where a certain

number of samples at the end of the time-domain OFDM symbol are copied to the

beginning. The cyclic prefix is used in a variety of ways in different OFDM system

implementations, including timing synchronization, frequency synchronization, and

carrier equalization. Another benefit of the cyclic prefix is that if the FFT is

windowed earlier than the optimal sampling time, it will still “catch” all of the

required samples and symbol energy to reproduce the original frequency domain

symbols without ISI.

2.3.5 Peak-to-Average Power Problem

Single carrier systems using BPSK, QPSK, or QAM have known envelope

signals, and thus known output power levels as well. Conversely, OFDM is a sum of

24

modulated subcarriers and therefore can exhibit a widely varying signal envelope.

The maximum peak-to-average power ratio (PAPR) of an OFDM system is

approximately equal to the number of subcarriers, N [20]. This large variation in

signal power has two possible consequences. During the actual IFFT and FFT

calculations, the output of the transform requires more bits to represent the sample

than those of the input samples. If these output samples are truncated to the same

number of bits as the input samples, there is a loss of precision which leads to a

degradation in the signal-to-noise ratio. The second more commonly referenced

problem is that the RF amplifiers used to transmit the OFDM signal must either have

really large dynamic range, or must be operated with a large back-off, which will also

lead to a degradation of the signal-to-noise ratio.

PAPR reduction is not investigated nor implemented in this thesis, but it is a very

important characteristic to keep in mind when considering the merits of OFDM. If

low-cost non-linear amplifiers are the only RF equipment available for a given

design, one must reconsider choosing OFDM transmission, regardless of the benefit

from combating frequency-selective fading.

2.4 Synchronization Issues

Synchronization is a critical task for any radio receiver and is sometimes over-

looked in academic discussions of communication systems. However, since this thesis

is based around building an OFDM system in hardware, the synchronization problem

is not only relevant but, it is the most important issue. There are two primary

problems in synchronization – sample clock timing offsets and carrier frequency

25

offsets. Additionally, there are issues introduced from clock jitter and phase noise

which can manifest itself as common phase error (CPE), a random rotation of the

entire signal constellation that must be accounted for and compensated as well.

2.4.1 Timing Offsets

The term timing offset refers to differences in ideal sampling time for a received

signal and the actual sampling time for a transmitted symbol. In a single carrier

system, the receiver tries to correct for timing offsets by attempting to recover the

transmitter’s symbol clock. Once the receiver acquires an estimate of the symbol

clock, it can either realign its own symbol timing clock using a phase-lock loop

(PLL) or it can use an interpolator to estimate the received symbol without correcting

the symbol clock offset.

In OFDM, timing offsets can be divided into two categories: fractional and

integer. Fractional offsets refer to a phase offset in the sampling clock of the analog-

to-digital converter (ADC) of the receiver as compared to the phase of the transmitted

signal. Integer offsets refer to offsets greater than one sample period, which cause the

FFT window to be misaligned. If the FFT is taken early, some of the cyclic prefix

samples from the current symbol are used to calculate the FFT. If the FFT is taken too

late, part of the cyclic prefix of the following symbol is used, leading to ISI.

Neglecting any possible ISI, both integer and fractional timing offsets manifest as

sub-carrier rotation. This carrier rotation is easily conceptualized by the following

Fourier Transform property:

26

() () ()ωωτ Ftjtf −↔− exp (2.6)

Equation (2.6) describes how a time delay in the time domain implies a phase

rotation in the frequency domain. Also, the degree of the phase shift is determined by

the expression –jωt, meaning that the phase shift is proportional to both the time

delay and the frequency component being rotated. Therefore, in an OFDM signal, the

timing offsets manifest as progressive subcarrier rotations, where the further the

carrier is from the DC, the more the subcarrier is rotated. Equation (2.7) describes

how the carriers are rotated, where n is the carrier index, N is the total number of

carriers, and C is the carrier prior to rotation, RC is the rotated carrier, and Δt is the

timing offset in samples (both integer and fractional).

⎟
⎠
⎞

⎜
⎝
⎛ Δ−

=
N

tnjCRC nn
π2exp n = (-N/2), …., N/2 - 1 (2.7)

Also note that a baseband OFDM signal has carriers from –N/2 to N/2 - 1. For

example, a 256 subcarrier OFDM signal has carriers indexed from -128 to +127,

including a 0 index “DC” carrier.

Carrier rotations are also caused by multipath channels such that the two effects,

fading and timing offsets, are indistinguishable at the receiver. Therefore, the two

corruptions are both handled by a channel estimator. The plots below in Figure 2.6

demonstrate the effects of uncompensated timing offsets on a single 256 subcarrier

OFDM symbol utilizing QPSK subcarriers. Each plot depicts a constellation diagram

for one 256 subcarrier OFDM symbol using QPSK subcarrier modulation for various

fractional timing offsets in a noiseless system.

27

Figure 2.6: OFDM symbol with zero, 0.1, 0.25 and 0.5 sample period fractional
timing offsets

As can be seen, the effects of timing offsets are quite catastrophic, so BER plots

are not very informative. Implementation of the channel estimation algorithm used to

correct timing offsets is discussed further in Chapter 3.

2.4.2 Frequency Offsets

The term frequency offset refers to a non-zero carrier frequency seen at baseband

in the receiver. Carrier offsets are caused by imperfect demodulation from RF, as well

as frequency drift caused by Doppler shift. Both of these cause the OFDM subcarriers

to be viewed at the receiver as slightly different frequencies than intended and must

be compensated for in order to avoid either inter-carrier interference or having

28

subcarriers end up in the completely wrong frequency bin post-FFT. OFDM is

extremely sensitive to frequency offsets, given the highly dense spectral

characteristics of OFDM. Since the carriers are overlapping on each other, small

frequency offsets cause large amounts of interference. This is depicted in Figure 2.7.

With no frequency offsets, an FFT applied to the signal below will sample the value

at the peak of each
x

x)sin(pulse. However, with a frequency offset, each frequency

bin of the FFT will capture energy from many of the carriers added together. Each

square marker in Figure 2.7 represents a contribution of ICI.

Figure 2.7: Inter-carrier interference caused by a frequency offset of 20% of a

subcarrier spacing

As can be seen, the adjacent subcarrier introduces an interference component that

is about half the amplitude of the subcarrier of interest. All other subcarriers introduce

29

an interference component of much lower amplitude. This is known as a loss of

orthogonality, and must be compensated for in order to properly demodulate the

OFDM symbol.

The effect of frequency offsets in the time domain can easily be understood by

taking the Fourier transform pair from Equation (2.6), which is repeated here for

convenience:

() () ()ωωτ Ftjtf −↔− exp

By swapping the frequency and time domains, it can be shown that a shift in

frequency causes an evolving phase shift in the time domain. The time domain

samples are rotated according to Equation (2.8),

() ()NfnjnSnS /2exp)(' Δ−= π (2.8)

where S’ are the rotated samples, S are the original samples, n is the sample index, Δf

is the frequency offset in subcarrier spacings, and N is the number of subcarriers. The

effects of uncompensated frequency offsets are demonstrated in Figure 2.8. Each plot

depicts one 256 sub-carrier OFDM symbol using QPSK subcarrier modulation for

various frequency offsets in a noiseless system.

30

Figure 2.8: OFDM symbol with zero, 0.05, 0.1 and 0.25 subcarrier spacing fractional

frequency offsets

As can be seen, OFDM is quite sensitive to even small frequency offsets. Small

offsets cause dispersion in the constellation points similar to AWGN, but also cause a

general rotation in the constellation points. If there are multiple data symbols in the

packet, even this small offset will cause constellation points to drift over the decision

boundaries, as can be seen in Figure 2.9 below.

31

Figure 2.9: Uncompensated 0.05 subcarrier spacing frequency offset over 5
consecutive data symbols

In the presence of noise, an actual system will not perfectly measure frequency

offsets, so there will inevitably be some small residual frequency offset, such as in

Figure 2.9. The constellation rotation caused by residual frequency errors is usually

indistinguishable from constellation rotation caused by phase noise, which is

discussed in the next section. Correcting constellation rotation is usually done with

pilot carriers, which is covered in Chapter 3.

2.4.3 Phase Noise

Phase noise is introduced by imperfections in the local oscillators or by clock

jitter in the sampling clock. In either case, phase noise manifests as two different

phenomenon: common phase error and inter-carrier interference [21]. The overall

effect is determined by the bandwidth of the phase noise is relation to the bandwidth

of the OFDM system. If the phase noise is changing significantly faster than the

32

duration of an OFDM symbol, there will be loss of orthogonality, and thus, inter-

carrier interference. However, if the phase is changing more slowly than the duration

of the OFDM symbol, there will be a constant phase term added to each sample. This

will result in common carrier error (CPE) [21] – each carrier in the OFDM symbol

will be rotated by the same amount. However, unlike the effects of timing errors,

there will be a different constant carrier rotation for each OFDM symbol. This is

similar to the effect of residual frequency offsets, covered in the previous section. As

stated previously, the constellation rotations are typically corrected for using pilot

carriers that are embedded in each data symbol. The implementation of this is

discussed in Chapters 3 and 4.

2.5 Current Technology and Research

This section is designed to provide the reader with brief overview of the current

research into SDR-based OFDM systems. The following is not an exhaustive list of

all current research, but it should give the reader some insight into how the KUAR

and this thesis fit into the current research community.

2.5.1 SDR and OFDM

GNU Radio

The most ubiquitous SDR is GNU radio, which is a free software toolkit.

Although there are no known OFDM implementations using GNU radio, it still bears

mention being the mostly commonly known SDR platform. GNU radio isn’t intended

for any one particular hardware platform, but it is often used with the Universal

33

Software Radio Peripheral (USRP), built by the GNU radio project. The USRP

includes four DACs and four ADCs and a USB interface. It supports RF

daughterboard add-ons for various frequency bands. The USRP has an imbedded

FPGA, but it is not used for radio components. Rather, it is used for digital up-

conversion and down-conversion. GNU radio is intended to be an entirely software

based system that does the baseband processing on a PC and then uses a separate RF

front-end.

Trinity College Dublin

The Networks and Telecommunications Research Group (NTRG) at Trinity

College focuses on implementations of software radios on general purpose processors

(PCs) [22]. Their SDR platform consists of a receiver and transmitter consist of

minimal RF front end, IF amplifiers, A/D and D/A cards, and a PC [23]. They have

developed an XML based software tool called IRIS (Implementing Radio is

Software) that they have used to build an OFDM system on their SDR platform [24].

They are also investigating “dynamically reconfigurable radios” [23], which seem to

implement some of the key functionality of cognitive radios without emphasizing the

actual AI cognition.

University of Laval

Sebastian Roy and Paul Fortier from the University of Laval have implemented an

FPGA implementation of an uncoded OFDM transmitter and receiver with a feedback

link [25]. Their design uses different QAM modulation constellation depending on

the current channel conditions. The receiver can automatically determine which

34

constellation is currently being transmitted. Synchronization between the transmitter

and receiver is assumed, as the research is more concerned with adaptive modulation.

The system is implemented in a Virtex II XC2V6000 and tested at baseband with a

wireless channel model to validate the design

INAOE Puebla, Mexico

Joaquin Garcia and Rene Cumplido have published several papers including [26]

and [27] on the implementation of 802.11a and 802.16-2004 modulators implemented

in an FPGA. A key emphasis of their work is using Xilinx System Generator for very

high level abstract design.

Lattice Semiconductor UK Ltd.

Lattice Semiconductor has fully implemented the 802.16-2004 standard in an

OFDM transceiver on a Lattice ECP33 FPGA [28]. The system has been validated

using a Matlab program to generate test data that accounts for quantization effects,

timing and frequency offsets, SUI (Stanford University Intermim) model multipath,

phase noise, and AWGN. It has been vetted for receiver sensitivity tests and

minimum BER required for full 802.16-2004 validation. It is not clear from the

available literature whether it has been tested in a full SDR system. They have

produced several white papers including [29] that investigate synchronization issues.

The design presented in [29] evidently uses a slightly more advanced version of the

Schmidl and Cox algorithm [30] used in this thesis. They also present alternate

algorithms that should be reviewed for future work.

35

IMEC

IMEC is an exclusively R&D company in Belgium that research includes

everything from nanotechnology to wireless communications to solar cells. In [31]

they presented an FPGA based OFDM design. Their OFDM design is based on a

previous ASIC (Application Specific Integrated Circuit) design they built to conform

to the IEEE 802.11a standard. Their design implemented in a Xilinx Virtex II

XC2V6000 FPGA (which has considerably more logic resources than the Virtex II

used in the KUAR: 33,792 logic slices compared to 9,280) and is capable of the full

20 MHz bandwidth and 72 Mbps data rate specified in the standard. The VHDL code

was generated from a dataflow model in C++ using software that is normally used for

generating ASIC designs.

IAF

IAF is a German company that specializes in cutting-edge wireless

communications technology. They have built several FPGA-based OFDM testbed

platforms, including one based on IEEE 802.11a [32]. Much of their work is on

OFDM systems for potential 4G technology, including a system that claims to hold

the world record in radio transmission speeds, with data throughput over 1 Gigabit

per second.

2.6 Chapter Summary

This chapter has provided an introduction to dynamic spectrum access, software-

defined radios, cognitive radios, the KUAR, as well as an overview of OFDM. This

provides the reader context and motivation behind the research conducted in this

36

thesis. Additionally, a brief overview of current research and technology in the

academic as well as industrial sectors was provided.

37

Chapter 3: Proposed Research and Design

The primary goal of this thesis is to build an IEEE 802.16-2004 OFDM reference

design on the KUAR, implementing as much of the standard as is practically possible,

given the available hardware resources. The following chapter outlines the design

constraints and goals, the top level system design including block diagrams, the

preamble and symbol structure used in the IEEE 802.16-2004, and the theory behind

the individual modules that compose the OFDM system. The IEEE 802.16-2004

standard has been selected since it is currently the most advanced standard for fixed

OFDM transmission. This standard will soon be the benchmark upon which all other

OFDM systems and standards will be compared. The IEEE 802.16e standard is more

recent, but it is intended for mobile radios. As stated in Chapter 1, the KUAR is

portable but it is not designed for mobile communications.

3.1 Design Requirements and Specifications:

The OFDM system employed in this work is intended as a reference design that

could be potentially modified and scaled to be compliant with IEEE 802.16-2004

However, this design must be able to operate on the current version of KU Agile

Radio. This imposes limits on hardware complexity and speed within the constraints

of the Xilinx Virtex II PRO FPGA unit built into the KUAR. Additionally, the

bandwidth is limited by the speeds of the ADC, DAC, and their corresponding analog

filters.

38

3.1.1 System Requirements

Taking into consideration these hardware constraints, as well as the general

complexity and scope of the project and manpower devoted to it (one graduate

student), some requirements for the reference design were formulated early in this

thesis research and updated as needed as the project progressed. These requirements

are stated (with justification) as follows:

1. The transmitter and receiver designs do not necessarily need to fit on the

FPGA simultaneously. It became apparent early in the OFDM design process

that the receiver alone would consume nearly all available FPGA resources.

Moreover, this requirement reduced the complexity of the project

considerably. An OFDM transceiver would require simultaneously sharing of

the FFT between the transmitter and receiver modules.

2. Error control coding, interleaving, and bit randomization are omitted. All of

error control functionality operates at the bit level, so it can be easily

integrated after the rest of the physical layer design was implemented.

However, this would require reducing the logic size of the proposed design

and/or using a larger FPGA.

3. The transmitter and receiver would be constrained to using only QPSK

modulation for the subcarriers even though (the standard supports BPSK,

QPSK, 16-QAM, and 64-QAM. Utilizing only QPSK eases the complexity of

the receiver in terms of the channel estimator and dynamic range

39

requirements. QAM subcarrier modulation also requires gain control that is

not currently optimized for OFDM on the KUAR.

4. A cyclic prefix length of 32 samples was employed, even though the standard

supports 8, 16, 32, and 64 samples. The cyclic prefix of 32 samples is

arbitrary since the maximum delay spread indoors is less than one sample

period for the proposed system.

5. For purposes of channel estimation, the channel is assumed to be AWGN and

flat fading on each subcarrier. Additionally, the fading is assumed to be very

slow such that channel estimates calculated during the preamble will apply to

the rest of packet. These two assumptions are implicit in OFDM and IEEE

802.16-2004. OFDM systems are always designed such that each carrier

undergoes flat fading. The IEEE 802.16-2004 standard assumes that the

channel conditions do not change significantly over the period of a packet.

The number of data symbols per packet can be adjusted accordingly.

6. Integer frequency estimation and compensation is not implemented. Due to

the RF hardware and oscillator requirements imposed by the IEEE 802.16-

2004 standard [2] (also discussed in [34]), frequency offsets greater than one

subcarrier spacing should not occur and therefore can be safely ignored.

These constraints were taken into consideration and along with the IEEE 802.16-

2004 OFDM-PHY standard, the following specifications were generated:

40

3.1.2 Transmitter Specifications

1. The transmitter implements an OFDM modulation with 256 subcarriers

with carrier mappings defined by the IEEE 802.16-2004 standard.

2. The guard interval is composed of a 32 sample cyclic prefix.

3. The data is modulated onto data carriers using QPSK.

4. Before each packet, the transmitter transmits the 2 OFDM symbol

downlink preamble as defined in the 802.16-2004 standard.

5. Constant valued pilot symbols are modulated onto the OFDM carriers of

the data symbols on the index dictated by the IEEE 802.16-2004 standard.

3.1.3 Receiver Specifications

1. The receiver parameters are designed around the specifications from the

transmitter (QPSK, 32 sample cyclic prefix, known data preamble).

2. The receiver implements a frame detection algorithm, that estimates the

first sample of the preamble

3. The receiver implements a fractional frequency offset estimation

algorithm which estimates the carrier frequency offset. This algorithm can

estimate frequency errors that are smaller than one subcarrier spacing.

4. The receiver implements a channel estimation algorithm, which compares

known data from the second preamble with the received second preamble

and calculates the complex attenuation estimates for each subcarrier and

41

applies these estimates to the same subcarriers on subsequent OFDM data

symbols.

5. The receiver implements a common phase error (CPE) correction

algorithm that corrects constellation rotation using the data symbol pilot

carriers.

3.2 OFDM System Block Diagrams

The following block diagrams describes the proposed structure of the OFDM

transmitter and receiver. These designs serve as template which aides in the design of

the individual modules. These diagrams are meant to be a generic framework for any

packet-based OFDM system, in addition to IEEE 802.16-2004.

3.2.1 OFDM Transmitter

Figure 3.1: OFDM Transmitter Block Diagram

The transmitter, shown in Figure 3.1, operates as follows. At the beginning of

every frame, the preamble generator generates the two preamble symbols which the

42

bin-loader maps directly to the IFFT. After the preamble, the QPSK modulator begins

mapping every 2 bits to QPSK symbols. These symbols are passed to the bin-loading

module that maps the QPSK symbols to data carriers, as well as producing the pilot

carriers and guard carriers. These carriers are loaded into the IFFT, which converts

the carriers into an equal number of time domain samples. The final step is to add the

cyclic prefix to form the OFDM symbol. The cyclic prefix is formed by taking the

last 32 time domain samples of each OFDM symbol and copying them to the front of

the symbol.

3.2.2 OFDM Receiver

Figure 3.2: OFDM Receiver Block Diagram

43

Figure 3.2 illustrates the functionality of the OFDM receiver. Time domain

baseband samples are constantly being digitized by the ADCs and passed to the

OFDM receiver. The frame synchronization module processes this data until it detects

the beginning of a frame. Once it detects the beginning of a frame it asserts the ‘start

of frame’ signal and passes the correlation metric ‘P’ to the fractional frequency

estimation block. Using this correlation information, the fractional frequency

estimation module calculates the frequency offset estimate and passes this to the

phase rotation module. The phase rotation module uses the estimate to produce the

proper angle in which to de-rotate the packet. Recall from section 2.4.2 that a

frequency offset causes an evolving phase rotation that changes every sample. The

phase rotation block calculates this evolving phase rotation. The frequency offset

compensation block uses this phase rotation calculation to de-rotate the time domain

samples. The purpose of the buffer block is to store the time domain data while the

previously mentioned blocks are processing the data. This ensures that the frequency

offset compensation will begin rotating the packet from the very beginning, instead of

somewhere in the middle.

Once the time domain data has been compensated for carrier frequency offsets, it

is passed to the FFT block, which converts it to frequency domain subcarriers. The

FFT module includes a counter and begins to increment when the start of frame signal

is asserted, so it will know when to begin processing the first OFDM symbol. The

cyclic prefix does not need to be explicitly removed since the FFT can be turned on

and off at regular intervals to ‘skip over’ the cyclic prefix. The channel estimation

44

and compensation block performs two functions. First, it uses the second preamble

and internally stored data to calculate the carrier equalizer taps. Since each carrier is

undergoing flat fading, at worst, only one tap per carrier is required. After this is

completed, it uses these taps to equalize all the data symbols in the packet.

Once the carriers are equalized, they are then passed to the CPE estimation and

compensation module. This module uses the pilot carriers in each data symbol to

estimate the rotation of the carriers due to phase noise and residual frequency offset,

and then de-rotates the carriers appropriately. Finally, these carriers are passed to the

carrier de-mapping / QPSK demodulator which filters out all the non-data carriers

and demodulates the data carriers into a bit stream and asserts a ‘data valid’ flag,

which serves as a write enable to any logic reading the bits out of the system.

3.3 IEEE 802.16-2004 OFDM Symbol Structure

The first step towards implementing the logic and mathematics required to build

the modules from the above block diagrams is to analyze the structure provided by

the IEEE 802.16-2004 standard. The table below dictates the assignment of the guard,

data, and pilot subcarriers. The index of each subcarrier corresponds to the frequency

bin the subcarrier would occupy going into the IFFT in the transmitter.

45

Table 3.1: Subcarrier index assignment [2]

Guard Carriers Data Carriers Pilot Carriers
-128 : -101
+101 : +127

-100: -89, -87 : -39,
-37 : -14, -12 : 1
1 : 12, 14 : 37
39 : 62, 64 : 87

89 : 100

-88, -63, -38, -13, 13, 38,
63, 88

Note: The index 0 subcarrier is the “DC subcarrier” and is left unmodulated.

Figure 3.3: Illustration of the subcarrier assignments [2]

Note: The pilot subcarriers are not actually transmitted at a higher power level than
the data carriers – they are exaggerated to note their location in the spectrum.

3.4 IEEE 802.16-2004 OFDM Preamble Structure

All synchronization and channel estimation functionality of the OFDM receiver is

based entirely on the two preamble symbols. Each preamble is a full 256 subcarrier

symbol. The preamble subcarriers shown in figure 3.4 are derived from the following

sequence supplied in the IEEE 802.16-2004 standard.

46

Figure 3.4: Base preamble sequence [2]

Using this preamble sequence, the carriers of the short preamble are defined by [2],
where k is the carrier index and PALL is as defined in Figure 3.4:

 0))((22 4mod)(644 =⋅⋅= kforkPconjP ALLkx (3.1)

 00 4mod)(644 ≠= kforP kx

Similarly, carriers of the long preamble are defined by [2]:

 0)(2 2mod)(1282 =⋅= kforkPP ALLkx (3.2)

 00 2mod)(1282 ≠= kforP kx

The first preamble only populates every fourth subcarrier in the frequency

domain. This causes the time domain representation of the first preamble to repeat

every 64 samples. This is called the “short preamble”, since in the time domain, it

appears to be four shorter symbols, each 64 samples in length.

The second preamble populates all the even numbered carriers, leaving the rest at

zero. This similarly causes the second preamble in the time domain to be composed

of two identical sets of 128 samples, i.e. the “long preamble”. Each preamble is also

47

transmitted with a cyclic prefix. In the time domain, the entire preamble known as the

“full preamble” can be visualized with Figure 3.5.

Figure 3.5: Time domain representation of full preamble

The IEEE 802.16-2004 standard does not explicitly state how the preambles are to

be utilized to achieve synchronization and channel estimation. However, Kishore and

Reddy [33] show a variety of algorithms that work well with the 802.16-2004

preamble, including those of Schmidl and Cox [30] which were implemented in this

project. After reviewing the literature on OFDM synchronization, in every case the

first preamble is used for frame detection and frequency offset estimation and the

second preamble is used exclusively for channel estimation.

The first preamble can be detected using a correlator with a delay of 64. This will

lead to a large correlation during the first preamble, yet very small correlation during

the second preamble. This correlation operating on the complex time domain samples

results in a complex value. The magnitude peaks of this can be used to estimate the

first sample of the frame, and the phase information can be used to estimate the

frequency offset. The first preamble can also be detected using a correlator with a

delay of 128. This produces a more reliable result but will also produce a correlation

in the second preamble.

48

The second preamble better suited for channel estimation. Having all even

numbered subcarriers populated gives it better frequency resolution than with the

short preamble, which only has every fourth subcarrier populated. Channel estimates

of the odd-numbered carriers can be copied to adjacent carrier estimates or

interpolated from the two adjacent estimates.

3.5 OFDM Module Design

In the following sections, the design of the modules presented in the block

diagrams is detailed. In some instances, multiple methods or algorithms are presented

and then compared and contrasted for their advantages and shortcomings. A few

sections encapsulate two modules where appropriate, such as when one module

estimates an error and another corrects for it.

3.5.1 Frame Synchronization

The task of the frame synchronizer is to estimate the first location of this first

sample of the frame. During the first phase of design, several algorithms were

examined and two of them are covered in this section. The first algorithm to be

considered was proposed by Kishore and Reddy [33]. Their algorithm requires that

the receiver have knowledge of the time domain preamble. A cross-correlation metric

P is calculated based on the locally stored time domain preamble, and the received

preamble [33],

49

 (3.3) []∑
−

=

+++=
1

0

*)]()([)()()(
M

i
iaMidriaidrdP

where ‘r’ is the received samples, ‘a’ is the locally stored time domain preamble, i is

the index of summation, d is the sample index, and M is the correlation delay, which

is 64 in this case.

A second metric, R, that calculates average power is also used to form a

normalized cross-correlation metric M [33].

21

0
)()(∑

−

=

++=
M

i
MidrdR (3.4)

 2

2

))((
)(

)(
dM
dP

dM = (3.5)

The Kishore and Reddy algorithm is an extremely precise method for frame

synchronization. The cross correlation produces three distinct spikes at the boundaries

between the 64 sample blocks of the short preamble. Figures 3.6 and 3.7 are plots of

M versus the sample index d for this algorithm operating on the full preamble in the

absence of noise and SNR = 10 dB, respectively. The large spikes at the end of the

plots are due to the R metric approaching zero at the end of the preamble.

50

Figure 3.6: Kishore and Reddy algorithm operating in the absence of noise

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Samples

M

M(d)

Figure 3.7: Kishore and Reddy algorithm operating at SNR = 10 dB

The Kishore and Reddy algorithm is extremely precise even at relatively low

SNR. The start of the frame can be calculated by waiting for a certain threshold to

occur, then searching the nearby symbols for the local maxima. This method yields

and extremely reliable start of frame estimate.

However, it is very computationally complex. Every block of 64 complex samples

must be first cross correlated with ‘a’, and then auto-correlated with itself delayed by

51

64 samples. At minimum this algorithm requires 128 complex multiplications per

sample. With only 88 real 18x18 bit multiply blocks available, implementing this

algorithm, if possible at all, would require a great deal of FPGA resources.

The second frame synchronization algorithm to be considered was proposed by

Schmidl and Cox [30]. This algorithm uses a simple auto-correlation instead of a

cross-correlation. In a similar manner to Kishore and Reddy, there is a P correlation

metric, R average power metric, and M normalized correlation, or timing metric

[30]]:

 (3.6) ∑
−

=
+++ ⋅=

1

0

*)()(
L

m
Lmdmd rrdP

 ∑
−

=
++=

1

0

2)(
L

m
LmdrdR (3.7)

 2

2

))((
)(

)(
dM
dP

dM = (3.8)

One major advantage of using a simple auto-correlation metric is that the metric P

can be computed iteratively. Instead of evaluating the summation from Equation (3.6)

for every sample d, the expression can instead be evaluated as follows [30]:

 (3.9))()()()1(*
2

*
LddLdLd rrrrdPdP +++ ⋅−⋅+=+

Equation (3.9) implements a sliding window approach to a running summation.

Once the first L terms have been summed to form P(d), P(d+1) can be calculated by

52

adding the next autocorrelation term and subtracting out the very first autocorrelation

term. This process is evaluated iteratively.

Figures 3.8, 3.9, and 3.10 demonstrate plots of M versus the sample index d for

the implementation of above algorithms processing the full preamble with L = 128 for

SNR = 1000 dB, 20 dB, 10 dB and 5 dB, respectively. L = 128 gives a better result

than L = 64 because there are more samples over which to average over to reduce the

noise variance. This yields a more accurate estimate of the start of the frame, as well

as a more accurate estimate of the fractional frequency offset.

Figure 3.8: Schmidl and Cox algorithm operating in the absence of noise

400 500 600 700 800 900 1000 1100 1200 1300
0

0.2

0.4

0.6

0.8

1
X: 733
Y: 0.8425

M(d)

M

d
Figure 3.9: Schmidl and Cox algorithm operating at SNR = 10 dB

53

400 500 600 700 800 900 1000 1100 1200 1300
0

0.2

0.4

0.6

0.8

1

X: 734
Y: 0.6073

M(d)

M

d
Figure 3.10: Schmidl and Cox algorithm operating at SNR = 5 dB

From the above figures one key observation is that the peaks associated with the

full preamble decrease in value as the SNR decreases. This is completely expected

since as the noise variance increases, correlation between the two 128 sample

sequences will decrease, but the signal power will not. The consequence of this is that

if the threshold value is held constant to some value such as 0.8, then the first sample

of the frame will be calculated differently depending on SNR.

The more sophisticated way to handle this problem (and a strongly suggested first

step in future work) is to estimate the received SNR and scale the threshold

appropriately. The timing metric itself can be used itself to estimate the SNR [30].

Another method suggested by the authors of [30] is once a specific threshold is

reached, search the surrounding samples for the maximum value and choose that

calculate the start of the frame.

 A simpler approach to deal with this issue, for the purpose of the thesis, is to first

empirically calculate the average value of the first plateau of M for the minimum

expected SNR. This minimum SNR could also be the approximate minimum SNR

54

where satisfactory BER is still achievable. This method relies on the cyclic prefix to

handle the uncertainty in where the frame begins. For example, if a threshold value of

0.8 is used where the SNR is very high, the threshold will be triggered on the slope of

the graph before the plateau is reached. This will result in the estimated start of frame

beginning during the cyclic prefix. This is known as the maximum integer timing

error, where the timing error is an integer number of samples. This is contrasted from

fractional timing errors, where the phase of the sampling clock of the ADC differs

from the phase of the transmitter’s sampling clock. More sophisticated methods, such

as searching for the maximum peak of the timing metric were later investigated as

well, but as the design progressed it was apparent that there were not enough logic

resources left to implement any of them.

These integer timing offsets are acceptable, so long as care is taken to ensure that

the cyclic prefix is longer than the maximum delay spread in addition to the

maximum integer timing offset. This concept is illustrated in Figure 3.11.

Figure 3.11: Accounting for the maximum integer timing error in the cyclic prefix

55

So long as the first sample of the FFT occurs inside the cyclic prefix (but after the

maximum delay spread) no ISI will occur. The only detrimental effect is carrier

rotation, which is indistinguishable from carrier rotation caused by fractional timing

errors and flat fading. The carrier rotation introduced by these various mechanisms is

all accounted for by channel estimation, provided it has high enough resolution. This

caveat is covered in detail in Section 3.5.3. However, if integer timing error places the

estimated first sample before the cyclic prefix, or after the actual first sample, ISI will

occur and will result in significantly degraded performance.

3.5.2 Frequency Offset Estimation and Compensation

As shown earlier in Chapter 2, OFDM is extremely sensitive to frequency offsets.

Most single-carrier communication systems use some sort of phase-lock loop

feedback system to synchronize the carriers. However, phase-lock systems are

generally not fast enough for packet transmission [20]. The frequency offset must be

measured quickly and accurately, and then compensated for digitally.

Both Kishore and Reddy, as well as Schmidl and Cox, employed the same

technique to estimate fractional frequency offsets. Fractional frequency offsets, where

the offset is less than one subcarrier spacing, can be estimated from the P(d) metric

used for frame synchronization. The P(d) metric correlates identical samples of the

preambles, 128 samples apart in time. If there are frequency offsets present, P(d)

contains this phase information. The fractional frequency offset Δf is calculated by

[30]:

56

 π/))128__((+−=Δ indexframeStartPanglef (3.10)

The time domain samples are then de-rotated,

)(*)/2exp()(' nSNfnjnS Δ−= π (3.11)

where S’ are the de-rotated time domain samples, S are the original samples, n is the

sample index, and N is the number of subcarriers.

If the frequency offset is greater than one subcarrier, this technique will restore

orthogonality to the subcarriers, but the carriers will end up in the wrong FFT bin,

shifted in index corresponding to the integer frequency offset.

3.5.3 Channel Estimation and Compensation

The task of channel estimation and compensation is to use known preamble data

to calculate the effects of the channel on each OFDM subcarrier, and then use the

results of the calculations to correct the magnitude and phase of the subcarriers in the

OFDM data symbols. There are two key assumptions under which the channel

estimation task is considered:

1. The channel may exhibit frequency selective fading, but each individual

subcarrier is always undergoing flat fading. This means that a single-tap

equalizer is sufficient for each subcarrier to compensate for the effects of the

channel.

2. The Doppler bandwidth is very negligible compared to the bandwidth of the

OFDM signal. This means that channel estimates calculated for one symbol

can apply to the rest of the OFDM symbols in a packet.

57

If X is the transmitted signal in the frequency domain, H is the channel transfer

function, N is the AWGN, n is the subcarrier index and Y is the received frequency

domain signal,

)()()()(nNnHnXnY +⋅= (3.12)

)(
)()()(

nX
nNnYnH −

= (3.13)

The channel transfer function can only be estimated by Equation (3.14). This is the

simplest type of carrier equalization, where noise statistics are not calculated or

utilized.

)(
)()(

nX
nYnH =

)
 (3.14)

H
)

is a vector of values that yields a single complex value for each subcarrier. H
)

can

calculated by taking Y to be the received second preamble and X known second

preamble, which has a locally stored value for all even-numbered subcarriers. The

odd numbered carrier estimates could be formed from taking the average of the two

adjacent carriers. The simplest method would be to simply copy the estimates from

the even numbered carriers unto the adjacent odd-numbered carriers. This cuts back

on logic requirements for the VHDL implementation, and is the method proposed for

this design. After calculating the equalization taps H
)

, they are used to estimate the

transmitted carriers as in Equation (3.15).

58

)(ˆ
)()(ˆ

nH
nYnX = (3.15)

Channel estimation and equalization attempts to correct for fading and timing

offsets. However, large integer timing offsets have the ability to rotate adjacent

carriers to a non-negligible degree. The consequence of this is demonstrated in the

Figure 3.12 below. Each plot is a constellation diagram that illustrates effect of

integer timing offsets after channel equalization has been performed. The rotation of

some of the constellation points are due to the odd-numbered carriers using the same

estimate as the adjacent even-numbered subcarriers. However, with significant

integer timing offsets, adjacent subcarriers may differ significantly in phase.

59

Figure 3.12: Residual carrier rotations to due integer timing frequency offsets with

proposed channel estimation algorithm for offsets of 0, -2, -10, and -20 samples
respectively.

 On the other hand, if the integer timing offsets occur such that the FFT

window is late, instead of early, ISI will occur in addition to the carrier rotations. This

is demonstrated in Figure 3.13.

60

Figure 3.13: ISI due to integer timing offsets with proposed channel estimation
algorithm for offsets of 0, 2, 5, and 10 samples respectively

3.5.4 Common Phase Error Estimation and Compensation

As stated before, the purpose of this block is to compensate for residual frequency

offsets and phase noise that may cause the QPSK constellation points to be rotated in

phase. The term common phase error comes from [21] which uses pilot carriers to

correct from the phase noise induced common phase error. In this design, the

estimation is simplified by using the same pilot carrier in all locations in the OFDM

symbol. Each pilot carrier is the QPSK baseband symbol 1 + j. Therefore, the CPE

61

estimation is accomplished with a simple averaging of the pilot carrier phases and

comparing it to the phase of π/4. By averaging the carriers, the effect of noise upon

each individual carrier is diminished.

48

8

1 π−
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
∑
=

i
i

carrierpilot
angleEstimateCPE (3.16)

The CPE estimate is the estimate angle by which the entire constellation is rotated.

The phases of the carriers are corrected then by Equation (3.17), where Carrieri is the

ith subcarrier before CPE compensation, and Carrieri
’ is the ith subcarrier after CPE

compensation.

256....,3,2,1)exp(' =⋅−⋅= iforEstimateCPEjCarrierCarrier ii (3.17)

3.6 Chapter Summary

This chapter outlined the design requirements and specifications, the top level

system design including block diagrams, and mathematical concepts behind many of

the key algorithms necessary to build the proposed OFDM system. This chapter

explicitly stated what is being built and why. The mathematical description of the

synchronization and channel estimation/equalization algorithms serve as a reference

for the actual implementation details in Chapter 4.

62

Chapter 4: Implementation

This chapter details the hardware implementation of the OFDM transmitter and

receiver in the KUAR. The level of detailed presented is intended to provide an

understanding of the hardware design given a passing knowledge of VHDL and

digital logic. The design of the receiver is covered first, starting with the top-level

design including a port map, top-level FPGA design, and a block diagram of the

receiver sub-modules. The design of each sub-module is then presented in detail. The

transmitter design is then given a similar treatment. Finally, the validation and

verification processes are then presented, including a comparison of the BER rates of

the Matlab simulation and the VHDL implementation in an AWGN channel, followed

by an example of an actual laboratory transmission between two KUAR radios.

4.1 VHDL Design

All VHDL design in this thesis was performed in the Xilinx ISE (Integrated

Software Environment) version 7.1 for Windows. ISE combines a VHDL text editor,

IP core support, behavioral simulation, and synthesis support in one program.

 The primary challenge in writing the VHDL components is translating the

software operations of the Matlab code into digital logic for hardware. Each Matlab

module is able to store the entire frame in memory, perform the necessary operations,

stored the result in memory, and then pass the result to the next module. A practical

receiver must process the data in real time. The VHDL implementation operates on

the data a sample at a time and only stores intermediate results when absolutely

63

necessary. Future work may be able to optimize the design by storing intermediate

results and running certain algorithms at higher clock rates in order to reuse logic.

However, neglecting this possibility, the challenge lies in implementing the same

algorithms present in the Matlab implementation where commonplace software

concepts, such as while loops and multi-dimensional arrays, are either impossible or

impractical.

The strategy for developing the VHDL modules involves using Xilinx IP cores

wherever possible followed by using behavioral code in the context of VHDL

processes for the remaining logic. The objective of this project was not to make the

most efficient OFDM implementation possible, but rather a rapid prototype.

Behavioral VHDL resembles C or Java code, lending itself to quick implementation

for a programmer lacking in VHDL expertise. The justification for using IP cores is

that they are very efficient designs in terms of resources and performance, as well as

being well documented and easy to use.

IP cores utilized in this work include the pipelined FFT, CORDIC (COordinate

Rotation Digital Computer), BRAM (Block Random Access Memory), and FIFO

(First In, First Out) memory. The pipelined FFT consumes more logic resources than

any other component. This is due in part to it being a pipelined implementation, in

that samples can be written and read to/from it in a continuous, uninterrupted stream.

This prevents the need for any intermediate memory storage. The CORDIC is used to

accomplish many trigonometric functions. Among these are inverse tangent (or

arctangent), which is used to find the angle of a complex number, and vector rotation,

64

which is used to change the angle of a complex number. The BRAMs are useful in

that they are built into the FPGA, thus requiring very few logic resources for a large

amount of fast memory. The FIFO memories serve two purposes. First, they can be

used as adjustable delay elements. By writing x number of samples to a FIFO, and

then beginning to read from it, implements a delay of x samples. Secondly, the FIFO

can be used to store data for read/write from the onboard processor. A FIFO is used

on the transmitter to store bits to be transmitted. The bits are then read out as needed

to populate data carriers. Similarly, on the receiver, the output of the Carrier

Demapper / QPSK detector writes bits to a FIFO, using the data_valid signal as a

write enable.

As each receiver module design was completed, it was integrated with the other

receiver components and tested in behavioral VHDL simulation, using Matlab

simulation data to verify its functionality. Similarly, during the development of the

transmitter, the behavioral simulation was used to generate transmitted data that was

then tested in the Matlab simulation for verification.

The following sections present the VHDL design aided with block diagrams. First

the receiver module is covered, demonstrating a port map of the receiver, followed by

the receiver within the top-level FPGA design, followed by the internal design of the

receiver itself. It is broken down into many sub-modules, which are covered in detail

themselves. After this, a similar treatment is given to the transmitter. With respect to

the port maps, the width of each signal (in bits) is explicitly stated. Moreover, logic

65

lines in the block diagrams are represented by a thin line whereas busses are

represented by a thick black line

It should also be noted that the block diagrams do not represent every detail of the

VHDL code. The level of detail is intended to, along with the comments in the actual

VHDL code, aid in the understanding of the VHDL. Also, much of the VHDL is

implemented in behavioral process statements. The blocks that make up the detailed

block diagrams, other than the IP cores, usually represent an individual process

statement, but there is not always a one-to-one correspondence. The block diagrams

are designed to strike a balance between an accurate description of the VHDL

module, as well as giving as much conceptual insight as possible.

4.2 Receiver Design

 Figure 4.1 presents the port map of the VHDL receiver module.

Receiver

sys_clock

sym_per_frame(16)

bit_clock

bit_clock90

fd_threshold(8)

Din_I(16)

Din_Q(16)

data_valid

bits

Dout_I(16)

Dout_Q(16)

Figure 4.1: Receiver module port map

The receiver module requires three different clocks: a 4 MHz system clock, and

two 8 MHz clocks , one in phase with the 4 MHz clock, and the other shifted by 90

degrees. The ports Din_I and Din_Q are the 16-bit inputs from the ADC (Note: The

66

ADC outputs are actually 14 bits – the two least significant bits are padded with

zeros). The threshold port is the adjustable threshold for the frame detection

algorithm, discussed in Section 3.5.1. The sym_per_frame port dictates the number of

symbols expected in each transmitted frame. The data_valid port is used as a write

enable for an external memory element connected to the bits port. The Dout_I and

Dout_Q ports are provided to capture the constellation points in addition to the

output bits, if desired.

Figure 4.2 presents the external logic necessary for the receiver module to operate

on the KUAR.

Figure 4.2: External logic for top-level FPGA design

67

The Dual DCM block represents two cascaded Xilinx digital clock managers

(DCM). The DCMs are built into the Xilinx Virtex II-Pro FPGA. A 16 MHz clock

reference built into the KUAR drives the DCMs to generate all clock signals. The

first DCM divides the clock by a factor of four to generate the 4 MHz primary system

clock, and multiplies the clock by five to generate an 80 MHz clock, as well as an 80

MHz clock shifted by 90 degrees. These two 80 MHz clocks supply the differential

clock input required by the ADC. The first DCM generates a copy of the 16 MHz

input clock at the output, which drives the second DCM. Xilinx design software

imposes a constraint that if a clock signal drives a DCM, it cannot drive any other pin

in the device. Therefore, to use the 16 MHz clock signal again, the first DCM must

generate a copy of it. The second DCM divides the 16 MHz clock by two, generating

two 8 MHz clock signals. These two clocks are required in the Carrier Demapping /

QPSK Demod module.

The FIFO is used to store output bits so that they may be read by the CPU on the

KUAR. The CPU interface also writes to a control register that can used to adjust the

frame detection threshold as well as the number of symbols per frame.

Figure 4.3 presents the top level design of the receiver. This block diagram is

based off the generic architecture presented in Figure 3.2. The only signals that are

not explicitly represented are the clock and reset signals for each module.

68

Figure 4.3: Receiver module top level design

The only major change from the generic diagram in Figure 3.2 is the addition of

the FIR filter and some extra control signals. These control signals are explained in

detail during the description of the sub-modules.

4.2.1 Frame Synchronization Module

Figure 4.4 illustrates the input and output ports of the frame synchronization

module. A block diagram of the VHDL implementation of this module is presented in

Figure 4.5.

69

Figure 4.4: Inputs and outputs of the frame synchronization module

Figure 4.5: Implementation of Frame Synchronization Module

Each FIFO block represents a FIFO IP core with 128 samples of memory storage.

A FIFO can be turned into a simple delay element by first writing samples to it where

the number of samples equals the desired delay. After that, the read enable is asserted,

thus reading a sample every time a sample is written. Before the complex multiplier,

70

the FIFO instances are 16 bits wide. After the complex multiply, the FIFOs must act

as delays for the products, which are 32 bits wide. The Z-1 blocks represent one clock

cycle delays. They are implemented in a process statement with a variable, which are

synthesized as a register.

The multiplication and comparator functionality were all implemented using

behavioral VHDL statements. To minimize resources, some of the results and factors

were truncated prior to multiplication. The reset signal is asserted by top level design

whenever a frame has ended. This forces the start_of_frame signal low and the

module immediately begins searching for the next frame.

The two branches in the upper right-hand corner represent the output of the P

metric which is required by the fractional frequency estimation module. Intermediate

results such as R and |R|2 are notated and correspond to the equations from Section

3.5.1.

4.2.2 Fractional Frequency Estimation Module

Figure 4.6 illustrates the input and output ports of the fractional frequency

estimation module. A block diagram of the VHDL implementation of this module is

presented in Figure 4.7.

71

Figure 4.6: Inputs and outputs of the fractional frequency estimation module

Figure 4.7: Implementation of Fractional Frequency Estimation Module

The Din_I and Din_Q signals are connected to the correlation metric P from the

frame detect module. The CORDIC IP core is set to implement arctangent

functionality, which constantly calculates phase_out based on the current value of the

correlation. Phase_out is supplied in radians strictly between –π and +π. When the

start of the frame is detected, the frame_start signal goes high. The module then

latches the current value of phase_out and holds it until reset is asserted at the end of

the frame. The ff_estimate signal is then passed to the phase rotation module.

72

4.2.3 Phase Rotation Module

Figure 4.8 illustrates the input and output ports of the phase rotation module.

Figure 4.8: Phase rotation module input and output ports

The implementation of this module is done entirely with behavioral VHDL. This

module takes the ff_estimate signal from the fractional frequency estimation module,

and uses it to generate the angle theta required each sample by the frequency offset

compensation module. Equation (4.1) provides the angle required to calculate theta at

each sample, where ff_estimate is the fractional frequency offset estimate signal in

radians, n is the current sample index, and N is the number of carriers. In each

iteration, the only variable that changes is n, so the multiplication / division need only

be done once. The remaining calculations of angle require only a simple addition

operation.

N

nestimateffangle ⋅
=

_2 (4.1)

The CORDIC IP core requires angle inputs be in twos compliment, 3QN fixed

point notation strictly between –π and +π. 3QN is defined as a fixed point number that

73

has 3 integer bits, and the remaining bits are used for the fractional portion. In this

design, 16 bits are used in total, i.e. 3 integer and 13 fractional bits. The requirement

that the number be between –π and +π implies that the result of Equation (4.1) must

be modulo 2π, with angles greater than π and less than 2π mapped from –π to zero.

The following pseudo-code accomplishes this operation, where current_angle is the

current output signal theta from the module, and Δangle is the incremental difference

in angle between every sample.

if current_angle > 0
 if (current_angle + Δangle) > π
 current_angle = current_angle – 2π +
Δangle
 else
 current_angle = current_angle + Δangle
 end if
else
 if (current_angle + Δangle) < -π
 current_angle=current_angle + 2π+Δangle
 else
 current_angle=current_angle + Δangle
 end if
end if

Figure 4.9: Phase rotation algorithm pseudo-code

The pseudo-code checks to see if the sum of the current angle plus the next

incremental angle value will be greater than π or less than –π. If this is the case, then

the angle is rotated back by 2π before adding the incremental angle value. This

incremental angle value is calculated by Equation (4.1), where n is the incremental

variable. For this design, 2 / N = 1/128, which in fixed point 3QN notation is 2-7 =

000.000000010000. The multiplication of the result of the factor 2 / N and the

74

ff_estimate will produce a 32 bit number with 6 integer bits. The result is then

truncated to 16 bits, keeping the 3 least significant sign bits and the 13 most

significant fractional bits to retain the 3QN format.

The signal start_frame instructs the module to begin calculating the output phase.

This is required to prevent the module from starting off in an incorrect state. If an

undefined value of ff_estimate is used to begin calculating the output phase, every

value of output phase thereafter will therefore be undefined.

4.2.4 Frequency Offset Compensation Module

Figure 4.10 illustrates the input and output ports of the frequency offset

compensation module. A block diagram of the VHDL implementation of this module

is presented in Figure 4.11.

Figure 4.10: Frequency offset compensation module inputs and outputs

75

Figure 4.11: Implementation of Fractional Frequency Compensation Module

The FIFO block in Figure 4.11 represents two 16-bit FIFO IP cores. The FIFOs in

this module implements the buffer required to store the time domain data while the

frame synchronization is processing the frame. Without the FIFO, the beginning of

the frame will not be compensated for frequency offsets. The counter asserts a read

enable signal to in the FIFO. When the design is flashed to the FPGA, the counter

begins counting up to the programmed number of clock cycles, which sets the sample

delay of FIFO. The delayed samples are then passed to a CORDIC operating in

vector rotation mode. In this mode, the CORDIC requires a complex input, where x

and y are the real and imaginary parts, respectively. This complex number is then

rotated by the angle theta supplied by the phase rotation module, forming the output

signals Dout_I and Dout_Q.

4.2.5 FFT Module

Figure 4.12 illustrates the input and output ports of the FFT module. A block

diagram of the VHDL implementation of this module is presented in Figure 4.13.

76

Figure 4.12: Port map of FFT module

Figure 4.13: Implementation of FFT module

This module is essentially an FFT IP core with some auxiliary logic used to skip

over the cyclic prefix. When the start_frame signal is first asserted, the FFT Timing

Logic block instructs the FFT IP core to begin calculating the first FFT. As the FFT

IP core loads samples to calculate the FFT, it outputs the current input index on the

port xn_index which is passed back to the FFT Timing Logic block via the

fft_in_index signal. When the last sample has been loaded, the FFT Timing Logic

block turns off the FFT IP core and initiates a counter. When the counter reaches the

length of the cyclic prefix (32 clock cycles in this design), it turns the FFT back on

77

again. The Timing Logic block also keeps track of the number of FFT symbols that

have been processed, and then disables the FFT IP core completely when the last

symbol has been processed. The entire FFT module remains in this state until reset

has been asserted.

The FFT IP core ports fwd_in controls whether or not the operation is an FFT or

IFFT. This port is set to ‘0’ on the FFT used in the transmitter. It doesn’t matter

which transform is implemented, so long as the transmitter and receiver use the

opposite transform. The fwd_in_we is simply a write enable for the fwd_in port.

 For detailed descriptions of the ports of the FFT IP core, see Xilinx

documentation [34].

4.2.6 Channel Estimation and Equalization Module

Figure 4.14 illustrates the input and output ports of the channel estimation and

equalization module. A block diagram of the VHDL implementation of this module is

presented in Figure 4.15.

Figure 4.14: Port map of channel estimation

78

Figure 4.15: Implementation of Channel Estimation and Equalization module

Like the phase rotation module, the channel estimation and equalization module is

largely implemented in behavioral VHDL. The fft_out_index signal is used to

determine when the second preamble sequence has begun, upon which it begins

reading data from the preamble data block to calculate the equalization taps, as in

previously shown in Equation (3.14). The only difference in this implementation is

that an actual divide operation is avoided. The real operations required to perform a

complex division, where X and Y are both complex numbers is given by:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅−⋅
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⋅+⋅
=

+
+

2222
IR

RIIR

IR

IIRR

IR

IR

XX
YXYXi

XX
YXYX

XX
YY

 (4.2)

If the terms in the divisor are neglected, the result retains the phase information

but loses the amplitude information. Decision boundaries in a QPSK system are

determined entirely by the symbol phase, so the amplitude is not important in this

79

case. However, to implement a QAM system, an actual divide operation is necessary.

In the VHDL implementation, the equalizer taps are defined in Equation (4.3), where

X are the known carrier values, Y are the received carriers, and X̂ are the estimated

data carriers, n is the subcarrier index, and H
)

are the equalizer taps given as:

 () ())()()()()()()()()(ˆ nYnXnXnYinYnXnYnXnH IRRIIIRR ⋅−⋅+⋅+⋅≡ (4.3)

This operation is denoted in the block diagram as a modified complex multiply,

because the operation is exactly the same as a complex multiply with the exception of

the subtraction operating on a different term.

As the subcarriers from the second preamble are processed, the results of

Equation (4.3) are written to the BRAMs. There is one BRAM each for the real and

imaginary parts of the equalizer taps. The address used for write and read operations

on the BRAMs corresponds to the fft_out_index signal, such that the index of the

memory in the BRAMs corresponds to the subcarrier index supplied by the FFT.

Once the behavioral logic determines that the second preamble has passed, the write

enabled is set low and BRAMs begin reading out the equalization taps, which are

used to equalize the subcarriers in the subsequent OFDM data symbols. The

equalization is the exact same operation as used in Equation (4.3), and is given in as:

() ())(ˆ)()(ˆ)()(ˆ)()(ˆ)()(ˆ nHnYnHnYinHnYnHnYnX IRRIIIRR ⋅−⋅+⋅+⋅≡ (4.4)

where X̂ represents the estimated, or equalized, data subcarriers . Once this module

begins outputting the equalized carriers, it asserts the data_start signal and also

provides the signal Eq_symbol_index, which is the index of the equalized carriers.

80

4.2.7 CPE Estimation and Compensation Module

Figure 4.16 illustrates the input and output ports of the CPE estimation and

compensation module. A block diagram of the VHDL implementation of this module

is presented in Figure 4.17.

Figure 4.16: CPE estimation and compensation module port map

Figure 4.17: VHDL implementation of CPE estimation and compensation module

The input data to the CPE Estimation and Compensation module is divided into

two streams. The pilot carrier extraction block uses the Eq_symbol_index signal to

81

extract the pilot carriers and add their complex values together, which essentially

averages their phases. The result of this addition is passed to the CORDIC in the

upper branch, which uses the arctangent function to calculate the angle of the sum of

the pilot carriers. The signal -theta is negative of the angle produced by the CORDIC.

In the lower branch, the OFDM subcarrier samples are stored in a 256-sample

FIFO while their pilot carriers are being extracted and processed. The module is

timed via the FIFO and the corresponding counter such that when a new value of –

theta arrives at the CORDIC in the lower branch, the carrier samples are beginning to

appear at the output of the FIFO. These samples are then de-rotated according to the

signal –theta. The port Derotated_symbol_index signal is calculated from the

Eq_symbol_index. The two indexes are not identical in value due propagation delay

from the vector rotation CORDIC.

4.2.8 Carrier Demapping / QPSK Demodulation Module

Figure 4.18 illustrates the input and output ports of the Carrier Demapping /

QPSK demodulation module. A block diagram of the VHDL implementation of this

module is presented in Figure 4.19.

82

Figure 4.18: Carrier Demapping / QPSK Demodulation module port map

Figure 4.19: VHDL implementation of Carrier Demapping / QPSK demodulation
module

 This is the only module that uses more than one clock signal, so these clocks are

explicitly shown in the VHDL implementation block diagram. The clock signal is the

standard 4 MHz clock used by every other module in the system. The signals

bit_clock and bit_clock90 are both run at 8 MHz, but bit_clock90 is shifted in phase

by 90 degrees with respect to bit_clock.

83

The Carrier Demapping block uses the index of the subcarrier to determine

whether it is a data subcarrier or not. The data_valid signal changes on the falling

edge of bit_clock. It is asserted high when the current subcarrier is a data subcarrier

and low when it is a guard or pilot subcarrier. The data_start signal is asserted by the

channel estimation and equalization module when the OFDM data symbols begin, to

prevent the preamble symbols from being demodulated as data.

The QPSK Demod block clocks in the data subcarrier samples from the Data_in

ports at the normal system clock rate of 4 MHz. The bits are determined on the falling

edge of bit_clock90. The rising edge of bit_clock is intended to be used to write the

bits to external memory, such as a FIFO.

The symbol counter block keeps track of the number of OFDM data symbols that

have been processed. When this number reaches the number of symbols_per_frame, it

sets the frame_done signal high. This signal instructs the top level design to reset all

of the modules to prepare for the next frame.

4.3 Transmitter Design

Being far less complex than the receiver, the transmitter VHDL design does not

require a hierarchal design of a top level and individual modules. Figure 4.20 presents

the port map for VHDL transmitter, Figure 4.21 presents the top-level FPGA design,

and Figure 4.22 presents the detailed design of the transmitter module.

84

Figure 4.20: Port Map of VHDL Transmitter

The transmitter requires three separate clocks: an 8 MHz clock for reading bits,

and two 4 MHz clocks, one in-phase and one shifted 90 degrees in phase. The start

transmit port instructs the transmitter to send one frame, where the number of data

symbols in that frame is dictated by the sym_per_frame port. The bits are read from

an external FIFO, into the port bits. The bit_fifo_rd_en port instructs the external

FIFO when to read bits into the transmitter. The time domain OFDM symbols are

output at 4 MHz on the data_outI and data_outQ ports.

Figure 4.21: Top level FPGA design for OFDM transmitter

85

A Xilinx digital clock manager produces all the required clock signals from the 16

MHz clock reference on the KUAR. The DAC requires two differential 80 MHz

clocks for operation. The bit_clock signal is required by the transmitter, and is also

used to read bits from the bit FIFO. This FIFO uses asynchronous clocks, such that it

can be read bits from the transmitter module and have bits written to it from the

KUAR’s onboard CPU using different clocks for read and write. The CPU interface is

also used to write a status register that controls when the transmitter transmits a

frame, and how many symbols are in that frame. When the transmitter is instructed to

transmit a frame, it only reads out as many bits as necessary from the FIFO.

Therefore, the FIFO can be buffered with many frames worth of data at a time. The

detailed design of the transmitter module is presented next.

86

Figure 4.22: Detailed design of OFDM transmitter

87

The core of this transmitter design is the FFT IP core, and input and output index

signals it produces. The fft_in_index drives the FFT Timing Logic block, which

controls the FFT start signal that instructs the FFT to start a new transform. When the

start_transmit port is asserted, the FFT processes a symbol, waits for 32 clock

periods, then processes another symbol until it has processed the number of symbols

dictated by the sym_per_frame signal. The fft_in_index also drives the Data Valid

Logic block. Based on the carrier index, the bit_fifo_rd_en is asserted to read bits in

which to populate the data subcarriers with.

The fft_in_index also drives the Bin Loading / QPSK Modulation block, which

determines the subcarrier values to feed the FFT. Using this index, the FFT is

supplied with the proper value for whether it is a guard subcarrier, data subcarrier, or

guard subcarrier. This block also uses the start_transmit signal to keep track of when

the frame begins, and therefore determine whether the current OFDM symbol is a

preamble symbol or a data symbol. During the preamble symbols, the block populates

the carriers directly with data from the Preamble Data block.

The fft_out_index signal drives the Cyclic Prefix Logic block, which drives the

four BRAM IP cores, as well as the multiplexer block. There are two sets of BRAMS,

where each set requires a different BRAM for the I and Q channels. At any one time,

a time domain OFDM symbol is being written to one set of BRAM, while the other

set is reading out an OFDM symbol. When an OFDM symbol is being written to a set

of BRAMS, the address port of the BRAM is derived from the fft_out_index such that

the BRAM index corresponds to the sample index (1 to 256). Once the time domain

88

OFDM symbol has been written, the write enable is set low. The address of the

BRAM is then set to (256 – cyclic prefix length), which in this design is 224. The

BRAM reads out the values from address 224 through 256, and then reads out the

values from address 1 through 256, thus adding the cyclic prefix. The Cyclic Prefix

Logic block also instructs the multiplexer which BRAM to read output data from.

4.4 Design Validation / Verification

The purpose of this thesis is to implement an OFDM transmitter and receiver in

VHDL for a software radio experimental testbed. Once the design is implemented, it

must be validated in order to ensure that it functions properly. This validation is

presented in several steps:

1. Demonstrate that the Matlab simulation of the OFDM system has the same

BER performance as a QPSK system in a pure AWGN channel. For this

purpose, synchronization algorithms are disabled. This demonstrates that the

noise is generated properly.

2. Measure the BER performance of the Matlab simulation in an AWGN channel

with all synchronization algorithms enabled.

3. Test the VHDL receiver in the FPGA using data generated from Matlab used

in Step 2.

4. Compare the BER curves from Steps 2 and 3.

89

Following the BER validation, an example laboratory transmission is performed to

demonstrate that the synchronization algorithms work in a real-life system. BER

validation for over-the-air transmission is beyond the scope of this thesis.

4.4.1 BER Performance in AWGN Channel

For an AWGN channel, OFDM will have the exact same BER performance as the

single carrier modulation being used to modulate the subcarriers [35]. This is due to

the fact that an AWGN channel does not introduce any distortion that could violate

the orthogonality of the subcarriers, therefore the OFDM signal is merely a set of

independently modulated single carrier signals. In order to validate the BER

performance in the presence of timing offsets, frequency offsets, fading, ect., the

design was first be validated in an AWGN channel. In an AWGN channel, the BER

should be identical to that of QPSK (the modulation used on each subcarrier in this

particular design).

For QPSK for probability of bit error is defined as [36]:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0

2
N
E

QP b
b (4.5)

Where Eb is the energy per bit, and N0 is the single-sided noise power spectral

density. The function Q is defined as [36]:

∫
∞ −

=
x

duuxQ)
2

exp(
2
1)(

2

π
 (4.6)

90

 To make an equivalent comparison between OFDM and single-carrier QPSK, the

following things must be considered:

1. While the bit energy is spread equally across 256 time domain samples, there

are only 192 subcarriers utilized. This means that each subcarrier has more

energy than if each of the 256 subcarriers were modulated.

2. When calculating the signal power of the time domain signal, the cyclic

prefix contributes to this power, but does not contribute to the bit energy.

3. If the pilot carriers are utilized, they consume transmit power that does not

contribute to bit energy.

Considering these points, the SNR per time domain sample can be derived given a

value as:

SNR
carrierspilotofcarriersdataof

carriersdataof
lengthprefixcyclicsamplesdomaintimeof

carriersdataof
N
Eb

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
##

#
#

#

0

 (4.7)

SNR
25
16

200
192

32256
192

=⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

+
=

016
25

N
E

SNR b=⇒

A Matlab simulation was used to verify the BER performance. For this purpose, no

frequency or timing offsets were introduced and the frequency compensation and

channel compensation were disabled. The reason for this is that at low SNR, a non-

zero frequency estimate will be erroneously calculated, leading to a further

degradation in BER performance unrelated to the AWGN. The channel compensation

is disabled because it will amplify the effects of noise.

91

The simulation was run for each value of Eb/N0 for a sufficient number of

iterations to reach 100 bit errors. This a rule of thumb under which the bit error rate

can be estimated with a 95% confidence interval [37]. The result of the simulation is

presented in Figure 4.23, which presents the BER vs. Eb/N0 of the analytical results

versus the simulation results. As can be seen, the results are indistinguishable.

Figure 4.23: Validation for BER of OFDM design in pure AWGN channel

4.4.2 Simulated BER Performance with Timing and Frequency
Offsets

In this section, Matlab simulations are used to provide insight into effects of

timing offsets, frequency offsets, and channel estimation. When running the full

system in VHDL, all of these effects are superimposed upon each other and cannot be

92

distinguished. Using the Matlab simulation, the net effect of each can be determined,

which aids in the understanding of the system as a whole and illustrates what can be

gained in BER performance with future improvements on the algorithms.

Additionally, these BER measurements are used to validate the VHDL system in the

following section.

First, the Matlab simulation is performed in the presence of frequency offsets.

Perfect FFT windowing is assumed and channel estimation is disabled. Then a

simulation is performed with no frequency offsets or timing errors and channel

estimation is enabled. Then another simulation is performed with frequency offsets

and channel estimation present. Finally a simulation with timing errors, frequency

offsets, and channel estimation. Note that not all permutations are possible because

channel estimation is required to correct for timing errors. The simulations were all

run for 1000 OFDM frames of one OFDM data symbol each. The BER over multiple

data symbols in any one frame does not change, so more than one data symbol per

frame is unnecessary. Figure 4.24 presents the results.

93

Figure 4.24: BER performance of Matlab simulations

Figure 4.24 gives key insight into how BER performance is degraded by the

necessary algorithms to operate in a wireless channel. Frequency estimation and

compensation incurs a quite small penalty. Even with no frequency offsets present,

the algorithm will still calculate an small offset due to noise, which degrades

performance. At 1 dB Eb/N0, the average error in calculating the frequency offset was

only 1.9% of a subcarrier spacing, which produces a very negligible effect, especially

at low SNR. The average frequency offset error at 10 dB Eb/N0 is 0.6% of a subcarrier

spacing, which begins to have a more significant effect despite the increased accuracy

due to very low BER (better than 10-5).

94

The largest penalty of any of the synchronization algorithms is the channel

estimation / equalization. In a QPSK system, the purpose of the channel estimation is

to compensate for carriers rotations caused by timing offsets, fading, and AWGN.

The only point of reference the channel estimator has is the second preamble symbol

and how its carriers compare to the locally stored data for the second preamble. Noise

can rotate carriers during the second preamble in ways entirely independent from the

way it affects future symbols, causing the channel estimator to de-rotate data carriers

into the entirely wrong decision boundary. However, without the channel estimator,

the data received across a wireless channel would be completely unrecoverable.

A simulation is also performed for combining the effects of frequency offset

estimation and channel estimation. Clearly, the channel estimation completely

overwhelms any contribution to BER from frequency offset estimation. Any

deviation between the BER for channel estimation and channel estimation combined

with frequency offset estimation was undetectable after simulating each with 1000

frames.

The final Matlab simulation combines all the previous algorithms plus frame

synchronization. Inaccurate frame synchronization incurs a penalty second only to the

channel estimation algorithm. Unfortunately, the effects of the algorithms cannot be

separated because the channel estimation partially corrects for carrier rotations caused

by imperfect frame synchronization. These effects are illustrated in detail in Section

3.5.3.

95

One very crucial caveat in BER performance penalty for frame synchronization is

that the timing metric threshold. For each value of Eb/N0, the value of the threshold is

adjusted to empirically find which threshold produces the lowest BER. If the

threshold for any particular frame is set too low, the first sample of the frame will be

detected too late, resulting in ISI, or the frame may be even missed entirely. If the

threshold is set too high, the first sample of frame will be detected too early, resulting

in carrier rotation as demonstrated in Section 3.5.3. The threshold value used for each

value of Eb/N0 is shown in Table 4.1. These values may not be optimal – they were

merely the best metric for a particular set of data used at the time.

Table 4.1: Threshold values for each value of Eb/N0: Simulation

Eb/N0 (dB) 1 2 3 4 5 6 7 8 9 10

Threshold 0.38 0.43 0.48 0.52 0.58 0.62 0.66 0.68 0.7 0.73

One of the first steps in future work would be to adjust the threshold dynamically

by estimation the signal-to-noise ratio. One method to accomplish this is covered in

Chapter 5.

4.4.3 VHDL Implementation BER Performance

The VHDL receiver is validated by using Matlab data generated to test the

simulated receiver in the previous section. Testing the receiver with data generated

from Matlab, instead of receiving an actual signal from another radio, ensures that the

96

signal to noise ratio seen at the receiver is precisely known. The results from Section

4.4.1 prove that the noise introduced has been calculated properly.

In an actual received signal, there are a number of problems that introduce

unknowns that would make design verification difficult. On the current version of the

KUAR, there are DC offsets present at the output of the ADC converters that are

significant in magnitude and appear to vary over time. Also, the linearity of the RF

components has not been evaluated yet.

The VHDL receiver is tested by use of a VHDL testbench module that is very

similar to the top-level FPGA design presented Figure 4.2. The only difference is that

the data input to the receiver module comes from a FIFO that stores data samples

produced by the Matlab simulation. Using this testbench, about 12 frames (preamble

plus one data symbol) could be processed at once. Due to practical time limitations,

only the numbered of frames required to collect 100 bit errors were processed for

each value of Eb/N0. The results of these measurements are demonstrated in Figure

4.25. The timing metric threshold for each value is supplied in Table 4.2. Six bits of

precision is available for programming the threshold in the VHDL model, so each

value is expressed as a faction with a denominator of 64.

97

Figure 4.25: VHDL system versus Matlab simulation BER

Table 4.2: Threshold values for each value of Eb/N0: VHDL

Eb/N0 (dB) 1 2 3 4 5 6 7 8 9 10

Threshold 24/64 27/64 30/64 33/64 36/64 40/64 41/64 42/64 44/64 47/64

Surprisingly, the VHDL system seemed to perform better than the Matlab system

for some values of Eb/N0, but the discrepancies are quite small and from empirical

evidence, seem to fall within the range of uncertainty for the number of frames

processed. Clearly, any loss of performance due to fixed point error is so small as to

be undetectable without performing a more rigorous BER evaluation. This result

98

clearly shows that logic space could be saved in the VHDL design by using fewer bits

to represent numbers in certain places.

4.4.4 Laboratory Results: Example Transmission

The final test of any communication system is its performance on actual radios. In

this section, an example transmission in the laboratory between two KUAR radio

units is presented. A thorough error analysis is not performed – the baseband results

from Sections 4.2.2 and 4.2.3 serve as a validation for the scope of this thesis.

Since the OFDM signal is being transmitted across the air now, the affects of

DAC, ADC, and RF hardware must now be considered. First, it must considered that

this OFDM system operates at 4 MHz, but the DAC and ADC operate at 80 MHz. If

the OFDM signal is sent to the DAC, the spectrum has many spectral copies spaced at

4 MHz intervals within the 40 MHz of bandwidth sampled by the ADC. This is

demonstrated in Figure 4.26. The spectrum plot is produced by the KUAR Spectrum

Analyzer, which takes samples straight from the ADC and applies an FFT.

99

Figure 4.26: Received OFDM signal with no filtering

Fortunately, the DAC used on the KUAR, the Analog Devices AD9777, has the

option of using interpolating filters. These filters first upsample the supplied signal

with zero padding, and then apply a low pass filter to eliminate spectral copies caused

by the digital-to-analog conversion. Using an interpolating filter that upsamples by a

factor of eight produces the following spectrum at the receiver:

100

Figure 4.27: Received OFDM signal with 8x interpolating filter

The interpolating filter suppresses the adjacent spectral copies significantly, leaving

the only significant spectral copies out at 32 MHz, just above the noise floor. These

spectral copies are then eliminated completely at the receiver with two basic 7-tap

FIR filters.

An example constellation is presented in Figure 4.28 to prove that the receiver

design works with a real transmitted signal. This transmission is of a frame with the

full preamble and 7 OFDM data symbols. The constellation presents the 1344 QPSK

data subcarriers. In total, 2688 bits were transmitted in this frame, with zero errors.

101

Figure 4.28: KUAR “across the room” laboratory transmission and reception of 1
frame including 7 OFDM data symbols. 2688 bits, BER = 0.

4.5 Chapter Summary

This chapter described the implementation of the hardware OFDM system, using

the generic design and mathematic descriptions supplied in Chapter 3. Port maps and

block diagrams were provided for each module, indicating their dependencies in

terms of input/output, as well as a detailed operation at the level of IP cores and

behavioral VHDL processes. The performance of the OFDM receiver was evaluated

after verifying that test data was being properly generated, and finally an example of

an actual KUAR transmission was presented. Being impractical to cover every detail

of the VHDL design here, the reader is encouraged to look at the actual VHDL code

for all the modules, using the block diagrams to gain a conceptual idea of their

operation, and then use the code comments for a greater level of detail. This VHDL

102

code can be provided by the author in the form of a series of technical reports, upon

request.

Chapter 5: Conclusion

This thesis has two primary purposes. First, it detailed the development and

implementation of an OFDM system in a FPGA-based software-defined radio.

Second, it merged this development with the background and motivation for utilizing

OFDM modulation in a dynamic spectrum access context. This is an important

consideration, since DSA is the primary motivation for research into frequency agile

and cognitive radios.

This thesis provides a framework for further research on the KUAR, or any other

FPGA-based software-defined radio. First, it is a starting point for future

development of FPGA-based OFDM systems. If this system is not explicitly

expanded, it will hopefully provide guidance to future development of other OFDM

systems. Secondly, this thesis outlined procedures for validating the BER of a

communications system in a baseband, purely AWGN environment.

5.1 Future Work Suggestions

There are several relatively modest ways to augment the performance of this

system. At present, this system will not perform nearly as well as a single-carrier

system on the KUAR. The following presents a few suggestions for improvement that

will close the performance gap between this OFDM system and single-carrier

modulation.

103

5.1.1 Channel Estimation Improvement

The current channel estimation does not take advantage of the statistics of the

channel, and it uses no interpolation between sub-carrier estimates. The first step

towards improvement would be to interpolate the in-between subcarrier channel taps.

In the current method, described in Section 3.5.3, only the even-numbered subcarrier

equalizer taps are directly calculated. These values are simply copied over to adjacent

odd-numbered subcarriers. By interpolating the in-between values, the detrimental

effects of imperfect frame synchronization can be greatly mitigated. These effects

were discussed and illustrated in Section 3.5.3.

The next step in improvement would be use a channel estimator that utilizes

channel statistics, known as minimum mean-squared error estimation (MMSE).

Reference [38] would serve as a good starting point for MMSE channel estimators.

5.1.2 Frame Synchronization Improvement

The current system frame synchronization algorithm could be augmented in

several different ways. The first approach would be to modify the existing auto-

correlation method based off of [30]. To fully implement the method proposed in

[30], once the timing metric threshold has been reached, the surrounding values of P

would be searched to find the maximum value, which would then be used to calculate

the first sample of the frame. The current system is simply triggered with the

threshold has been reached; it does not search for the local maxima. Alternatively, the

timing metric M can be used to estimate the current SNR over the channel, as shown

104

in [30]. The SNR estimate could then be used to adjust the timing metric threshold

dynamically via a look-up table to match levels of SNR versus maxima values of M.

The second approach would be to use a cross-correlation approach as in [33]. The

cross-correlation approach is very computationally complex, but provides an

extremely accurate estimate for frame synchronization.

5.1.3 Support for QAM Subcarrier Modulation

Support for QAM subcarrier modulation requires two modifications. First, the

channel estimation algorithm would have to be modified to use a genuine complex

divide operation, instead of the modified complex multiply operation, as covered in

Section 4.2.6. The reason for this is that QAM modulation requires that the channel

estimator account for attenuation as well as phase-rotation incurred by the channel.

The second modification involves the actual QAM modulation algorithm. The

QAM decision module would need to compute the Euclidian distance of each QAM

symbol and compare it to each constellation point. The received signal power need

not be measured to accomplish demodulation, since the system is assumed to be

stationary during operation. Hence, it is assumed that received power will not

fluctuate over the period of a frame. A mobile system would need to constantly

account for the received signal power in order to accurate demodulate QAM. This

could be done using the R average power metric, discussed in 3.5.1.

105

5.1.4 Forward Error Correction

A further step in scaling this design to be fully IEEE 802.16-2004 compatible

would be to implement the standard’s error control coding scheme [2]. Adding error

control coding is a relatively simple upgrade to any system, since most error control

schemes operate on the level of bits (prior to modulation and post demodulation), so

the internal functionality of the transmitter and receiver components remains

unchanged. Additionally, Xilinx supplies IP cores that implement the decoding

operations [39], such as the Viterbi algorithm, which is one method of decoding a

convolutional code.

106

References

[1] Shannon, Claude E., “Communications in the Presence of Noise,” Proc. Institute

of Radio Engineers, vol. 37, no. 1, pp. 10-21, Jan. 1949.

[2] IEEE Standard 802.16-2004 Part 16: Air Interface for Fixed Broadband Wireless

Access Systems.

[3] Chris Koh, “The Benefits of 60 GHz Unlicensed Wireless Communications,” YDI

Wireless Whitepaper.

 [4] A. Petrin and P. G. Steffes, “Analysis and Comparison of Spectrum Measurements

Performed in Urban and Rural Areas to Determine the Total Amount of Spectrum
Usage,” in International Symposium on Advanced Radio Technologies,” (Boulder,
CO, USA), pp. 9-12, March 2005.

 [5] Dinesh Dalta, Spectrum Surveying for Dynamic Spectrum Access Networks, M. S.

Thesis, University of Kansas, January 2007.

 [6] J. Mitola III, G. M. Maguire, Jr., “Cognitive Radio: Making Software Radios

More Personal,” IEEE Personal Communications, Aug. 1999.

 [7] J. A. C. Bingham, “Multicarrier modulation for data transmission: An idea whose

time has come,” IEEE Communications Magazine, pp. 5-14, Apr. 1990.

 [8] Timo A. Weiss and Friedrich K. Jondral, “Spectrum Pooling: An Innovative

Strategy for the Enhancement of Spectrum Efficiency,” IEEE Radio
Communications, March 2004.

 [9] Rakesh Rajbanshi, Alexander M. Wyglinski, and Gary J. Minden, "An Efficient

Implementation of NC-OFDM Transceivers for Cognitive Radios," in
Proceedings of the 1st International Conference on Cognitive Radio Oriented
Wireless Networks and Communications (Mykonos Island, Greece), June 2006.

 [10] “Implementation of an OFDM Wireless Transceiver using IP Cores on an

FPGA,” Lattice Semiconductor White Paper, August 2005.
http://www.fpgajournal.com/whitepapers_2005/lattice_20050915.htm

 [11] A. Petrin and P. G. Steffes, “Potential Usability of Allocated but Unused

Spectrum in the United States of America,” in 27th Triennial General Assembly of
the International Union of Radio Science, (Maastricht, The Netherlands), August
2002.

107

http://www.fpgajournal.com/whitepapers_2005/lattice_20050915.htm

 [12] Federal Communications Commission, “Unlicensed Operation in the TV

Broadcast Bands ET Docket No. 04-186,” May 2004.

 [13] Qi Chen, Alexander M. Wyglinski, and Gary J. Minden. “Frequency Agile

Interferece-Aware Channel Sounding for Dynamic Spectrum Access Networks,”
Submitted to the IEEE Global Telecommunications Conference (Washington DC,
USA), March 2007.

 [14] Alexander M. Wyglinski. “Effects of Bit Allocation on Non-contiguous

Multicarrier-based Cognitive Radio Transceivers”, Proceedings of the 64th IEEE
Vehicular Technology Conference, Montreal, QC, Canada, September 2006.

 [15] Tim R. Newman, Brett A. Barker, Alexander M. Wyglinski, Arvin Agah, Joseph

B. Evans, Gary J. Minden, “Cognitive Engine Implementation for Wireless
Multicarrier Transceivers”, Wiley Wireless Communications and Mobile
Computing, 2006.

 [16] D. Maldonado, B. Le, A. Hugine, T.W. Rondeau, and C.W. Bostian, “Cognitive

radio applications to dynamic spectrum allocation,” in IEEE Internation
Symposium on New Frontiers in Dynamic Spectrum Access, 2005, pp. 597-600.

 [17] Gary J. Minden, Joseph B. Evans, Leon Searl, Daniel DePardo, Victor R. Petty,

Rakesh Rajbanshi, Jordan Guffey, Qi Chen, Timothy Newman, Frederick
Weidling, Dinesh Datla, Brett Barker, Megan Peck, Brian Cordill, Alexander M.
Wyglinski, and Arvin Agah, “KUAR: A Flexible Software-Defined Radio
Development Platform,” Second IEEE Symposium on New Frontiers in Dynamic
Spectrum Access Networks (Dublin, Ireland), April 2007.

 [18] S. B. Weinstein and P. M. Ebert, "Data transmission by frequency-division

multiplexing using the discrete Fourier transform," IEEE Trans. on Commun., vol.
COM-19, pp. 628-634, Oct. 1971.

 [19] Theodore S. Rappaport, Wireless Communications: Principles and Practice,

Pearson Education, Inc., 2nd edition.

 [20] L. Hanzo, M. Munster, B.J. Choi, T. Keller, OFDM and MC-CDMA for

Broadband Multi-User Communications, WLANs and Broadcasting, IEEE Press,
Wiley, 2003.

 [21] Armada, Ana Garcia, “Understanding the Effects of Phase Noise in Orthogonal

Frequency Division Multiplexing (OFDM),” IEEE Transactions on Broadcasting,
Vol. 47, No. 2, June 2001.

108

http://www.ittc.ku.edu/%7Ealexw/publications/Conferences/fallvtc2006_wyglinski1.pdf
http://www.ittc.ku.edu/%7Ealexw/publications/Conferences/fallvtc2006_wyglinski1.pdf
http://www.ittc.ku.edu/%7Ealexw/publications/Conferences/dyspan2007_kuar.pdf
http://www.ittc.ku.edu/%7Ealexw/publications/Conferences/dyspan2007_kuar.pdf

 [22] Doyle L., Mackenzie P., O’Mahony D., Nolan K., Flood D., "A General Purpose
Processor Component based Software Radio Engine", in Proceedings of the
Second European Colloquium on Reconfigurable Radio, Athens, Greece, June
20th-22nd, 2002

 [23] Trinity College Networks and Telecommunications Research Group web site:
http://ntrg.cs.tcd.ie/

 [24] Nolan, K.; Mackenzie, P.; Doyle, L.; Flood, D., “Flexible Architecture Software
Radio OFDM Transceiver System and Frame Synchronization Analysis,” in
Proceedings of the Global Telecommunications Conference, 2003. IEEE
GLOBECOM ’03, Vol.: 1, 1-5 Dec. 2003, pp 332 - 336

 [25] J. Veilleux, P. Fortier, S. Roy, “An FPGA Implementation of an OFDM
Adaptive Modulation System”, IEEE-NEWCAS Conference, 2005.

 [26] Joaquin Garcia, Rene Cumplido, “On the design of an FPGA-Based OFDM

modulator for IEEE 802.11a”, 2nd International Conference on Electrical and
Electronics Engineering, September 7th, 2005.

 [27] Joaquin Garcia, Rene Cumplido, “On the design of an FPGA-Based OFDM

modulator for IEEE 802.16-2004”, 2005 International Conference on
Reconfigurable Computing and FPGAs, 2005.

 [28] “Implementation of an OFDM Wireless Transceiver using IP Cores on an

FPGA,” Lattice Semiconductor White Paper, August 2005.
http://www.fpgajournal.com/whitepapers_2005/lattice_20050915.htm

 [29] “Implementing WiMAX OFDM Timing and Frequency Offset Estimation in

Lattice FPGAs,” Lattice Semiconductor White Paper, November 2005.

 [30] T. M. Schmidl, D. C. Cox, “Robust Frequency and Timing Synchronization for

OFDM”, IEEE Transactions on Communications, Vol. 45 No. 12 December
1997.

 [31] M. Wouters, G. VAnwijnsberghe, P. V. Wesemael, T. Huybrechts, S. Thoen,

“Real Time Implementation of an OFDM based Wireless LAN modem extended
with Adaptive Loading”, IMEC, Heverlee, Belgium.

 [32] English homepage for IAF

http://iaf-bs.de/index.en.html

109

http://ntrg.cs.tcd.ie/
http://www.fpgajournal.com/whitepapers_2005/lattice_20050915.htm
http://iaf-bs.de/index.en.html

[33] Ch. Nanda Kishore and V. Umapathi Reddy, “A Frame Synchronization and
Frequency Offset Estimation Algorithm for OFDM System and its Analysis”,
EURASIP Journal on Wireless Communications and Networking, Volume 2006

[34] http://www.xilinx.com/support/library.htm

[35] Burton R. Saltzberg, “Comparison of Single-Carrier and Multitone Digital

Modulation for ADSL Applications”, IEEE Communications Magazine, Nov.
1998.

[36] John G. Proakis, Digital Communications, New York, NY, USA: Mcraw-Hill,

Fourth Edition, 2001.

[37] M. C. Jeruchim, P. Balaban and K. S. Shanmugan, Simulation of Communication

Systems: Modeling, Methodology, and Techniques, Dordrecht, Netherlands:
Kluwer Academic/Plenum Publishers, 2nd ed., 2000.

[38] J. J.van de Beek, O.Edfors, M.Sandell, S. K.Wilson, and P. O.Bo¨rjesson, “On

channel estimation in OFDM systems,” Proc. IEEE Vehicular Technology Conf.
Chicago, IL, vol. 2, pp. 815-819, July 1995.

[39] http://www.xilinx.com/ipcenter/

110

http://www.xilinx.com/support/library.htm
http://www.xilinx.com/ipcenter/

	Chapter 1: Introduction
	1.1 Research Motivation - Spectrum Scarcity
	1.2 Cognitive and Software-Defined Radios
	1.3 Orthogonal Frequency Division Multiplexing
	1.4 Research Objectives and Contributions
	1.5 Thesis Outline

	Chapter 2: Background Literature
	2.1 Dynamic Spectrum Access
	2.2 Cognitive radios
	2.3 Kansas University Agile Radio
	2.3 OFDM Overview
	2.3.1 What is OFDM?
	2.3.2 Mathematical Representation
	2.3.3 OFDM versus Single Carrier Modulation
	2.3.4 Guard Interval & Cyclic Prefix
	2.3.5 Peak-to-Average Power Problem

	2.4 Synchronization Issues
	2.4.1 Timing Offsets
	2.4.2 Frequency Offsets
	2.4.3 Phase Noise

	2.5 Current Technology and Research
	2.5.1 SDR and OFDM

	2.6 Chapter Summary

	Chapter 3: Proposed Research and Design
	3.1 Design Requirements and Specifications:
	3.1.1 System Requirements
	3.1.2 Transmitter Specifications
	3.1.3 Receiver Specifications

	3.2 OFDM System Block Diagrams
	3.2.1 OFDM Transmitter
	3.2.2 OFDM Receiver

	3.3 IEEE 802.16-2004 OFDM Symbol Structure
	3.4 IEEE 802.16-2004 OFDM Preamble Structure
	3.5 OFDM Module Design
	3.5.1 Frame Synchronization
	3.5.2 Frequency Offset Estimation and Compensation
	3.5.3 Channel Estimation and Compensation
	3.5.4 Common Phase Error Estimation and Compensation

	3.6 Chapter Summary

	Chapter 4: Implementation
	4.1 VHDL Design
	4.2 Receiver Design
	4.3 Transmitter Design
	4.4 Design Validation / Verification
	4.5 Chapter Summary

	Chapter 5: Conclusion
	5.1 Future Work Suggestions

	References

