
CPM: A Graph Pattern Matching Kernel
with Diffusion for Accurate Graph Classification

Aaron Smalter, Jun Huan, and Gerald Lushington

ITTC-FY2009-TR-45910-01

August 2008

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
National Institutes of Health

Technical Report

The University of Kansas

GPM: A Graph Pattern Matching Kernel with Diffusion for
Accurate Graph Classification

Aaron Smalter, Jun Huan
Department of Electrical Engineering and

Computer Science
University of Kansas

asmalter,jhuan@ku.com

Gerald Lushington
Molecular Graphics and Modeling Laboratory

University of Kansas
glushington@ku.edu

ABSTRACT
Graph data mining is an active research area. Graphs are
general modeling tools to organize information from het-
erogenous sources and have been applied in many scientific,
engineering, and business fields. With the fast accumulation
of graph data, building highly accurate predictive models for
graph data emerges as a new challenge that has not been
fully explored in the data mining community.

In this paper, we demonstrate a novel technique called
G
¯
raph P

¯
attern M

¯
atching kernel (GPM). Our idea is to lever-

age existing frequent pattern discovery methods and to ex-
plore the application of kernel classifier (e.g. support vector
machine) in building highly accurate graph classification.
In our method, we first identify all frequent patterns from a
graph database. We then map subgraphs to graphs in the
graph database and use a process we call “pattern diffusion”
to label nodes in the graphs. Finally we designed a novel
graph matching algorithm to compute a graph kernel. We
have performed a comprehensive testing of our algorithm us-
ing 16 chemical structure data sets and have compared our
methods to all major graph kernel functions that we know.
The experimental results demonstrate that our method out-
performs state-of-the-art graph kernel methods with a large
margin.

1. INTRODUCTION
With the rapid accumulation of annotated graph data

(graphs with class labels), graph classification emerges as a
important research topic in data mining. Different from un-
supervised data mining methods such as graph pattern min-
ing algorithms [11, 12, 34, 37, 41, 44] and graph databases
search algorithms [17, 32, 40, 42], graph classification aims
to construct accurate predictive models that link graphs to
their class labels. Graph classification algorithms are desired
in a wide range of applications such as:

• XML classification. Many XML documents are mod-
eled as trees or graphs and it is important to build
automated classifiers for XML data [43].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM 2008 Napa Valley, California USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

• Text mining. Natural language processing of sentences
usually produces a tree (parsing tree) representation
of a sentence. In many social science studies, building
automated systems to classify sentences into several
groups is an important task [20].

• Cheminformatics. Chemical structures have been stud-
ied using graphs for a long time [36]. Recently the
National Institute of Health has started an ambitious
project (the Molecular Library Initiative project) that
aims to determine and publicize the biological activ-
ity of at least a million chemical compounds per year
in the next 5 to 10 years [2]. Graph classification
for cheminformatics helps guild experimental design,
gain deeper understanding of the chemical structure-
activity relationship and speed up drug discovery pro-
cesses.

Additional applications of graph classification include pro-
tein function prediction based on structure [13], gene regu-
lation networks analysis [14] and web mining [45].

Kernel functions are highly efficient tools to build accurate
classification models for large volumes of data [9]. The ad-
vantage of kernel functions is due to their capability to map
a set of data to a high dimensional Hilbert space without
explicitly compute the coordinates of the structure. Specif-
ically a binary function K : X × X → R is a positive semi-
definite function if

m
X

i,j=1

cicjK(xi, xj) ≥ 0 (1)

for any m ∈ N, any selection of samples xi ∈ X (i ∈ [1, n]),
and any set of coefficients ci ∈ R (i ∈ [1, n]). A binary
function is symmetric if K(x, y) = K(y, x) for all x, y ∈
X. A symmetric, positive semi-definite function ensures the
existence of a Hillbert space H and a map Φ : X → H such
that

k(x, x′) = 〈Φ(x), Φ(x′)〉 (2)

for all x, x′ ∈ X. 〈x, y〉 denotes an inner product between
two objects x and y. The result is known as the Mercer’s
theorem and a symmetric, positive semi-definite function
is also known as a Mercer kernel function [30], or kernel
function for simplicity.

By projecting the data space to a Hilbert space, kernel
functions provide a uniformed analyzing environment for
various data types including graphs [9], trees [1], and se-
quences [19], regardless the fact that the original data space

may not look like a vector space at all. This strategy is
known as the“kernel trick”and it has been applied to various
data analysis tasks include classification [38], regression [27]
and feature extraction through principle component analysis
[31] among others.

Several graph kernel functions have been studied. The pi-
oneer work was done by Haussler in his work of R-convolution
kernel, providing a framework of which many current graph
kernel function follow [9]. Recent progresses of graph kernel
functions could be roughly divided into two categories. The
first group of kernel functions consider the full adjacency
matrix of graphs and hence measure the global similarity of
two graphs. These include product graph kernels [8], ran-
dom walk based kernels [16], and kernels based on shortest
paths between pair of nodes [18]. The second group of kernel
functions try to capture the local similarity of two graphs
by counting the shared subcomponents of graphs. These in-
clude the subtree kernels [28], cyclic kernels [35], spectrum
kernel [6], and recently subgraph kernels [33].

In this paper, we explore the second avenue and aim to
leverage existing frequent pattern mining algorithms in build-
ing accurate graph kernel functions. Towards that end, we
demonstrate a novel technique called graph pattern match-
ing kernel (GPM). In our method, we first identify all fre-
quent patterns from a graph database. We then map sub-
graphs to graphs in the graph data set and project nodes of
graphs to a high dimensional space with a specially designed
function. Finally we designed a novel graph alignment al-
gorithm to compute the inner product of two graphs. We
have tested our algorithm using 16 chemical structure data
sets. The experimental results demonstrate that our method
outperforms existing state-of-the-art with a large margin.

In summary we present the following contributions in this
paper:

• We have designed a novel graph kernel function,

• Our kernel function offers a good measure of the local
similarity between graphs and is insensitive to noises
in graph structures,

• Our kernel function is non-parametric, i.e. we do not
assume priori knowledge about the distribution of graphs,
and

• We have implemented our kernel function and tested it
with a series of cheminformatics data sets. Our experi-
mental study demonstrates that our algorithm outper-
forms existing state-of-the-art with a large margin.

The rest of the paper is organized as follows. In the rest
of this section, we give the notation that we are going to use
and formalize the problem of graph classification. We also
give a brief survey of research efforts that are closely related
to our current effort. In section 2, we provide background
information about graphs. In section 3, we present the de-
tails of our graph pattern matching kernels. In section 4 we
use real-world data sets to evaluate our proposed methods
and perform a comparison of ours to the current state-of-
the-art. Finally we conclude and present our future plan in
section 5.

1.1 Notations and Problem Statement
In this paper, we use capital letters, such as G, for a sin-

gle graph and upper case calligraphic letters, such as G =

G1, G2, . . . , Gn, for a set of n graphs. We assume each graph
Gi ∈ G has an associated class label ci from a label set C.
C is the class label set of the graphs.

Problem Statement: Given a training set D = {(Gi, ci,)}
n
i=1

of n graphs and their associated labels, the graph classifi-
cation problem is to estimate a function F : G∗ → C that
accurately map graphs in a graph space G∗ to their class
labels in a label space C.

Below, we review several algorithms for graph classifica-
tion that work within a common framework called a kernel
function.

1.2 Related Work
We survey the work related to graph classification meth-

ods by dividing them into two categories. The first cate-
gory of methods explicitly collect a set of features from the
graphs. Possible choices are paths, cycles, trees, and gen-
eral subgraphs [43]. Once a set of features is determined,
a graph is described by a feature vector, and any existing
classification methods such as Classification based on As-
sociation (CBA) [4] and decision tree [26] that work in an
n-dimensional Euclidian space, may be applied for graph
classification.

The second approach is to implicitly collect a (possibly
infinite) set of features from graphs. Rather than comput-
ing the features, this approach computes the similarity of
graphs, using the framework of “kernel functions” [38]. The
advantage of a kernel method is that it has low chance of
over fitting, which is a serious concern in high dimensional
space with low sample size.

In what follows we review algorithms in the first cate-
gory, which explicitly utilize identified features from graph
to build classifiers. We then discuss graph kernel functions.

1.2.1 Graph Classification Based on Identified Fea-
tures

Below we review two algorithms that use rule based meth-
ods for classifying graph data.

XRules [43] utilizes frequent tree-patterns to build a rule
based classifier for XML data. Specifically, XRules first iden-
tifies a set of frequent tree-patterns. An association rule:
G → ci is then formed where G is a tree pattern and ci

is a class label. The confidence of the rule is the condi-
tional probability p(ci|G) estimated from the training data.
XRules carefully selects a subset of rules with high confi-
dence values and uses those rules for classification.

Graph boosting [20] also utilizes substructures toward graph
classification. Similar to XRules, graph boosting uses rules
with the format of G → ci. Different from XRules, it uses
the boosting technique to assign weights to different rules.
The final classification result is computed as the weighted
majority.

In the following discussion, we present the necessary back-
ground for a formal introduction to the graph classification
problem, and introduce a suite of graph kernel functions for
graph classification.

1.2.2 Kernel Functions for Graphs
In recent years a variety of graph kernel functions have

been developed, with promising application results as de-
scribed by Ralaviola et al. [29]. Among these methods, some
kernel functions draw on graph features such as walks [16] or
cycles [35], while others may use different approaches such

as genetic algorithms [3], frequent subgraphs [6], or graph
alignment [7].

Below we review five categories of graph kernel functions:
product graph kernels, marginalized kernels, spectrum ker-
nel, optimal assignment kernels, and diffusion kernels.

Product Graph Kernels.
The feature space of this group of kernel functions is all

possible node label sequences for walks in graphs. Since
the number of possible walks are infinite, there is no way
to enumerate all the features and then compute the kernel
function [8].

In product graph kernels, a product graph is computed
in order to make the kernel function computation feasible.
A product graph of two graphs G, G′ is a graph G× where
nodes are the cartesian production of the two related node
sets from G and G′, i.e. V× = V [G] × V [G′]. An edge
((u, v), (u′, v′)) in G× is created if (u, u′) ∈ G and (v, v′) ∈
G. It has been proved that a direct product graph kernel
can be obtained by computing the matrix power series of
the product graph.

Extending the feature spaces of walks, recent graph kernel
functions use shortest paths [18], subtree patterns [28], and
cyclic graphs [35].

Marginalized Kernels.
Rather than computing the shared paths exactly, which

has prohibitive computational cost for large graphs, Kashima
et al. [16] developed a Markov model to randomly generate
walks of a labeled graph, using a transition probability ma-
trix combined with a walk termination probability. These
collections of random walks are then compared and the num-
ber of (expected) shared sequences is used to determine the
overall similarity between two molecules.

Spectrum Kernel.
Spectrum kernels aims to simplify the aforementioned ker-

nels by working in a finite dimensional feature space. In
spectrum kernels, a feature space is a set of subgraphs (or
as special cases, trees, cycles, and paths). The feature vec-
tor of a graph is derived by counting the occurrence of sub-
graphs in the graph. In the most straightforward way, the
kernel function of two graphs is the inner product of their
feature vectors [6]. Transformations of the inner product,
such as min-max kernel [39] and Tanimoto kernel [21], are
also widely used. The subtree kernel [24] is a variation on
the spectrum kernel that uses subtrees instead of paths.

Optimal Assignment Kernel.
The optimal assignment kernel, proposed by Frölich et al

[7], differs significantly from the marginalized graph kernel
in that it attempts to align two graphs, rather than com-
pare sets of linear substructures. This kernel function first
computes the similarity between all nodes in one graph and
all nodes in another. The similarity between the two graphs
is then computed by finding the maximal weighted bipar-
tite graph between the two sets of nodes, called the optimal
assignment. The authors investigate an extension of this
method whereby certain structure patterns defined a priori
by expert knowledge, are collapsed into single nodes, and
this reduced graph is used as input to the optimal assign-
ment kernel.

(1) Graph P

a b

b

b

x

y

y

x

y

p1

p3

p2

p4

a

b

b

x

y

q2

q1

q3

(2) Graph Q

b

b

b

y

y

y
s2

s3

s1

(3) Graph S

Figure 1: A Database of three labeled graphs.

2. BACKGROUND
In this section we discuss a few important definitions for

graph database mining: labeled graphs, subgraph isomor-
phic relation, graph kernel function, and graph classifica-
tion.

Definition 2.1. A labeled graph G is a quadruple G =
(V, E, Σ, λ) where V is a set of vertices or nodes and E ⊆
V × V is a set of undirected edges. Σ is a set of (disjoint)
vertex and edge labels, and λ: V ∪E → Σ is a function that
assigns labels to vertices and edges. We assume that a total
ordering is defined on the labels in Σ.

A graph database is a set of labeled graphs.

Definition 2.2. A graph G′ = (V ′, E′, Σ′, λ′) is sub-

graph isomorphic to G = (V, E, Σ, λ), denoted by G′ ⊆ G,
if there exists a 1-1 mapping f : V ′ → V such that

• ∀v ∈ V ′, λ′(v) = λ(f(v))

• ∀(u, v) ∈ E′, (f(u), f(v)) ∈ E, and

• ∀(u, v) ∈ E′, λ′(u, v) = λ(f(u), f(v))

.

The function f is a subgraph isomorphism from graph G′

to graph G. We say G′ occurs in G if G′ ⊆ G. Given a sub-
graph isomorphism f , the image of the domain V ′ (f(V ′))
is an embedding of G′ in G.

Example 2.1. Figure 1 shows a graph database of three
labeled graphs. The mapping (isomorphism) q1 → p3, q2 →
p1, and q3 → p2 demonstrates that graph Q is subgraph iso-
morphic to P and hence Q occurs in P . Set {p1, p2, p3} is
an embedding of Q in P . Similarly, graph S occurs in graph
P but not Q.

3. GRAPH PATTERN MATCHING KERNELS
Here we present our design of a graph matching kernel

with diffusion. We start the section by first presenting a
general framework for graph matching. Then we present
the pattern based graph matching kernel. Finally we show
a technique we call “pattern diffusion” that significantly im-
proves graph classification accuracy in practice.

3.1 Graph Matching Kernel
To derive an efficient algorithm scalable to large graphs,

our idea is to use a function Γ : V → R
n to map nodes in

a graph to a n dimensional feature space that captures not
only the node label information but also the neighborhood

topological information around the node. If we have such
function Γ, we may design the following graph kernel:

Km(G, G′) =
X

(u,v)∈V [G]×V [G′]

K(Γ(u), Γ(v)) (3)

K can be any kernel function defined in the co-domain of Γ.
We call this function Km a graph matching kernel. The fol-
lowing theorem indicates that Km is symmetric and positive
semi-definite and hence a real kernel function.

Theorem 3.1. The graph matching kernel is symmetric
and positive semi-definite if the function K is symmetric and
positive semi-definite.

Proof sketch: the matching kernel is a special case of the
R-convolution kernel and is hence positive semi-definite as
proved in [23].

We visualize the kernel function by constructing a weighted
complete bipartite graph: connecting every node pair (u,v)
∈ V [G] × V [G′] with an edge. The weight of the edge (u,v)
is K(Γ(v), Γ(v)). In Figure 2, we show a weighted com-
plete bipartite graph for V [G] = {v1, v2, v3} and V [G′] =
{u1, u2, u3}.

Kn(v2,u1)

v1

v2

v3

u1

u2

u3

Kn(v1,u2)

Kn(v3,u3)

Figure 2: The maximum weighted bipartite graph

for graph matching. Highlighted edges (v1, u2), (v2, u1),

(v3, u3) have larger weights than the rest of the edges

(dashed).

From the figure we see that if two nodes are quite dissim-
ilar, the weight of the related edge is small. Since dissimilar
node pairs usually outnumber similar node pairs, if we use
linear kernel for nodes, we may have a noisy kernel function
and hence loose our signal. In our design, we use the RBF
kernel function, as specified below, to penalize dissimilar
node pairs.

K(X, Y) = e
−||X−Y ||2

2

2 (4)

where ||X||22 is the squared L2 norm of a vector X.

3.2 Graph Pattern Matching Kernel
One way to design the function Γ is to take advantage of

frequent patterns mined from a set of graphs. Intuitively if
a node belongs to a subgraph F , we have some information
about the local topology of the node. Following the intu-
ition, given a node v in a graph G and a frequent subgraph
F , we design a function ΓF such that

ΓF (v) =

1 if u belongs an embedding of F in G
0 otherwise

We call the function ΓF as a “pattern membership func-
tion” since this function tests whether a node occurs in a
specific subgraph feature (“membership to a subgraph”).

Given a set of frequent subgraph F = F1, F2, . . . , Fn, we
treat each membership function as a dimension and design
the function ΓF as below:

ΓF (v) = (ΓFi
(v))n

i (5)

In other words, given n frequent subgraph, the function Γ
maps a node v in G to a n-dimensional space, indexed by the
n subgraphs, where values of the features indicate whether
the node is part of the related subgraph in G.

Example 3.1. In Figure 3, we duplicated the figure Q in
Figure 1. We show two subgraph features F1 and F2. F1 has
an embedding in Q at {q1, q2} and F2 occurs in Q at {q1, q3}.
We depict the occurrences using shadings with different color
and orientations. For node q1, if we consider subgraph F1

as a feature, we have ΓF1
(q1) = 1 since q1 is part of an

embedding of F1 in Q. Also, we have ΓF1
(q3) = 0 since q3

is not part of an embedding of F1 in Q. Similarly we have
ΓF2

(q1) = 1 and ΓF2
(q3) = 1. Hence ΓF1,F2

(q1) = (1, 1) and
ΓF1,F2

(q3) = (0, 1). The values of the function ΓF1,F2
are

also illustrated in the same figure using the annotated Q.

b

b

a ab

bb

Q
F 2

F 1

q 2

q 1

q 3

b

b

a

q 2

q 3

q 1

1, 0

0 , 1

1 , 1

A nnota ted Q

Figure 3: An example of pattern membership func-

tions.

3.3 Graph Pattern Matching Kernel with Pat-
tern Diffusion

Here we introduce a better technique than the pattern
membership function to capture the local topology informa-
tion of nodes. We call this technique “pattern diffusion”.
Our design has the following advantages:

• Our design is generic and does not assume any domain
knowledge from a specific application. The diffusion
process may be applied to graphs with dramatically
different characteristics.

• The diffusion process is straightforward to implement
and can be computed efficiently.

• We prove that the diffusion process is related to the
probability distribution of a graph random walk. This
explains why the simple process may be used to sum-
marize local topological information.

Below, we outline the pattern diffusion kernel in three
steps.

In the first step, we identify a seed as a starting point for
the diffusion. In our design, a “seed” could be a single node,

or a set of connected nodes in the original graph. In our
experimental study, we always use frequent subgraphs for
seeds since we can easily compare a seed from one graph to
a seed in another graph.

In the second step given a set of nodes S as seed, we
recursively define a diffusion function ft in the following way.

The base f0 is defined as:

f0(u) =

1/|S| if u ∈ S
0 otherwise

We define ft+1 (t ≥ 0) with ft in the following way:

ft+1(v) = ft(v) × (1 −
λ

d(v)
) +

X

u∈N(v)

ft(u) ×
λ

d(u)
(6)

In the notation, N(v) = {u|(u, v) is an edge } is the set of
nodes that connects to v directly. d(v) = |N(v)| is the node
degree of v. λ is a parameter that controls the diffusion rate.

The formula 6 describes a process where each node dis-
tributes a λ fraction of its value to its neighbors evenly and
in the same way receives some value from its neighbors. We
call it “diffusion” because the process simulate the way a
value is spreading in a network. Our intuition is that the
distribution of such a value encodes information about the
local topology of the network.

To constrain the diffusion process to a local region, we use
one parameter called diffusion time, denoted by τ , to con-
trol the diffusion process. Specifically we limit the diffusion
process to a local region of the original graph with nodes
that are at most τ hops away from a node in the seed S. In
this sense, the diffusion should be named “local diffusion”.

Finally in the last step, for the seed S, we define the map-
ping function Γd

S as the limit function of ft as t approaches
to infinity, or

Γd
S = lim

t→∞
ft (7)

And given a set of frequent subgraph F = F1, F2, . . . , Fn

as seeds, we design the pattern diffusion function Γd
F as:

Γd
F (v) = (Γd

Fi
(v))n

i (8)

3.4 Connections of Other Graph Kernels

3.4.1 Connection to Marginalized Kernels
Here we show the connection of pattern matching kernel

function to the marginalized graph kernel [16], which uses
a Markov model to randomly generate walks of a labeled
graph.

Given a graph G with nodes set V [G] = {v1, v2, . . . , vn},
and a seed S ⊆ V [G], for each diffusion function ft, we con-
struct a vector Ut = (ft(v1), ft(v2), . . . , ft(vn)). According
to the definition of ft, we have Ut+1 = M × Ut where the
matrix M is defined as:

M(i, j) =

8

>

<

>

:

λ
d(vj)

if i 6= j and i ∈ N(j)

1 − λ
d(vi)

i = j

0 otherwise

In this representation, we compute the stationary distri-
bution (fS = limt→∞ ft) by computing M∞ × U0.

We notice that the matrix M corresponds to a probability
matrix corresponding to a Markov Chain since

• all entries are non-negative

• column sum is 1 for each column

Therefore the vector M∞×U0 corresponds to the station-
ary distribution of the local random walk as specified by M .
In other words, rather than using random walk to retrieve
information about the local topology of a graph, we use the
stationary distribution to retrieve information about the lo-
cal topology. Our experimental study shows that this in fact
is an efficient way for graph classification.

3.4.2 Connection to Optimal Assignment Kernel
The optimal assignment (OA) kernel [7] carries the same

spirit of our graph pattern matching kernel in that OA uses
pairwise node kernel function to construct a graph kernel
function. OA kernel has been utilized for cheminformatics
applications and is found to deliver good results empirically.

There are two major differences between ours and the OA
kernel. (1) OA kernel is not positive semi-definite and hence
is not Mercer kernel in a strict sense. Non Mercer kernel
functions are used to train SVM model and the problem is
that the convex optimizer utilized in SVM will not converge
to a global optimal and hence the performance of the SVM
training may not be reliable. (2) OA utilizes a complicated
recursive function to compute the similarity between nodes,
which make the computation of the kernel function runs
slowly for large graphs [33].

3.5 Pattern Diffusion Kernel and Graph Clas-
sification

We summarize the discussions we present so far and show
how the kernel function is utilized to construct an efficient
graph classification algorithm at both the training and test-
ing phases.

3.5.1 Training Phase
In the training phase, we divide graphs of the training

data set D = {(Gi, Ti,)}
n
i=1 into groups according to their

class labels. For example in binary classification, we have
two groups of graphs: positive or negative. For multi-class
classification, we partition graphs according to their class
label where graphs have the same class labels are grouped
together. The training phase is composed of four steps:

• Obtain frequent subgraphs. We identify frequent sub-
graphs from each graph group and union the subgraph
sets together as our seed set F .

• For each graph G in the training data set, we use the
node pattern diffusion function Γd

F to label nodes in
G. Thus the feature vector of a node v is a vector
LV = (Γd

Fi
(v))m

i=1 with length m = |F|.

• For two graphs G, G′, we construct the complete weighted
bipartite graph as described in section 3.1 and compute
the kernel Km(G, G′) using Equation 3 and Equation
4.

• Train a predictive model using a kernel classifier.

Table 1: Characteristics of our data sets. ‘Background’ column indicates protein target or organism type. # G:

number of samples (chemical compounds) in the data set. # P : positive samples. # N : negative samples

Source Dataset Background # G # P # N
AChE Acetylcholinesterase 138 69 69
ALF Anthrax Lethal Factor 93 47 46

EGF-TK EGF-R Tyrosine Kinase 377 190 187
BindingDB HIV-P HIV-1 Protease 202 101 101

HIV-RT HIV-1 Reverse Transcriptase 365 183 182
HSP90 Heat Shock Protein 90 82 41 41
MAPK Map Kinase p38 alpha 255 126 129
CDK2 Cyclin-dependent Kinase 2 100 50 50
COX2 Cyclooxygenase 2 100 50 50

Jorissen FXa Factor Xa Protease 100 50 50
PDE5 Phosphodiesterase type 5 100 50 50
A1A A1-adenosine 100 50 50

Predictive PTC-FM female mice 344 152 192
Toxicology PTC-FR female rats 336 129 207
Challenge PTC-MM male mice 351 121 230

PTC-MR male rats 349 143 206

3.5.2 Testing Phase
In the testing phase, we compute the kernel function for

graphs in the testing and training data sets. We use the
trained model to make predictions about graph in the testing
set.

• For each graph G in the testing data set, we use Γd
F to

label nodes in G and create feature vectors as we did
in the training phase.

• We use Equation 3 and Equation 4 to compute the ker-
nel function Km(G, G′) for each graph G in the testing
data set and for each graph G′ in the training data set.

• Use kernel classifier and trained models to obtain pre-
diction accuracy of the testing data set

Below we present our empirical study of different kernel
functions including our pattern diffusion kernel.

4. EXPERIMENTAL STUDY
We conducted classification experiments using eight dif-

ferent graph kernel functions, including our Pattern Diffu-
sion kernel, on sixteen different data sets. There are twelve
chemical-protein binding data sets, and the rest are chemical
toxicity data sets. We performed all of our experiments on
a desktop computer with a 3Ghz Pertium 4 processor and 1
GB of RAM. In the following subsections, we describe the
data sets and the classification methods in more detail along
with the associated results.

In all classification experiments, we used the LibSVM [5]
as our kernel classifier. We used nu-SVC with nu = 0.5.
Our classification accuracy (TP+TN/S, TP: true positive,
TN: true negative, S: total number of testing samples) is
computed by averaging over a 10-fold cross-validation exper-
iment. Standard deviation is computed similarly. To have a
fair comparison, we simply used default SVM parameters in
all cases, and did not tune any parameters to increase the
accuracy of any method.

4.1 Data Sets
We have selected sixteen data sets covering prediction

of chemical-protein binding activity and chemical toxicity.
The first seven data sets are manually extracted from the
BindindDB database [22]. The next five are established data
sets taken from Jorissen et al. [15]. The last four are from
the Predictive Toxicology Challenge[10] (PTC).

4.1.1 BindingDB Sets
The BindingDB database contains more than 450 pro-

teins. For each protein, the database record chemicals that
bind to the protein. Two types of activity measurements Ki

and IC50 are provided. Both measurements measure inhi-
bition/dissociation rates between a proteins and chemicals.
From BindingDB, we manually selected 7 proteins with a
wide range of known interacting chemicals (ranging from
tens to several hundreds).

Since the binding activity measurements are real-valued
we must convert them into binary class labels for classifica-
tion. This is accomplished by finding the median activity
value and splitting the data accordingly: that is all com-
pounds with activity less then or equal to the cutoff is given
one class label, and compounds with greater activity are
given another. We also throw out the middle 25% of the data
set, in order to impose some separation between the classes.
This method of class label construction has the convenient
property of producing data sets with equal proportion pos-
itive/negative classes, but may not accurately reflect true
biological activity.

4.1.2 Jorissen Sets
The Jorissen data sets also contains information about

chemical-protein binding activity. In this case the provider
of the data set carefully selected positive and negative sam-
ples and hence are more reliable than the data sets we cre-
ated from BindingDB. For more information about the cre-
ation of the data sets, see [15] in details.

4.1.3 PTC Sets

The Predictive Toxicology Challenge (PTC) data sets con-
tain a series of chemical compounds classified according to
their toxicity in male rats, female rats, male mice, and fe-
male mice. While chemical-protein binding activity is an
important type of chemical activity, it is not the only type.
Toxicity is another important, though different, kind of chem-
ical activity we would like to predict in drug design. This
data set is well curated and highly reliable.

The characteristics of the 16 data sets is provided in Table
1.

4.2 Kernel Functions
We have selected 6 different kernel functions for eval-

uation: Marginalized[16], spectrum[6], tanimoto[21], sub-
tree[24], optimal assignment[7], together with our graph pat-
tern matching kernel. All of these kernel functions depend
on a decomposition of the graphs into pieces of some size.
For the marginalized kernel, the walk size is controlled by
the termination probability. For the spectrum and tanimoto
kernels it is the path fragment length, and maximum depth
for the subtree kernel. The optimal assignment kernel is
controlled by the neighborhood size on which to match ver-
tices. The pattern diffusion kernel uses subgraph patterns
of a specific size, and also rate/time parameters to control
the diffusion area. In order to keep these various functions
efficient to compute we have chosen to use small parameters
for all these functions; in most cases a value between 3 and
5 was chosen.

Four kernel functions (Marginalized, spectrum, tanimoto,
subtree) are computed using the open source Chemcpp v1.0.2
package [25]. The optimal assignment kernel was computed
using the JOELib2 package, and is not strictly a kernel func-
tion, but still provides good prediction accuracy. Our graph
pattern matching kernel was computed using our own MAT-
LAB code.

Whenever possible we used default parameters in kernel
computation, which are specified below:

• Marginalized - termination probability = 0.1, tottering
paths not filtered.

• Spectrum - path length = 4.

• Tanimoto - path length = 4.

• Subtree - maximum depth = 3, tottering patterns not
filtered.

• Optimal assignment - neighbor-matching depth = 3.

• Pattern matching - diffusion rate = 0.2, diffusion time
= 3 steps; subgraph support 25%, size <= 5.

4.3 Experimental Results

4.3.1 Comparison Between Kernel Functions
Here we present the results of our graph classification ex-

periments with various kernel functions. The following Fig-
ure 4 shows the classification accuracy for different kernel
functions and data sets, averaged over a 10-fold cross valida-
tion experiment. The precision and recall are given in Tables
5 and 6 contained in the appendix A. The standard devia-
tions (omitted) of the accuracies are generally very high,
from 5-10%, so statistically significant differences between
kernel functions are generally not observed.

We can see from the data that our method is competitive
for all sixteen data sets. If we examine the accuracy of each
kernel function averaged over all data sets, we see that our
GPM kernel performs the best overall. Again, the standard
deviations are high so the differences between the top per-
forming kernels are not statistically significant. Still, with
16 different data sets we can see some clear trends: GPM
kernel delivers the highest classification accuracy in 8 out of
the 16 data sets shown in Table 2.

Table 2: Comparison of best classification accuracy

between kernel functions (ties included). B: the number

of data sets in which a kernel function provides the best

classification accuracy.

Kernel Function # B Data Sets

GPM 8
ALF, CDK2, COX2,
A1A, HSP90, HIV-P,
PTC-FM, PTC-MM

tanimoto 4
AChE, EGF-R,
FXa, PDE5

marginalized 2 HIV-RT, PTC-FR
subtree 2 HIV-PT, PTC-MR

optimal assign. 1 MAPK
spectrum 0 n/a

The next Table 3 gives a comparison of our method to
each of the other methods. Although GPM does not work
well on a few data sets such as AChE, HIV-RT, MAPK, and
PTC-FR/MR, overall it performs better when compared to
any other kernel for a majority of data sets.

In general the GPM, spectrum and tanimoto kernels per-
form the best, with over all average accuracy of about 80%.
The subtree, optimal assignment, and marginalized also per-
form very good, in mid to high 70%. The min/max tanimoto
kernel performed much worse than the other methods, and
hence it was not included in the figure. Note that the opti-
mal assignment kernel is missing a prediction accuracy for
the FXa data set, this was due to a terminal error in the
JOELib2 software used to calculate this kernel on this data
set.

Table 3: Comparison of number of ‘better’ data
set accuracies between GPM and each other ker-
nel function (‘better’ does not include ties here). N :
of data sets that GPM gives better classification
accuracy.

Kernel Function # N Data Sets
tanimoto 11 All but AChE, EGF-R,

MAPK, PTC-FR, PTC-MR
subtree 11 All but AChE, HIV-P, MAPK,

PTC-FR, PTC-MR
optimal assign. 12 All but AChE, HIV-RT,

MAPK, PTC-FR
marginalized 12 All but AChE, HIV-RT,

PTC-FR, PTC-MR
spectrum 14 All but AChE, HIV-RT

Figure 4: Average accuracy for all kernel functions and data sets.

4.3.2 Comparison with Non-kernel Classifier
In Table 4 we compare the performance of our GPM kernel

to a non-kernel classifier: CBA or Classification Based on
Association[4]. In CBA we treat mined frequent subgraphs
as item sets. Despite the strengths of CBA, we can see that
GPM method gives the best performance for all of the five
data sets evaluated. We chose these five sets as they are
curated and represent a several different protein targets.

Table 4: Comparison of GPM and CBA.
Data set GPM CBA
CDK2 91 80.46
COX2 93 77.86
Fxa 97 86.87
PDE5 91 87.14
A1A 94 87.76

4.3.3 Using Different Feature Sets
Once frequent subgraphs are mined, we generate three

feature sets: (i) general subgraphs (all of mined subgraphs),
(ii) tree subgraphs, and (iii) path subgraphs. We tried cy-
cles as well, but did not include them in this study since
typically less than two cyclic subgraphs were identified in a
data set. These feature sets are then used for constructing
kernel functions. We tested our GPM kernel using path,
tree, and general subgraph patterns. From our preliminary
experiments with chemical data we observed that in general
using different feature sets negligible difference. Most gen-
eral subgraphs in chemicals are either paths or trees with few
branches, so there is little distinction between using these
three features.

5. CONCLUSIONS AND FUTURE WORKS
With the rapid development of fast and sophisticated data

collection methods, data has become complex, high-dimensional

and noisy. Graphs have proven to be powerful tools for
modeling complex, high-dimensional and noisy data; build-
ing highly accurate predictive models for graph data is a
new challenge for the data mining community. In this pa-
per we have demonstrated the utility of a novel graph kernel
function, graph pattern matching kernel (GPM kernel). We
showed that the GPM kernel can capture the intrinsic con-
nection between a graph and its class label and has the low-
est testing error in majority of the data sets we evaluated.
Although we have developed a very efficient computational
framework, computing a GPM kernel may be hard for large
graphs. Our future work will concentrate on improving the
computational efficiency of the GPM kernel for very large
graphs.

Acknowledgments
This work has been supported by the Kansas IDeA Network
for Biomedical Research Excellence (NIH/NCRR award #P20
RR016475), the KU Center of Excellence for Chemical Method-
ology and Library Development (NIH/NIGM award #P50
GM069663), and NIH grant #R01 GM868665.

6. REFERENCES
[1] F. Aiolli, G. D. S. Martino, A. Sperduti, and A. Moschitti. Fast

on-line kernel learning for trees. Proceedings of the
International Conference on Data Mining, pages 787 – 791,
2006.

[2] C. Austin, L. Brady, T. Insel, and F. Collins. Nih molecular
libraries initiative. Science, 306(5699):1138–9, 2004.

[3] E. Barbu, R. Raveaux, H. Locteau, S. Adam, and P. Heroux.
Graph classification using genetic algorithm and graph probing
application to symbol recognition. Proc. of the 18th
International Conference on Pattern Recognition (ICPR),
2006.

[4] Y. M. Bing Liu, Wynne Hsu. Integrating classification and
association rule mining. In Proceedings of the Fourth
International Conference on Knowledge Discovery and Data
Mining, 1998.

[5] C. Chang and C. Lin. Libsvm: a library for support vector
machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[6] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent
sub-structure-based approaches for classifying chemical
compounds. IEEE Transactions on Knowledge and Data
Engineering, 2005.

[7] Fröohlich, J. Wegner, F. Sieker, and A. Zell. Kernel functions
for attributed molecular graphs - a new similarity-based
approach to adme prediction in classification. QSAR &
Combinatorial Science, 2006.

[8] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels:
Hardness results and efficient alternatives. In Sixteenth Annual
Conference on Computational Learning Theory and Seventh
Kernel Workshop, 2003.

[9] D. Haussler. Convolution kernels on discrete structures.
Technical Report UCSC-CRL099-10, Computer Science
Department, UC Santa Cruz, 1999.

[10] C. Helma, R. King, and S. Kramer. The predictive toxicology
challenge 2000-2001. Bioinformatics, 17(1):107–108, 2001.

[11] T. Horvath, J. Ramon, and S. Wrobel. Frequent subgraph
mining in outerplanar graphs. In SIGKDD, 2006.

[12] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent
subgraph in the presence of isomorphism. In Proceedings of the
3rd IEEE International Conference on Data Mining (ICDM),
pages 549–552, 2003.

[13] J. Huan, W. Wang, A. Washington, J. Prins, R. Shah, and
A. Tropsha. Accurate classification of protein structural
families based on coherent subgraph analysis. In Proceedings of
the Pacific Symposium on Biocomputing (PSB), pages
411–422, 2004.

[14] Y. Huang, H. Li, H. Hu, X. Yan, M. S. Waterman, H. Huang,
and X. J. Zhou. Systematic discovery of functional modules and
context-specific functional annotation of human genome.
Bioinformatics, pages ISMB/ECCB Supplement, 222–229,
2007.

[15] R. Jorissen and M. Gilson. Virtual screening of molecular
databases using a support vector machine. J. Chem. Inf.
Model., 45(3):549–561, 2005.

[16] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels
between labeled graphs. In Proc. of the Twentieth Int. Conf.
on Machine Learning (ICML), 2003.

[17] Y. Ke, J. Cheng, , and W. Ng. Correlation search in graph
databases. In SIGKDD, 2007.

[18] B. K.M. and K. H.-P. Shortest-path kernels on graphs. In in
Proc. of International Conference on Data Mining, 2005.

[19] R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi, Y. Freund,
and C. Leslie. Profile-based string kernels for remote homology
detection and motif extraction. Journal of Bioinformatics and
Computational Biology, 3 (3):527–550, 2005.

[20] T. Kudo, E. Maeda, and Y. Matsumoto. An application of
boosting to graph classification. In NIPS, 2004.

[21] R. L, S. SJ, S. H, and B. P. Graph kernels for chemical
informatics. Neural Networks, 18:1093–1110, 2005.

[22] T. Liu, Y. Lin, X. Wen, R. N. Jorrisen, and M. Gilson.
Bindingdb: a web-accessible database of experimentally
determined protein-ligand binding affinities. Nucleic Acids
Research, 35:D198–D201, 2007.

[23] S. Lyu. Mercer kernels for object recognition with local
features. In IEEE Computer Vision and Pattern Recognition,
pages 223–229, 2005.

[24] P. Mahe and J. Vert. Graph kernels based on tree patterns for
molecules. Technical Report HAL:ccsd-00095488, Ecoles des
Mines de Paris, September 2006.

[25] J.-L. Perret, P. Mahe, and J.-P. Vert. Chemcpp: an open source
c++ toolbox for kernel functions on chemical compounds, 2007.
Software available at http://chemcpp.sourceforge.net.

[26] J. R. Quinlan. C4.5 : Programs for Machine Learning.
Morgan Kaufmann, 1993.

[27] C. R and S. B. SVMTorch:. Support vector machines for

large-scale regression problems. Journal of Machine Learning
Research, 21, 2001.

[28] J. Ramon and T. Gärtner. Expressivity versus efficiency of
graph kernels. In Technical Report, First International
Workshop on Mining Graphs, Trees and Sequences, 2003.

[29] L. Ravaliola, S. J. Swamidass, and H. Saigo. Graph kernels for
chemical informatics. Neural Networks, 2005.

[30] B. Schölkopf and A. J. Smola. Learning with Kernels. the MIT
Press, 2002.

[31] B. Schölkopf, A. J. Smola, and K.-R. Müller. Kernel principal
component analysis. Advances in kernel methods: support
vector learning, pages 327–352, 1999.

[32] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and
applications of tree and graph searching. In Proceeding of the
ACM Symposium on Principles of Database Systems
(PODS), 2002.

[33] A. Smalter, J. Huan, and G. Lushington. Structure-based
pattern mining for chemical compound classification.
Proceedings of the 6th Asia Pacific Bioinformatics
Conference, 2008.

[34] J. Sun, S. Papadimitriou, P. S. Yu, and C. Faloutsos.
Parameter-free mining of large time-evolving graphs. In
SIGKDD, 2007.

[35] S. W. Tamas Horvath, Thomas Gartner. Cyclic pattern kernels
for predictive graph mining. SIGKDD, 2004.

[36] N. Tolliday, P. A. Clemons, P. Ferraiolo, A. N. Koehler, T. A.
Lewis, X. Li, S. L. Schreiber, D. S. Gerhard, and S. Eliasof.
Small molecules, big players: the national cancer institute’s
initiative for chemical genetics. Cancer Research, 66:8935–42,
2006.

[37] H. Tong, Y. Koren, , and C. Faloutsos. Fast direction-aware
proximity for graph mining. In SIGKDD, 2007.

[38] V. Vapnik. Statistical Learning Theory. John Wiley, 1998.

[39] N. Wale, I. Watson, , and G. Karypis. Comparison of descriptor
spaces for chemical compound retrieval and classification.
Knowledge and Information Systems, 2007.

[40] D. Williams, J. Huan, and W. Wang. Graph database indexing
using structured graph decomposition. In in Proceedings of the
23rd IEEE International Conference on Data Engineering
(ICDE), 2007.

[41] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In Proc. International Conference on Data
Mining’02, pages 721–724, 2002.

[42] X. Yan, P. S. Yu, and J. Han. Graph indexing based on
discriminative frequent structure analysis. In ACM
Transactions on Database Systems (TODS), 2005.

[43] M. J. Zaki and C. C. Aggarwal. Xrules: An effective structural
classifier for xml data. Machine Learning Journal special issue
on Statistical Relational Learning and Multi-Relational Data
Mining, 62, No. 1-2:137–170, 2006.

[44] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent closed
quasi-clique discovery from large dense graph databases. In
SIGKDD, 2006.

[45] D. Zhou, J. Huang, and B. Schöolkopf. Learning from labeled
and unlabeled data on a directed graph. Proceedings of the
22nd International Conference on Machine Learning, 2005.

APPENDIX

A. PRECISION AND RECALL FOR KER-
NEL EXPERIMENTS

For reference, here we provide a pair of tables listing the
precision and recall for all graph kernel experiments with all
data sets.

Table 5: Average precision for all kernel functions and data sets. Asterisk (∗) denotes the best precision for
the data set among competing methods

Data Set GPM Tanimoto Spectrum Subtree Marginalized Optimal Assign.
AChE 82.34 90.9* 89.06 80.05 90.83 88.58
ALF 79.57* 77.5 71.5 72 68.74 73

EGF-R 91.12 91.91* 89.59 88.13 83.93 83.71
HIV-P 92.22* 86.01 91.06 91.65 83.87 91.67

HIV-RT 80.5 80.16 79.84 79.07 82.93* 81.31
HSP90 77.57 76.74 76.74 76.5 77.9 78.83*
MAPK 92.79 93.44 92.35 94.44* 87.48 91.97
CDK2 96* 89.07 86.48 79.24 81.32 81.32
COX2 96.07* 89.83 85.94 88.57 83.45 82.9
FXa 100* 97.5 90.83 87.5 87.38 79.82

PDE5 92.17 92.74* 86.81 75.95 83.48 85.31
A1A 88.33* 85.57 85.83 87.67 83.21 87.73

PTC-FR 46.8 42.56 45.62 46.95 51.85* 47.64
PTC-FM 51.13* 40.67 45.37 47.85 42.69 36.79
PTC-MR 56.24 44.82 47.35 56.01 57.63* 46.19
PTC-MM 60.19* 55.37 51.55 51.28 50.93 43.97

Table 6: Average recall for all kernel functions and data sets. Asterisk (∗) denotes the best recall for the
data set among competing methods

Data Set GPM Tanimoto Spectrum Subtree Marginalized Optimal Assign.
AChE 83.13 88.45 85.95 92.74* 74.54 85.04
ALF 73.5* 70.67 70.17 66.5 69.83 72.67

EGF-R 95.36 95.39 95.43* 94.32 93.43 94
HIV-P 85.19 88.47* 85.91 86.11 86.19 83.56

HIV-RT 78.47 79.54 79.66 79.65 81.6* 79.37
HSP90 92.67* 91 91 91 88 84
MAPK 93.71 90.14 87.12 92.59 85.3 95.63*
CDK2 88.38 93.71* 90.05 84.71 92.05 87.9
COX2 91.57 93.14 93.48* 83.71 90.86 79.86
FXa 93.57 100* 95.24 84.29 96.9 93.48

PDE5 89.67 93.57 93.33 86.33 95* 89.57
A1A 96.67 100* 98 93.24 100* 100*

PTC-FR 42.69 54.24* 53.55 43.38 49.14 50.59
PTC-FM 39.75 27.36 32.26 34.26 41.96* 38.68
PTC-MR 47.06 50.78* 50.44 49.24 49.07 43.16
PTC-MM 56.12* 55.01 54.13 48.13 48.83 43.4

