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Abstract: This paper defines the Restricted Growing Concept (RGC) for object separation and 

provides an algorithmic analysis of its implementations.  Our concept decomposes the problem of object 

separation into two stages.  First, separation is achieved by shrinking the objects to their cores while 

keeping track of their originals as masks.  Then the core is grown within the masks obeying the 

guidelines of a restricted growing algorithm.  In this paper, we apply RGC to the remote sensing domain, 

particularly the Synthetic Aperture Radar (SAR) sea ice images.  

1 Introduction 

When two gray level objects touch with shared boundaries, it makes shape analysis and recognition 

difficult in areas such as industrial vision applications [3], in aerial image and terrain analysis [7] or in 

shape analysis [5].  The objectives of our work are to achieve object separation, and to preserve (or 

approximate as closely as possible) the object's original shape and size. The tradeoff between separation 

and preservation of size and shape is inherent in all object separation algorithms.  To address this 

problem, we have designed an technique based on the Restricted Growing Concept (RGC), that achieves 

separation and, then, re-establishes the sizes and shapes of the objects lost or distorted during the 

separation process by performing restricted growing. 

 In this paper, we present the restricted growing concept and address the issues of preserving details 

through different designs of masks, investigate the use of morphological reconstruction and h-domes in 

extracting cores, compare the differences between the performance of the morphological operators in 

synthetic and remotely sensed images, and describe a reverse skeletonization algorithm to guide the 

growth of object pixels in the image.  We finally present twelve algorithms of RGC and examine their 

weaknesses and strengths when applied to Synthetic Aperture Radar (SAR) sea ice images. 

2 The Restricted Growing Concept 
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The main idea behind the RGC is to decompose the object separation problem into two steps: The first 

step achieves separation, accomplished by shrinking objects such that each object is separated from its 

touching neighbors.  The second step preserves size and shapes by growing the shrunk objects to restore 

them.  To ensure that the separation established after the first stage is not disturbed, our growing process 

is restricted.  

 In our approach, a mask object is a version of the original object such that the original size of the 

object is preserved.  Mask objects are usually interconnected and can encompass one or more core 

objects.  An image with mask objects is a mask image.  A core object is a version of the original object 

such that its linkages to neighboring objects are disconnected, satisfying object separation.  Such an 

object is reduced in size, but it captures the general shape of its original version. An image with core 

objects is a core image. Finally, a restricted growing algorithm grows a core object within the boundary 

of its corresponding mask object while preserving the object's separation from its neighbors.  This 

definition implies that the growing process stops either when the boundary of the object has been reached 

or when further growing will damage the object's separation from its neighbors.  Thus, conventional 

region growing [12] or morphological dilation schemes are not restricted growing algorithms. 

2.1 Generating the Mask Image 

Our implementation basis for the mask image is gray level global thresholding.  We use threshold slices, 

tS , obtained by thresholding the image at intensity t , as the changing environment on which we base the 

assessment of the confidence that a pixel belongs to an object.  The set of environments or threshold 

slices is ( )NIT ,,Ω , where T  is the starting threshold, I  the interval between successive slices, and N  

the number of slices: ( )( ) ( ) ( ) ( ){ }4,2,, ,,3,2,, ++=Ω=Ω jitjitjitmask SSSjit , where ( )jit ,  is the threshold computed 

at pixel ( )ji,  during the segmentation process, 2=maskI , and 3=maskN .  To obtain the accumulated 

confidence ( )jic
tS ,  of a pixel being an object at tS , we compute the ratio of the pixel’s neighbors that 

have survived the slicing of tS , and then set ( ) ( )� Ω∈
=

maskt tS Smask jicjiC ,, .  Finally, to label each pixel in 
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the mask image, we compare ( )jiCmask ,  to a pre-specified threshold, maskT ; if the ( )jiCmask ,  of a pixel at 

( )ji,  is greater than or equal to maskT , then that pixel is an object pixel in the mask image.  maskT  has been 

experimentally determined as 0.75 for Synthetic Aperture Radar (SAR) sea ice images.  Note that the 

above algorithm has three important parameters, i.e., maskT , maskI , and maskN , that system designers can 

adjust to accommodate their specific needs and domains of applications during the development phase of 

their object separation software.  Please refer to [9] for a detailed description of the experiments.  

2.2 Generating the Core Image 

We investigated two techniques to generate core objects.  The first used morphological reconstruction 

[10] which extracts as core objects h-domes of regions in an image.  First, h is subtracted from the 

original image for all pixels to obtain the minus-h image.  Second, the features in the minus-h image are 

reconstructed to obtain regional maxima.  Third, the reconstructed minus-h image is subtracted from the 

original image and the leftover features are the h-domes.  We adapted this technique to be restricted by 

the mask image to preserve separation.  We found through experiments that even though reconstruction 

and h-domes can be applied successfully to well-behaved or synthetic images, they are not suitable for 

remotely-sensed imagery such as SAR sea ice images due to inherent speckle noise.  The noise effects 

and intrinsic heterogeneity within sea ice regions forbid the reconstruction from forming good quality 

plateaus, resulting in many trivial cores.  Thus, to obtain core object pixels, we used: ( )( )5,2,, jitcore Ω=Ω , 

where 2=maskI , and 5=maskN , and ( ) ( )∑ Ω∈
=

coret tS Score jicjiC ,, .  Similar to maskT , a threshold value 

coreT  has been experimentally determined to be 0.50 for SAR sea ice images. Our core extraction step 

was determined to be able to separate touching objects with up to 25 shared boundary pixels and obtain 

primary cores in up to 15% noise-corrupted images [9].  

2.3 The Restricted Growing Algorithm Using Reversed Skeletonization 

Our restricted growing algorithm uses reverse skeletonization to grow core objects within the boundary 

of their corresponding mask objects while preserving existing separation among the core objects.  As the 
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basis for reverse skeletonization we used the skeletonization algorithm described in [11].  Our restricted 

growing algorithm was based closely on the thinning algorithm, with the following tests and conditions.  

 Test 1:  Potential Growing Condition  
 If a pixel in the core image is a non-object pixel and its corresponding pixel in the mask image is an 

object pixel, then the pixel is qualified for further test. 
 
This test selects only non-object core pixels for potential growth, guaranteeing that we only grow core 

objects within the boundary of mask objects.  In addition, pixels that are non-object in both core and 

mask images are deemed as true non-object and rejected from growing. 

      Test 2:  Isolation Condition  
 If the pixel in the core image does not have an object pixel in its core image as an 8-neighbor, then the 

pixel is disqualified. 
 
This condition avoids erroneous separation within an object.  For example, small dark specks in an object 

would be eroded to non-object pixels during the generation of the core image.   

 Test 3:  Connectivity Condition 1  
 If the pixel in the core image has seven or eight object pixels in its core image 8-neighborhood, then 

the pixel is grown. 
 
If the 8-neighborhood of a pixel has seven or more object pixels, that means all object pixels in that 

neighborhood are connected.  Hence, the growth of the pixel from non-object to object does not damage 

the existing (or non-existing) separation. 

 Test 4:  Connectivity Condition 2  
 If the pixel in the core image has no or one 1-0 transition in its core image 8-neighborhood, then the 

pixel is grown. 
 
If no or one 1-0 transition is found, that means all object pixels in the area are connected and thus a 

growth is safe.  This condition is analogous to the second condition of the original skeletonization 

algorithm.   Note that Tests 3 and 4 could be combined to streamline the design.  

 Test 5:  Connectivity Condition 3  
 If the 8 neighborhood of the pixel in the core image matches one of the four corner patterns, then the 

pixel is grown. 
 
The corner patterns are shown in Fig. 1.  Each of these patterns could have two or more 1-0 transitions 

yet have all its object pixels connected and thus has no separation to preserve. This test combines the last 
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two conditions of the thinning algorithm. Note that the last two conditions cover all relevant 8-

neighborhood patterns: Test 4 covers all cases with fewer than two 1-0 transitions; Test 5 covers the rest.  

 
Fig. 1  Patterns examined in Test 5: Dark pixels are object pixels;  

unshaded pixels are "don't care" pixels. 
 

3 Analysis of Different Implementations of RGC 

The algorithm of the basic RGC can be expressed in the following pseudocode: 

 algorithm RGC 
 (1)  Generate the mask image. 
 (2)  Generate the core image. 
 (3)  Scan the core image in some manner, and for each pixel encountered: 
   (a)  Apply the tests (as described in Section 6). 
  (b)  If the pixel passes the tests, Then convert it to an object pixel. 
  (c)  If no change, Then move on to the next pixel. 
 (4)  Repeat step (3) Until the core image converges. 
 
The two keys to the design of the algorithm are how one scans the image and how one selects the 

next pixel for processing.  Here we discuss twelve different algorithms:   

 RGC_BASIC uses raster scanning, from top to bottom, left to right.  After each growth, the 

raster simply moves to the next column and row to reduce horizontal (or vertical) growth 

tendency in the image.  In RGC_JUMP, the scanning process jumps to a pixel JUMP_STEP 

away to prevent the growth of the current pixel from affecting the next pixel immediately.  

RGC_BCOLOR uses blob-coloring to grow pixels more aggressively; when two locally 

separated object neighbors are parts of a connected object, a growth is permissible.  Hence, if all 

tests fail to grow the pixel yet all object neighbors of the pixel share the same blob-color, then we 

grow the pixel.  RGC_BCOLOR_ JUMP combines RGC_JUMP and RGC_BCOLOR.  

RGC_DIST utilizes the 8-distance transform to record the shortest distance of an object pixel 

from a non-object pixel [8].  This grows each ring of a region at a time for all regions from the 

innermost pixels outward.  RGC_DIST_BCOLOR combines 8-distance transform and blob 
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coloring.  In morphology, a two-scan iteration is often used to obtain balanced consideration for 

all pixels in the image in both directions.  Thus, we implemented six more similar algorithms but 

with two-scans.   

 We performed a number of experiments to test the algorithms on various SAR sea ice images.  The 

results were visually evaluated for quality of separation, shape and size preservation. The following 

conclusions were drawn: 

(A) The two-scan iteration design offers better balance in regional growth, compared to the one-scan 

design; the regions are less complicated and more fully grown.  

(B) Implementations that include jumps to avoid immediate growth effects fare better in terms of shape 

definition.  However, jumps also introduce breaks in the regions, and algorithms without jumps establish 

fuller regions by absorbing more pixels from neighboring ones.  

(C) By utilizing blob coloring in the restricted growing algorithm we obtain regions that close better and 

are more compact.  ‘Hairline’ effects that are sometimes evident because of breaks within regions are 

reduced.  However, with blob coloring, non-object pixels are more sporadic and less connected.  Thus, 

we recommend an implementation without blob coloring when non-object breaks are important. 

(D)  The implementations with distance transform do not perform as well as those without.  There are 

two possible reasons.  First, SAR sea ice images are noisy and the distance transform creates holes in a 

region. These holes could be seen as lakes and thus the topology of the region in terms of the shortest 

distance to a non-object pixel is no longer in a uniform ring radiating outward from the center of the 

region, retaining noise effects.  Second, the 8-distance transform does not represent the actual distance 

between pixels—the diagonal neighbors are further from the center than the direct-neighbors.   

(E) Because of the inherent noise of SAR sea ice images, we do not recommend using distance transform 

alone because it dominates the growth patterns and retains noise effects.  Combining the distance 

transform with blob coloring or two-scan iteration improves the results.  Further, we do not recommend 

using two-scan iteration, blob coloring, and jumps together, since the design extracts blocky regions. 
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(F) In general, most of the twelve algorithms yield good object separation results.  They tolerate speckle 

noise in object separation and reduce noise effects in object definition. Our evaluation of the results 

indicates that the algorithm RGC_BCOLOR is the most consistent, due to the one-scan design and the 

ability of the blob coloring-based approach to absorb negligible noise effects.   

 Note that we do not provide a resolution or recommend a size or shape of a ‘hole’ that our RGC 

algorithms might fail to absorb.  If one chooses to implement restricted growing using a 5x5 

neighborhood, or a 4-neighhorhood, or other neighborhoods, the resulting constraints will differ 

significantly.  Also, we assume that tiny holes are noise-induced and should be absorbed, as explained in 

Test 2.  On the other hand, large, well-defined holes should be retained and should not get filled by 

neighboring object pixels. 

 In terms of performance, algorithms that implement blob coloring perform faster; those using 

distance transform perform more slowly; and finally those with jumps even more slowly.  This is 

because of the skipping of pixels per iteration, due to either distance transforms or jumps, and the 

consequent additional number of iterations needed to converge the core image. On an SGI Challenge L/6, 

with 512Mb RAM, execution times on a 450x600 image averaged between 9 seconds for the fastest 

algorithms to approximately 6 minutes for the slowest ones.  

4 Comparisons to Other Work 

Banfield and Raftery [1] used a method called erosion-propagation (EP) algorithm coupled with 

clustering about principal curves [4] to identify objects in satellite images.  This object separation 

technique suffers from several disadvantages:  (1) the number of iterations required to achieve separation 

has to be determined manually for each image, (2) objects smaller than (2i + 1) × (2i + 1) pixels, where i 

is the number of iterations, will be eliminated, and (3) objects do not preserve their original size.  In 

another approach [2], a tagging algorithm was used to separate objects with weak connections. However, 

this technique separated only regions connected by corners or by one-pixel bridges, rendering it 

incapable of achieving separation when stronger connections occur.  Noordmans and Smeulders [6] 

proposed a strategy that detects and characterizes isolated and overlapping spots in images where spots 
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are defined as image details without inner structure.  To apply the strategy to our domain, one would 

have to define a substantial, nontrivial set of spot models, including expanding the suggested models’ 

parameters to involve both Cartesian axes and the intensity axis, which would result in inefficient 

modeling and its subsequent matching. 

5 Conclusions  

The RGC algorithms presented here do not restore ‘high frequent’ details such as a 20-point star or a 

fine-toothed circle.  Instead, our algorithms have been designed to analyze unstructured objects (with 

irregular shapes and sizes) in remotely sensed images and natural scenes and not man-made objects.   
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