
Cost-Effective Soft-Error Protection for SRAM-Based
Structures in GPGPUs

Jingweijia Tan, Zhi Li, Xin Fu
Department of Electrical Engineering and Computer Science

University of Kansas
Lawrence, KS 66045, USA

{jtan, zhili, xinfu}@ittc.ku.edu

ABSTRACT
The general-purpose computing on graphics processing units
(GPGPUs) are increasingly used to accelerate parallel applications.
This makes reliability a growing concern in GPUs as they are
originally designed for graphics processing with relaxed
requirements for execution correctness. With CMOS processing
technologies continuously scaling down to the nano-scale, on-chip
soft error rate (SER) has been predicted to increase exponentially.
GPGPUs with hundreds of cores integrated into a single chip are
prone to manifest high SER. This paper aims to enhance the
GPGPU reliability in light of soft errors. We leverage the GPGPU
microarchitecture characteristics, and propose energy-efficient
protection mechanisms for two typical SRAM-based structures
(i.e. instruction buffer and registers) which suffer high
susceptibility. We develop Similarity-AWare Protection (SAWP)
scheme that leverages the instruction similarity to provide the near-
full ECC protection to the instruction buffer with quite little area
and power overhead. Based on the observation that shared memory
usually exhibits low utilization, we propose SHAred memory to
Register Protection (SHARP) scheme, it intelligently leverages
shared memory to hold the ECCs of registers. Experimental results
show that our techniques have the strong capability of substantially
improving the structure vulnerability, and significantly reducing
the power consumption compared to the full ECC protection
mechanism.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance; I.3.1 [Computer Graphics]: Hardware
Architecture – Graphics processors

General Terms
Design, Reliability

Keywords
GPGPU, Reliability, Soft Error, SRAM, Energy Efficiency.

1. Introduction
Modern graphics processing units (GPUs) are composed of

hundreds of on-chip cores, they support thousands of parallel
threads and provide remarkably higher computational throughput

than CPU. For example, NVIDA’s GeForce 8800 [1] provides up
to 197× higher throughput than Intel’s Core2Duo processors on
data intensive applications. The new programming models (e.g.
NVIDIA CUDA™ [2], AMD Brook+ [3], and OpenCL [4]) further
reduce the programmers’ efforts in writing general-purpose
applications using GPUs. With the increasing computing power
and improved programmability, general-purpose computing on
GPUs (GPGPUs) emerges as a highly attractive platform for a
wide range of parallel applications. In fact, a recent trend observed
in TOP500 supercomputers is the increasing adoption of GPGPUs
to deliver high computational throughput [15].

This extensive usage of GPGPU makes reliability a critical
concern. Current GPUs have quite limited capability in error
detection and fault tolerance. Historically, GPUs are mainly
designed for graphics processing, errors in those applications are
effectively masked and 100% computation correctness is not
required [5]. However, general-purpose applications such as
scientific computing, financial application and medical data
processing, require strict execution correctness. For example, in
the GPGPU application computing a correlation function [25], 1%
of value errors in any of the program output elements is treated as
a silent data corruption (SDC) error and cannot be tolerated. From
the device side, CMOS integrated circuits are facing high
environmental susceptibility with the shrinking of feature sizes.
Soft errors, also called transient faults or single-event upsets
(SEUs), are failures caused by high-energy neutron or alpha
particle strikes in integrated circuits. These failures may silently
corrupt the data and lead to erroneous computation results. Soft
error rate (SER) has been predicted to increase exponentially [6,
7]. GPGPUs with hundreds of cores integrated into a single chip
are prone to manifest high SER [8]. For examples, eight soft errors
were observed in a 72-hour run of testing program on 60 NVIDIA
GeForce 8800GTS 512 [9]. It is also found that the silent data
corruption (SDC) ratio in commodity GPUs with weak/no error
protection is 16~33% [10], significantly higher than that in CPUs
(<2.3%) with strong protection. If left unattended, this reliability
challenge will soon become obstacle to future GPGPUs by either
preventing them from scaling down to smaller feature sizes or
resulting in the imprecise operation of these systems.

Existing soft-error reliability optimization mechanisms limit on
CPU processors [11-14, 16-17] and largely ignore the emerging
GPGPUs. In CPUs, the software-based redundancy, such as
opportunistically triggering a redundant thread [16] when the main
thread stalls for long-latency memory accesses, has been widely
studied. It efficiently minimizes the performance degradation
caused by the redundant execution since the main and redundant
threads dynamically share the pipeline resources. However, every
parallel thread in GPGPU has statically allocated resources,
including the register files and on-chip shared memory, making
such opportunistic redundant multi-threading infeasible. It has
been found that the software-based replication in GPGPU leads to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CF’ 13, May 14-16, 2013, Ischia, Italy.
Copyright 2012 ACM 978-1-4503-2053-5...$15.00.

2

high performance overhead if high fault coverage is desired [8].
Furthermore, methodologies that can be simply extended to
GPGPUs fail to leverage the GPGPU microarchitecture
characteristics in achieving the cost-effective fault-tolerance. For
example, the error correction codes (ECC) table explored in [11]
for CPU register protection may cause large area overhead when
applied in GPGPU with thousands of registers. Therefore, it is
imperative to develop a different set of GPGPU-aware reliability
optimization techniques in the presence of soft errors.

In this paper, we explore reliable GPGPU microarchitecture
designs to efficiently combat soft errors in light of small-scale
processing technology. We focus our study on SRAM-based
structures, and it is a necessary first step towards protecting the
entire GPGPU processor. By using a reliability-aware architecture
simulator for GPGPUs, we find that the instruction buffer and
register files are the major SRAM-based structures exhibiting high
soft-error vulnerability. Both structures are sizeable that keep the
architectural state; they are likely to be the reliability hot-spots. We
take advantage of the GPGPU microarchitecture characteristics,
and develop two cost-effective protection mechanisms for the
instruction buffer and registers, respectively.

The contributions of this work are:
(1) We observe that threads usually keep similar progress when

executing in the GPGPU streaming multiprocessor, and
majority instructions in the instruction buffer share the
identical PC. Thus, one instruction’s ECC could be used for
multiple instructions. We propose Similary-AWare Protection
(SAWP) to leverage the instruction similarity and protect the
instruction buffer by implementing a small-size ECC table,
which provides the near-full protection to the buffer with little
area and power overhead.

(2) We observe that the shared memory usually keeps low
utilization in many GPGPU applications (detailed description
is shown in Section 3.3.1). Considering its unique
characteristics (e.g. read/write-able, low access latency), the
shared memory serves as the ideal candidate for registers fault
tolerance. We propose SHAred memory to Register
Protection (SHARP) that takes advantage of the under-
utilized shared memory to intelligently hold the ECCs of a set
of high vulnerable registers (i.e. registers with long lifetime),
and substantially enhance the registers reliability with quite
small area and power overhead.

(3) Experimental results show that both SAWP and SHARP have
the strong capability in fault tolerance with little power
consumption. SAWP reduces the soft-error vulnerability of
instruction buffer by 68%, and SHARP reduces register
vulnerability by 41% compared to the case without any
protection scheme. Moreover, SAWP (SHARP) is able to
reduce the power consumption by 17% (18%) compared to
the full ECC protection mechanism.

The rest of this paper is organized as follows: Section 2
provides background on GPGPUs and soft errors. Section 3
presents our two techniques to cost effectively enhance the soft-
error robustness of SRAM-based structures in GPU streaming
multiprocessors. Section 4 describes experimental methodologies.
Section 5 evaluates the proposed techniques. We discuss the
related work in Section 6, and conclude the paper in Section 7.

2. Background
2.1. General-purpose computing on graphics
processing units (GPGPUs) architecture

A typical GPU consists of a scalable number of in-order
streaming multiprocessors (SM) that can access to multiple on-chip
memory controllers via an on-chip interconnection network [2].

Figure 1 illustrates the SM microarchitecture [35]. It contains the
fetch and decode unit, instruction buffer (I-Buffer), branch unit,
register file (RF), streaming processors (SP), special functional
units (SFU), load-store units, shared memory, and so on.

Figure 1. An overview of the SM microarchitecture

To facilitate GPGPU application development, several
programming models have been developed by NVIDIA and AMD.
In this paper, we study the NVIDIA CUDA programming model
but the basic constructs will hold for most programming models. In
CUDA, the GPU is treated as a co-processor that executes highly-
parallel kernel functions launched by the CPU. The kernel is
composed of a grid of light-weighted threads; a grid is divided into
a set of blocks (referred as cooperative thread arrays (CTA) in
CUDA); each block is composed of hundreds of threads. Threads
are distributed to the SMs at the granularity of blocks, and threads
within a single block communicate via the shared memory and
synchronize at a barrier if desired. Per-block resources, such as
registers, shared memory, and thread slots in an SM are not
released until all the threads in the block finish execution.

Threads in the SM execute on the single-program multiple-data
(SPMD) model. A number of individual threads (e.g. 32 threads)
from the same block are grouped together, called warp. In the
pipeline, threads within a warp execute the same instruction but
with different data values. Each SM interleaves multiple warps
(e.g. 32) on a cycle-by-cycle basis. The execution of a branch
instruction in the warp may cause warp divergence when some
threads jump while others fall through at the branch.

As Figure 1 shows, each warp has a dedicated slot in the fetch
unit and I-Buffer. It also has own stack in the branch unit recording
the reconvergence PC (RPC) and active mask (used to describe the
active threads in the warp) to handle the warp divergence. At every
cycle, the fetch unit selects the PC for a warp whose instruction
slot is empty (i.e. the Valid bit is set as invalid in the instruction
buffer), and fetches the instruction from the instruction cache. The
instruction is decoded and written into the corresponding warp slot
in the instruction buffer. It waits there and will not be ready for
issue until its previous instruction completes. By checking the
Ready bit in the instruction buffer, the issue logic chooses a ready
warp instruction for the register access and execution. Once issued,
the slot holding that issued instruction is marked as invalid in the I-
Buffer. In the SM, all threads in a warp access the same-named
registers (i.e. register vector) simultaneously, the register values
are processed in parallel across the SP, SFU or load-store units.
GPU is usually equipped with its own off-chip external memory
(e.g. global memory) connected to the on-chip memory controllers.
The off-chip memory access can last hundreds of cycles, and a
long latency memory transaction from one thread would stall all
threads within a warp. In other words, the warp cannot proceed
until all the memory accesses from its threads complete. The
load/store requests issued by different threads can get coalesced

3

into fewer memory requests according to the access pattern.
Memory coalescing improves performance by reducing the
requests for memory access.

2.2. Microarchitecture level soft-error
vulnerability analysis

A key observation of soft error behavior at microarchitecture
level is that a SEU may not affect processor states required for
program’s correct execution. At microarchitecture level, the
overall hardware structure’s soft error rate is decided by two
factors [17]: the FIT rate (Failures in Time, which is the raw SER
at circuit level) per bit, mainly determined by circuit design and
processing technology, and the architecture vulnerability factor
(AVF) [20]. A hardware structure’s AVF refers to the probability
that a transient fault in that hardware structure will result in
incorrect program results. Therefore, the AVF, which can be used
as a metric to estimate how vulnerable the hardware is to soft
errors during program execution, is determined by the processor
state bits required for architecturally correct execution (ACE). At
the instruction level, an instruction is defined as ACE instruction if
its computation result affects the program final output, and AVF is
primarily determined by the quantity of ACE instructions per cycle
and their residency time within the structure [20]. In this study, we
use AVF as the major metric to estimate structure soft-error
vulnerability.

3. Cost-effective soft-error protection for
SRAM-based structures in streaming
multiprocessors

In this section, we analyze the GPGPU microarchitecture
vulnerability, and find that among various SRAM-based structures
in the streaming multiprocessor, the instruction buffer and registers
show great susceptibility to soft errors. We make two observations
on GPGPU microarchitecture characteristics, and leverage them to
propose a set of protection techniques for the two structures in
Section 3.2 and 3.3., respectively.

3.1. Motivation: the reliability hot-spots in
GPGPU microarchitecture

Figure 2. The AVF of the key GPGPU microarchitecture
structures including instruction buffer, branch unit, register
files, and shared memory

There have been various frameworks developed to estimate the
CPU microarchitecture level soft error vulnerability [21, 22].
However, they are not applicable to the GPGPU microarchitecture
that implements in-order SIMD pipeline and has significantly
different architecture and data/control flow from general-purpose
CPU processor. We develop a reliability-aware simulator for
GPGPUs, it is built upon a cycle-accurate and open-source
simulator, GPGPU-Sim [34]. We apply two major AVF calculation
methodologies proposed in [20, 31] to identify the bits required for
architecturally correct execution and their residency time in each
structure to estimate the AVF. Using the framework, we profile the
soft-error vulnerability of several key structures in SM (shown in
Figure 2). Since the slots in the fetch unit and the instruction buffer

have the same design: both hold the designated warp
PC/instruction, the two structures manifest quite similar
susceptibility to soft errors, the AVF of fetch unit is not presented
in the figure. Moreover, Figure 2 does not show the AVF of L1
constant and texture caches because the studied workloads either
do not or rarely use those two structures and their AVF is lower
than 4%. The detailed experimental setups are illustrated in Section
4. In this study, we target on the reliability optimization on SRAM-
based structures, improvement on combinational-logic based
structures (e.g. streaming processor) is beyond the scope of this
paper.

As Figure 2 shows, the instruction buffer and register files
exhibit much higher AVF than other structures (this also matches
the observation made in [39]), because they are highly utilized
during the program execution while others are infrequently used.
Take the branch unit as an example, only one entry of the warp
stack is used when there is no branch divergence, and the stack
entries are not fully utilized even when the warp diverges. As it
shows, the AVF of the instruction buffer and register files can
achieve up to 98% and 81%, respectively. Moreover, they are
sizeable and occupy a large portion of the SM area: the instruction
buffer has to hold all in-flight warps in the SM; the registers are
much larger than those in traditional CPU processor as they have
to support thousands of simultaneously active threads. For
example, the registers size is reported to be 2MB in an NVIDIA
Fermi GPU [26] and 6MB in AMD Cayman [27]. Therefore, the
vulnerability of instruction buffer and registers significantly
contributes to the stream multiprocessor SER robustness. In this
paper, we focus on mitigating the two structures’ vulnerability, it is
the first and essential step to efficiently optimize the overall
GPGPU reliability. Note that our observation and technique
proposed for the instruction buffer is applicable to the fetch unit as
well.

3.2. SAWP: Similarity-AWare Protection for
the instruction buffer
3.2.1. Instruction similarity in the instruction
buffer

The observation we make on the instruction buffer (I-Buffer) is
the instruction similarity: a large number of instructions in the I-
Buffer share the same PC and hold the identical information. As
described in Section 2.1, the warps in the SM are interleaved at
cycle-by-cycle basis. At every cycle, an instruction is issued for a
warp which is selected in a round robin (RR) manner among the
warps with instructions ready to execute. In the CUDA
programming model, all threads in a kernel execute the same code
and the same instruction from different warps will keep the same
register information after decoding [36, 37], therefore, all
instructions in the I-Buffer can be represented by just two
instructions in the ideal case that warps proceed normally without
stalls. In order to improve the GPGPU throughput, various warp
scheduling policies have been explored: First-Ready First-Served;
Fair [28] which issues instruction for the warp with minimum
number of instructions executed; and two-level round-robin warp
scheduling that effectively hides long memory access latency and
improves the SPs utilization [36]. Since every warp has a dedicated
entry in the I-Buffer, there will be an empty instruction slot when
the instruction is issued, and only the following instruction from
the same warp will be placed into that slot. Different from the
simultaneous multithreading architecture, there is no resource
contention among warps in SM which helps to control the progress
difference among warps. As a result, even though some
instructions are stalled in the I-Buffer by the branch divergence,

4

off-memory access transactions, and barriers; while some are
granted the higher issue priority under the impact of the warp
scheduling policy, a large amount of instructions in the instruction
buffer still share the same information.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 1011121314151617

H
is

to
gr

am
 (%

)

The Number of Unique Instructions

Round Robin

Two Level

Fair

FRFS

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 1011121314151617

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n
(%

)

The Number of Unique Instructions

Round Robin

Two Level

Fair

FRFS

 (a) (b)
Figure 3. (a) The histogram and (b) the cumulative distribution
function of the number of unique instructions

Figure 3 (a) plots the histogram of the number of unique
instructions in the I-Buffer under the RR, two-level, First-Ready
First-Serve, and FAIR policies. The I-Buffer size is set as 32. At
every cycle, we collect the amount of unique instructions, and
present the statistics as the probabilistic-based distribution at the
Y-axis. In addition, Figure 3 (b) profiles the corresponding
cumulative distribution function (CDF). The results are averaged
across the studied benchmarks. As shown in Figure 3 (a) and (b),
the case with only two unique instructions accounts for the largest
fraction of the program execution time under various scheduling
policies: 21% for RR, 19% for two-level, 21% for First-Ready
First-Served, and 32% for FAIR. And the maximal number of
unique instructions is limited to 12. It implies that a small number
of instructions (e.g. 12) are sufficient to describe all the
instructions sitting in the instruction buffer through the entire
program execution, and this observation is not affected by the warp
scheduling policy.

As a conventional and straightforward fault-tolerance
mechanism, ECC provides the full protection to the vulnerable
structure but leading to a large power and area overhead. When
extending this technique to the I-Buffer, a full ECC table to all the
instructions is not necessary since most instructions in it are the
same. The ECC table size can be significantly reduced without
losing any error coverage.

3.2.2. Concept of SAWP
In order to cost-effectively mitigate the soft error rate in the

instruction buffer, we propose Similarity-AWare Protection
(SAWP). It leverages the instruction similarity to implement a
small-size ECC table for the I-Buffer with low area and power
overhead.

Based on our observation in Section 3.2.1., an ECC table with
12 entries is sufficient for a 32-entry instruction buffer to obtain
the full error detection. As Figure 3 (a) shows, the distribution for
the PC quantity drops greatly as the number increases from 2 to 12.
Specifically, the case with 12 unique PCs only appears in less than
1% of the execution time. Figure 3 (b) further confirms that an 11-
entry ECC table already has the capability to capture 99% of the
PCs in the instruction buffer. Moreover, the area overhead
increases proportionally to the ECC table size. A sensitivity
analysis is required to justify the effectiveness on achieving the
best trade-off between reliability and power&area overhead when
changing the table size. Based on the comprehensive analysis on
various table size options, we find that the 4-entry ECC table
outperforms other designs, and it is adopted in SAWP.

The SAWP supports two major operations for every instruction
in the instruction buffer: ECC generation and entry allocation, and
error detection/correction.

3.2.2.1. ECC generation and entry allocation
 In the full-size ECC table, each instruction in the I-Buffer has an
allocated ECC entry. When a new instruction arrives at the I-

Buffer, its ECC is written to the designated entry directly. While in
our small-size ECC table, one ECC entry may be shared by
multiple instructions. When an instruction enters the instruction
buffer, it needs to find out the certain entry holding its ECC. In
SAWP, one existing bit is attached to each I-Buffer entry to
describe whether the ECC table has the instruction’s ECC, and a
two-bit index is added to specify its corresponding ECC entry. In
addition, a field is attached to each ECC entry holding the number
of certain I-Buffer entry that is under its protection. The newly
arriving instruction will compare with four instructions in the I-
Buffer based on the warp IDs in the ECC table. A hit implies that
one ECC record can be re-used by the new instruction.
Correspondingly, the ECC entry number will be written into the I-
Buffer with the new instruction, and its ECC existing bit is set as
“1”. On the other hand, if there is no match, the ECC generation
and ECC entry allocation requests will be sent to the ECC
generator and the ECC table. If there is an idle entry in the ECC
table, it will be allocated to the new instruction. Otherwise, an
occupied entry has to be replaced to accept the newly generated
ECC. In one sentence, the ECC generation and entry allocation is
mainly composed of two parts: (1) instruction comparison and
ECC generation; (2) ECC entry allocation and replacement.
(1) Instruction comparison and ECC generation

When a new instruction reaches the instruction buffer, the
instruction comparison is triggered to determine if an ECC
generation is required. Since the I-Buffer is vulnerable to soft
errors, instructions in it can be erroneous and may affect the
comparison correctness. In this study, we focus on the single-bit
error model which has the first order impact on the failure rate in
microprocessors [30]. One single-parity bit is used per I-Buffer
entry to detect the erroneous instruction. The parity bit is checked
during the instruction comparison. And the ECC generation
request will be sent out only when there is a match with a fault-free
instruction. It is possible that the new instruction receives miss
while one matched instruction does exist among those four
compared instructions but its bit is flipped due to the soft error.
Similarly, the ECC table is vulnerable and the stored warp ID is
likely to be erroneous and index to a different instruction for the
comparison, leading to a miss as well. A new ECC entry will be
allocated for the new instruction in both cases. It would reduce the
error coverage because two identical ECC copies will appear in the
ECC table, but it does not affect the error checking correctness.

(2) ECC entry allocation and replacement
At the cycle level, an ECC record may have only one

corresponding instruction or even be shared by all the instructions
in the I-Buffer. Because threads do not progress at 100% the same
rate and instructions exhibit different residency latency in the
instruction buffer. Intuitively, the ECC used by minimum number
of instructions should be replaced by the newly generated ECC to
achieve the best error coverage. However, it is possible that the
new instruction belongs to a warp proceeding ahead/behind others,
and its ECC is unlikely to be accessed in the following cycle; even
worse, the previously evicted ECC may be generated again to
serve the ECC entry allocation request from the next arriving
instruction. Since the most recently inserted ECC only has one
instruction in the I-Buffer, it becomes the one to be replaced. This
results in a ping-pong effect which significantly reduces the
number of instructions that can be protected and increases the
power consumption due to the frequent ECC generation and write
operations to the ECC table. Figure 4 shows an example of the
ping-pong effect.

A simple solution to this effect is to use a threshold to control
the entry replacement. When the amount of instructions sharing an

5

ECC exceeds the threshold, this ECC will not be evicted as it still
provides the protection for numerous instructions. In this study, we
set the threshold as four based on the detailed sensitivity analysis.
Furthermore, an ECC will not be replaced when the warp that the
new arriving instruction belongs to is far before/behind other
warps. Because the identical instructions from other warps will not
appear in a short time, the new ECC only protects a single
instruction.

(a) An incoming instruction will
replace the “SUB” instruction
ECC with the minimum number
of instructions (i.e. 5)

(b) The “SUB” ECC is evicted,
and its corresponding five
instructions lose the ECC to
compare with when issued

(d) The “SUB” ECC is
inserted again, the ECC is
frequently generated and the
table is frequently written

(c) The “SUB” ECC is requested
by the new arriving instruction, the
previous inserted ECC (the “SLE”
ECC)has to be evicted

Figure 4. The ping-pong effect during ECC entry allocation
and replacement

3.2.2.2. Error Detection/Correction
While an instruction is issued for the register read, the error

detection/correction is triggered. Its parity bit is first checked for
the error detection. If the faulty instruction’s ECC exists in the
ECC table, both the instruction and its ECC will be sent to the
ECC checker for error correction. To make sure that an instruction
retrieves its ECC correctly, the gate-sizing technique is applied to
protect the existing bit and the two-bit index against the soft errors.
A detected erroneous instruction will be flushed and re-executed.
A bit flip in the ECC field can be easily detected and corrected in
the ECC checker, even the ECC table is attacked by soft errors, it
does not affect the error correction for the issued instructions.

3.2.3. SAWP Implementation
Figure 5 introduces the implementation of the instruction

comparison, ECC entry allocation and replacement, and the error
detection/correction in SAWP architecture. Each entry in the ECC
table consists of three components: the ECC, the ID of certain I-
Buffer entry it protects, and a counter to record the number of
instructions currently in the I-Buffer sharing this ECC. There are
32 entries in the I-Buffer, five bits are used in each ID filed and
counter. As described in Section 3.2.2., the single parity bit, 2-bit
index and existing bit is added to each I-Buffer entry. As Figure 5
shows, when a new coming instruction is writing into the I-Buffer,
(a) it is compared with four instructions in the I-Buffer based on
the IDs kept in the ECC table. (b) The result analyzer accepts the
comparison result and determines the next step towards (c) or (d).

(c) When there is a match with a fault-free instruction, it writes
the matched instruction’s index into the I-Buffer to build up the
link between the new instruction and its ECC, and the counter in
the ECC entry increases by one. To make sure that the ID field in
the ECC table keeps the latest instruction information, the ID of
the I-Buffer entry that holds the new instruction will write into the
ID filed in the corresponding ECC entry as well.

(d-1) When there is a miss, the warp progress is checked (the
numbers of instruction executed in each warp is evaluated), and an
ECC entry replacement request is assigned when the warp that the
new instruction belongs to keeps the similar rate with others. (d-2)
Meanwhile, the counters in the ECC table are read out and
compared with the pre-defined threshold (i.e. 4) to select an entry
for eviction, and the ECC generation request is sent to the ECC
generator. Note that the counters do not need error protection,
because a faulty counter only affects the entry eviction, but has no
impact on the correctness of the SAWP architecture. (d-3) There
may be few instructions in the instruction buffer still pointing to
the evicted entry. Therefore, the entry number broadcasts to the I-
Buffer, and the existing bit in the matched indices is reset to “0”.
(d-4) Upon the completion of the ECC generation and entry
replacement, the instruction’s index, the ID field and the counter of
the new ECC entry are updated correspondingly. And the existing
bit is set to “0” when the instruction’s ECC is not qualified to
replace any entry in the ECC table, which indicates that the
instruction is not protected by SAWP.

Note that the instruction comparison, ECC generation, and
ECC entry allocation perform in parallel with the instruction
writing to the I-Buffer, it does not introduce any delay to the
critical path. Those steps will not finish in one cycle, it is pipelined
so that the incoming instruction does not need to wait for the
completion of the previous instruction’s operations.

As shown in Figure 5, at the time that an instruction is moving
out of the instruction buffer and its existing bit is “1”, the counter
of the its ECC entry decreases by 1. The entry is evicted once the
counter equals to zero. (e) If the instruction is faulty based on the
single parity bit, it is dropped in the pipeline. It will be sent to the
ECC checker with its ECC to retrieve the correct instruction,
which will then be re-issued into the pipeline. In SAWP, the error
detection and correction perform simultaneously with the pipeline.
They are pipelined so that the instruction issued in the following
cycles can start the error checking while the previous instruction is
still under error correction. When an instruction is issued, it takes a
few cycles before it starts to update the register/memory (the
pipeline usually consists of 24 stages in the SM [34]). This
provides enough slack for SAWP to verify the instruction
correctness, and only the faulty instruction needs to be dropped, no
further action is required to restore the registers/memory states.

3.2.4. Overhead analysis
As described in Section 3.2.3., SAWP requires a 4-entry ECC

table. Each ECC entry contains 7-bit ECC (we assume a single bit
error model in this study), 5-bit ID field, and 5-bit counter.
Moreover, 4 bits are attached to each slot in the instruction buffer.
SAWP also uses some combinational logics including the ECC
generator and checker, and the result analyzer (it is a simple
multiplexer). Compared to the case implementing full-size ECC
table, SAWP reduces the area overhead up to 12% based on our
gate-level estimation. More importantly, whenever an instruction is
writing into the I-Buffer, its ECC has to be generated and written
into the table in the full-size ECC table which causes high power
consumption. SAWP effectively limits the ECC generation times
by leveraging the instruction similarity, thus, the power
consumption decreases substantially.

3.3. SHARP: SHAred memory to Registers
Protection
3.3.1. The key observation on the shared memory

In the GPGPU SM, the per-block resources (e.g. shared
memory, registers) will not be released until the block completes
execution. They limit the maximum number of blocks that can be

6

simultaneously assigned to an SM. Different per-block resources
become the bottleneck during block allocation for kernels that have
various resource requirements. Intuitively, the bottleneck structure
is prone to be fully utilized and manifest high vulnerability.
Interestingly, we observe the low utilization in the shared memory
even it acts as the bottleneck resource. Shared memory is highly
banked. The bank selected to hold a data value is determined by
the data address, which leads to the unbalanced bank usage in a
block. In other words, the number of blocks that each bank can
support is different, and the minimum number finally limits the
quantity of blocks the shared memory can support. Thus, even
though shared memory becomes the resource bottleneck, most
banks in it may be underutilized. Figure 6 presents the percentage
of used entries in the shared memory for each benchmark
(benchmark investigated in this study is listed in Section 4). On
average, it is only 20%. In workloads whose block resource
allocation is limited by the share memory (e.g. LPS, SP, SRAD),
more than 50% entries are never be used during the entire
execution time. For those used entries, they are written/read in a
very short period and become free in majority of the time.

In summary, although shared memory is the software-managed
cache for memory reuse, it is lightly utilized in many applications
[29, 38]. First, memory reuse is limited by the nature of
applications. For example, computation-intensive applications
have little memory reuse. Second, shared memory needs to be
synchronized to ensure access order among threads, and it has the
bank conflict problem while addressing data. These increase the
difficulty for program developers in efficiently using shared
memory as the on-chip chip for global memory. Based on our
analysis on a large set of widely-used GPGPU benchmarks, few
benchmarks heavily use shared-memory.

Figure 6. Shared memory utilization in percentage

3.3.2. The concept of SHARP
In order to improve registers SER robustness, a simple and

direct approach is to implement the ECC for each register vector.
When registers are not the resource bottleneck, each thread in the
SM will be allocated more than sufficient amounts of registers, and
some of them will be idle through the entire thread execution.
Those idle register vectors can be used to store the ECCs of other
active register vectors to reduce the SER. We name this method as
register-to-register protection or RTRP as an abbreviation. RTRP
could largely enhance register reliability when there are numerous

free registers. However, it loses the benefits when all the available
register vectors are used during the kernel execution. Even worse,
the vulnerability of registers increases dramatically in benchmarks
requiring heavy register utilizations. A technique is highly desired
to optimize registers SER robustness when they face the severe
vulnerability challenge. As we discussed in Section 3.3.1., shared
memory contains many always-idle entries and exhibits low AVF,
moreover, it is read/write-able and its access latency is comparable
to the register access latency. Shared memory is a good candidate
to keep the ECCs and provide the protection to fully-utilized
registers. In this paper, we propose SHAred memory to Register
Protection (SHARP) to intelligently store the ECCs of a set of
register vectors into shared memory and efficiently mitigate
register vulnerability.

3.3.2.1. Register selection for error protection
The register file AVF is the averaged ratio of each register’s

lifetime to the workload execution time [31], one can develop the
100% fault-tolerant registers by recording/checking every register
vector’s ECC once it is written/read. At every cycle, there are
many register reads and writes, but shared memory usually serves
no more than 16 access requests per cycle, thus, it is not feasible to
perform the ECC protection for each single register vector through
its lifetime. SHARP selectively protects a set of register vectors
and meanwhile, maximizes the benefits by using the limited shared
memory resources. [11] observes that the long-lived registers are
the major contributors to the overall registers AVF. In other words,
the register vulnerability will drop significantly if the long-lived
registers are fault-free. When an off-chip memory access occurs in
a thread, all threads within the warp have to stall until it finishes,
which tremendously extends the lifetime of registers belonging to
that warp. In SHARP, the ECC recording/checking is triggered
when a warp starts/completes the long memory operations, and it is
performed at the warp level, which means that all register vectors
assigned to that warp will experience the ECC recording/checking
process.

3.3.2.2. ECC mapping mechanism to share memory
We propose a novel ECC mapping strategy to achieve the fast

ECC access in shared memory. In this study, we assume a single
bit error model in each 32-bit register. Every register in a register
vector requires 7 ECC bits, and one 32-bit shared memory entry
can only record 4 registers’ ECCs as one bit in the entry will be
used to describe the status (busy or free) of those saved ECCs.
Furthermore, a valid bit is attached to each entry to mark if the
entry currently keeps a real value. As can be seen, one register
vector requires 8 shared memory entries for its ECC.

In the shared memory, each bank can serve only one entry
access per cycle, and 8 ECC access requests for one register vector
may take 8 cycles to finish if they are all mapped to different

Figure 5. The implementation of SAWP

7

entries within the same bank. The access time decreases
dramatically if the 8 requests distribute to different banks, which
mainly depends on the mapping policy. Figure 7 illustrates the
SHARP mapping mechanism by presenting an example of placing
ECC of 4 registers into share memory. Note that they belong to the
same register vector. As our default GPGPU configuration in
Section 4 describes, the registers size is 64KB and each register
vector number is 9-bit long. Every 4 consecutive registers in a
register vector are gathered into one group, which is identified by
attaching 3 bits to the least significant bit of the vector number
(total 12 bits). To evenly distribute groups into each bank, the
lowest 4 bits of the group identification number are used to index
the shared memory bank (shared memory has 16 banks). And the
remaining bits are used to locate the entry within the bank. Note
that entry conflict occurs when two register groups map to the
same entry. Basically, it would not happen within the warp based
on our mapping mechanism, as long as the shared memory is large
enough to save the register vectors’ ECCs for just one warp, which
is usually the case in current GPGPU microarchitecture design.
The conflicts could only exist at inter-warp level.

Figure 7. ECC mapping to shared memory

3.3.3. The implementation of SHARP
Figure 8 describes the implementation of SHARP. A request

queue is attached to the register files, it is composed of a FIFO
buffer and a warp ID table. The buffer keeps a number of requests
for the warp-level ECC access, and the table records warp IDs
whose registers are currently protected in the shared memory.

When a warp starts/completes an off-chip memory access (the
coalesced intra-warp memory operations is treated as one access),
an ECC recording/checking request with the warp ID are sent to
the queue. When an ECC recording request arrives at the head of
the buffer, the request queue reads its warp ID, performs the inter-
warp ECC conflict examination to check if its mapped entries in
the shared memory have already been occupied by another warp. It
starts the recording if no conflict, the warp ID is also saved into the
warp ID table; otherwise, the request is simply dropped. When the
buffer head is an ECC checking request, the request queue enables
the checking as long as its warp ID exists in the table.

Registers are highly banked (e.g. 16 banks) and each bank is
equipped with a read port. The register vectors are interleaved
across the banks to increase the likelihood that all the operands for
an instruction can be fetched simultaneously. By running a large
number of benchmarks, we observe that no more than 4 banks are
accessed concurrently during 99% of the execution time. It implies
that the read ports of a large number of register banks are idle and
they could be used to read register contents during the ECC
generating/checking without affecting the normal thread execution.
Note that the ECC related operations are assigned a lower priority
compared to the operands read required by threads for the same
bank. It is the case in the shared memory as well. A waiting queue
is attached to temporarily hold the register group numbers and
values that are waiting for the available write/read port in shared
memory banks. The register read stalls if the waiting queue is full
and resumes once it has free slots.

To perform an ECC recording, the register contents are sent to
the ECC generator to produce ECCs which are further buffered in
the waiting queue for write operations, meanwhile, the
corresponding register group numbers are saved in the waiting
queue for ECC mapping. Note that a real value is written to a
shared memory entry normally and its valid bit is set as “1”, a
future ECC write/read to this entry will fail/miss to guarantee the
program execution correctness. When the valid bit of the shared
memory entry is “0” and the ECC recording completes
successfully, the status bits in the entries are set as busy.

An ECC checking is enabled when the memory access
completes, the register group numbers and contents move into the
waiting queue and wait for their ECCs from the shared memory if
exist (i.e. the valid bit of the shared memory entry is “0” and the
status bit is busy) to perform the error checking in the ECC
checker. The register group number and correct value will be sent
back to the registers when an error is detected. Afterwards, the
obtained off-chip memory values are written back to the registers,
and the request queue is updated to keep the up-to-date warp ID
information.

Figure 8. The detailed design of SHARP

The request queue and waiting queue are also vulnerable to soft
errors. A faulty request may lead to different warp registers
mapping to the share memory. And an error in the waiting queue
causes wrong data written/read during the ECC
recording/checking. We apply the gate-sizing technique to protect
the two structures. Note that a bit flip in the ECC field can be
easily corrected in the ECC checker, although shared memory may
be attacked by the soft errors, it does not affect the correctness of
SHARP.

3.3.4. Overhead analysis
Both registers and shared memory are highly banked, the warp-

level register read and ECC write/read usually complete in several
cycles, moreover, it takes a few cycles to finish an ECC
recording/checking operation. Since the ECC recording is not in
the SM critical path, it does not introduce any extra delay. Even
though the stalled warp will not proceed during the ECC checking,
SHARP introduces negligible performance penalty as other ready
warps can still be issued to hide that ECC checking latency.

It is possible that a warp is stalled by a sequence of long latency
memory operations that cannot be coalesced, and the completion of
one operation only updates one or very few registers. Repeatedly
performing the ECC recording and checking per memory access
for that warp results in severe power overhead. To achieve the
good trade-off between reliability and power, only one pair of ECC
recording and checking requests is issued at the occurrence of the
first memory access and at the completion of the last memory
access, respectively. When one access finishes, the updated
register group number are directly sent to the shared memory, their
ECC status bits in the mapped entries are simply reset to free, and
they will be skipped during the ECC checking.

8

 The buffer size in the request queue determines the number of
ECC requests can be accepted. A large buffer is able to keep all the
requests but may significantly delay a warp ECC checking and
increase its stall time as requests are performed at the FIFO order.
We set the buffer size as 16 in this study, and each entry contains 1
bit describing request type, and 5-bit warp ID. In addition, the
warp ID table has 32 entries, each with 5 bit ID. In SHARP, as
long as a warp ECC recording is performed, its ECC checking
needs to be executed to delete the corresponding warp ID saved in
the request queue. Otherwise, the request queue will not accept the
following ECC related requests issued by the same warp due to the
conflict checking. The buffer may be full when a checking request
is issued, a latest inserted recording request will be dropped in that
case. In this study, the waiting queue contains 8 140-bit (12-bit
register group number and 4X32-bit content) entries which is large
enough to accept data from the registers/ECC generator and
provide data to shared memory/ECC checker at every cycle.
Overall, the attached buffers and combinational logics introduce
5% hardware overhead to the register files.

4. Experimental Methodology
We use the developed GPGPU reliability-aware simulator

based on GPGPU-Sim to obtain the GPGPU reliability,
performance, and power statistics. Our baseline GPGPU
configuration is set as follows: there are 28 SMs in the GPU, SM
pipeline width is 32, warp size is 32, each SM supports 1024
threads and 8 blocks at most, each SM contains 16K 32-bit
registers, 16KB shared memory, 8KB constant cache, and 64KB
texture cache, the warp scheduler applies the round robin
scheduling policy, the immediate post-dominator reconvergence
[18] is used to handle the branch divergences; the GPU includes 8
DRAM controllers, each controller has a 32-entry input buffer, and
applies out-of-order first-ready first-come first-serve scheduling
policy; the interconnect topologies is Mesh, and the dimension
order routing algorithm is used in the interconnect. We collect a
large set of available GPGPU workloads from Nvidia CUDA SDK
[23], Rodinia Benchmark [24], Parboil Benchmark [25] and some
third party applications. The workloads show significant diversity
according to their kernel characteristics, divergence characteristics,
memory access patterns, and so on.

We use AVF as the basic metrics to estimate the structure soft
error vulnerability. To estimate the power consumption, we use
HSPICE to build the power model for the combinational logics
related to ECC generation and checking, and modify the energy
analysis tool CACTI [19] to calculate the power of SRAM-based
structures such as the I-Buffer, registers, ECC table, the added
request queue and waiting queue, and so on. We collect the
statistics for instruction comparison, ECC generation and checking
via the microarchitecture simulation, they are combined with the
developed power model to obtain the dynamic and static power of
the investigated structures. Our work is based on the 40nm
processing technology which is applied in recently delivered
GPGPUs.

5. Evaluation
5.1. Effectiveness of SAWP

We compare SAWP with three schemes as follows: full-size
ECC table (full_ECC) which assigns an ECC entry for each
instruction; full-size SAWP (SAWP_fs) which applies a 12-entry
ECC table in SAWP to cover all errors in the instruction buffer;
and SAWP_min which applies 4-entry ECC table but simply
evicting the ECC record with minimum number of instructions
during the ECC entry allocation stage in SAWP. Figure 9 (a) and
(b) show the instruction buffer AVF and power results,

respectively, across the studied benchmarks while the four
schemes are applied. The Round Robin warp scheduling policy is
used in all the four techniques. Results are averaged across the
SMs in each benchmark, and normalized to the baseline case
without any soft error protection mechanism.

As Figure 9 (a) demonstrates, full_ECC and SAWP_fs achieves
the 0% AVF since they provide the protection for every
instruction. Although SAWP does not fully protect the instruction
buffer, it shows the strong capability of reducing the vulnerability.
On average across the benchmarks, the instruction buffer AVF
decreases 68% under SAWP compared to the baseline case.
Especially, as shown in Figure 2, the I-Buffer suffers extremely
high AVF (e.g. above 65%) in FWT and MT when no protection
scheme is triggered, while our SAWP enhances the reliability up to
90%. Note that the AVF reduction under SAWP varies across
benchmarks. Because the instruction similarity in the instruction
buffer differs in various workloads, it greatly affects the quantity
of instructions can be protected by the ECC table. Take FWT as an
example, all instructions in the I-Buffer are identical during 33%
of the execution time; To the contrary, instructions exhibit weak
similarity characteristic in BS, as a result, the vulnerability
reduction between these two benchmarks differs significantly.

(a) Instruction buffer AVF (full_ECC and SAWP_fs covers

all errors, the AVF is 0% for those two mechanisms)

(b) Normalized instruction buffer power

Figure 9. The effectiveness of full_ECC, SAWP_fs,
SAWP_min, and SAWP

In addition, SAWP_min is able to reduce the instruction buffer
AVF by 30%. It underperforms SAWP because the quantity of
instructions under the protection decreases during the frequent
entry eviction and allocation which downsizes the SAWP_min
efficiency in fault tolerance. One may notice that the SWAP_min
achieves a little lower AVF than SAWP in several benchmarks
(e.g. BFS, LPS). Because they include a large number of branch
divergences, there are increasing unique instructions in the I-
Buffer, the frequent eviction in the ECC table can help to capture
more unique instructions and provide the protection.

As shown in Figure 9 (b), on average, the SAWP_fs is able to
reduce the I-Buffer power by 11% when compared to full_ECC
whose power consumption is 23% higher than the baseline case.
Because full_ECC requires ECC generation for each single
instruction, and the full-size ECC table causes a higher area
overhead. While SAWP_fs effectively reduces the ECC generation
frequency since multiple instructions can share just one ECC
record. SAWP_min outperforms SAWP_fs and further reduces the
power consumption by 4%, it uses smaller ECC table and performs
ECC generation and checking less frequently by scarifying the
error coverage to some degree. SAWP achieves the lowest power

9

consumption in all the investigated protection mechanisms. It
reduces the power consumption by 17% compared to full_ECC. In
a conclusion, when compared to SAWP_min, SAWP intelligently
chooses the appropriate instructions for soft error protection and
achieve the win-win senario: reducing the ECC generation
frequency and ECC table access times to save power, and
meanwhile increase the error coverage.

Various techniques have been proposed on warp scheduling to
improve the GPGPU throughput, such as FAIR, First-Ready First-
Served, and two-level round-robin. Figure 10 (a) and (b) show the
normalized instruction buffer AVF and normalized power under
SAWP when those optimization schemes are enabled. The results
of the case when the Round Robin policy is applied are shown in
the figure as well for comparison purpose. As Figure 10 (a) shows,
they introduce the positive effect to the I-Buffer vulnerability.
Especially, the AVF reduces 81% under the impact of FAIR. FAIR
issues instructions from various warps in a fair manner, it
maintains the uniform progress among warps which enhances the
instruction similarity and correspondingly, the error coverage.
Furthermore, as shown in Figure 10 (b), the power consumption
has little change under various warp scheduling policies.
Therefore, the capability of SAWP on improving the instruction
buffer vulnerability with little power consumption is not affected
(and even enhanced) by the GPGPU performance oriented
techniques.

(a) Normalized instruction buffer AVF

(b) Normalized instruction buffer power
Figure 10. The effectiveness of SAWP when FAIR, First-Ready
First-Served (FRFS), and Two-level round-robin (Two Level)
are triggered

5.2. Effectiveness of SHARP
We compare SHARP with two register vulnerability

optimization mechanisms: full ECC protection (Full_ECC) which
introduces an additional table to keep the ECC for every single
register, this technique has been applied in Nvidia Fermi GPUs
[26]; register-to-register protection (RTRP) which leverages the
free registers to keep the ECCs. Figure 11 (a-b) shows the
normalized register AVF and power results when using the three
techniques with a set of studied benchmarks. The results are
normalized to the case without any protection mechanism.

As Figure 11 (a) shows, Full_ECC provides the 100%
protection to registers, and the AVF is zero. Both RTRP and
SHARP improve the register reliability significantly. On average,
RTRP and SHARP reduce AVF 37% and 41%, respectively,
compared to the baseline case. The effectiveness of RTRP in fault
tolerance is largely affected by the register utilization. For
example, more than 90% registers are used in BP, there are few

free registers to perform the ECC protection. As a result, RTRP
gains limited vulnerability mitigation (around 5% AVF reduction).
Worse, the registers suffer severe vulnerability challenge in the
two benchmarks due to the heavy usage, and an efficient error
protection mechanism is even more emergent. In BP, the shared
memory is idle 80% of the entire execution time, and there are
numerous off-chip memory transactions, SHARP intelligently
leverages those characteristics and successfully achieves the high
error coverage (AVF decreases by 75%).

As shown in Figure 11 (b), on average, SHARP outperforms
full_ECC by reducing the register power consumption from 124%
to 106%. This is caused by the tremendous power and area
overhead introduced in full_ECC. Full_ECC requires a hard
structure to buffer ECCs, although a 7-bit ECC is able to protect
the 32-bit register, the extra area overhead to the registers jumps to
25%. More importantly, no matter the registers have short or long
lifetime, full_ECC treats them the same and perform the ECC
recording/checking whenever a register is accessed, it substantially
increases the power consumption especially in benchmarks
requiring numerous registers. As Figure 11 (b) shows, on average,
the power consumption in RTRP is 2% higher than SHARP.
Because the RTRP trigger frequency is determined by the RF
utilization. It consumes large power on ECC generation and
checking when RF is lightly used (e.g. KM).

(a) Normalized registers AVF
(full_ECC covers all errors, the AVF is 0%)

(b) Normalized registers power
Figure 11. The effectiveness of Full_ECC, RTRP, and SHARP

Note that both SAWP and SHARP outperform other
mechanisms compared in this study (e.g. Full_ECC) regarding to
the trade-offs between power and reliability. We use a ratio
between the power overhead and AVF reduction to describe how
efficiently the technique can trade the extra power in gaining
reliability optimization, and a lower value implies a better
technique. SAWP trades 6% power overhead to gain 68% AVF
reduction, the ratio between those two factors (i.e. 6%/68%=0.09)
is much lower than that of Full_ECC, which is 23%/100%=0.23
(Full-ECC requires 23% power overhead to achieve 100% AVF
reduction). It indicates that SAWP is able to achieve higher AVF
reduction compared to full_ECC given the same amount of power
budget. In addition, although SHARP has fewer opportunities to
trigger the ECC protection in computation-intensive benchmarks
(e.g. BS, CP, MM), it also achieves better trade-off (i.e. 0.14)
between power and reliability than that (i.e. 0.24) of full-ECC.

6. Related Work
There have been various studies on protecting vulnerability hot-

spots in CPUs via software/hardware-based redundancy.
Montesinos et al. [11] explore ParShield which selectively protects

10

a subset of the registers by generating, storing, and checking the
ECCs of only the registers with long lifetime. Blome et al. [12]
proposes a register value cache that holds duplicates of live register
values. Feng et al. [13] leverage the symptom based detection and
selective instruction duplication to minimize user-visible failures
induced by soft errors. Slick [14] avoids the redundancy for results
predictable instructions to improve the performance whiling
running redundant multithreading. However, they mainly target on
CPUs and largely ignore the GPGPU architecture.

Both hardware- and software-based redundancy has been
proposed to optimize GPGPU vulnerability. Sheaffer et al. [5]
explore the concept of the sphere of replication on GPGPU
processors, and present a hardware redundancy-based approach to
create a reliable GPU with no performance loss. Dimitrov [8]
investigate three software approaches to perform redundant
execution for GPGPU reliability. Checkpointing is a widely used
protection mechanism in CPU processors, it has been applied to
enhance GPGPU robustness as well. Maruyama et al. [9] propose a
high-performance software framework to enhance GPU with
DRAM fault tolerance. It leverages light-weight data coding for
error detection and checkpointing for recovery. Solano-Quinde et
al. [32] propose an application-level checkpoint scheme for
GPGPU systems, and explore the computation-communication
overlapping to reduce the checkpoint overhead. In our study, we
develop the cost-effective protection schemes based on our two
key observations on the GPGPU microarchitecture structures (i.e.
instruction buffer and shared memory). Recently, Nathan et al. [33]
develop Argus-G, it implements control flow, dataflow and
computation checkers in the GPGPU stream multiprocessor for
low cost error detection. Yim et al. [10] use a fault injection tool to
analyze the error resiliency of GPGPU platforms, and strategically
place customized error detectors in the source code of GPU
applications to tolerate errors. Both the two schemes are
orthogonal to our techniques.

7. Conclusions
With their strong computing power and improved

programmability, GPGPUs emerge as highly-efficient devices for a
wide range of parallel applications. Meanwhile, GPGPU with
hundreds of cores integrated in a single chip are highly vulnerable
to the soft error strikes. This work aims to protect GPGPU
microarchitecture against soft errors. We find that two SRAM-
based structures (i.e. instruction buffer and registers) are prone to
be the reliability hot-spots in the GPGPUs, and take advantage of
the GPGPU microarchitecture characteristics to explore the cost-
effective protection techniques for them. We propose the
similarity-aware protection (SAWP) scheme which leverages the
instruction similarity to provide the near-full protection for the
instruction buffer with little power and area overhead. We further
find that the shared memory are significantly under-utilized, and
propose shared memory to registers protection (SHARP) which
leverages the idle shared memory to keep the registers ECCs.
Experimental results show that both SAWP and SHARP have the
strong capability in fault tolerance and meanwhile achieving the
low power consumption. SAWP reduces instruction buffer AVF by
68%, and SHARP reduces register AVF by 41% when compared
to the case without any protection scheme. Moreover, SAWP
(SHARP) is able to achieve similar AVF as the full ECC
protection mechanism with 17% (18%) reduction on power.

Acknowledgement
This work is supported by the National Science Foundation

under Award No. EPS‐0903806 and matching support from
the State of Kansas through the Kansas Board of Regents.

References
[1] GeForce 8800 & NVIDIA CUDA: A New Architecture for Computing on the GPU,

NVIDA Corporation, 2006.
[2] NVIDIA CUDA™ Programming Guide Version 2.3.1, Nvidia Corporation, 2009.
[3] Advanced Micro Devices, Inc. AMD Brook+.

http://ati.amd.com/technology/streamcomputing/AMD-Brookplus.pdf.
[4] Khronos. Opencl – the open standard for parallel programming of heterogeneous

systems. http://www.khronos.org/opencl/
[5] J. Sheaffer, D. Luebke, and K. Skadron, A Hardware Redundancy and Recovery

Mechanism for Reliable Scientific Computation on Graphics Processors, In
Proceedings of Graphics Hardware 2007.

[6] N. Wang and S. Patel, ReStore: Symptom Based Soft Error Detection in
Microprocessors, In Proceedings of DSN, 2005.

[7] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt, Techniques to reduce the soft
error rate of a high-performance microprocessor, In Proceedings of ISCA, 2004.

[8] M. Dimitrov, M. Mantor, and H. Zhou, Understanding Software Approaches for
GPGPU Reliability, In Proceedings of GPGPU-2, 2009.

[9] N. Maruyama, A. Nukada, and S. Matsuoka, A High performance Fault-Tolerant
Software Framework for Memory on Commodity GPUs, In Proceedings of IPDPS,
2010.

[10] K. Yim and R. Iyer, Hauberk: Lightweight silent data corruption error detectors for
GPGPU, In Proceedings of IPDPS, 2011.

[11] P. Montesinos, W. Liu, and J. Torrellas, Using register lifetime predictions to protect
register files against soft errors, In Proceedings of DSN, 2007.

[12] J. A. Blome, S. Gupta, S. Feng, S. Mahlke, and D. Bradley, Cost efficient soft error
protection for embedded microprocessors, In Proceedings of CASES, 2006.

[13] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, Shoestring: probabilistic soft error
reliability on the cheap, In Proceedings of ASPLOS, 2010.

[14] A. Parashar, A. Sivasubramaniam, S. Curumurthi, SlicK: Slice-based Locality
Exploitation for Efficient Redundant Multithreading, In Proceedings of ASPLOS,
2006.

[15] http://www.top500.org/blog/2009/05/20/top_trends_high_performance_computing
[16] M. A. Gomaa and T. N. Vijaykumar, Opportunistic transient-fault detection, In

Proceedings of ISCA, 2005.
[17] N. Soundararajan, A. Parashar, A. Sivasubramaniam, Mechanisms for Bounding

Vulnerabilities of Processor Structures, In Proceedings of ISCA, 2007.
[18] S. S.Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmanns,

1997.
[19] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. Cacti 5.1. HP Labs,

Tech. Rep. 2008.
[20] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, A Systematic

Methodology to Compute the Architectural Vulnerability Factors for a High-
Performance Microprocessor, In Proceedings of MICRO, 2003.

[21] X. Fu, T. Li, and J. Fortes, Sim-SODA: A Unified Framework for Architectural Level
Software Reliability Analysis, Workshop on Modeling, Benchmarking and
Simulation, 2006.

[22] M. Li, P. Ramachandran, S. Adve, V. Adve, and Y. Zhou, SWAT: An Error Resilient
System, In Proceedings of SELSE, 2008.

[23] http://www.nvidia.com/object/cuda_sdks.html
[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, and K. Skadron. Rodinia: A

Benchmark Suite for Heterogeneous Computing, In Proceedings of IISWC, 2009.
[25] Parboil Benchmark suite. URL: http://impact.crhc.illinois.edu/ parboil.php.
[26] D. Kanter. Inside Fermi: Nvidia’s HPC Push,

2009.http://www.realworldtech.com/page.cfm?ArticleID=RWT093009110932.
[27] D. Kanter. AMD’s Cayman GPU architecture,

2010.http://realworldtech.com/page.cfm?ArticleID=RWT121410213827.
[28] N. B. Lakshminarayana, H. Kim, Effect of Instruction Fetch and Memory Scheduling

on GPU Performance, Workshop on Language, Compiler, and Architecture Support
for GPGPU, 2010.

[29] Y. Yang, P. Xiang, J. Kong, and H. Zhou, A GPGPU Compiler for Memory
Optimization and Parallelism Management, In Proceedings of PLDI, 2010.

[30] S.S.Mukherjee, J. Emer, and S.K.Reinhardt, The Soft Error Problem: An
Architectural Perspective, In Proceedings of HPCA, 2005.

[31] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Mukherjee, R. Rangan, Computing
Architectural Vulnerability Factors for Address-Based Structures, In Proceedings of
ISCA, 2005.

[32] L. Solano-Quinde, B. Bode, and A. Somani, Coarse Grain Computation-
Communication Overlap for Efficient Application-Level Checkpointing for GPUs, In
Proceedings of International Conference on Electro/Information Technology (EIT),
2010.

[33] R. Nathan, D. J. Sorin, Argus-G: A Low-Cost Error Detection Scheme for GPGPUs,
Workshop on Resilient Architectures (WRA), 2010.

[34] A. Bakhoda, G.L. Yuan, W. W. L. Fung, H. Wong, Tor M. Aamodt, Analyzing
CUDA Workloads Using a Detailed GPU Simulator, In Proceedings of ISPASS, 2009.

[35] W. W. L. Fung and T. Aamodt. Thread Block Compaction for Efficient SIMT Control
Flow. In Proceedings of HPCA, 2011.

[36] V. Narasiman, C. J. Lee, M. Shebanow, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt.
Improving GPU Performance via Large Warps and Two-Level Warp Scheduling. In
Proceedings of MICRO, 2011.

[37] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, Dynamic Warp Formation and
Scheduling for Efficient GPU Control Flow, In Proceedings of MICRO, 2007.

[38] Y. Yang, P. Xiang, M. Mantor, N. Rubin, and H. Zhou, Shared Memory Multiplexing:
A Novel Way to Improve GPGPU Performance, In Proceedings of PACT, 2012.

[39] N. Farazmand, R. Ubal, D. Kaeli, Statistical Fault Injection-Based AVF Analysis of a
GPU Architecture, In Proceedings of SELSE, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

