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Abstract

Prior knowledge of the spectrum behavior can greatly
assist in efficiently performing dynamic spectrum ac-
cess. This knowledge can be obtained by surveying
the spectrum activity, which involves spectrum data
collection, primary signal detection, and data analy-
sis. One approach to signal detection is to perform
energy detection based on the power measurements.
Although considered optimal, this approach requires
prior knowledge of the noise statistics in order to com-
pute the signal threshold. In this paper, we present
several algorithms for estimating the threshold di-
rectly from the spectrum measurement data. Both
Otsu’s and the recursive one-sided hypothesis testing
(ROHT) algorithms, as well as the proposed recur-
sive Otsu’s algorithm, have been applied to spectrum
measurements collected from an FM broadcast band
and a digital television band. The results show that
the proposed algorithm performed well, with nearly
100% detection probability, when applied on the DTV
band measurements. However, it was not able to pro-
vide the same performance for the FM band measure-
ments.

1 Introduction

Dynamic spectrum access (DSA) networks can opti-
mize the spectrum utilization, thereby avoiding the
potential for spectrum scarcity. Although DSA net-
works offer numerous benefits, their actual implemen-
tation faces several challenges [1]. In a DSA network,
one important challenge is the simultaneous coexis-
tence of an unlicensed user (i.e., the secondary user)
with a licensed user (i.e., the primary user) while not
interfering with each other. This requires that the
unlicensed user possesses thorough knowledge of its
spectrum operating conditions, including the dynam-
ics of the spectrum occupancy, as well as the char-
acteristics of the primary signals occupying the spec-
trum. For instance, using a priori knowledge of the
spectrum utilization statistics, the secondary user is
capable of making predictions on the future availabil-
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ity of the spectrum and accordingly initiate secondary
transmissions [2]. This knowledge about the spec-
trum occupancy can be gained via spectrum survey-
ing.

Spectrum surveying involves the long term collec-
tion of spectrum data, data processing for detect-
ing signal presence, and data analysis for character-
izing the spectrum occupancy [3]. Primary signal de-
tection is vitally important in any spectrum survey.
Among the different signal detection techniques pre-
sented in the literature [4], energy detection is the
optimal method for the detection of signals based on
power measurements [5]. In energy detection, a mea-
surement sample is classified either as a signal if the
measured power exceeds a decision threshold or as
noise otherwise.

While there are several existing methods to esti-
mate the decision threshold [2, 6–9], they possess sev-
eral drawbacks, such as the need for a priori knowl-
edge about the noise statistics or the properties of the
primary user transmissions. This paper presents and
compares the recursive one-sided hypothesis testing
(ROHT) [3, 10], Otsu’s algorithm [11], and the pro-
posed recursive Otsu’s algorithms. These algorithms
have the ability to estimate the decision threshold
from the measurement data without requiring any a
priori knowledge. While the ROHT and Otsu’s algo-
rithms have been previously proposed, the recursive
Otsu’s algorithm is proposed in this paper and com-
pared with the other two algorithms.

The rest of the paper is organized as follows: Sec-
tion 2 provides an overview of the past methods
for threshold estimation, including Otsu’s algorithm.
The ROHT and the recursive Otsu’s algorithms are
presented in Section 3. The results of applying the
ROHT, Otsu’s, and the proposed recursive Otsu’s al-
gorithms on actual spectrum measurements are pre-
sented in Section 4. We end this paper with several
concluding remarks in Section 5.

2 Previous Threshold Estimation Methods

An important step in energy detection is the estima-
tion of the decision threshold. The decision threshold
can be estimated using several techniques, such as:



1. Empirical data analysis,

2. Computation of threshold as a function of re-
ceiver properties,

3. Using a priori knowledge of noise statistics and
spectrum occupancy, and

4. Analyis of measurement data histogram.

The simplest approach for determining the thresh-
old is via an empirical analysis wherein the collected
measurements can be visually inspected before set-
ting an appropriate threshold [6, 7]. In the second
approach, the decision threshold can be computed as
a function of the sensitivity and noise figure of the
receiver [6, 8]. The threshold can also be determined
from the cumulative density function (CDF) that is
computed from the measurement data as discussed
next.

2.1 Threshold Estimation Based on
Cumulative Density Function Analysis

By measuring a vacant channel that is free from exter-
nal interference, samples of both the system and am-
bient noise can be collected and used for computing
an inverse CDF. If S is a random variable representing
the measured noise power, the inverse CDF (ICDF)
of S can be defined as ICDF (S, X) = P (S ≥ X). If
X is the decision threshold, then the corresponding
false alarm probability will be ICDF (S, X). From
the ICDF, the threshold can be chosen for a fixed
false alarm probability [2, 9].

Suppose we collect power measurements1 from a
target band in the spectrum, a matrix of spectrum
measurements can be represented by M, where H
denotes a random variable representing the measured
power. The CDF of H computed from M can be
defined as:

CDF (H,M) = P (H ≤ M(fi, tj)) , M(fi, tj) ∈ M, (1)

where M(fi, tj) represents a sample of the power mea-
sured at frequency fi and time instance tj . Based on
this CDF, simple techniques can be used to classify
the spectrum measurements. The next two examples
will illustrate this approach.

Example 1: The threshold is chosen based on
a priori knowledge about the spectrum utilization via
a process known as p-tile thresholding [12]. For in-
stance, if it is known that the fraction of the spec-
trum being utilized is p, then choose a threshold T
such that p fraction of the measurements have values

1In this case the power measurements capture both the sig-
nal as well as the noise presence in the frequency band being
measured.

greater than T , i.e.

1 − p = CDF (H = T,M). (2)

Fig. 1 shows the CDF computed from the FM band
(88-108 MHz) measurements. The figure illustrates
the process of p-tile thresholding where the threshold
is estimated to be T = −87.2 dBm for p = 0.5.

Example 2: Compute a marginal CDF, denoted by
CDFfi

, for each frequency in the sweep bandwidth
and classify a frequency channel fi based on the
statistic of CDFfi

. For instance, determine the max-
imum measurement for frequency channel fi and if
the maximum is above a certain threshold, classify fi

as an occupied frequency channel. This threshold can
be manually set based on some factors, such as the
noise floor of the measurement subsystem.

The threshold based classification of the spectrum
measurements can also be performed by analyzing the
histogram of the measurement data.

2.2 Threshold Estimation Based on
Histogram Analysis: Mode Method

The global histogram of the spectrum measurements
can be bimodal2. In a bimodal histogram, the two
peaks belong to the signal and noise samples, respec-
tively. When measurements are collected and orga-
nized with respect to frequency, the values of the
measurements collected from the edges3 of the chan-
nels occupied by the signals occur less frequently in
the measurement data as compared to the signal and
noise measurements. Thus, the valley between these
peaks in a measurement data histogram may belong
to the measurement values at the edges of the signals.
Thus, the value of the local minimum between the
two peaks, or the center point (mean) between the
peaks, can be chosen as the decision threshold [12]
(see Fig. 2). When the mode method was applied on
FM band (88-108 MHz) measurements, a miss rate
of 17.32% and a false alarm rate4 of 23.62% was ob-
served.

If we consider a sparsely occupied band, such as the
upper TV band (54-87 MHz) where a large portion of
the band is vacant and occupied by background noise,
the histogram may not be bimodal as seen from Fig. 3.
In such cases, additional processing has to be done
to make the histogram bimodal [12]. The Laplacian
operator is applied to M. The Laplacian forms the
spatial second partial derivative of a function F (x, y)

2A bimodal histogram consists two peaks.
3Boundary separating the band of frequencies occupied by

a signal from the adjacent vacant channels occupied by noise.
4The miss rate and the false alarm rate have been defined

in reference [3].
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Fig. 1 CDF plot of the FM band measurement data. Threshold T for p = 0.5 is determined from CDF.
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Fig. 2 Histogram of the FM band (88-108 MHz) measurements.

(i.e., the rate of change in slope) and has the mathe-
matical form [12]:

G(x, y) = −∇2 { F (x, y) } (3)

where ∇2 =
∂2

∂x2
+

∂2

∂y2
.

Consider the case when a signal is surrounded by uni-
form noise5 present in the adjacent channels. Ideally,
at the signal edges the measurement values increase
from a low plateau level (belonging to the uniform
background noise) to the peak power level of the sig-
nal waveform in a smooth ramp-like manner. In the
plateau and along the ramp where the slope is con-
stant, the Laplacian is zero. However, in the regions
where there is a transition from the low plateau to
the ramp or from the ramp to the signal peak, the
Laplacian has a large magnitude. A histogram formed
only from measurement samples located at coordi-
nates corresponding to a high magnitude of Laplacian
is expected to be bimodal [12].

The laplacian threshold L(n) = µL + (n σL) is
used to identify the high magnitude Laplacian val-
ues, where µL and σL are the mean and standard
deviation of the Laplacian values, and n is a positive

5Noise that does not vary significantly across the target fre-
quency band.

integer which can be specified. Fig. 3 shows the nor-
malized histogram of the TV band (54-87 MHz) mea-
surements with Laplacian greater than L(4). Fig. 4
shows the results for the classification of TV band
(54-87 MHz) data for different values of L(n). As
seen from Fig. 4, the best classification has been ob-
tained for n = 4.

In all these methods, the noise variance is reduced
by averaging the data. Furthermore, the threshold
can be set lower for the same false alarm rate, result-
ing in an increase in the probability of detection of
weak signals.

The drawbacks of these threshold estimation tech-
niques are: (i) the threshold estimated is specific to
the receiver, and hence fails to detect the presence of
signals that occur below the receiver’s noise floor, (ii)
these methods require a priori knowledge of the noise
statistics or the spectrum occupancy, and (iii) the
classification is dependent upon manually selecting a
threshold value. For instance, the local minima in the
mode method has to be selected manually. This ap-
proach can be automated by analytically representing
the shape of the histogram and then performing an
optimization of this analytical expression. However,
such methods are not always accurate [12]. Due to
these drawbacks, these classification techniques can-
not be implemented in an automated fashion in a cog-
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Fig. 3 Normalized histogram of the Upper TV band (54-87 MHz) measurement data (left), and normalized histogram
of selected samples in the TV band data (right).

nitive radio.

While the above methods require a priori knowl-
edge, we present in this paper three algorithms that
estimate the threshold directly from the data itself
without requiring any a priori knowledge. One of the
three algorithms which has been presented in Refer-
ence [11] is discussed next.

2.3 Optimum Thresholding using Otsu’s
Algorithm

Otsu’s algorithm selects an optimum threshold based
on the properties of the histogram of the data and
it does not assume any model for the histogram [11].
The optimum threshold yields maximum separation
between the two classes of data, namely the signal
and noise classes. The algorithm also returns a met-
ric that indicates the separability of the two classes,
which is useful to quantify the goodness of the thresh-
old. Before applying Otsu’s algorithm, the measure-
ment data in M is converted to a gray scale image
I.

The data is quantized into L levels with values
s × [1, 2, ..L], where s is a scaling factor. Let the
ith gray level value be denoted by gi and its probabil-
ity of occurrence be denoted by pi. The mean of the
distribution is defined as:

µT =
L∑

i=1

gi · pi.

A threshold, T = gk, can be used to bifurcate the
probability distribution into the noise class C0 and
the signal class C1, with the levels [1, 2, .. k] ∈ C0

and levels [k + 1, .. L] ∈ C1. For a certain threshold
set at the kth gray level, the between-class variance is
defined as [11]:

σ2

B (k) =
[ µT ωk − µ(k) ]2

ωk (1 − ωk)
(4)

where ωk =
k∑

i=1

pi, (5)

and µ (k) =
k∑

i=1

gi pi. (6)

A measure of class separability can be defined as [11]:

α = σ2

B/σ2

T . (7)

Otsu’s algorithm is an optimization problem that in-
volves determining the gray level of the optimum
threshold, k∗, that maximizes the above defined mea-
sure of class separability:

α (k∗) = max1≤k<L σ2

B(k)/σ2

T . (8)

A simple way of determining the optimum threshold
would be by varying the threshold in steps comput-
ing the measure of separability and then choosing the
threshold that gives the maximum value for this mea-
sure.

The next section describes the proposed recursive
Otsu’s algorithm as well as the previously published
ROHT algorithm [3, 10].

3 Recursive Thresholding Classification
Algorithms

In primary signal detection, one of the challenges is to
detect signals with a high dynamic range. In the pres-
ence of strong signals, the threshold that is estimated
from the spectrum data may not be low enough to
identify the presence of weak signals. However, this
challenge can be overcome by performing classifica-
tion of the measurement data in a recursive manner.

Before performing classification of spectrum mea-
surements, some pre-processing is performed on the
data in order to condition the data and make it suit-
able for classification [3]. The histogram of the mea-
surement data is clipped at both the left as well as
right ends of the histogram at power levels nc and sc.



frequency (MHz)
sw

ee
p 

tim
e 

st
ep

frequency (MHz)

sw
ee

p 
tim

e 
st

ep

frequency (MHz)

sw
ee

p 
tim

e 
st

ep

Fig. 4 Classification results of TV band (54-87 MHz) measurements using various values of L(n) (from top to bot-
tom):(a) original spectrum image, (b) image of data classified with n = 2, (c) image of data classified with n = 4.

A spatial averaging filter and a Gaussian low pass fil-
ter, each of length L, can be used in cascade in order
to perform noise filtering. Thus, the parameters of
the data enhancement operations are specified by L,
sc, and nc. Furthermore, the measurement samples
can be time averaged in order to reduce the variance
of noise.

The recursive one-sided hypothesis testing (ROHT)
algorithm [3, 10] performs classification of the spec-
trum measurements based on the concept of one-sided
hypothesis testing. The algorithm works for various
levels of statistical significance. One drawback with
the ROHT algorithm is that not all distributions are
Gaussian. In addition, central limit theorem is appli-
cable only when there are a large number of samples
available such that the actual distribution converges
to the Gaussian distribution.

The proposed recursive Otsu’s algorithm has been
adapted from the original recursive method presented
in Reference [13]. The proposed algorithm has been
modified such that it functions similar to that of the
ROHT algorithm.

With these recursive algorithms, the measurement
data is initially assumed to contain mostly noise sam-
ples. Fig. 5 shows the flowchart of the recursive

thresholding. By applying one-sided hypothesis test
or Otsu’s algorithm the threshold is estimated. This
threshold is employed to identify a percentage of the
measurement data as signal samples and the rest as
noise. The signal portion is discarded and this process
is repeated iteratively on the remaining unclassified
measurements until the change in the standard devi-
ation of the unclassified data between two consecutive
iterations becomes less than or equal to ǫ, where ǫ is
an arbitrary positive value that can be specified. The
recursive Otsu’s algorithms differ from the ROHT al-
gorithm in that at every iteration the threshold is
now estimated using Otsu’s algorithm instead of the
one-sided hypothesis testing employed in the ROHT
algorithm.

In the case of the proposed recursive Otsu’s algo-
rithm, the argument that is passed to the algorithm
is the ǫ value. In these algorithms, the following no-
tations have been used:

• M be the set of measurement samples,

• S be the set of signals within M,

• Sk be a subset of S for the kth iteration of the
algorithm,

• Q be the set of noise samples within M,
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Fig. 5 Flowchart for recursive thresholding.

• Qk be a superset of Q for the kth iteration of the
algorithm, Qk may contain signals,

• µk , σk = mean and standard deviation of the
elements of Qk, and

• θk= decision threshold to identify the signal por-
tion for the kth iteration.

4 Performance Evaluation of Processing
Techniques

The spectrum measurement data employed in this
work was collected in a rural environment at the In-
formation and Telecommunications Technology Cen-
ter at the University of Kansas, Lawrence, Kansas,
USA, over a 24 hour period. Two spectrum bands
have been targeted: the FM broadcast band (88-108
MHz) and the digital television band (DTV) (638-668
MHz). These bands have been chosen since licens-
ing information is available for these bands whereas
the television band is gaining popularity as the prime
candidate for DSA.

4.1 FM Broadcast Spectrum: 88-108 MHz

All the data enhancement operations were performed
on the FM spectrum measurements in a cascade man-
ner, followed by classification using the original Otsu’s

algorithm. Table 1 presents the results for various
values of the data enhancement parameters. In this
table, the parameters are listed in the order of their
occurrence in the cascade of operations.

From Table 1, it is evident that the data enhance-
ment operations have improved the performance of
original Otsu’s classification algorithm. Case 2 shows
improvement in the results as compared to Case 1,
where the classification has been done without any
data enhancement. Case 3 is worth noting for the im-
provement in the miss rate although the false alarm
rate is degraded by a small percentage as compared
to Case 2. Fig. 6 shows a single time sweep of the
FM band measurement data after data enhancement
(Case 3). In certain bands with fixed channelization,
such as the FM and TV broadcast bands, most active
licensees transmit continuously for 24 hours. In such
cases, all the measurement sweeps of data collected
across a band represent redundant data. By averaging
over such redundant sweeps of data, which is affected
by independent random noise, the noise variance is
reduced, as shown in Fig. 7. The measurements were
time averaged before applying the original Otsu’s al-
gorithm and the results are shown as Cases 5-7. It is
observed that time averaging improves the false alarm
rate since the noise power is reduced. Overall, the
best results have been obtained by applying the data
enhancement techniques along with the time averag-
ing technique before the original Otsu’s classification.

The ROHT algorithm was applied on the FM band
data. The results of the ROHT algorithm with ǫ = 0.5
for various values of the confidence intervals are illus-
trated in Fig. 8, and also tabulated in Table 2(a).
From the results, the tradeoff between miss rate and
false alarm rate is clearly pronounced. As the confi-
dence interval is increased from 90% to 99.9%, it is
observed that the miss rate increases while the false
alarm rate decreases. From the plots we can also infer
that good results can be obtained for the FM band
by operating the algorithm at around 96% confidence
level beyond which the miss rate drastically increases.
A similar trend has been observed for the case when
ǫ = 0.05 as shown in Table 2(b). Table 2(c) shows
the results of applying the modified recursive Otsu’s
algorithm on FM measurement data. The processed
data can be used to study various aspects of spectrum
occupancy such as the duty cycle as shown in Fig. 9.

4.2 Digital Television Band: 638-668 MHz

A single time snapshot (instantaneous power spec-
trum) of the digital TV band (638-668 MHz) is shown
in Fig. 10(a). In this figure, channel 44 can be ob-
served at 650-656 MHz. It is also observed that there
is substantial noise power variation in the instanta-



Table 1 Results of applying data enhancement operations followed by the original Otsu’s algorithm on FM broadcast
spectrum (88-108 MHz) measurement data.

Case Parameters Miss FA Error Weighted

No. (%) (%) (%) error (%)

1 No enhancement 24.9279 16.5625 18.8212 7.5345

2 L = 4 21.7692 14.4307 16.4121 6.5762

3 sc = -55 dBm, nc = -98 dBm, 17.4581 18.0527 17.8921 5.9834

L = 4

4 sc = -64 dBm, nc = -98 dBm, 13.8231 21.9614 19.7641 5.5772

L = 4

5 Time averaging and classification 22.7778 11.7123 14.7000 6.5100

6 sc = -55 dBm, nc = -98 dBm, 17.4074 15.4795 16.0000 5.6900

L = 4, time averaging

7 Time averaging, sc = -55 dBm, 18.1481 14.6575 15.6000 5.7700

nc= -98 dBm, L = 4
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Fig. 6 Power spectrum of FM band (88-94 MHz) before (top) and after data enhancement (bottom).

neous power spectrum, which can degrade the ac-
curacy of classification algorithms. A comparison of
Fig. 10(a) and Fig. 10(b) clearly shows that there is
significant reduction in the noise variations by time
averaging the data over 25 time snapshots. The time
averaged data was then classified using the original
Otsu’s algorithm.

Fig. 10(c) shows the result of applying ROHT (95%
confidence level and ǫ = 1.5) algorithm on time aver-
aged data. Similar classification result has been ob-
tained by using the proposed recursive Otsu’s algo-
rithm on the mean power spectrum.

When applied on the measurements collected from
the analog television band (198-228 MHz), it was ob-
served that the recursive Otsu’s algorithm gave a very
high false alarm rate while both the ROHT as well as
the original Otsu’s algorithm gave good results.

Overall, it has been observed that the original

Otsu’s algorithm performed well on all the three
bands. The ROHT algorithm gave good performance
with the television bands while the proposed recursive
Otsu’s algorithm gave good performance only with
the DTV band measurements. The reason for the
high false alarm rate that is achieved while using the
recursive Otsu’s algorithm is the small range of the
signal power in the analog television band which re-
sults in noise being wrongly classified as signal. This
implies that the recursive algorithms are well suited
for detecting signals with a wide range of power levels.

5 Conclusions

In this paper, we present statistical techniques for the
processing of spectrum measurements including the
recursive one-sided hypothesis testing (ROHT) algo-
rithm, Otsu’s algorithm, as well as the proposed re-
cursive Otsu’s algorithm. In addition, we conducted
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Fig. 7 Power spectrum of the 88-93 MHz band in the FM broadcast spectrum before time averaging (top) and after
time averaging (bottom).
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Fig. 8 Results of ROHT algorithm with ǫ = 0.5 applied on FM band data (without data enhancement) for various
confidence levels: error rate (left), and weighted error rate (right).

a comparison of the three algorithms and studied
their performance on spectrum measurements col-
lected from the FM band (88-108 MHz) and the
digital television band (638-668 MHz). In addition,
we have demonstrated improvement in the perfor-
mance of the processing algorithms by conducting
pre-processing operations on the spectrum measure-
ments such as time averaging, and noise filtering.

The algorithms presented in this paper were able
to estimate the threshold directly from the data itself
without requiring any a priori knowledge and with
minimum manual intervention in the threshold esti-
mation.
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(a) Instantaneous power spectrum of digital TV band (638-668 MHz).
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(b) Digital TV band (638-668 MHz): original Otsu’s classification (red) of averaged measurements (black).
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(c) Digital television band (638-668 MHz): mean power spectrum (black) and its ROHT (95% confidence level
and ǫ = 1.5) classification (magenta).

Fig. 10 DTV measurements.


