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Empirical Study of a Queueing System with fBM Traffic 
 

 

 

 

 

Abstract 
In packet networks, the rate of congestion events has been proposed as a 
metric of quality of service (QoS) [2]. We studied a queueing system with 
fractional Brownian input. A method to compute the expected rate of 
congestion events is justified and evaluated.  
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I. Introduction 
The queueing model discussed here is the fractional Brownian (fBM) model, proposed by 
Norros [5] (Figure 1). The input of the queue is modeled by fBM, which has long range 
dependence. The output is deterministic.  
 

)()( tBamttA H+=  
  
 

Figure 1 

Suppose that the queue is empty at t =0, i.e., 0)0( =Q , then the queue length, )(tQ , is 
given by ))((min)()(

0
stAttAtQ

ts
µµ −−−=

≤≤
      (1) 

where )(tA is the arrival process and )()( tBamttA H+= , 
m : mean input rate (bps),  µ : service rate        (bps) 

 a : variance             ( 2bit ),  )(tBH : standard fBM with parameter H .  
Let c  be the difference between m and µ , then mc −= µ , and )(tQ can be written as 
 ))((min)()(

0
cssBacttBatQ H

ts

H −−−=
≤≤

     (2) 

Obviously, )(tQ is a random process. The definition of a congestion event follows [2]. 
Shown in Figure 2, a congestion event is defined to occur at time bt if bt  is the first time 
the process )(tQ  reaches a given level b  following the end of the previous busy period 
containing a congestion event. Note that in a congestion episode, )(tQ can cross b  
several times.  bτ  denotes the time between two congestion events. Its expectation, bEτ , 
(or the expected rate of congestion events, bEτ/1 ) is a good QoS metric.  

 
Figure 2 

µ
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II. Poisson clumping method 
Following [1], the Poisson clumping method is used to approximate bEτ , that is,  

)(/, bQPECE bQb ≥≈τ        (3) 
where bQEC ,  is the mean time that )(tQ stays above level b in a busy period, and 

)( bQP ≥  is the probability that the queue length is greater than b . In [1] the author 
warns that the Poisson clumping method may not be used to the traffic which has long 
range dependency. But from our studies, the method works well for the fBM traffic. 
Table 1 shows a comparison of the Poisson clumping approximations with the simulation 
results.  

Table 1: Applicability of the Poisson clumping method 

Mbpsm 2= , 211104 bita ×= , 79.0=H , 7.0/ == µmLoad  

b (bit) 

bEτ  (sec) 
(measured  

in  
simulations) 

bQEC ,  (sec)
(measured 

in 
simulations)

)( bQP ≥  
(measured 

 in 
 simulations)  

Poisson clumping 
approximations 

)(/, bQPEC bQ ≥

Relative Error between 

bEτ  and the Poisson 
clumping results 

1000000 98.96 3.34 0.033663 99.22 0.26%
1200000 146.37 3.91 0.026691 146.49 0.08%
1400000 195.16 4.25 0.021744 195.46 0.15%
1600000 269.19 4.79 0.017766 269.61 0.16%
1800000 343.10 5.04 0.014656 343.89 0.23%
2000000 442.95 5.44 0.012249 444.12 0.27%
2200000 550.32 5.68 0.010295 551.71 0.25%
2400000 727.40 6.34 0.008686 729.87 0.34%
2600000 853.58 6.37 0.007447 855.40 0.21%
2800000 995.84 6.44 0.006446 999.07 0.32%
3000000 1230.16 7.01 0.005681 1233.94 0.31%
3200000 1416.56 7.35 0.005084 1445.79 2.06%
3400000 1910.72 8.79 0.004507 1950.43 2.08%
3600000 2106.69 8.57 0.003983 2151.76 2.14%
3800000 2282.25 8.11 0.003480 2330.33 2.11%
4000000 2650.36 8.37 0.003093 2705.69 2.09%
4200000 2934.34 8.28 0.002764 2995.80 2.09%
4400000 3160.06 8.01 0.002482 3227.09 2.12%
4600000 3572.26 7.85 0.002153 3646.41 2.08%
4800000 3863.44 7.51 0.001879 3996.98 3.46%
5000000 4056.62 6.81 0.001623 4195.38 3.42%

 
The mean interevent time ( bEτ ), the tail probability ( )( bQP ≥ ) and the mean sojourn 
time for different b  ( bQEC , ) were measured and the corresponding approximation results 
were calculated. It is obvious from Table 1 that the approximations are very close to the 
simulation results, i.e., )(/)( , bQPECE bQb ≥≈τ . For different parameters, we observed 
the same phenomena.  
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III. Properties of a busy period 
To apply the Poisson clumping approximation, we need to find bQEC ,  and )( bQP ≥ . 
Following [3], we can use the asymptotic tail probability to approximate )( bQP ≥ . Now 
the problem reduced to computing the mean sojourn time, bQEC , . We will analyze the 
busy periods and present a way to approximate bQEC , .  
A busy period, which is from 1t  to 2t  (Figure 3), can be divided into two parts, 1t  to bt  
and bt  to 2t . Note that 0)( >tQ , for ),( 21 ttt∈ . bt  is the first time that )(tQ reaches b . 
Let 10 ttt bb −=  and bb ttt −= 20 .  
Simulations were conducted to study the empirical properties of bt0  and 0bt .  

 
Figure 3 
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(i). Empirical property of bt0  
The values of bt0  cluster around its mean. For different loads and H values, we always 
have 1)(/ 00 >bb tstdEt . As shown in Figure 4-6, the dotted curve, )(/ 00 bb tstdEt , is 
always above the line y=1.  

 

 
Figure 4 
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Figure 5 

 
Figure 6 

(ii). Empirical property of 0bt  
For large b, we have 1)(/ 00 >bb tstdEt  and most values of 0bt  are less than 02 bEt . From 
Figure 7-9, we can see that as b increases, the curve, )(/ 00 bb tstdEt , crosses y=1 and stays 
above it. In other words, as the congestion event becomes rare, we have 

1)(/ 00 >bb tstdEt .  
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Figure 7 

 
Figure 8 

 

 
Figure 9 
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IV. An approximation of the busy period 
A busy period is from 1t to 2t  (Figure 3). bt is the first time that the queue reaches level 
b , and 2t  is the first time that the queue returns to 0 after bt . Note that 0)( 1 =tQ , 

btQ b =)( and ),(,0)( 21 ttssQ ∈> , 
From The queue length formula (2), it is easy to derive that 
(i) ))((inf)(

2011 cssBacttBa H

ts

H −=−
≤≤

 

(ii) bcttBacttBa H
bb

H =−−− ))(()( 11  
 
For ),[ 2ttt b∈ , 

))((inf)()(
0

cssBacttBatQ H

ts

H −−−=
≤≤

 

))(()( 11 cttBacttBa HH −−−= , from (i) 

))(())(())(()( 11 cttBacttBacttBacttBa H
bb

H
bb

HH −−−+−−−=

 bcttBacttBa bb
HH +−−−= ))(()( , from (ii) 

bttctBtBa bb
HH +−−−= )()]()([  

 
If bt is a fixed constant, )({ tQ , )},[ 2ttt b∈ is equivalent to bcttBa H +−)({ , 

)},0[ 2 bttt −∈ in distribution. Roughly speaking, locally )(tQ  performs like a fractional 

Brownian motion with negative drift in ),[ 2ttb  given the condition that )(tQ increases 

from 0 to b in ],[ 1 btt . This motivates us to approximate the busy period of )(tQ with a 

new process ]},0[,)()({ 2stcttBabtX H ∈−+= , given that 0)( 1 =−sX , bX =)0( .  
]0,[ 1s−  and ],0[ 2s  of )(tX  correspond to ],[ 1 btt , ],[ 2ttb  of )(tQ  respectively. Also 

1s  and 2s  correspond to bt0  and 0bt  respectively. From section III, we know that the 
values of bt0  ( 1ttb −= ) concentrates on its mean value and 1)(/)( 00 ≥bb tstdtE . So we 
assume that 1s  is a constant. 2s  is the first time that )(tX  reaches 0, that is, 

}0)(:{min
02 ≤=

≥
tXts

t
 (Figure 10). 
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Figure 10 

For the random variable 2s , we have )0)(inf()(
02 ≤=≤

≤≤
sXPtsP

ts
. It is difficult to derive 

its distribution. But it is easy to find a lower bound,  
)0)(inf()(

02 ≤=≤
≤≤

sXPtsP
ts

)0)(( ≤≥ tXP  

Considering the condition that 0)( 1 =−sX , bX =)0( , we obtain that 0)0( =HB , 

a
csbsBBsB HHH 1

11 )()0()( +
=−−=∆ .  

So )}(|)({)0)(()( 12 sB
a
bcttBPtXPtsP HH ∆

−
≤=≤≥≤  

For 0≥t , ))(|)(( 1sBtB HH ∆  is conditional Gaussian with parameters ),( 1stµ and 
),( 1

2 stσ , where  

)(
2

)(
),( 12

1

2
1

22
1

1 sB
s

stst
st H

H

HHH

∆
−−+

=µ , 
H

HHH
H

s
stst

tst 2
1

22
1

22
12

1
2

4
])[(

),(
−−+

−=σ  

Thus,  

)
),(

),(/)(()0)(()(
1

2
1

2
st

stabcttXPtsP
σ

µ−−
Φ=≤≥≤ .  

Define a random variable T , such that, )0)(()( ≤=≤ tXPtTP . So we have  

)
),(

),(/)(()()(
1

2
1

2
st

stabcttTPtsP
σ

µ−−
Φ=≤≥≤     (4) 

As people found in [4], [5], this lower bound is a good approximation of )( 2 tsP ≤ when 
the load is light and b is large. Besides the distribution, we also compared the 
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expectations of both random variables. Empirically, ETEs ≤2 . When the load is light 
and b is large, ET  is close to 2Es , as shown in the following figures.  
 

 
Figure 11 

 

 
Figure 12 
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V. Computation of the mean sojourn time bQEC ,  

Let bQC ,  denote the sojourn time of )(tQ above a threshold b in a busy period. Here we 
present a way to approximate the mean value of bQC , , i.e. bQEC , .  
Since we approximate the busy period with )(tX , we will approximate bQC ,  with bXC , , 
the sojourn time of )(tX above a threshold b. Thus we have  

bXbQ ECEC ,, ≈         (5) 

Given 1s , bXC ,  can be expressed as ∫ ∞=
2

0
),[1, ))((1)(

s

bbX dttXsC .  

Thus,  ∫ ∞=
2

0
),[1, ))((1)(

s

bbX dttXEsEC       (6) 

From section III, we know that 1)(/ 22 >sstdEs  and most values of 2s are less than 22Es . 
But the values which are larger than 22Es  affect bXEC ,  greatly. So for simplicity, we 
choose 22Es  as a balance point, to replace 2s  in (6). Then,  

∫ ∞≈
22

0
),[1, ))((1)(

Es

bbX dttXEsEC ∫ ≥=
22

0

))((
Es

dtbtXP  

      ∫ ∆≥−+=
22

0
1))(|)((

Es
HH dtsBbcttBabP  

      ∫ ∆≥=
22

0
1))(|)((

Es
HH dtsB

a
cttBP  

      ∫
−

Φ−=
22

0 1
2

1 )]
),(

),(/(1[
Es

dt
st

stact
σ

µ
     (7) 

However 2Es  is still difficult to compute. But in section IV, we know that for rare events 
(load 8.0≤ and b  is large) ET  is close to 2Es . Thus we will replace 2Es  with ET . Even 
though 2Es  is overestimated by ET  (empirically ETEs ≤2 ), as we will see that the trend 
of the computed hitting time is not very sensitive to this overestimation.  
Replacing 2Es  by ET  in (7), we obtain, 

∫
−

Φ−≈
ET

bX dt
st
stactsEC

2

0 1
2

1
1, )]

),(
),(/(1[)(

σ

µ
    (8) 

bXEC ,  is a function of 1s . As shown in Figure 13, bXEC , has a unique minimum as 1s  
varies. We use the minimum as the value of bXEC ,  and combine with (5), then  

bQbXsbX ECsECEC ,1,0, )(min
1

≈=
>

      (9) 

If more knowledge of 1s  is available, we can get better results. For example, if the 
expectation of 1s  is known, we can compute bXEC ,  as bQbXbX ECEsECEC ,1,, )( ≈=  
(Figure 16).  
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Figure 13 

Combining (9) and (3), we obtain bEτ , the average time between congestion events. 
Although several approximations are applied in the procedure, the results are satisfying. 
In the next section, we will evaluate this method and show that the approximation results 
can follow the trend of the simulation results.   
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VI. Evaluation 
Based on the above analysis there are two ways of predicting the average time between 
congestion events: 1) the reciprocal of the tail of the queue fill probability 
distribution, )(/1 bQP > , and 2) the approach derived above.   
Simulations were conducted to compare the two methods and the simulation results. 

)(tBH  is generated with the method in [6] and is used to generate the arrival process 
)(tA . The parameters m  and a  are fixed to be sbit /102 6×  and 211104 bit×  

respectively, which are the representative of the LAN traffic [4]. H and µρ /m=  are 
varied to modify the long range intensity and the traffic load.  
Figures 14-16 provide a representative comparison of the predictions based on the 
method described above.   
The difference between the simulation results and the approximation developed here 
primarily arises from the choice of the value of 1s  and the error from the approximation 
for the probability )( bQP >  [3]. In Figure 16, simulation was used to optimize the 
selection of 1s .  

 
Figure 14 
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Figure 15 

 

 
Figure 16 

Figure 16, “Approximation given 1s ” is calculated in the following way 
)(/)()(/ 1,, bQPEsECbQPECE bXbQb ≥≈≥≈τ , where 1Es  is measured in simulations.  

It shows that if we have improved knowledge of 1s , we can gain better results.  
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VII. Conclusions 
A predictor for the time between congestion events is derived based on the Poisson 
clumping method. Although several approximations are applied in the derivation, the 
results can follow the trend of the average interevent times obtained from simulations. 
Our work shows that the reciprocal of the tail probability, )(/1 bQP > , is a poor 
indicator for the interevent times in most cases, especially for large H.  
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