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Symbols

α transmitted symbol

s(t; α) modulated signal

r(t) received signal

L length of frequency pulse

f(t) frequency pulse

q(t) phase pulse

h modulation index

θn−L phase state

n time step

a[n] original data bits

bk[n], v[n], β(αn) pseudo symbols

p(t) main PAM pulse

T duration of each symbol

S̃n hypothetical starting state

Ẽn hypothetical ending state

λn(S̃n) cumulative metric

λn+1(Ẽn) branch metric

gk(t) principal pulses for PAM representation

z(n, [ãn, S̃n]) branch metric update
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ck(t) signal pulses

φ(t; α) phase

Note: the default range in the summations is from −∞ to +∞
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Abstract

In this thesis, we are trying to optimize the tradeoff between the receiver

complexity and its performance for two modulations currently used in aeronau-

tical telemetry. A reduced complexity detector is of interest because it reduces

the implementation cost. The Pulse Amplitude Modulation (PAM) representa-

tion of Continuous Phase Modulation (CPM) signals typically results in reduced-

complexity detectors with a performance that matches the performance of the

optimal detector. In this work, we study simple trellis-based PAM detectors

for two types of CPM used in aeronautical telemetry. The first is shaped-offset

quadrature phase shift keying (SOQPSK), where we show that the state com-

plexity can be cut in half relative to previous approaches—from 4 states down

to 2—with asymptotically optimum performance. For comparison, we implement

another reduced complexity technique known as Pulse Truncation (PT); both

of these techniques make use of recent advances in SOQPSK technology based

on a CPM interpretation of SOQPSK. The proposed simplifications are signifi-

cant since trellis-based SOQPSK detectors are 1–2 dB superior with respect to

the widely-deployed symbol-by-symbol detectors. These performance gains come

at the expense of complexity, and the proposed 2-state detectors minimize this

expense. The second version of CPM studied in this work is Pulse Code Mod-

ulation/Frequency Modulation (PCM/FM). We develop and compare the per-
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formances of 0, 2 and 4 state PAM based detectors. We develop our PCM/FM

receiver using two approaches; first with a square-root cosine (SRC) filter which is

independent of the CPM modulation index, and the second using the main PAM

pulse followed by a whitening filter. The 4-state trellis based detectors we derive

for PCM/FM give a performance within 0.4–0.5 dB of the optimal detector (refer

to Appendix I for optimal detector complexity).
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Chapter 1

Introduction

Digital communication deals with transmission of information in digital form

from source to destination in a reliable manner. The digital modulator takes up the

job of converting the binary information into signal waveforms. Here we limit our

discussion only to phase modulation. The digitally modulated data reaches the

demodulator through a communication channel which introduces noise into the

data being transmitted. The corrupted data recieved at the reciever is processed

to get back the original information that was transmitted.

Here we discuss continuous phase modulation (CPM) [2]. Basically, we cover

two types of CPM, Shaped-offset QPSK and Pulse Code Modulation/Frequency

Modulation (PCM/FM). Both of these are used in the aeronautical telemtry stan-

dard IRIG-106 [22].

While CPM has a number of advantages, one advantage in particular is re-

sponsible for its widespread deployment: it has a constant signal envelope (the

amplitude of the signal constellation remains constant). This makes it compatible

with nonlinear power amplifiers, which are highly efficient in converting limited

(i.e. battery) power into radiated power (for example, 16-QAM (Quadrature Am-
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plitude Modulation) the amplitude varies with each constellation point. The 16-

QAM modulated signal gets distorted when passed through a nonlinear amplifier).

This in turn allows for a smaller physical size and lower cost for the transmitter.

The disadvantage with CPM is high complexity involved with its implementation.

This is because of the nonlinear nature of the modulation.

The implementation of the optimal CPM detector often requires a huge trellis

as well as large number of matched filters (MFs). In this work, we decompose

the CPM signal into linear combination of Pulse Amplitude Modulation (PAM)

waveforms [8,12,13,18]. PAM-based detectors are known to reduce the complexity

of the receiver [19], by reducing the trellis size as well as the number of MFs.

With increasing receiver complexity comes increasing cost. In this thesis, we

come up with PAM-based reduced complexity detectors. PAM-based detectors

reduce the receiver implementation cost with little compromise on performance.

Laurent [12] showed that a binary CPM signal can be represented as a super-

position of PAM waveforms

s(t; α) =
∑

n

Q−1
∑

k=0

bk[n]ck(t − nT ), Q = 2L−1. (1.1)

The pseudo-symbols bk[n] (that are derived from the original data, refer to equa-

tion (2.18)) inherit the nonlinearity of CPM. The signal pulses ck(t) are modulated

by pseudo-symbols bk[n] and are summed up to give the CPM signal. The signal

pulses ck(t) have different energy levels. The signal pulses with higher energy

dominate the linear representation of CPM. This property can be used to approx-

imate the CPM signal which helps in reducing the complexity of the receiver by

reducing the trellis size and MFs.

Also Perrins and Rice [16] showed that ternary CPM waveforms (of which,
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SOQPSK is an example) can be represented using the PAM decomposition by

s(t; α) =
∑

n

R−1∑

k=0

vk[n]gk(t − nT ), R = 2 · 3L−1. (1.2)

The pseudo-symbols vk[n] are obtained from the original data symbols. In this

work, PAM decomposition is applied to SOQPSK and PCM/FM to develop sim-

plified detectors.

1.1 Motivation to develop simplified SOQPSK detectors

The signal model and the paremeters for SOQSPK will be discussed in more de-

tail in the next chapter. We discuss two types of SOQPSK, the military-standard

“SOQPSK-MIL” [1] and the version of SOQPSK adopted by the telemetry group,

“SOQPSK-TG” [22].

Due to the similarities between SOQPSK and conventional offset QPSK (OQPSK),

OQPSK-type detectors are most commonly deployed at the receiver for detecting

SOQPSK. Though OQPSK-type detectors are easy to implement, they suffer a

loss of 1–2 dB compared to the optimal detector, depending on which version of

SOQPSK is being used and how closely matched the detection filters are to the

transmitted signal [5]. This is a significant loss since it erodes some of the power

advantages enjoyed by SOQPSK in the first place. Hence in our work we propose

reduced complexity PAM detectors which gives a performance that matches the

optimal detectors (refer to simulation results).

Recently in [19], a CPM interpretation of SOQPSK was applied at the receiver.

This resulted in an optimal detector for SOQPSK-MIL and opened the door for

two reduced-complexity methods for detecting the more complicated SOQPSK-
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TG. These two techniques, PAM and pulse truncation (PT) [3,25] result in 4-state

detectors for SOQPSK-TG that are within 0.2 dB of the impractical 512-state

optimum detector.1

In this work, we study simple trellis based detectors for SOQPSK that have

a minimal level of state complexity. Previous efforts have been made to develop

simplified detectors for SOQPSK using the PAM approach, e.g. [19]. The previous

works could reduce the state complexity to 4 states. Here, we show the size of

the trellis can be reduced to its minimum—2 states—for both SOQPSK-MIL and

SOQPSK-TG. This is accomplished by a novel concatenation of the differential

encoder and SOQPSK precoder, which leads to a simplified representation of the

transmitter’s state memory (refer to Appendix II). This simplified transmitter

model combined with decision-feedback at the receiver yields the overall state

reduction. We show how this state reduction can be implemented using the PAM

and PT techniques (refer to Chapter 3). In both cases, the 2-state detectors have

no asymptotic losses relative to their 4-state counterparts. However, for moderate

signal-to-noise ratios, the PT technique results in a minor loss on the order of 0.1

dB w.r.t. PAM.

This state reduction is significant since the major drawback of trellis-based

detectors is their complexity compared to symbol-by-symbol detectors. Since the

proposed detectors reduce the state complexity to its minimum of 2 states, these

detectors represent an attractive means of realizing the 1–2 dB advantage trellis-

based detectors have over symbol-by-symbol detectors.

1The optimal detector has 512 states and number of matched filters = 2 ·ML = 2 · 28 = 512
(refer to Appendix I). Hence decoding a bit requires multiplications in the order of teraflops
when the data rate is large (a teraflop is one trillion floating point operations per second).
Using the PAM decomposition, with L = 8 we have R = 2 · 38−1 = 4374. Therefore the exact
PAM representation of SOQPSK-TG has an unmanageable number of signal components.
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1.2 Motivation to develop simplified PCM/FM detectors

Having developed simple PAM based detectors for SOQPSK, we developed

PAM based reduced complexity detectors for PCM/FM which is also a type of

CPM. As it turns out, PCM/FM and Bluetooth share a number of similarities.

As such, we will draw upon some previous work on Bluetooth [9].

By design, the CPM modulation index for Bluetooth is allowed to vary in the

range 0.28 to 0.35. In the case of PCM/FM the CPM modulation typically varies

from 0.63 to 0.77, although in this case it is not by design but it is instead due

to outdated analog transmitter circuitry that remains in use on telemetry test

ranges. Also, Bluetooth devices often employ a simple discriminator detector,

which is also the case with PCM/FM. Another way to implement the detector for

PCM/FM and Bluetooth is to use Viterbi Algorithm (VA).

These are some of the similarities which prompted us to combine Bluetooth

algorithms and PCM/FM. Ibrahim et al. [9] developed reduced-complexity detec-

tors for Bluetooth using the PAM decomposition. This motivated us to implement

a Viterbi algorithm (VA) based detector for PCM/FM using the PAM decompo-

sition. Though trellis based detectors increase the complexity, it shows 3–4 dB

improvement as compared to discriminator detector.

We propose two approaches to develop simple trellis based detectors for PCM/FM.

The first, using the main PAM pulse p(t) followed by a whitening filter. In the sec-

ond approach we use an off-the-shelf square-root raised cosine (SRC) filter as the

reciever filter. In the SRC filter approach we have used a seven-tap feed forward

filter (FFF) to obtain a minimum-phase channel response.
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1.3 Major contributions of this thesis work

1. Developed a 2-state PAM based detector for SOQPSK-MIL and SOQPSK-

TG.

2. Developed 2-state detectors using PT for comparison with PAM based

detectors.

3. Demonstrated that 2-state PAM and PT based detectors gives a perfor-

mance that matches 4-state detectors (developed using previous approaches).

4. Developed reduced complexity PAM based detectors for PCM/FM using

0, 2 and 4 states and compare their performances. 4-state detectors give a near

optimal performance (optimal detector uses 20 states).

5. Achieved the goal to develop reduced complexity detectors for two types of

CPM viz. SOQPSK and PCM/FM, with a near optimal performance. Lesser the

complexity of the receiver lesser is the cost.
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Chapter 2

Signal Representation of CPM

In this chapter we explain the general CPM signal model, and then give SO-

QPSK and PCM/FM specific details.

2.1 CPM Signal Model

The CPM signal may be represented as [2]

s(t; α) , exp {jφ(t; α)} (2.1)

where the phase is a pulse train of the form

φ(t; α) , 2πh
∑

i

αiq(t − iT ) (2.2)

and αi is an M -ary symbol, T is the is the duration of each αi, and h is the

modulation index (the modulation index indicates by how much the phase of the

modulated signal varies around its unmodulated signal). The phase pulse q(t) is
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defined as [2]

q(t) ,







0 t < 0
∫ t

0

f(τ) dτ 0 ≤ t < LT

1/2 t ≥ LT

(2.3)

where f(t) is the frequency pulse which has a duration of L symbol times and

an area of 1/2. When L = 1 the signal is full-response and when L > 1 it is

partial-response. Due to the constraints on f(t) and q(t), and assuming a rational

modulation index h = k/p , the phase may be expressed as

φ(t; α) = 2πh
n∑

i=n−L+1

αiq(t − iT )

︸ ︷︷ ︸

θ(t)

+ πh
n−L∑

i=0

αi

︸ ︷︷ ︸

θn−L

(2.4)

where nT ≤ t < (n+1)T . The phase state θn−L can assume only p distinct values

given by

2πx

p
, 0 ≤ x ≤ p − 1. (2.5)

The state of a CPM signal is specified by

σ = [θn−L, αn−L+1, . . . , αn−1]. (2.6)

From equation (7.1), we see that the number of states in the trellis is p · ML−1,

because there are p cumulative phase states and ML−1 symbol combinations re-

sulting from the (L − 1)-tuple. Since each state is associated with M possible

branch symbols, the number of branches in p ·ML. The number of matched filters

is given by 2ML.
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Figure 2.1. The length-8T frequency and phase pulses for
SOQPSK-TG.

2.2 SOQPSK

SOQPSK is a special type of CPM where the symbol sequence is αi ∈ {−1, 0, +1}

and when αi = ±1, the phase of the signal changes by ±90◦. In the world of CPM,

the modulation index h is the parameter that specifies the amount of phase change

devoted to each αi and a change of 90◦ corresponds to h = 1/2. Here we discuss

two versions of SOQPSK. The first, SOQPSK-MIL [1], is full-response with a

rectangular shaped frequency pulse

fmil(t) ,







1
2T

, 0 ≤ t < T

0, otherwise.

(2.7)

The second, SOQPSK-TG [7,22], is partial-response with L = 8 and a frequency

pulse given by

ftg(t) , A
cos(πρBt

2T
)

1 − 4(ρBt
2T

)
2 × sin(πBt

2T
)

πBt
2T

× w(t) (2.8)

9



where the window is

w(t) ,







1, 0 ≤ | t
2T
| < T1

1
2

+ 1
2
cos( π

T2

( t
2T

− T1)), T1 ≤ | t
2T
| ≤ T1 + T2

0, T1 + T2 < | t
2T
|.

The constant A is chosen such that the area of the pulse is equal to 1/2 and

T1 = 1.5, T2 = 0.5, ρ = 0.7 and B = 1.25. Figure 2.1 shows the frequency pulse

ftg(t) and corresponding phase pulse qtg(t).

2.2.1 SOQPSK Precoder

With SOQPSK, the channel symbols α = {αn} are not the underlying in-

formation sequence, but are related to the original data sequence a = {an} by

the series of operations shown if Figure 2.2(a). The first of these operations is a

double differential encoder [24] given by the equation

ui = ai ⊕ ui−2, ai, ui ∈ {0, 1} (2.9)

where ⊕ is the modulo-2 addition operator. The differential encoding rule in (2.9)

can be summarized as “change phase on 1” since an input of ai = 1 causes the

output value ui to change relative to the value ui−2.

The second operation in Figure 2.2(a) is the precoder, which converts the

double differentially encoded {ui} into ternary data αi ∈ {−1, 0, +1} according

to the rule [23]

αi(u) = (−1)i+1(2ui−1 − 1)(ui − ui−2) (2.10)

The precoder imposes three important constraints on the ternary data [23]:
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Figure 2.2. Precoders (a) SOQPSK Precoder corresponding to 4-
state trellis and (b) SOQPSK Differential Precoder corresponding to
2-state trellis.

1. While αi is viewed as being ternary, in any given symbol interval αi is

actually drawn from one of two binary alphabets, {0, +1} or {0,−1}.

2. When αi = 0, the binary alphabet for αi+1 switches from the one used for

αi, when αi 6= 0 the binary alphabet for αi+1 does not change.

3. A value of αi = +1 cannot be followed by αi+1 = −1, and vice versa (this is

implied by the previous constraint).

From Figure 2.2(a) and (2.10) we see that the operation of the precoder requires

knowledge of whether the current symbol time is even or odd (n-even/n-odd), and

also knowledge of the two previous precoder inputs un−1 and un−2. These three

binary-valued elements form the state memory of the precoder (n, un−1, un−2).

This state memory leads to the trellis representation discussed in the following

section.

Figure 2.2(b) shows an alternate precoder representation where the double

11



differential encoder and the precoder are combined to form a differential precoder.

It was shown in [15] that the differential precoder has the form

αn = (−1)Snan (2.11)

where the sign state is

Sn+1 = (Sn + αn + 1) mod 2. (2.12)

We point out that the binary-valued sign state Sn is the only state variable re-

quired by the differential precoder.

All of the binary-to-ternary constraints are visible in (2.11) and (2.12) and are

explained in the next few sentences. Since the current bit an is drawn from a binary

alphabet, αn is also drawn from a binary alphabet whose “sign” is controlled by

the sign state Sn; the switching rule for the binary alphabets is “switch alphabets

on αn = 0,” which is exactly how (2.12) works. Furthermore, an elegant side effect

of the differential precoder is that the original information bits are identified in the

ternary symbol sequence: an = 0 always maps to αn = 0 and an = 1 always maps

to αn = ±1. Therefore, the “change phase on 1” rule is visible in the differential

precoder since αn = ±1 changes the phase of the CPM signal.

In either precoder representation, Figure 2.2(a) or Figure 2.2(b), the output of

the precoder is connected to an ordinary CPM modulator with h = 1/2 and the

desired pulse shape fmil(t) or ftg(t). For the special case of full-response CPM

(L = 1), the only memory within the CPM modulator is the phase state θn−1.

The interaction between the memory of the precoder(s) and the memory of the

CPM modulator is discussed next.

12
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Figure 2.3. 4-state time-varying trellis for the precoder/CPM mod-
ulator.

2.2.2 Trellis Representation of SOQPSK

Figure 2.3 shows the 4-state time-varying trellis that describes the SOQPSK

precoder in Figure 2.2(a) [19]. In this trellis, n-even/n-odd is not treated as a state

variable (since it would result in an 8-state trellis) but is instead handled with

the time-varying nature of the trellis. The remaining state variables are un−1 and

un−2. These are ordered (un−2, un−1) for n-even and (un−1, un−2) for n-odd [23].

This means that the inphase (I) bit of the pair is always most significant and the

quadrature (Q) bit of the pair is always least significant. The labels along each

branch of the trellis show the input bit/output symbol pair, an/αn, for the given

branch.

The advantage of the 4-state trellis is that its state variables un−1 and un−2

have a one-to-one correspondence with the phase state θn−1 of the full-response

CPM modulator that follows the precoder. In other words, a separate trellis is
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0/0

0/0

0

1

Figure 2.4. 2-state trellis representing the differential precoder.

not required by the CPM modulator, and the entire system in Figure 2.2(a) is

described by the 4-state time-varying trellis in Figure 2.3. The mapping from

precoder trellis states to CPM phase states is [19]

00 ↔ 3π

2
, 01 ↔ π,

10 ↔ 0, 11 ↔ π

2
.

(2.13)

Figure 2.4 shows the 2-state time-invariant trellis that describes the differential

SOQPSK precoder in Figure 2.2(b) and equations (2.11) and (2.12). The state

variable is simply the sign state Sn, and the labels along each branch specify the

input bit/output symbol pair an/αn for the given branch.

The advantage of the 2-state trellis is its simplicity with respect to the 4-

state time-varying trellis in Figure 2.3 (by reducing the trellis state complexity

to minimal, half compared to the previous approaches). Unfortunately, this sim-

plification does not also manifest itself with the CPM phase state θn−1. Thus, a

4-state trellis is still required to fully (i.e. optimally) describe the entire system
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in Figure 2.2(b). The next section shows how a decision feedback scheme can be

employed at the detector to find the CPM phase state θn−1; this technique al-

lows the simple 2-state trellis to be successfully applied to SOQPSK and yields

near-optimal performance.

2.3 PCM/FM

PCM/FM is a form of CPM where the symbol sequence αi ∈ {±1} with

modulation index h = 7/10, M = 2 and a 2RC frequency pulse (raised cosine

pulse with duration L = 2). The frequency pulse f(t) is given by [2]

fpcm/fm(t) ,







1
2LT

[

1 − cos(2πt
LT

)

]

, 0 ≤ t < LT

0, otherwise.

(2.14)

where L = 2.

As discussed earlier, Laurent developed an alternative linear representation of

the CPM signal given by

s(t; α) =
∑

n

Q−1
∑

k=0

bk[n]ck(t − nT ) Q = 2L−1. (2.15)

For PCM/FM with L = 2, the above equation becomes

s(t; α) =
∑

n

1∑

k=0

bk[n]ck(t − nT ) (2.16)

since Q = 2. This prompted us to develop simple PAM-based detectors for

PCM/FM after successfully developing simplified PAM-based detectors for SO-

QPSK. Laurent [12] showed that for CPM signals the sum is dominated by the
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first pulse c0(t). This can be confirmed from the Figure 2.6. The signal represen-

tation can be further simplified using Laurent’s approximation [12, 18] to reduce
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the complexity of the receiver design (refer to Appendix V)

s(t; α) ∼= s̃(t; α) =
∑

n

b[n]p(t − nT ) (2.17)

where

b[n] = exp

(

jπh
n∑

l=−∞
a[l]

)

. (2.18)

We would like to mention here that b[n] here is same as b0[n]. We have dropped

the subscript for simplicity. We use main PAM pulse p(t) shown in Figure 2.7

which is similar to c0(t) for the best CPM signal approximation. The main PAM

pulse p(t) is chosen to minimize the mean square error (MSE) between (7.21) and

(7.20) [12]. The shape of the pulse p(t) depends on the modulation index h.
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2.4 Summary

In this chapter we explained the CPM signal model. We also discussed the pa-

rameters for SOQPSK and PCM/FM. We explained the 4-state and 2-state trellis

diagrams for SOQPSK. We discussed the correspondence between phase states

and trellis states and 2-state trellis based detector requires a decision feedback to

calculate the CPM phase state. We also gave linear PAM decompisition model

for the CPM signal.
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Chapter 3

SOQPSK Detectors

Now that we have studied the signal model for SOQPSK, we explain the sim-

plified detectors for SOQPSK in this chapter. We start with the received signal

model and then show how simple detectors using PAM and PT techniques can be

built [14,16,17,19]. Here in this chapter we will explain the procedure to calculate

the branch metric update and the matched filters (MFs) required to implement

the Viterbi Algorithm [10,11,20].

3.1 Received Signal Model

The received signal model is

r(t) = s(t; α) + w(t) (3.1)

where w(t) is complex-valued additive white Gaussian noise (AWGN) with single-

sided power spectral density N0. Since the transmitted signal s(t; α) has mem-

ory, the optimal detector must perform maximum likelihood sequence detection

(MLSD). This is efficiently implemented via the Viterbi algorithm (VA). In the
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following discussion, the estimated and hypothesized values of a quantity w are

referred to as ŵ and w̃ respectively. Also, ŵ and w̃ can assume the same values

as w itself.

The VA operates on the trellis diagram. Hypothetically speaking, it is possible

that the transmitted signal is in any one of the allowable states. The likelihood

that the transmitter is in a given hypothetical state S̃n at a given time step n is

quantified by the cumulative metric λn(S̃n). A cumulative metric is maintained

for each state in the trellis. These metrics are extended along the branches from

starting states S̃n to ending states Ẽn via the update

λn+1(Ẽn) = λn(S̃n) + z(n, [ãn, S̃n]) (3.2)

where z(n, [ãn, S̃n]) is the branch metric increment and is a function of the starting

state S̃n and the branch symbol ãn; [ãn, S̃n] is the branch vector. In the case of

SOQPSK, there are two branches that merge into each ending state Ẽn. The

branch with the maximum metric is declared as the survivor and its metric is

stored for later use in the next round of updates.

This general VA framework will be used for both the 4-state and 2-state

SOQPSK detectors. Before doing this, we will summarize how partial-response

SOQPSK-TG is handled at the receiver as if it were a full-response waveform.

3.2 Branch Metric Increment Using Pulse Truncation

One technique for reducing the complexity of SOQPSK-TG at the receiver

is known as pulse truncation (PT) [3, 25]. This approach stems from the fact

that frequency pulses which are long and smooth are oftentimes near-zero for a
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significant portion of their duration. This is clearly the case for ftg(t) in Fig. 2.1.

Using these arguments, we base the detector on a frequency pulse which has been

truncated to a duration of one symbol time (full-response). The detector uses

a phase pulse instead of a frequency pulse 3.4, so we translate these arguments

accordingly and obtain a modified phase pulse

qpt(t) =







0, t < 0

q(t + (L − 1)T/2), 0 ≤ t ≤ T

1/2, t > T.

(3.3)

Note that the phase pulse in (3.3) is defined for all values of t; however, its time-

varying portion has been shortened by a total of (L − 1)T and is restricted to

the interval [0, T ]. The truncation is centered such that half is applied to the

beginning of the pulse and half to the end. Since qpt(t) has variations only in the

time interval [0, T ] it behaves like a full-response pulse.

The truncated pulse can be used in a standard CPM-type branch metric in-

crement [2]

zpt(n, [ãn, S̃n]) , Re

[

e−jθ̃n−1

∫ (n+1)T

nT

r(t+(L−1)T/2)e−j2πhα̃nqpt(t−nT )dt

]

(3.4)

The hypothesized branch vector [ãn, S̃n] has a one-to-one correspondence with a

hypothesized ternary symbol α̃n and a hypothesized CPM phase state θ̃n−1, as

shown in Fig. 2.3 and equation (2.13), respectively. There are three complex-

valued matched filter (MF) outputs needed to implement (3.4) (one for each pos-

sible value of the ternary α̃n).

While the notation in (3.3) and (3.4) is valid for SOQPSK-MIL and SOQPSK-
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TG, in the case of SOQPSK-MIL (L = 1) the pulse qmil(t) is already full-response

and no truncation takes place. For this reason, we refer to (3.4) as the “MF

metric” in the case of SOQPSK-MIL since it is in fact the optimal CPM-type

metric. In the case of SOQPSK-TG, we refer to (3.4) as the “PT metric” and it

results in near-optimal performance, as discussed in Sections 4 and 4.4.

3.3 Branch Metric Increment Using the PAM

Representation

Using the PAM representation of ternary CPM [16], the right-hand side of (2.1)

can be written as

s(t; α) =
∑

n

R−1∑

k=0

bk[n]gk(t − nT ), R = 2 · 3L−1 (3.5)

which is simply a linear combination of R pulses gk(t) that are modulated by

pseudo-symbols bk[n]. The pseudo-symbols are derived from the original data

symbols αi by a nonlinear mapping.

For the present case of SOQPSK, an important property of the PAM technique

is the following: when (3.5) is approximated with the first two terms in the inner

summation, i.e.

s(t; α) ≈
∑

n

1∑

k=0

bk[n]gk(t − nT ), (3.6)

the pseudo-symbols that remain, b0[n] and b1[n], can be described by the full-

response trellis in Fig. 2.3. Thus, the PAM approximation in (3.6) can be used

to realize 4-state detectors for partial-response SOQPSK (and SOQPSK-TG in

particular). The PAM approximation in (3.6) is composed of two pulses g0(t) and
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g1(t) given as

gk(t) =







c2
0(t), k = 0

c0(t)c0(t + T ), k = 1.

(3.7)

The pulse c0(t) is given by

c0(t) =
L−1∏

i=0

u(t + iT ) (3.8)

where

u(t) =







sin(2πhq(t))/ sin(πh), 0 ≤ t < T

sin(πh − 2πhq(t − LT ))/ sin(πh), LT ≤ t < 2T

0, otherwise.

(3.9)

The PAM-based branch metric increment is given by [19]

zpam(n, [ãn, S̃n]) = Re

[

e−jθ̃n−1

1∑

k=0

yk(n)[βk(α̃n)]∗
]

(3.10)

where (·)∗ is the complex conjugate. The pseudo-symbols βk(·) in (3.10) are listed

in Table 3.1. The sampled matched MF output is

yk(n) =

∫ (n+L+1−k)T

nT

r(t)gk(t − nT ) dt. (3.11)

The hypothesized branch vector [ãn, S̃n] has a one-to-one correspondence with α̃n

and θ̃n−1, as discussed before. In this case, α̃n corresponds to a row in Table 3.1.

The PAM pulses g0(t) and g1(t) are shown in Fig. 3.1(a) for SOQPSK-MIL and

Fig. 3.1(b) for SOQPSK-TG.

Here again, the notation in (3.10) is valid for SOQPSK-MIL and SOQPSK-TG.
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Figure 3.1. The two principal pulses for the PAM representation of
(a) SOQPSK-MIL and (b) SOQPSK-TG.

In the case of SOQPSK-MIL, the exact PAM representation has only R = 2 terms

so the approximation in (3.6) turns out to be exact. Thus, (3.10) is optimal in the

case of SOQPSK-MIL. In the case of SOQPSK-TG, the exact PAM representation

has R = 4374 terms, so (3.6) is truly an approximation and (3.10) results in a

near-optimal detector, as discussed in the next chapter.
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Table 3.1. The relationship between the ternary branch symbol αn,
and the pseudo-symbols βk(αn) for SOQPSK.

αn β0(αn) β1(αn)

-1 exp {−jπ/2} = −j exp {−jπ/4} =
√

2
2

(1−j)

0 1 cos(π/4) =
√

2
2

1 exp {jπ/2} = j exp {jπ/4} =
√

2
2

(1+j)

3.4 2-State Detectors for SOQPSK

In this thesis we develop 2-state detectors for SOQPSK for the first time. As

mentioned earlier, the difficulty with the two state trellis in Fig. 2.4 is that a

one-to-one correspondence between the sign state Sn and the CPM phase state

θn−1 does not exist. Thus, when given the branch vector [ãn, S̃n], there is not

enough information to compute the branch metric updates in (3.4) and (3.10).

This problem is overcome by using decision feedback on a per-survivor basis (i.e.

Per Survivor Processing (PSP) [21]).

As mentioned above, at the end of each time step, a surviving branch is de-

clared at each ending state Ẽn in the trellis. We use α̂n(Ẽn) to denote the symbol

associated with the surviving branch at each ending state Ẽn. In the modified

VA, a cumulative phase θ̂n−1(S̃n) is maintained for each state S̃n in the trellis, in

addition to the above-mentioned cumulative metric λn(S̃n). Once the survivors

have been declared, the cumulative phase for each ending state is updated via the

recursion

θ̂n(Ẽn) =
[

θ̂n−1(S̃n) + πhα̂n(Ẽn)
]

mod 2π. (3.12)

As it turns out, in the case of the 4-state detector the cumulative phase

θ̂n−1(S̃n) is identical to the phase state θ̃n−1 provided the four cumulative phases

are initialized according to (2.13) at the start of the algorithm. This is equivalent
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to saying that, given the proper initialization, the two branches merging at each

ending state in the 4-state trellis will result in the same value for the cumulative

phase. This is true by definition of the phase state in (2.4) and the cumulative

phase in (3.12). Thus, decision feedback does not introduce any sub-optimality

compared to the 4-state detectors.

In the case of the 2-state detector, using θ̂n−1(S̃n) instead of θ̃n−1 does make

the detector suboptimal, but it is a necessary step in order to implement the

detector in the first place. The impact of decision feedback on the performance of

the 2-state detectors is studied in the next chapter.

3.5 Summary

In this chapter we discussed the PAM based detectors for SOQPSK. We also

explained the second approach we have implemented for SOQPSK detection i.e.

PT. We showed how the phase state can be calculated for a 2-state trellis detector

using decision feedback.
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Chapter 4

SOQPSK Performance Analysis

The bit-error probability of SOQPSK in AWGN is described using error events

and minimum distance concepts. The normalized squared Euclidean distance of

CPM is [2]

d2 =
log2 Minfo

2T

∫

|s(t; αTx) − s(t; αRx)|2dt (4.1)

where log2 Minfo is the number of bits per symbol (for SOQPSK we have Minfo = 2).

4.1 Minimum Distance Error Event

The minimum distance error event for the 4-state SOQPSK detectors is where

the transmitted and received bit sequences satisfy

aTx = . . . , ae−1, ae, ae+1, ae+2, ae+3, . . .

aRx = . . . , ae−1, ae, ae+1, ae+2, ae+3, . . .

(4.2)

In words, this is a double bit error event where the first error occurs at some

arbitrary bit location ae and the second error occurs with bit ae+2. When ae+1 = 0,
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the precoded symbol sequences satisfy ±γ0, where

γ0 = αTx − αRx = . . . , 0,−1, 0, +1, 0, . . . (4.3)

and a squared distance of d2
0 results (refer to Appendix IV for an e.g to calculate

the squared distance). When ae+1 = 1, the precoded symbol sequences satisfy

±γ1, where

γ1 = αTx − αRx = . . . , 0,−1,−2, +1, 0, . . . (4.4)

and a squared distance of d2
1 results. These cases are easily verified by examining

the 4-state trellis in Fig. 2.3.

4.2 Additional Error Event for 2-State Detectors

For the 2-state detectors, an additional error event is introduced where the

transmitted and received bit sequences satisfy

aTx = . . . , ae−1, ae, ae+1, ae+2, . . .

aRx = . . . , ae−1, ae, ae+1, ae+2, . . .

(4.5)

In words, this is a double bit error event where the first error occurs at some

arbitrary bit location ae and the second error occurs with the following bit ae+1.

In this case, it is easily verified from Fig. 2.3 that the precoded symbol sequences

satisfy ±γ2, where

γ2 = αTx − αRx = . . . , 0, +1, +1, 0, . . . (4.6)

We denote the squared distance in this case by d2
2.
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4.3 Probability of Bit Error

The PT and PAM approximations discussed earlier result in mismatched detec-

tors [3, 25], i.e. the detector is no longer matched to the transmitted signal. The

mismatched detectors require the analysis to be more intricate. The minimum

distance error event is still given by (4.2), and the 2-state detectors still have the

additional error event (4.5), but instead of having a single distance value in each

case, say d2
0, we get a set of distance values, {d2

0,l}. For example, with SOQPSK-

TG the optimal (fully matched) detector has d2
0 = 1.60 (refer to Appendix IV).

When the 4-state PT detector is used, the distance is slightly influenced by the val-

ues of the bits surrounding the error event on each side, {ae−k}3
k=1 and {ae+k}5

k=3.

This results in a set of distance values {d2
0,l}63

l=0 that are clustered around the

value d2
0 = 1.60 and range from 1.38 to 1.77. The methods for calculating these

distances are discussed in [3, 17,25]

Taking this behavior into account, the final expression for the union bound on

the bit-error probability of the 4-state detectors is

Pb,4 ≤
1

|d0,l|
∑

{d2

0,l
}

Q

(√

d2
0,l

Eb

N0

)

+
1

|d1,l|
∑

{d2

1,l
}

Q

(√

d2
1,l

Eb

N0

)

(4.7)

where Eb/N0 is the bit energy to noise ratio, | · | denotes the cardinality (number

of elements) of a given set, and

Q(x) =
1√
2π

∫ ∞

x

e−u2/2du. (4.8)

For example, with the MF detector for SOQPSK-MIL, we have singleton sets of

d2
0 = 1.73 and d2

1 = 2.36, so (4.7) simplifies to a summation of only two terms. In
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Figure 4.1. Range of distances for 2-state SOQPSK-MIL PAM-
based detector.

the case of SOQPSK-TG, (4.7) contains the 128 terms in {d2
0,l}63

l=0 and {d2
1,l}63

l=0

that are clustered around the values d2
0 = 1.60 and d2

1 = 2.59.

Table 4.1. Range of distance values in the set {d2
2,l} for the 2-state

SOQPSK detectors.

Configuration min
l

{
d2

2,l

}
max

l

{
d2

2,l

}

MIL-MF (d2
0 = 1.73) 2.00 2.00

MIL-PAM (d2
0 = 1.73) 2.83 3.03

TG-PT (d2
0 = 1.60) 1.71 2.23

TG-PAM (d2
0 = 1.60) 2.57 3.35

30



0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

l

N
or

m
al

iz
ed

 s
qu

ar
ed

 E
uc

lid
ea

n 
di

st
an

ce

 

 

d2
2,l

d2
0

Figure 4.2. Range of distances for 2-state SOQPSK-TG PT-based
detector.

4.4 Simulation Results

For the 2-state detectors, the bit-error probability is the same as that of the

4-state detectors but with an additional summation, i.e.

Pb,2 ≤ Pb,4 +
1

|d2,l|
∑

{d2

2,l
}

Q

(√

d2
2,l

Eb

N0

)

. (4.9)

Since (4.7) and (4.9) differ only by the terms introduced by the additional merger

in (4.5), the values in {d2
2,l}, which are summarized in Table 4.1, are the key

to quantifying the performance of the 2-state detectors relative to the 4-state

detectors. The first observation from Table 4.1 is that, with all four of the 2-state

configurations, the distances in {d2
2,l} exceed the value of d2

0, i.e. the minimum

distance is not worsened by the 2-state detectors. This means that the 2-state
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Figure 4.3. Range of distances for 2-state SOQPSK-TG PAM-based
detector.

detectors each have a performance that is asymptotically equivalent (large Eb/N0)

to their 4-state counterpart. The second observation from Table 4.1 is that the

PAM-based detectors have values in {d2
2,l} that are far greater than d2

0, while

the MF and PT detectors have values that are relatively close to d2
0; thus, even

for moderate ranges of Eb/N0 we would expect the PAM-based detectors to have

performance identical to the 4-state detectors, while the MF and PT detectors

should have minor losses for moderate values of Eb/N0. Figures 4.1 and 4.3

support the fact that, for the PAM-based detectors the range of distances are

far away from the minimum distance, hence has little effect on the performance.

Where as refering to Figure 4.2 we can see that the distance values for SOQPSK-

TG PT remains closer to the minimum distance, hence having a greater effect on

performance resulting in minor losses. We present the simulation results next to
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support the performance of the simplified detectors.

There are two modulation types (SOQPSK-MIL and SOQPSK-TG), two trel-

lis sizes (2-state and 4-state), and two branch metric types (MF or PT, and PAM)

that have been discussed above. This yields a total of eight detector configurations.

Fig. 4.4 shows performance curves for the four SOQPSK-MIL configurations. In

the low Eb/N0 region of the figure, the 2-state union bounds given by (4.9) are

not necessarily tight with respect to the simulation points (shown as points only,

with no connections between points); however, the union bounds and the simu-

lation points show close agreement rapidly as Eb/N0 increases. Furthermore, the

results anticipated in the previous section are confirmed. The 2-state PAM-based

detector shows no observable degradation with the 4-state detector (across the

entire simulation range of Eb/N0), while the 2-state MF-based detector shows a

slight performance degradation that narrows and is near zero at the large end of

the simulated Eb/N0.

Fig. 4.5 shows performance curves for the four SOQPSK-TG configurations.

As with the previous figure, the 2-state union bounds and the simulation points

show close agreement rapidly as Eb/N0 increases. Also, the 2-state PAM-based

detector shows no observable degradation with the 4-state PAM detector, while

the 2-state PT-based detector has a slight performance degradation with respect

to the 4-state PT-based detector. Even in the 4-state case, the PAM technique

has a 0.1 dB inherent advantage over the PT technique, as originally reported

in [19].
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4.5 Summary

We successfully built the 2-state PAM and PT based detectors for SOQPSK-

MIL and SOQPSK-TG.
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Chapter 5

PCM/FM Detection

Now that we have given the SOQPSK detectors and their performance analysis,

we will study PCM/FM receiver design and then the performance of the detec-

tors [4]. The signal model and the equivalent PAM decomposition for PCM/FM

were explained in section 2.3. The PAM approximation helps to derive low-

complexity detectors.

5.1 Receiver Design

The received signal is represented using

r(t) = s(t; α) + w(t) (5.1)

where w(t) is additive white Gaussian noise (AWGN) with power spectral density

N0.

Our main goal in working with PCM/FM detectors is to develop a simplified

detector with no states. We will also compare the performance of 2 and 4 state

detectors with that of 0-state detector. As mentioned earlier, with PAM decom-
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Figure 5.1. Magnitude frequency response for WMF Hwmf(f) with
h = 0.7 and for SRC filter with roll-off factor of 0.2.

position the nonlinear CPM signal is transformed into a linear modulation over

an intersymbol-interference (ISI) channel. To get rid of the ISI we resort to a

Decision Feedback Equalizer (DFE) [6]. We explain the DFE as we move on in

this chapter.

The receiver input filter is desired to have a square-root Nyquist frequency

response [20] to achieve the ISI suppression. A whitened matched filter (WMF)

matches this condition. Applying the PAM approximation (7.21) and received

signal model (5.1), the frequency response of the whitening matched filter (WMF)

can be written as

Hwmf(f) =
P (f)

√
∑∞

n=−∞ |P (f − n/T )|2
(5.2)
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     r(t)            t=nT          r[n]                        y[n] 
p(t) WF

Figure 5.2. Receiver design for PCM/FM using WF.

where P (f) is the Fourier transform of the main PAM pulse p(t). Since p(t) de-

pends on the modulation index h, the WMF depends on the modulation index as

well. Recall from Chapter 1 that typical PCM/FM transmitters have some varia-

tion in their modulation index due to antiquated analog circuitry. In Figure 5.1 we

show the response of an off-the-shelf square-root cosine (SRC) filter with impulse

response hsrc(t). We note that the WMF and SRC filters have similar frequency

response. We can use the SRC filter as the receiver filter to avoid the variations

of WMF with h. However we discuss both of these approaches here.

5.2 Reduced State Sequence Detection (RSSD)

The overall receiver design with the whitening filter is shown in Figure 5.2.

The received signal is passed through the main pulse p(t) and sampled at the

symbol-rate, i.e.

r[n] = r(t) ∗ p(t)|t=nT =

qhc∑

l=0

hc[l]b[n − l] + w[n] (5.3)
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where hc[n] is the discrete-time channel impulse response

hc[n] = p(t) ∗ p(t)|t=nT , 0 ≤ n ≤ qhc
(5.4)

of order qhc
. The pseudo-symbols b[n] were discussed in Equations (2.15) and (7.20)

The noise w[n] in (5.3) is correlated due to the shape of p(t). Then the sampled

received signal is passed through the whitening filter (WF) to make the resulting

noise uncorrelated. The WF is given below

WF(n) =
1

31.5336

[
1

1.8226
(−0.5487)(n) − 1

33.3562
(−0.03)(n)

]

(5.5)

where −8 ≤ n ≤ 0. We developed the WF for PCM/FM using the main PAM

pulse p(t) with the modulation index being the nominal PCM/FM value h = 7/10.

We will explain the construction of the whitening filter in Appendix III. It can

be noted that changing the pulse shape and the modulation index results in the

change of the whitening filter shown above. Equation (5.3) gives a very good

approximation of the received signal. After passing the sampled received signal

through the whitening filter the received sequence y[n] looks like

y[n] = r[n] ∗ WF[n] =

qh0∑

l=0

h0[l]b[n − l] + v[n] (5.6)

where the overall impulse response is given by

h0[n] = hc[n] ∗ WF[n] (5.7)

of order qhc
= 2.

The overall receiver design with SRC filter is shown in Figure 5.3. Using
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     r(t)            t=nT          r[n]                        y[n] 
hSRC(t) f[n]

Figure 5.3. Receiver design for PCM/FM using hsrc(t).

the second approach with the SRC filter, sampling r(t) at symbol-rate yields the

approximation

r[n] = r(t) ∗ hsrc(t)|t=nT =

qhc∑

l=0

hc[l]b[n − l] + w[n] (5.8)

where the discrete-time channel impulse response is given by

hc[n] = p(t) ∗ hsrc(t)|t=nT , 0 ≤ n ≤ qhc
(5.9)

here w[n] is filtered additive white Gaussian Noise (AWGN). The overall impulse

response in this case is given by

h0[n] = hc[n] ∗ f [n] (5.10)

where f [n] is the feedforward filter (FFF) for the minimum mean-square error

(MMSE) decision feedback equalizer (DFE) [6]. The implementation of f [n] is

explained in [6]. This filter gives a minimum-phase overall impulse response to

obtain a high performance with RSSD. The filtered received sequence y[k] is given
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by

y[n] = r[n] ∗ f [n] (5.11)

The trellis state can be defined as a vector ã[n] = [ã[n] . . . ã[n − ns + 1]] of ns

hypothetical data symbols ã[n]. Then we have 2ns states, where ns is a design

parameter. We also have a vector b̂[n] = [b̂[n − ns] . . . b̂[n − qh0
+ 1]] associated

with each state (b̂[n] = b̂[n − ns] if ns ≥ qh0
). We apply decision feedback on a

per-survivor basis to determine the symbols b̂[k].

We use a trellis diagram with 2ns states. Since we are implementing the VA,

we compute the branch metric using

z

(

n,

[

ã[n − 1], ã[n]

])

=

∣
∣
∣
∣
d[n] −

ns∑

l=0

h0[l]b̃[n − l]

∣
∣
∣
∣

2

(5.12)

where

d[n] = y[n] −
qh0∑

l=ns+1

h0[l]b̂[n − l] (5.13)

and

b̃[n − l] = b̂[n − ns − 1] exp

(

jπh
n−1∑

k=n−ns

ã[k]

)

(5.14)

for 0 ≤ l ≤ ns. For ns = 0 the decision rule simplifies to

â[n] = arg max
ã[n]

Re
{

d∗[n]b̂[n − 1]ejπhã[k]
}

(5.15)

Then the cumulative metric is calculated as explained for SOQPSK. The VA

has already been discussed in detail while discussing the SOQPSK results.
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5.3 Summary

Here in this chapter we explained the simplified PCM/FM signal model. We

explained the reduced complexity PAM based detectors for PCM/FM using two

approaches, the SRC filter and the whitening filter. We also explained the VA

for PCM/FM detection. We explained the special case of PCM/FM detector the

number of states is reduced to zero.
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Chapter 6

PCM/FM Results

The bit-error rate (BER) of the optimal detector for PCM/FM is given by

Pb ≈ Q

(√

d2
Eb

N0

)

(6.1)

where d2 = 2.60 (BPSK has d2 = 2.0. A distance greater than 2.0 is achieved

because of the coding gain and memory involved in CPM). The minimum distance

error event for PCM/FM detectors is where the transmitted and received symbol

sequences satisfy

αTx = . . . , αe−1, αe, αe+1, αe+2, . . .

αRx = . . . , αe−1, αe, αe+1, αe+3, . . .

(6.2)

The symbol sequences satisfy ±γ (refer to Appendix IV), where

γ = αTx − αRx = . . . , 0,−2, +2, 0, . . . (6.3)
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Figure 6.1 shows the performance for the PAM decomposition based detectors. We

can see that as we increase the number of trellis states the BER approaches the

optimal detector performance for large Eb/N0. 4-state detector using both SRC

filter as well as the combination of p(t) and WF gives a very good performance

comparable to that of the optimal detector. By increasing the states of the trellis

beyond 4, we did not find much of change in the performance of the detector. Also

it makes the detector design more complicated and our aim is to design a simple

detector. The optimal detector for PCM/FM used 20 states and 8 MFs. So we

have discussed the performance of the detectors with 0 state, 2 states and 4 states.

The 0-state detector has the obvious advantage of reduced complexity detection,

but it suffers a 2 dB loss compared to the optimal detector. The 2-state detector

gives a performance within 1 dB of the optimal detector. The performance of the

4-state detector is interesting. The complexity of the receiver is decreased with a

performance close to the optimal detector. Also the 4-state detectors shows a 3–4

dB improvement compared to the FM demodulator.

6.1 Summary

We successfully developed 0, 2 and 4 state PAM based detectors for PCM/FM.

We compared the performance of the reduced complexity PAM based detectors

with the optimal detector (which has 20 states and uses 8 MFs). We see that

4-state detectors gives a performance that matches that of the optimal detectors

for higher Eb/N0.
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Chapter 7

Conclusion

We have successfully developed reduced-complexity detectors for CPM signals,

namely SOQPSK and PCM/FM using the PAM decomposition. Detectors using

pulse truncation (PT) were also developed for SOQSPK signals. The performance

analysis for SOQSPK show that 2-state detectors have performance that is asymp-

totically equivalent to their 4-state counterparts. This is a satisfying result due to

the minimal 2-state level of complexity achieved by these detectors. We also suc-

cessfully developed a 0-state detector for PCM/FM, but it did not perform as well

as we hoped. It suffers a 2 dB loss compared to the optimal detector. The PAM

decomposition based 2-state detector for PCM/FM gives good performance, it is

1 dB inferior to the optimal detector. But the 4-state trellis based detectors not

only reduces the complexity of PCM/FM detectors but gives a near optimal per-

formance, within 0.4 dB of the optimal detector. These simple detection schemes

are applicable in settings where high-performance and low complexity are needed

to meet restrictions on power consumption and cost.
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Appendix I - Optimal Detector

Complexity

The modulation index for CPM is given by h = k/p. The state of a CPM

signal is specified by

σ = [θn−L, αn−L+1, . . . , αn−1]. (7.1)

The number of states in the trellis is p · ML−1 from p cumulative phase states

and ML−1 symbol combinations resulting from (L − 1)- tuple. Since each state

is associated with M possible branch symbols, the number of branches in p ·ML.

The number of matched filters is given by ML. For e.g., PCM/FM has p = 20,

L = 2 and M = 2. So we have 20 · 22−1 = 20 trellis states and 2 · 22 = 8 MFs.
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Appendix II - 2-state trellis

This proof is based on [15] The double differential encoder can be implemented

as shown below. A differentially encoded sequence b can be derived from the

original data sequence a by the operation [15]

bn = an ⊕ bn−1, where an, bn ∈ {0, 1}, n ∈ {0, 1, 2, . . .}. (7.2)

If b undergoes another differential encoding operation, we obtain

un = bn ⊕ un−1 (7.3)

and u is double differentially encoded [24] sequence. Combining equations (7.2)

and (7.3) we get

un = an ⊕ bn−1
︸ ︷︷ ︸

bn

⊕ bn−1 ⊕ un−2
︸ ︷︷ ︸

un−1

= an ⊕ un−2 (7.4)

The double differential encoding rule in (7.4) can be summarized as “change phase

on 1” since an input an = 1 causes the output value to change relative to the second

previous value. A Boolean variable un ∈ {0, 1} can be converted to antipodal
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variable ûn ∈ {±} by

ûn = 2un − 1. (7.5)

or

−ûn = (−1)un (7.6)

Also, the double differential encoder in (7.4) for antipodal bits is given as

ûn = (−ân) · ûn−2, ân, ûn ∈ {±} (7.7)

where “change phase on 1” rule holds good. For antipodal bits we have precoding

operation as

αn =
1

2
(−1)n+1ûn−1(ûn − un−2). (7.8)

From equation (7.7) the above precoding equation reduces to

αn =
1

2
(−1)n+1ûn−1( ûn

︸︷︷︸

−ânĉn−2

−ĉn−2)

= (−1)n+1 −ân − 1

2
︸ ︷︷ ︸

−an

ĉn−1ĉn−2

= (−1)nanûn−1ûn−2 (7.9)

using (7.5) and (7.7) as well. Substituting (7.7) recursively

ûn−1ûn−2 =
n−1∏

i=−∞
(−âi)

=
n−1∏

i=−∞
(−1)an

= (−1)
∑n−1

i=−∞
ai (7.10)

50



Hence (7.8) becomes

αn = (−1)n+
∑n−1

i=−∞
aian

= (−1)Snan (7.11)

where the sign state Sn is given by

sn+1 = (Sn + an + 1)mod2

= (Sn + αn + 1)mod2 (7.12)
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Appendix III - Whitening Filter

Design

The received signal coming out of p(t) has correlated noise. The whitening

filter design is explained below. The sampled autocorrelation of the main pulse

p(t) is

pd[n] = p(t) ∗ p(t)|t=nT . (7.13)

The Z-transform of pd[n] can be represented as

P (Z) =
L∑

n=−L

pd[n]z−n (7.14)

which can be expressed in factor form [20]

P (Z) = F (z) ∗ F ∗(z−1) (7.15)

where F (z) is a polynomial of degree L having the roots ρ1, ρ2, . . . , ρL and F ∗(Z−1)

is a polynomial of degree L having the roots 1/ρ∗
1, 1/ρ

∗
2, . . . , 1/ρ

∗
L. The desired

whitening filter has a transform 1/F ∗(z−1). We choose 1/F ∗(z−1) that has anti-

causal impulse response with poles of X(Z) outside the unit circle. The filter in
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our case with L = 2 reduces to

P (Z) =
2∑

n=−2

pd[n]z−n = (a2z
−2 + a1z

−1 + 1)(a2z
2 + a∗

1z + 1) (7.16)

we use the assumption |a| < 1 and choose F (z) = az−1+1. We obtain a transversal

filter with three taps f0 = 1, f1 = a1 and f2 = a2.

For PCM/FM we can express the Z-transform of the autocorrelation of p(t) as

P (Z) = (0.0164z−2 + 0.5786z−1 + 1)(0.0164z2 + 0.5786z + 1) (7.17)

giving F (z) = 0.0164z−2 + 0.5786z−1 + 1 and F ∗(z−1) = 0.0164z2 + 0.5786z1 + 1.

We need to find the filter 1/F ∗(z−1). From 7.17 we have

1/F ∗(z−1) =
1

0.0164z2 + 0.5786z1 + 1
=

1

(z1 + 33.3562)(z1 + 1.8226)
(7.18)

Using the residue theorem and taking inverse Z-transform the impulse response

of the whitening filter can be approximated as

WF(n) =
1

31.5336

[
(−0.5487)n

1.8226
− (−0.03)n

(33.3562)

]

(7.19)

The whitening filter can be tested by giving AWGN input and checking the

autocorrelation of the noise coming out of WF. Figures 7.1, 7.2 and 7.3 show

the autocorrelation of the main pulse p(t) autocorrelation of noise after passing

through the main pulse p(t), and the finally the sampled autocorrelation output

coming out of the WF. The autocorrelation being a delta function confirms the

whitening property of the designed filter.
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Figure 7.1. Autocorrelation of main pulse p(t).
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Figure 7.2. Autocorrelation of AWGN passed through p(t).
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Figure 7.3. Autocorrelation of the sampled autocorrelation after
passing through WF.
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Appendix IV - Example to

calculate the squared distance

For SOQPSK-MIL, we can find the minimum distance as given below(refer to

Equations (2.1), (2.2), (4.1))

αTx = [0 0 0]

αRx = [1 0 − 1]

s(t; αTx) = exp(jφ(t; αTx))

s(t; αRx) = exp(jφ(t; αRx))

where

φ(t; αTx) = 2π · 1

2
(0 + 0 + 0)

and

φ(t; αRx) = 2π · 1

2
(q(t − T ) + 0 − q(t − 2T ))

d2
0 =

log22

2T

∫

(|s(t; αTx − s(t; αRx)|2dt

gives d2
0 = 1.73.
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With precoded symbol sequences

αTx = [0 0 0]

αRx = [1 0 − 1]

we obtain a minimum distance of d2
0 = 1.60 for SOQPSK-TG.

In case of PCM/FM, with symbol sequences given by

αTx = [1 − 1 1 1]

αRx = [1 1 − 1 1]

we obtain a minimum distance of d2
0 = 2.60.
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Appendix V - Laurent’s

Approximation

A detailed proof can be found in [12,18]. We have

s(t; α) =
∑

n

1∑

k=0

bk[n]ck(t − nT ) (7.20)

and

s̃(t; α) ≃
∑

n

b[n]p(t − nT ). (7.21)

We can find the normalized Mean Squared Error (MSE) using

σ̃2 ,

∫ T

0
E{|s̃(t; α) − s(t; α)|2}dt

∫ T

0
E{s(t; α)dt}

(7.22)

=
1

T

∫ T

0

E{|s̃(t; α − s(t; α)|2}dt. (7.23)

We have to minimize the above equation by minimizing the integrand

σ2 = E{|s̃(t; α − s(t; α)|2}dt. (7.24)
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We then set the derivatives of p(t) equal to zero to obtain the desired Laurent’s

approximation.
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