Addressing Spectrum Congestion by Spectrally-Cooperative Radar Design

Peng Seng Tan Electrical Engineering & Computer Science Department University of Kansas

Ph.D. Dissertation Oral Defense

Scope of Presentation

- Introduction
 - Motivation
 - Categories of current solutions/approaches
- Proposed Solution (2-step approach)
 - Spectrally Efficient Waveform Design
 - Results from this step
 - Sparse Spectrum Allocation using Information Theory
 - Results from this step
- Applications of results to Radar System Implementation
- Conclusion

Scope of Presentation

- Introduction
 - Motivation
 - Categories of current solutions/approaches
- Proposed Solution (2-step approach)
 - Spectrally Efficient Waveform Design
 - Results from this step
 - Sparse Spectrum Allocation using Information Theory
 - Results from this step
- Applications of results to Radar System Implementation
- Conclusion

Motivation: Resolving Spectrum Congestion issues

- Rise in demand for Radio Frequency (RF) spectrum in recent years in wireless communications due to increase in demand in:
 - Mobile Telephony services such as FaceTime and Skype
 - Cable/Satellite TV streaming
 - 5th Generation Mobile Telecommunications Protocol
 - Internet of Things (IOT)
- This imposes a strain on current radar systems who maintains largest share of RF spectrum

Motivation: Resolving Spectrum Congestion issues

- Leads to Spectrum Congestion issues and rise of Mutual Interference among systems (e.g. radar versus cell phone) who need to coexist within finite spectrum allocation, i.e. Spectrum Sharing
- Main initiative to resolve these challenges rests within the radar community
- Question Posed: Does Radar needs all these spectrum to be fully filled or can it be just partially filled in an optimal manner ?

Current Approaches

- Presently, resolving the issues associated with spectrum sharing can be broadly classified into 3 categories:
 - Category 1: Design of Cognitive Radio to ensure radar's performance is not degraded
 - Category 2: Design of Cognitive Radar as main party responsible in interference mitigation
 - Category 3: Joint design of both Cognitive Radio/Radar spectrum allocation and waveforms
- These categories have also been given acronyms such as the "Three 'A's of Communications – Radar Spectrum Sharing : Avoid, Accept and Amalgamate"

Scope of Presentation

- Introduction
 - Motivation
 - Categories of current solutions/approaches
- Proposed Solution (2-step approach)
 - Spectrally Efficient Waveform Design
 - Results from this step
 - Sparse Spectrum Allocation using Information Theory
 - Results from this step
- Applications of results to Radar System Implementation
- Conclusion

- Dissertation research is on developing a 2-step approach grouped under the 2nd category of Cognitive Radar
- Step 1 involves the design of a Spectrally Efficient Radar Transmit waveform so as to minimize mutual interference:
 - Built on the existing framework of Poly-phased Coded Frequency Modulated (PCFM) waveforms
- Step 2 involves the design of a Sparse Spectrum Allocation algorithm so as to reduce radar's spectrum usage while maintaining range resolution performance
 - An alternative approach to Sparse Frequency Waveform design

Overall Problem Formulation

• The next few slides provides some description of the Proposed Solution achieved via the 2-step approach

Ph.D. Dissertation Oral Defense

- Question: Can we build a radar transmit signal that does not fully utilize the allocated spectrum ?
- How do we evaluate its performance ?
- How do we process this type of sparse radar transmit signal ?

Overall Problem Formulation

• We are going to represent the spectrum by *N* number of spectral lines, for instance, CW tones or Pulsed Radar

Ph.D. Dissertation Oral Defense

 Let this group of N spectral lines represent an array of N radarlets starting with no bandwidth (e.g. CW tones)

We are going to thin the radarlets from N to K radarlets.
 The net spectrum usage will be the ratio (K / N)

- The locations of the K resulting spectral lines are not confined to integer multiple of the Pulse Repetition Frequency so as to increase the degrees of freedom for the optimization process
- How do we design such a sparse radarlet array ?
- What optimality criteria do we use to determine the locations of this sparse radarlet array ?

• We are going to modulate each of the *K* radarlet so that each radarlet will posses a finite bandwidth

• The modulated radar waveform for each radarlet should provide good spectral containment properties

- Thus, in addition to determining the locations of the sparse radarlet array, we also want to confine the spectral content of each radarlet
- This will ensure that the spectral content of each radarlet will not leak into the spectrum of other systems to become interference signals
- Need to select the type of radar waveform that is both spectrally well-contained as well as other properties like low side-lobe performance

Scope of Presentation

- Introduction
 - Motivation
 - Categories of current solutions/approaches
- Proposed Solution (2-step approach)
 - Spectrally Efficient Waveform Design
 - Results from this step
 - Sparse Spectrum Allocation using Information Theory
 - Results from this step
- Applications of results to Radar System Implementation
- Conclusion

Higher-order PCFM

Problem Setup

Background

- Polyphase-coded Frequency Modulated (PCFM) radar waveforms are realized by a variant of Continuous Phase Modulation (CPM) signals from communications
 - Converts an arbitrary polyphase code into a physically-realizable FM waveform
- PCFM waveforms are:
 - Spectrally efficient phase is continuous and differentiable thus providing good spectral containment
 - Power efficient constant modulus
 - Able to achieve low autocorrelation sidelobes relative to timebandwidth (*BT*) product where *B* is the 3 dB bandwidth

- Previous research demonstrated PCFM waveforms generated from Polyphase codes akin to first-order hold in phase (where traditional codes represent a zero-order hold)
- In my research, I have investigated the Higher-order PCFM waveform implementation as the prospective benefits are:
 - Offers additional degrees-of-freedom (DOF) in waveform design without any increase in the *BT* product
 - Higher-order terms produce smoother phase trajectory, maintaining good spectral containment
 - Allows for the possibility to combine multiple orders to obtain even lower autocorrelation sidelobes

Higher-order PCFM Waveform

 As an example, let's examine the plots of instantaneous frequency and phase of a LFM signal generated using first-order PCFM waveform versus second-order PCFM waveform

Ph.D. Dissertation Oral Defense

1st Order Implementation

• The 1st order PCFM implementation to realize phase function $\phi_1(t)$:

$$\chi_{1}(t) = \sum_{n=1}^{N} a_{n} g_{1} \left(t - (n-1)T_{p} \right)$$
$$\phi_{1}(t) = \int_{0}^{t} \chi_{1}(t') dt' + \overline{\phi}_{1}$$

- $\chi_1(t)$ is the 1st order coded function produced by the *N* "**phase change**" **code** values a_n
- $g_1(t)$ is a shaping filter (e.g. rectangular)
- T_p is the duration of one phase change
- $\overline{\phi_1}$ is the initial phase value (arbitrary)

2nd Order PCFM Implementation

• Generalize to 2^{nd} order PCFM implementation for phase function $\phi_2(t)$:

$$\chi_2(t) = \sum_{n=1}^{N} b_n g_2(t - (n-1)T_p)$$

$$\phi_{2}(t) = \int_{0}^{t} \int_{0}^{t'} \chi_{2}(t'') dt'' dt' + \int_{0}^{t} \overline{\omega}_{2} dt' + \overline{\phi}_{2}$$

- $\chi_2(t)$ is the 2nd order coded function produced by *N* "frequency change" code values b_n
- $g_2(t)$ is a shaping filter
- $\overline{w_2} \& \overline{\phi_2}$ are initial frequency & phase

Relationships between different orders of PCFM

• For instance, we can generate an exact LFM waveform of BT = 100 using either 1st, 2nd or 3rd order of implementations

TECHNOLOGY CENTER

The University of Kansas

Multi-Order PCFM Implementation

• The 1st and higher orders of implementation can also be combined to become a multiple-order of implementation

$$\phi_{321}(t) = \int_{0}^{t} \chi_{1}(t') dt' + \int_{0}^{t} \int_{0}^{t'} \chi_{2}(t'') dt'' dt' + \int_{0}^{t} \int_{0}^{t'} \int_{0}^{t'} \chi_{3}(t''') dt''' dt'' dt'' + \int_{0}^{t} \overline{\beta}_{321} dt'' dt' + \int_{0}^{t} \overline{\beta}_{321} dt'' dt' + \int_{0}^{t} \overline{\beta}_{321} dt' + \overline{\phi}_{321}$$

Ph.D. Dissertation Oral Defense

Higher-Order Optimization Process

- When performing optimization for higher-order implementation such as second, third, fourth etc., the *Frequency Template Error (FTE)* metric is used to maintain spectral containment
- The greedy optimization approach denoted as "performance diversity" combining PSL, ISL & FTE metrics is used to optimize the higher-order PCFM codes
 - Multiple metrics help to avoid local minima via greedy search
 - Global optimality not guaranteed, but finds "good enough" local optimality
- When combining multiple orders, optimization may be performed jointly (i.e. simultaneously), or sequentially across the different orders

Higher-order PCFM

Simulation Results

2nd order PCFM (Standalone)

• Let's examine the $1^{st} \& 2^{nd}$ order PCFM implementations after optimization for BT = 100

Autocorrelation of $1^{st} \& 2^{nd}$ order optimized waveforms with BT = 100

Spectral Content of $1^{st} \& 2^{nd}$ order optimized waveforms with BT = 100

Ph.D. Dissertation Oral Defense

3rd order PCFM (Standalone)

Likewise, we examine the 1st & 3rd order PCFM implementations after optimization

Autocorrelation of $1^{st} \& 3^{rd}$ order optimized waveforms with BT = 100

Spectral Content of $1^{st} \& 3^{rd}$ order optimized waveforms with BT = 100

Ph.D. Dissertation Oral Defense

Instantaneous Freq. of Standalone PCFM

 Let's also examine the Instantaneous frequency of 1st, 2nd & 3rd order PCFM implementations after optimization

Summary of Individual Optimization Performance

- PSL and ISL values for optimizing BT = 100 waveforms for 1st, 2nd & 3rd order representations
 - Note: individually optimized (i.e. not combined with other orders)

	1 st order	2 nd order	3 rd order	HFM bound		
PSL (dB)	-43.4	-46.0	-38.1	-43.0		
ISL (dB)	-59.5	-63.5	-57.4			
Original PCFM implementation						

PSL & ISL for 1^{st} , 2^{nd} & 3^{rd} order optimized waveforms for BT = 100

Useful benchmark: hyperbolic FM (HFM) bound on PSL: – 20 log₁₀(BT) – 3 dB

T. Collins & P. Atkins, "Nonlinear frequency modulation chips for active sonar" *IEEE Proc. Radar, Sonar & Navigation, Dec* 1999.

Multi-order PCFM (Combination)

 Let's examine the joint optimization of (3rd+2nd+1st) orders versus (2nd+1st) orders

Instantaneous Freq. of Multi-order PCFM

Let's also examine the Instantaneous frequency of these multi-order PCFM implementations after optimization

Instantaneous frequency of jointly 1st, 2nd & 3rd order versus of jointly 1st & 2nd order optimized waveforms

Multi-order PCFM (Combination)

 We also examine the ambiguity plots of these two multiorder PCFM waveforms

Summary of Multi-Order Performance

- The ordering of sequential optimization was based on the observation of how much each contributes to sidelobe reduction individually
- Based on these results, joint optimization appears marginally superior to sequential optimization for the multi-order PCFM implementations

	Joint 1 st & 2 nd	Joint 1 st , 2 nd	Seq. 1 st & 2 nd	Seq. 1 st , 2 nd &
	orders	& 3 rd orders	orders	3 rd orders
PSL (dB)	-51.1	-51.1	-50.7	-51.2
ISL (dB)	-66.4	-67.9	-66.0	-66.8

PSL & ISL for sequential and joint optimization of multiple orders for BT = 100

Scope of Presentation

- Introduction
 - Motivation
 - Categories of current solutions/approaches
- Proposed Solution (2-step approach)
 - Spectrally Efficient Waveform Design
 - Results from this step
 - Sparse Spectrum Allocation using Information Theory
 - Results from this step
- Applications of results to Radar System Implementation
- Conclusion

Sparse Spectrum Allocation Problem Setup

- Let's view all the frequencies as measurements taken by the K radarlets in frequency domain
- The frequency measurements can be represented by the following measurement model:

$$\mathbf{v} = \mathbf{H}\mathbf{\gamma} + \mathbf{n}$$
$$\mathbf{H} = [\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_i, \dots], i = 1 \dots M$$

- H is the linear operator that relates the radar propagation to the resolution cell γ_i and back to the receiver
- This is the well known Linear model

Cramèr-Rao Bound (CRB)

- We want to perform estimation of the radar range profile $\mathbf{\gamma} = [\gamma_1, \gamma_2, \dots, \gamma_m]$ from measurements made by the radarlet array
- Now, CRB provides a lower bound on estimation error variance for any unbiased estimator
- Also, CRB is equal to the inverse of the Fisher Information matrix **J** of the measurements:

$$\mathbf{J} = \left(\mathbf{H}'\mathbf{K}_n^{-1}\mathbf{H} + \mathbf{K}_{\gamma}^{-1}\right)$$

 $\mathbf{K}_{\mathbf{y}}$: A prior Covariance matrix of the vector \mathbf{y}

 K_n : Noise Covariance matrix due to to the measurements noise vector **n**

- For an efficient estimator such as the Minimum Mean Square Error estimator (MMSE), when applied to a Linear model, the error covariance K_{ε} will be equal to the CRB
- Next, let's denote the Fisher Information matrix from K radar frequency measurements as J_K
- Also, let's denote the Fisher Information matrix from (K-1) radar frequency measurements as J_{K-1}

 Therefore, for the kth frequency measurement, the Marginal Fisher Information (MFI) matrix is defined as the nonnegative definite matrix ΔJ(K):

$$\Delta \mathbf{J}(K) = \mathbf{J}_{K-1}^{-1} - \mathbf{J}_{K}^{-1}$$

• From $\Delta J(K)$, the MFI computed from the k^{th} frequency measurement is given as:

$$MFI = \frac{1}{M} \times Tr\left(\Delta \mathbf{J}(K)\right)$$
$$= \frac{1}{M} \times \left[Tr(\mathbf{J}_{K-1}^{-1}) - Tr\left(\mathbf{J}_{K}^{-1}\right)\right]$$
$$= \frac{1}{M} \times \left[Tr(\mathbf{K}_{\varepsilon(K-1)}) - Tr(\mathbf{K}_{\varepsilon(K)})\right]$$

Ph.D. Dissertation Oral Defense

- The MFI can be viewed as a measure of the unique or new information provided after adding the kth measurement
- The new information will help to further reduce the uncertainty in estimating the radar range profile γ
- In another words, the error variances within $K_{\ensuremath{\mathcal{E}}}$ will be reduced with the new information

Sparse Spectrum Allocation

- Assuming that the contiguous spectrum consists of N radar frequencies & using the MFI as an optimization metric, a Sparse Spectrum Allocation algorithm can be developed for determining:
 - Locations of K out of N possible radarlet frequencies (K < N) that provides the least estimated error variances for that value of K
 - Optimization process (OP) is performed for one frequency at a time and will complete one iteration when all K radarlet frequencies are determined
 - OP can also be performed for one group of Q frequencies at a time (K = P x Q) and will complete one iteration when all P groups of radarlet frequencies are determined

- The algorithm will continue in its iterations until no single frequency location or a group of frequency locations can be changed further to obtain additional MFI
- The spectrum corresponding to the remaining (N K) radar frequencies can then be released for reuse

Sparse Spectrum Allocation

Simulation Results

Sparse Spectrum Allocation (SSA) Results

 Using the MFI measure as the metric of optimization, the sparse frequency array obtained for single frequency location insertion (1st approach) is as shown below for 50% spectrum usage

Coarrays from Sparse frequency array and Uniformly-spaced frequency array

Matched Filter Response of SSA Results

- To investigate the estimation error variances obtained using the previous sparse frequency array, we perform a Matched Filter operation
- Resulting plot is analogous to beam pattern obtained using Delay-Sum beamformer as weight vector
- Although it has higher sidelobes compared to uniformlyspaced sampling, but there are no grating lobes

Matched Filter response from Sparse frequency array versus Uniformly-spaced frequency array

ISL of SSA Results versus Randomly-spaced

- Next, the Integrated Sidelobe level (ISL) obtained from the SSA is benchmarked against that obtained from a randomlyspaced frequency array
- Results obtained from 10000 trials of randomly-spaced frequency array are plotted using a histogram
- The ISL obtained from SSA is at least 13 σ away from the mean value of the randomlyspaced frequency array

Error variances from Sparse frequency array versus randomly-spaced frequency array

SSA Results (Block implementation)

 To improve the utilization of the unused spectrum, the K radarlet frequencies is grouped into frequency blocks of equal sizes (2nd approach) and results are shown below for 50% spectrum usage

SSA Results (Block implementation)

- Likewise, we perform the Matched Filter operation on the results obtained using the approach of frequency block implementation
- Compared to using single frequency insertion, the block implementation suffers from additional PSL and ISL degradation
- However, there are again no grating lobes as compared to uniformly-spaced frequency implementation

Matched Filter response of Sparse frequency array (block implementation) versus Uniformlyspaced frequency array

Sidelobe of SSA Results versus Randomly-spaced

- Again, the ISL from Block implementation of SSA is benchmarked against that from a randomly-spaced frequency array
- Results obtained from 10000 trials of randomly-spaced frequency array are again plotted using a histogram
- The ISL obtained from Block SSA implementation is still 7.66 σ away from the mean ISL value of randomly-spaced frequency array

Error variances from Block-based SSA results versus randomly-spaced frequency array

- Results obtained from constructing the sparse frequency measurement array model using SSA algorithm indicates that this approach is viable as :
 - Range resolution is still preserved even when using 25.0% of the original spectrum at the expense of sidelobe degradation
 - Coarray derived has features of a low-redundancy linear array (LRLA)
 - The sidelobe performance obtained from both single-frequency location insertion and block-frequency location insertion approaches are much superior compared to that from random insertion of these frequency locations

Scope of Presentation

- Introduction
 - Motivation
 - Categories of current solutions/approaches
- Proposed Solution (2-step approach)
 - Spectrally Efficient Waveform Design
 - Results from this step
 - Sparse Spectrum Allocation using Information Theory
 - Results from this step
- Applications of results to Radar System Implementation
 Conclusion

Application 1: Composite PCFM waveform

Waveform results

Applying SSA results to PCFM waveform design

- In this example, SSA results for spectrum usage of 40% is used to generate the composite PCFM waveform
- From the SSA results shown below, it is seen that the spectral locations that are selected can be represented by 4 disjointed segments

Applying SSA results to PCFM waveform design

 Plots of Spectral Content and Autocorrelation function of the PCFM waveform before/after optimization are shown

Spectrum Content of composite PCFM waveform with BT = 200

Autocorrelation of composite PCFM waveform with BT = 200

Ph.D. Dissertation Oral Defense

Application 2: Radar Range Profile Estimation Simulation Results

Estimation of Radar Range Profile γ

- Next, I will demonstrate the feasibility of using the SSA results for a radar range profile estimation application
- The problem setup is defined as low-density target distribution scenario (25 range cells containing complex target scattering coefficients out of M = 400 range cells)
- The remaining range cells are filled with very low-valued random Gaussian complex numbers
- Complex Gaussian noise is added to the measurements

 Below is an example snapshot of the radar range profile before clutter and noise are added, i.e. low-density target distribution scenario

Ph.D. Dissertation Oral Defense

- For the radar range profile estimation application, an iterative MMSE estimator is developed for this application
- The equations for the MMSE estimator as well as computing the estimated range profile are as follows:

 $\mathbf{W}_{MMSE} = \mathbf{K}_{\gamma}\mathbf{H}'(\mathbf{H}\mathbf{K}_{\gamma}\mathbf{H}' + \mathbf{K}_n)^{-1}$

 $\tilde{\gamma} = \mathbf{W}_{MMSE} \mathbf{v}$

- In each P^{th} iteration, the $\hat{\gamma}_i$ from the range bins $i = 1, 2, \dots, M$ that contains the largest magnitude is identified and added to a set Θ containing range cells $[j_1, j_2, \dots, j_{p-1}]$. Also, $i \notin \Theta$
- The $\hat{\gamma}_{j_q}$ for each element in this set Θ of range cells is assumed to be the true estimate of the scattering coefficient for that range cell
- Also, the a priori target covariance, K_{γ} for all locations is updated after each iteration

Initial MMSE estimation of γ using 50% spectrum

• At the 1st iteration, the results of the estimated $\hat{\gamma}$ is equivalent to performing a Matched Filter to each range cell within the range profile

Actual versus Estimated γ for 50% spectrum usage (1st iteration)

Error Covariance for all targets (1st iteration)

Final MMSE estimation of γ using 50% spectrum

- The Iterative MMSE filter is then reiteratively applied to obtain the final results of the estimated γ for all range cells in the unambiguous range
- Results demonstrates the viability of using the block implementation approach for this the SSA algorithm

Actual versus Estimated γ for 50% spectrum usage (block insertion implementation)

Scope of Presentation

- Introduction
 - Motivation
 - Categories of current solutions/approaches
- Proposed Solution (2-step approach)
 - Spectrally Efficient Waveform Design
 - Results from this step
 - Sparse Spectrum Allocation using Information Theory
 - Results from this step
- Applications of results to Radar System Implementation
- Conclusion

- In this presentation, I have successfully illustrated a twostep approach to address the issues of both Spectrum Congestion and Spectrum Sharing between radar and communication systems
- The results obtained from this approach demonstrates that
 - 3-dB range resolution can be preserved while utilizing as low as 25.0% of the original spectrum represented as disjointed spectrum segments
 - The PCFM waveform implementation for these disjointed spectrum segments is able to prevent spectrum leakage to forbidden spectrum bands
 - It is viable to apply the frequency measurements obtained from such sparse spectrum usage to perform radar range profile estimation

- For Step 1 of the approach involving higher-order PCFM waveforms, the next step is to implement these waveforms in the lab using AWG and evaluate the measured output waveform's spectrum shape as well as performance in transmit-receive operations
- For Step 2 of the approach involving SSA algorithm and MFI, the next step is to apply this algorithm to a real-life system's spectrum usage so as to derive a sparse spectrum solution for this system

List of PhD. Publications

- S.D. Blunt, J. Jakabosky, P. McCormick, Peng Seng Tan, and J.G. Metcalf, "Holistic Radar Waveform Diversity," to appear in Academic Press Library in Signal Processing Volume 7 (SIGP): Array, Radar and Communications Engineering, eds. F. Gini, N.D. Sidiropoulos, M. Pesavento, and P.A. Naylor, Elsevier, 2017
- Peng Seng Tan, John Jakabosky, James M. Stiles and Shannon D. Blunt, "Higher-Order Representations of Polyphase-Coded FM Radar Waveforms: Relationships between various orders" to be submitted to IET Radar, Sonar & Navigation (after NRL release approval)
- Peng Seng Tan, James M. Stiles and Shannon D. Blunt, "Optimizing Sparse Allocation for Radar Spectrum Sharing," 2016 IEEE Radar Conference, Philadelphia, Pennsylvania, May 02-06, 2016.
- Peng Seng Tan, John Jakabosky, James M. Stiles and Shannon D. Blunt, "On Higher-Order Representations of Polyphase-Coded FM Radar Waveforms,", 2015 IEEE International Radar Conference, Arlington, Virginia, May 11-15, 2015.
- Peng Seng Tan, John Paden, Jilu Li, Jie-Bang Yan and Prasad Gogineni, "Robust Adaptive MVDR Beamforming for Processing Radar Depth Sounder Data," 2013 IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, Oct 14-18, 2013
- Ulrik Nielsen, Theresa M. Stumpf, Peng Seng Tan, Prasad Gogineni, and Jorgen Dall, "Towards a Comprehensive Model of Ice Sheet Scattering Properties at VHF and P-band for Design and Optimization of Multichannel Ice Sounding Techniques," 2013 Progress in Electromagnetics Research Symposium (PIERS), Stockholm, Sweden, Aug 12-15, 2013

Thank you!

Questions?

