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Motivation: Resolving Spectrum Congestion issues

• Rise in demand for Radio Frequency (RF) spectrum in

recent years in wireless communications due to increase

in demand in:

• Mobile Telephony services such as FaceTime and Skype

• Cable/Satellite TV streaming

• 5th Generation Mobile Telecommunications Protocol

• Internet of Things (IOT)

• This imposes a strain on current radar systems who

maintains largest share of RF spectrum
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Motivation: Resolving Spectrum Congestion issues

• Leads to Spectrum Congestion issues and rise of Mutual

Interference among systems (e.g. radar versus cell

phone) who need to coexist within finite spectrum

allocation, i.e. Spectrum Sharing

• Main initiative to resolve these challenges rests within the

radar community

• Question Posed: Does Radar needs all these spectrum

to be fully filled or can it be just partially filled in an

optimal manner ?
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Current Approaches

• Presently, resolving the issues associated with spectrum

sharing can be broadly classified into 3 categories:

• Category 1: Design of Cognitive Radio to ensure radar’s

performance is not degraded

• Category 2: Design of Cognitive Radar as main party responsible

in interference mitigation

• Category 3: Joint design of both Cognitive Radio/Radar spectrum

allocation and waveforms

• These categories have also been given acronyms such

as the “Three 'A's of Communications – Radar Spectrum

Sharing : Avoid, Accept and Amalgamate”
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Dissertation Research

• Dissertation research is on developing a 2-step approach

grouped under the 2nd category of Cognitive Radar

• Step 1 involves the design of a Spectrally Efficient Radar

Transmit waveform so as to minimize mutual interference:

• Built on the existing framework of Poly-phased Coded Frequency

Modulated (PCFM) waveforms

• Step 2 involves the design of a Sparse Spectrum Allocation

algorithm so as to reduce radar’s spectrum usage while

maintaining range resolution performance

• An alternative approach to Sparse Frequency Waveform design
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Overall Problem Formulation

• The next few slides provides some description of the

Proposed Solution achieved via the 2-step approach

f1 f2

Power

Freq.

Contiguous Spectrum bounded by f1 & f2

Allocated Spectrum initially viewed as a Block
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Overall Problem Formulation

• Question: Can we build a radar transmit signal that does

not fully utilize the allocated spectrum ?

• How do we evaluate its performance ?

• How do we process this type of sparse radar transmit

signal ?
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Overall Problem Formulation

• We are going to represent the spectrum by N number of

spectral lines, for instance, CW tones or Pulsed Radar

f1 f2

Power

Freq.

Contiguous Spectrum bounded by f1 & f2

Allocated Spectrum viewed as group of distinct spectral lines
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Solution Formulation

• Let this group of N spectral lines represent an array of N

radarlets starting with no bandwidth (e.g. CW tones)

Contiguous Spectrum represented by 

spectral lines

Illustration of a radarlet

f1 f2

Power

Freq.

Group of distinct spectral lines viewed as array of radarlets
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Formulation of Two-step approach

f1 f2 Freq.

Contiguous Spectrum replaced by 

Sparse Spectrum

K number of radarlets

• We are going to thin the radarlets from N to K radarlets.

The net spectrum usage will be the ratio (K / N)
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Formulation of Two-step approach

• The locations of the K resulting spectral lines are not

confined to integer multiple of the Pulse Repetition

Frequency so as to increase the degrees of freedom for

the optimization process

• How do we design such a sparse radarlet array ?

• What optimality criteria do we use to determine the

locations of this sparse radarlet array ?



Ph.D. Dissertation Oral Defense
15

Formulation of Two-step approach

f1 f2 Freq.

Contiguous Spectrum replaced by 

Sparse Spectrum

K number of radarlets with bandwidth

• We are going to modulate each of the K radarlet so that

each radarlet will posses a finite bandwidth



Ph.D. Dissertation Oral Defense
16

Formulation of Two-step approach

f1 f2

Power

Freq.

Narrow-band radar waveforms

• The modulated radar waveform for each radarlet should

provide good spectral containment properties

Contiguous Spectrum replaced by 

Sparse Spectrum
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Formulation of Two-step approach

• Thus, in addition to determining the locations of the sparse

radarlet array, we also want to confine the spectral content

of each radarlet

• This will ensure that the spectral content of each radarlet

will not leak into the spectrum of other systems to become

interference signals

• Need to select the type of radar waveform that is both

spectrally well-contained as well as other properties like

low side-lobe performance
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Higher-order PCFM

Problem Setup
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Background

• Polyphase-coded Frequency Modulated (PCFM) radar

waveforms are realized by a variant of Continuous Phase

Modulation (CPM) signals from communications

• Converts an arbitrary polyphase code into a physically-realizable

FM waveform

• PCFM waveforms are:

• Spectrally efficient – phase is continuous and differentiable thus

providing good spectral containment

• Power efficient – constant modulus

• Able to achieve low autocorrelation sidelobes relative to time-

bandwidth (BT) product where B is the 3 dB bandwidth
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Higher-order PCFM Waveform

• Previous research demonstrated PCFM waveforms generated

from Polyphase codes akin to first-order hold in phase (where

traditional codes represent a zero-order hold)

• In my research, I have investigated the Higher-order PCFM

waveform implementation as the prospective benefits are:

• Offers additional degrees-of-freedom (DOF) in waveform design without

any increase in the BT product

• Higher-order terms produce smoother phase trajectory, maintaining good

spectral containment

• Allows for the possibility to combine multiple orders to obtain even lower

autocorrelation sidelobes
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Higher-order PCFM Waveform

• As an example, let’s examine the plots of instantaneous frequency

and phase of a LFM signal generated using first-order PCFM

waveform versus second-order PCFM waveform
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1st Order Implementation

• The 1st order PCFM implementation to realize phase

function 𝝓𝟏(𝒕) :

• 𝜒1(𝑡) is the 1st order coded function

produced by the N “phase change”

code values 𝑎𝑛

• 𝑔1 𝑡 is a shaping filter (e.g. rectangular)

• 𝑇𝑝 is the duration of one phase change

• 𝜙1 is the initial phase value (arbitrary)
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2nd Order PCFM Implementation

• Generalize to 2nd order PCFM implementation for phase

function 𝝓𝟐(𝒕) :

• 𝜒2 𝑡 is the 2nd order coded function

produced by N “frequency change”

code values 𝑏𝑛

• 𝑔2 𝑡 is a shaping filter

• 𝑤2 & 𝜙2 are initial frequency & phase
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Relationships between different orders of PCFM

• For instance, we can generate an exact LFM waveform of

BT = 100 using either 1st, 2nd or 3rd order of implementations
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Multi-Order PCFM Implementation

• The 1st and higher orders of implementation can also be

combined to become a multiple-order of implementation
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Higher-Order Optimization Process

• When performing optimization for higher-order implementation such

as second, third, fourth etc., the Frequency Template Error (FTE)

metric is used to maintain spectral containment

• The greedy optimization approach denoted as “performance

diversity” combining PSL, ISL & FTE metrics is used to optimize the

higher-order PCFM codes

– Multiple metrics help to avoid local minima via greedy search

– Global optimality not guaranteed, but finds “good enough” local

optimality

• When combining multiple orders, optimization may be performed

jointly (i.e. simultaneously), or sequentially across the different orders
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Higher-order PCFM

Simulation Results
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2nd order PCFM (Standalone)

• Let’s examine the 1st & 2nd order PCFM implementations

after optimization for BT = 100

Autocorrelation of 1st & 2nd order optimized 

waveforms with BT = 100

Spectral Content of 1st & 2nd order optimized 

waveforms with BT = 100
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3rd order PCFM (Standalone)

• Likewise, we examine the 1st & 3rd order PCFM

implementations after optimization

Autocorrelation of 1st & 3rd order optimized 

waveforms with BT = 100
Spectral Content of 1st & 3rd order optimized 

waveforms with BT = 100
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Instantaneous Freq. of Standalone PCFM

• Let’s also examine the Instantaneous frequency of 1st ,

2nd & 3rd order PCFM implementations after optimization

Instantaneous frequency of 1st & 2nd order 

optimized waveforms with BT = 100
Instantaneous frequency of 1st & 3rd order 

optimized waveforms with BT = 100
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Summary of Individual Optimization Performance

• PSL and ISL values for optimizing BT = 100 waveforms

for 1st, 2nd & 3rd order representations

• Note: individually optimized (i.e. not combined with other orders)

PSL & ISL for 1st, 2nd & 3rd order optimized waveforms for BT = 100

T. Collins & P. Atkins, “Nonlinear frequency modulation chips for active sonar” IEEE Proc. Radar, 

Sonar & Navigation, Dec 1999.

• Useful benchmark: hyperbolic FM (HFM) bound on PSL: ‒ 20 log10(BT) ‒ 3 dB

1st order 2nd order 3rd order HFM bound

PSL (dB) ‒43.4 ‒46.0 ‒38.1 ‒43.0

ISL (dB) ‒59.5 ‒63.5 ‒57.4

Original PCFM 

implementation
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Multi-order PCFM (Combination)

• Let’s examine the joint optimization of (3rd+2nd+1st) orders

versus (2nd+1st) orders

Autocorrelation of jointly optimized 

waveforms with BT = 100
Spectral Content of jointly optimized 

waveforms with BT = 100
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Instantaneous Freq. of Multi-order PCFM

• Let’s also examine the Instantaneous frequency of these

multi-order PCFM implementations after optimization

Instantaneous frequency of jointly 1st, 2nd & 3rd order 

versus of jointly 1st & 2nd order optimized waveforms
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Multi-order PCFM (Combination)

• We also examine the ambiguity plots of these two multi-

order PCFM waveforms

Ambiguity function of jointly 1st & 2nd order 

optimized waveforms with BT = 100
Ambiguity function of jointly 1st, 2nd & 3rd order 

optimized waveforms with BT = 100
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• The ordering of sequential optimization was based on the

observation of how much each contributes to sidelobe reduction

individually

• Based on these results, joint optimization appears marginally

superior to sequential optimization for the multi-order PCFM

implementations

Summary of Multi-Order Performance

PSL & ISL for sequential and joint optimization of multiple orders for BT = 100

Joint 1st & 2nd

orders

Joint 1st, 2nd

& 3rd orders

Seq. 1st & 2nd

orders

Seq. 1st, 2nd & 

3rd orders

PSL (dB) ‒51.1 ‒51.1 ‒50.7 ‒51.2

ISL (dB) ‒66.4 ‒67.9 ‒66.0 ‒66.8
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Sparse Spectrum Allocation

Problem Setup
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Problem Setup

• Let’s view all the frequencies as measurements taken by

the K radarlets in frequency domain

• The frequency measurements can be represented by the

following measurement model:

𝐯 = 𝐇𝛄 + 𝐧
𝐇 = 𝐡1, 𝐡2, . . , 𝐡𝑖 , … , 𝑖 = 1… .𝑀

• 𝐇 is the linear operator that relates the radar propagation

to the resolution cell i and back to the receiver

• This is the well known Linear model
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Cramèr-Rao Bound (CRB)

• We want to perform estimation of the radar range

profile 𝛄 = [𝛾1, 𝛾2, …… , 𝛾𝑚] from measurements made by

the radarlet array

• Now, CRB provides a lower bound on estimation error

variance for any unbiased estimator

• Also, CRB is equal to the inverse of the Fisher

Information matrix J of the measurements:

𝐉 = 𝐇′𝐊𝐧
−𝟏𝐇+ 𝐊𝛄

−𝟏

𝐊𝛄 : A prior Covariance matrix of the vector 

𝐊𝒏 : Noise Covariance matrix due to to the measurements noise vector n
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Cramèr-Rao Bound (CRB)

• For an efficient estimator such as the Minimum Mean

Square Error estimator (MMSE), when applied to a Linear

model, the error covariance 𝐊𝜺 will be equal to the CRB

• Next, let’s denote the Fisher Information matrix from K

radar frequency measurements as 𝐉𝐾

• Also, let’s denote the Fisher Information matrix from (K-1)

radar frequency measurements as 𝐉𝐾−1



Ph.D. Dissertation Oral Defense
42

Marginal Fisher Information

• Therefore, for the kth frequency measurement, the

Marginal Fisher Information (MFI) matrix is defined as the

nonnegative definite matrix ∆𝐉(𝐾):

∆𝐉 𝐾 = 𝐉𝐾−1
−1 − 𝐉𝐾

−1

• From ∆𝐉(𝐾), the MFI computed from the kth frequency

measurement is given as:
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Marginal Fisher Information

• The MFI can be viewed as a measure of the unique or

new information provided after adding the kth

measurement

• The new information will help to further reduce the

uncertainty in estimating the radar range profile 𝛄

• In another words, the error variances within 𝐊𝜀 will be

reduced with the new information
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Sparse Spectrum Allocation

• Assuming that the contiguous spectrum consists of N radar

frequencies & using the MFI as an optimization metric, a

Sparse Spectrum Allocation algorithm can be developed for

determining:

• Locations of K out of N possible radarlet frequencies (K < N) that

provides the least estimated error variances for that value of K

• Optimization process (OP) is performed for one frequency at a time and

will complete one iteration when all K radarlet frequencies are

determined

• OP can also be performed for one group of Q frequencies at a time (K =

P x Q) and will complete one iteration when all P groups of radarlet

frequencies are determined
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Sparse Spectrum Allocation

• The algorithm will continue in its iterations until no single

frequency location or a group of frequency locations can

be changed further to obtain additional MFI

• The spectrum corresponding to the remaining (𝑁 − 𝐾)
radar frequencies can then be released for reuse
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Sparse Spectrum Allocation

Simulation Results
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Sparse Spectrum Allocation (SSA) Results

• Using the MFI measure as the metric of optimization, the sparse

frequency array obtained for single frequency location insertion (1st

approach) is as shown below for 50% spectrum usage

Frequency locations for 50% of spectrum usage

Coarrays from Sparse frequency array and 

Uniformly-spaced frequency array
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Matched Filter Response of SSA Results

• To investigate the estimation

error variances obtained using

the previous sparse frequency

array, we perform a Matched

Filter operation

• Resulting plot is analogous to

beam pattern obtained using

Delay-Sum beamformer as

weight vector

• Although it has higher side-

lobes compared to uniformly-

spaced sampling, but there are

no grating lobes
Matched Filter response from Sparse frequency 

array versus Uniformly-spaced frequency array
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ISL of SSA Results versus Randomly-spaced

• Next, the Integrated Sidelobe

level (ISL) obtained from the

SSA is benchmarked against

that obtained from a randomly-

spaced frequency array

• Results obtained from 10000

trials of randomly-spaced

frequency array are plotted

using a histogram

• The ISL obtained from SSA is

at least 13  away from the

mean value of the randomly-

spaced frequency array
Error variances from Sparse frequency array 

versus randomly-spaced frequency array
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SSA Results (Block implementation)

• To improve the utilization of the unused spectrum, the K radarlet

frequencies is grouped into frequency blocks of equal sizes (2nd

approach) and results are shown below for 50% spectrum usage

Block size of 1.25% each (50% of spectrum usage) Coarrays from Sparse frequency array (block 

implementation) and Uniformly-spaced 

frequency array
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SSA Results (Block implementation)

• Likewise, we perform the

Matched Filter operation on

the results obtained using the

approach of frequency block

implementation

• Compared to using single

frequency insertion, the block

implementation suffers from

additional PSL and ISL

degradation

• However, there are again no

grating lobes as compared to

uniformly-spaced frequency

implementation

Matched Filter response of Sparse frequency 

array (block implementation) versus Uniformly-

spaced frequency array



Ph.D. Dissertation Oral Defense
52

Sidelobe of SSA Results versus Randomly-spaced

• Again, the ISL from Block

implementation of SSA is

benchmarked against that from

a randomly-spaced frequency

array

• Results obtained from 10000

trials of randomly-spaced

frequency array are again

plotted using a histogram

• The ISL obtained from Block

SSA implementation is still

7.66  away from the mean

ISL value of randomly-spaced

frequency array

Error variances from Block-based SSA results 

versus randomly-spaced frequency array
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• Results obtained from constructing the sparse frequency

measurement array model using SSA algorithm indicates

that this approach is viable as :

– Range resolution is still preserved even when using 25.0% of the

original spectrum at the expense of sidelobe degradation

– Coarray derived has features of a low-redundancy linear array

(LRLA)

– The sidelobe performance obtained from both single-frequency

location insertion and block-frequency location insertion

approaches are much superior compared to that from random

insertion of these frequency locations

Summary of SSA Performance
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Application 1: Composite PCFM waveform

Waveform results
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Applying SSA results to PCFM waveform design

• In this example, SSA results for spectrum usage of 40%

is used to generate the composite PCFM waveform

• From the SSA results shown below, it is seen that the

spectral locations that are selected can be represented

by 4 disjointed segments

SSA results for spectrum usage of 40% and 

block size of 2.50%
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Applying SSA results to PCFM waveform design

• Plots of Spectral Content and Autocorrelation function of

the PCFM waveform before/after optimization are shown

Spectrum Content of composite PCFM waveform 

with BT = 200

Autocorrelation of composite PCFM waveform 

with BT = 200
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Application 2: Radar Range Profile Estimation

Simulation Results
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Estimation of Radar Range Profile 𝛄

• Next, I will demonstrate the feasibility of using the SSA

results for a radar range profile estimation application

• The problem setup is defined as low-density target

distribution scenario (25 range cells containing complex

target scattering coefficients out of M = 400 range cells)

• The remaining range cells are filled with very low-valued

random Gaussian complex numbers

• Complex Gaussian noise is added to the measurements
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Radar Range Profile

• Below is an example snapshot of the radar range profile

before clutter and noise are added, i.e. low-density target

distribution scenario
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Iterative MMSE estimator

• For the radar range profile estimation application, an

iterative MMSE estimator is developed for this application

• The equations for the MMSE estimator as well as

computing the estimated range profile are as follows:
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Iterative MMSE estimator

• In each 𝑃𝑡ℎ iteration, the ො𝛾𝑖 from the range bins 𝑖 =
1,2,… . . , 𝑀 that contains the largest magnitude is

identified and added to a set Θ containing range cells

𝑗1, 𝑗2, … . , 𝑗𝑝−1 . Also, 𝑖 ∉ Θ

• The ො𝛾𝑗𝑞 for each element in this set Θ of range cells is

assumed to be the true estimate of the scattering

coefficient for that range cell

• Also, the a priori target covariance, 𝐊𝛾 for all locations is

updated after each iteration
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Initial MMSE estimation of 𝛄 using 50% spectrum

• At the 1st iteration, the results of the estimated ො𝛾 is equivalent to

performing a Matched Filter to each range cell within the range profile

Actual versus Estimated  for 50% spectrum 

usage (1st iteration)

Error Covariance for all targets 

(1st iteration)
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Final MMSE estimation of 𝛄 using 50% spectrum

• The Iterative MMSE filter is

then reiteratively applied to

obtain the final results of the

estimated  for all range cells

in the unambiguous range

• Results demonstrates the

viability of using the block

implementation approach for

this the SSA algorithm

Actual versus Estimated  for 50% spectrum 

usage (block insertion implementation)
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• In this presentation, I have successfully illustrated a two-

step approach to address the issues of both Spectrum

Congestion and Spectrum Sharing between radar and

communication systems

• The results obtained from this approach demonstrates

that

– 3-dB range resolution can be preserved while utilizing as low as 25.0%

of the original spectrum represented as disjointed spectrum segments

– The PCFM waveform implementation for these disjointed spectrum

segments is able to prevent spectrum leakage to forbidden spectrum

bands

– It is viable to apply the frequency measurements obtained from such

sparse spectrum usage to perform radar range profile estimation

Conclusions
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• For Step 1 of the approach involving higher-order PCFM

waveforms, the next step is to implement these

waveforms in the lab using AWG and evaluate the

measured output waveform’s spectrum shape as well as

performance in transmit-receive operations

• For Step 2 of the approach involving SSA algorithm and

MFI, the next step is to apply this algorithm to a real-life

system’s spectrum usage so as to derive a sparse

spectrum solution for this system

Future Directions
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