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Abstract

Shaped offset quadrature phase shift keying (SOQPSK) is a highly bandwidth ef-

ficient modulation technique used widely in military and aeronautical telemetry stan-

dards. This work focuses on symbol timing recovery for SOQPSK. Continuous phase

modulation (CPM) based detector models for SOQPSK have beendeveloped only re-

cently. The proposed timing recovery schemes make use of this recent CPM interpreta-

tion of SOQPSK, where SOQPSK is viewed as a CPM with a constrained (correlated)

ternary data alphabet. One roadblock standing in the way of these detectors being

adopted is that existing symbol timing recovery techniquesfor CPM are not always

applicable since the data symbols are correlated.

Here, we derive timing error detectors (TED) that are extended versions of existing

non-data-aided (blind) and data-aided TED’s for CPM, wherethe proposed extensions

take the data correlation of SOQPSK explicitly into account. Further, for the nod-data-

aided case, the merits of the modified TED are demonstrated bycomparing its perfor-

mance with andwithouttaking the data correlation into account. A simple quantization

scheme has also been discussed and implemented for the blindTED to yield an ex-

tremely low-complexity version of the system with only negligible performance losses.

The S-curves of the proposed TED’s are given, which rule out the existence of false

lock points. Numerical performance results are given for the two versions of SOQPSK:

MIL-STD SOQPSK and SOQPSK-TG. These results show that the proposed schemes

have great promise in a wide range of applications due to their low complexity, strong

performance and lack of false lock points; such applications include timing recovery in

noncoherent detection schemes and false lock detectors.
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Chapter 1

Introduction

Shaped-offset quadrature phase shift keying (SOQPSK) is a highly bandwidth effi-

cient form of continuous phase modulation (CPM) [2] based ona constrained (corre-

lated) ternary data alphabet. Its constant-envelope nature makes it transmitter-friendly

in terms of its compatibility with non-linear amplifiers andtheir efficiency in converting

limited (e.g. battery) power into radiated power. Power andbandwidth efficiency being

the two most important requirements of any modulation scheme, SOQPSK promises to

be an attractive candidate for a wide range of applications in various fields.

To date, SOQPSK has been incorporated into military [1] and aeronautical teleme-

try [18] standards, and wider use is merited since it is applicable in any setting where

bandwidth-efficient constant-envelope modulations are needed. Military-standard (MIL-

STD) SOQPSK is the original and simplest version; it uses a rectangular shaped fre-

quency pulse that spans a single bit time (full-response) and can be described by a trellis

(state machine) with 4 states. A more complicated version has been adopted recently by

the aeronautical telemetry group (SOQPSK-TG); this more bandwidth-efficient version

has a frequency pulse that spans eight bit times (partial-response) and can be described

by a trellis (state machine) with 512 states.
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With the increase in demand for such bandwidth and power efficient modulation

schemes, it is essential that appropriate receivers are build so as to put them into prac-

tial use. One of the most important tasks of a digital communications receiver is syn-

chronization. Carrier, phase and timing are three important parameters whose accurate

synchronization is crucial in determining the performanceof the digital recever. In

this work we primarily deal with symbol timing recovery of one such bandwidth effi-

cient modulation, SOQPSK. The problem of timing synchronization for SOQPSK has

been investigated and new synchronization techniques thatcan be used inCPM-based

SOQPSK receiver models have been developed.

Two types of timing synchronizers have been developed and explained here. This

report is organized in the following manner. In Chap.2, an overview of the existing de-

tectors for SOQPSK is provided. Further, the need for a CPM based detection scheme

is established by comparing the bit error rate performancesof the existing and CPM

based schemes. In Chap.3, the mathematical model for the SOQPSK signal is de-

fined followed by a detailed derivation of the performance bound that is to be used in

evaluating the timing error detectors (TEDs). Chap.4 introduces the non-data-aided or

the blind TED. This is an adaptation of an existing TED for CPMwith some important

modifications that have been incorporated so as to make it applicable for SOQPSK. The

S-curve for the TED has also been computed to establish the correctness of the scheme.

In Chap.5, the second type of TED is explained. The data-aided TED is derived and

applied to the two versions of SOQPSK for two different loop bandwidths. The S-

curve of this TED is also computed for both the versions to rule out the possibility of

any false lock points. Chap.6 provides the simulation results for the two schemes. The

performance of the two schemes is quantified in terms of normalized timing variance

and compared with the modified Cramer-Rao bound (MCRB) as thelower bound on
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performance. Bit error curves are also produced for the various cases to compare their

performances and explain their accuracy and usefulness. Chap.7 has the concluding

remarks followed by references.

3



Chapter 2

SOQPSK Detectors

All digital communication systems require some degree of symbol synchronization

to the transmitted signals by the receivers. Digital receivers need to be aligned in time

to the incoming digital symbol transitions in order to achieve optimum demodulaion.

Broadly, these symbol synchronizers can be classified into two categories. The first one

assumes that nothing is known about the actual transmitted data sequence. This class

is called the non-data-aided (NDA) or blind synchronizers.The other class use the

known information about the data stream. This knowledge maybe obtained by using

the decisions of the receiver, in our case the decisions of the Viterbi algorithm based

detector. These are called the data-aided (DA) or decision directed synchronizers.

Talking specifically about SOQPSK detectors, as the name suggests, SOQPSK

shares a number of similarities with traditional OQPSK. In fact, until recently, the

typical receiver model for SOQPSK has always been a suboptimal OQPSK-type de-

tector and suboptimal OQPSK-type synchronization techniques [8]. Therefore, in the

past there has beenno demandfor timing recovery schemes for CPMs with correlated

data. However, since CPM-based detectors for SOQPSK have recently been shown to

significantly outperformOQPSK-based detectors [13] in terms of bit error rate perfor-
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Figure 2.1. Block diagram of the early-late gate synchronization scheme.

mance by 1–2 dB, the motivation isnow presentfor synchronization techniques that are

compatible with the CPM-based receiver model.

The downside of OQPSK-type detection is that it ignores the inherent state mem-

ory of the signal and is not trulymatchedto the transmitted waveform; a performance

penalty of 1–2 dB results with symbol-by-symbol OQPSK detection. The shortcomings

of OQPSK-type detection have been addressed recently with across-correlated trellis

quadrature coded modulation (XTCQM) approach in [10] and a CPM-based approach

in [15]; both of these recent approaches yield optimal 4-state trellis-baseddetectors for

MIL-STD SOQPSK that outperform OQPSK-type detection by 1–2dB These detectors

are optimal in the maximum likelihood sequence detection (MLSD) sense. Further-

more, the CPM-based approach is compatible with powerful CPM complexity reduc-

tion techniques, such as the pulse amplitude modulation (PAM) approximation [9, 14]

and frequency pulse truncation (PT) technique [3, 21]; these techniques have allowed

4-state detectors for SOQPSK-TG to perform within 0.1 dB of the optimal 512 state de-

tector [16]. Future applications of CPM-based detectors includenoncoherent sequence

5



0 2 4 6 8 10 12
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

B
E

R
OQPSK detector model
CPM detector model
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detectionschemes, e.g. [4], which are of interest for their robustness in operating envi-

ronments where fully coherent detection is ineffective.

Traditionally, the early-late gate technique shown in Fig.2.1 is used in the subopti-

mal synchronization technique. These synchronizers perform two seperate integrations

of the incoming signal power, one early and one delayed in time. The difference in

output of these two integrations is used to compute the receiver’s symbol timing error

and is fed back in a loop to correct the error and lock on to the correct time. Though an
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early-late gate type synchronizer locks on to the correct timing instant, the 1–2 dB loss

incurred by using an OQPSK-type detector cannot be prevented because the matched

filters are not correctly matched to the transmitted symbols..

It can be concluded that CPM based detector models yield optimum MLSD detec-

tors, and the 1–2dB performance advantage of CPM-based SOQPSK detection shown

in Fig. 2.2cannot be realized in practice without appropriate synchronization schemes.

Thus the synchronization techniques developed here are highly motivated and timely.
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Chapter 3

Signal Model

In this chapter we define the mathematical representation ofthe SOQPSK mod-

ulated signal derived from the standard CPM signal. Following this, we define the

modified Cramer-Rao bound (MCRB), which is the performance bound used to estab-

lish the usefulness of the TEDs and analyze their performances. A detailed discussion

of the MCRB is provided explaining the differences in their derivation for two versions

of SOQPSK.

3.1 CPM Signal Model

The complex-baseband signal model used to represent CPM signals is defined as [2]

s(t, α) ,

√

Es

Ts
exp {jφ(t, α)} . (3.1)

whereEs is the symbol energy,Ts is the symbol duration andφ(·) is the phase of the

signal. As the name suggests, information in a CPM system is carried in its phase. The

8



phaseφ(·) is given by

φ(t, α) , 2πh
∑

i

αiq(t − iTs) (3.2)

wherei ∈ Z is the discrete-time index,αi is anM-ary symbol, andh is the modulation

index. Thephase pulseq(t) is a time-integral of thefrequency pulseg(t) and is defined

as

q(t) ,































0 t < 0
∫ t

0

g(σ) dσ 0 ≤ t < LTs

1/2 t ≥ LTs

(3.3)

g(t) has a duration ofL symbol times with an area of1/2. The modulation indexh is a

rational number of the form [2]

h ,
2K

p

whereK andp are relatively prime integers. Considering the modulationindex to be a

rational number and using the constraints ong(t) andq(t), the phase may be expressed

as

φ(t, α) = θ(t; αn) + θn−L. (3.4)

wherenTs ≤ t < (n + 1)Ts. The first term in (3.4) is thecorrelative phaseand is

defined as

θ(t; αn) , 2πh
n

∑

i=n−L+1

αiq(t − iTs)

which is a function of thecorrelative state vector

αn , αn−L+1, ..., αn−1, αn.

9



Thephase stateθn−L in (3.4) is defined as

θn−L , πh
n−L
∑

i=−∞

αi. (3.5)

This being a function of an infinite number data symbols can only assumep different

values when taken modulo-2π because the modulation indexh is assumed to be a ra-

tional number. Thus, thep distict values of thephase stateθn−L is given by the look-up

table

θ[x] =
2πx

p
, 0 ≤ x ≤ p − 1.

Hence, the CPM signal in (3.1) can be described as a finite state machine with input

variableαn and acorrelativestate vector given by

Sn = (θn−L, αn−L+1, ..., αn−2, αn−1) (3.6)

and each branch of the trellis can be defined uniquely as

σn = (θn−L, αn−L+1, ..., αn−2, αn−1, αn). (3.7)

The number of states required to describe the CPM signal in (3.1) is [2]

Ns = pML−1.

10



3.2 CPM Model of SOQPSK

The complex-baseband SOQPSK signal model begins with the standard CPM signal

defined in (3.1)

s(t, α) ,

√

Es

Ts
exp {jφ(t, α)}

whereEs is the symbol energy andTs is the symbol duration. In this work, we consider

CPM signals where the transmitted symbols{αi} arenot i.i.d., but are insteadcorre-

lated in some fashion. The data sequence, which we assume to be stationary, has the

autocorrelation function

Rα(l) , E{αiαi+l} .

The notation used in the derivations herein isnot specific to SOQPSK and applies to

CPM in general. However, numerical results have been provided in Chap.6 for the

two versions of SOQPSK. The original version of SOQPSK, known as “MIL-STD”

SOQPSK [1], uses a full-response (L = 1) rectangular frequency pulse (1REC). The

frequency pulseg(t) for a “MIL-STD” SOQPSK is a rectangular pulse

gMIL (t) ,















1
2T

, 0 ≤ t < Ts

0, otherwise.

(3.8)

A version of SOQPSK recently adopted in aeronautical telemetry, known as “SOQPSK-

TG,” uses the partial response (L > 1) frequency pulse shown in Fig.3.1, which is

defined in [18] as

gTG(t) , A
cos(πρBt

2Ts
)

1 − 4(ρBt
2Ts

)2
×

sin(πtB
2Ts

)
πBt
2Ts

× w(t) (3.9)
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where the window is

w(t) =































1, 0 ≤| t
2Ts

|< Ts1

1
2

+ 1
2
cos(π

2
( t

2Ts
− Ts1)), Ts1 ≤| t

2Ts
|≤ Ts1 + Ts2

0, Ts1 + Ts2 <| t
2Ts

|

(3.10)

The constantA is chosen such that the area of the pulse is1/2 with Ts1 = 1.5, Ts2 =

0.5, ρ = 0.7 andB = 1.25.

The modulation index for all versions of SOQPSK ish = 1/2 and the transmitted

symbols{αi} are derived from a sequence of i.i.d. information symbols{ui} by a

precodingoperation [19]

αi(u) , (1/2)(−1)i+1ui−1(ui − ui−2) (3.11)

12



whereui ∈ {±1} andαi ∈ {−1, 0, +1}. The reason for this non-obvious precoding

operation is that (3.11) orients the phase of the CPM signal in (3.2) such that it behaves

like the phase of an OQPSK signal that is driven by the i.i.d. bit sequenceu. In fact,

u can be recovered directly from the received signal, with no additional steps, by a

suboptimal symbol-by-symbol OQPSK-type detector [7, 8]. For convenience, we use

the notationαi instead ofαi(u), but we stress thatu is the underlying information

sequence for SOQPSK.

The SOQPSK precoder imposes three important constraints onthe ternary data [19]:

1. Whileαi is viewed as beingternary, in any given bit intervalαi is actually drawn

from one of twobinaryalphabets,{0, +1} or {0,−1}.

2. Whenαi = 0, the binary alphabet forαi+1 switches from the one used forαi,

whenαi 6= 0 the binary alphabet forαi+1 does not change.

3. A value ofαi = +1 cannot be followed byαi+1 = −1, and vice versa (this is

implied by the previous constraint).

Based on these constraints, the autocorrelation function for SOQPSK is [20]

Rα(l) =































1/2, l = 0

1/4, |l| = 1

0 otherwise.

(3.12)

The above constraints also imply that not every possible ternary symbol pattern is a

valid SOQPSK data pattern. For example, the ternary symbol sequences..., 0, +1,−1, 0, ...

and. . . , +1, 0, +1, . . . violate the SOQPSK constraints. Therefore, if we consider the

entire set of3∆K possible ternary symbol sequences of length-∆K, it has been shown

13



that only

N∆K , 2∆K+1 (3.13)

of these are valid SOQPSK data patterns [17]. A straightforward method of generating

this entire set of sequences is to start with a binary(∆K + 1)-tuple(S, u), where the

value ofS is used to initialize the value ofi in (3.11) (this initializes the “alphabet state”

of the precoder to{0, +1} or{0,−1}), andu is a sequence of∆K binary symbols. The

other initial conditions in (3.11), ui−1 andui−2, can both be initialized to+1. The set

of N∆K valid SOQPSK data patterns is generated by running all possible permutations

of (S, u) through the precoder in (3.11).

3.3 Performance Bounds

We use the modified Cramer-Rao bound (MCRB) [6] to establish alower bound on

the degree of accuracy to whichτ can be estimated for CPMs with correlated data. If

we defineλ as an element that is to be estimated, and letλ̂(r) be the corresponding

estimate, then̂λ(r) depends on the obseravtionr. In other words,̂λ(r) is a random

variable. Its expectation may, or may not, coincide with thetrue value ofλ. If it

does, then the estimate is said to beunbiasedand the estimator is called anunbiased

estimator. However, the performance of the estimator can be unsatisfactory if the errors

λ̂(r) − λ are widely scattered around zero.

3.3.1 Definition of Cramer-Rao Bound

The Cramer-Rao bound (CRB) gives us the lower bound to the variance of any unbi-

ased estimator. Definingλ as the single element that is to be estimated, and representing

14



all other parameters asv, the bound is expressed as [11]

Var
{

λ̂(r) − λ
}

≥ CRB(λ) (3.14)

where CRB(λ) is given by [6]

CRB(λ) =
1

Er

{

[

∂lnp(r|λ)
∂λ

]2
} (3.15)

where Er is the expectation with respect tor andp(r | λ) is the conditional probability

density function ofr for a givenλ. p(r | λ) is obtained from the integral [6]

p(r | λ) =

∫ ∞

−∞

p(r | v, λ)p(v)dv (3.16)

wherep(r | v, λ) is the conditional probability density function ofr given v andλ.

Unfortunately, in most practical cases it is difficult to compute the CRB because the

integration in (3.16) is analytically complex or the expectation in (3.15) poses problems.

A simpler bound to compute is the MCRB which is used as the theoretical performance

bound in this work. The relationship between the MCRB and CRBis given by [11]

CRB(λ) ≥ MCRB(λ). (3.17)

This equality holds good whenv isperfectlyknown or it isempty(there are no unwanted

parameters).
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3.3.2 Modified Cramer-Rao Bound

As discussed in Sec.3.3.1, the CRB uses the maximum likelihood function to es-

tablish the lower bound. The MCRB is determined using the transmitted signal and is

much easier to compute. Definingθ as the phase offset,ν as the carrier frequency offset

and following the approach in [11, Ch. 2], we separate the timing offsetτ from the set

of other parameters,v = {α, θ, ν}, that are unwanted in the timing estimation problem.

The complete complex-baseband signal model can be written using (3.2) as

s(t, τ, v) ,

√

Es

Ts
ej[φ(t−τ,α)+2πνt+θ]. (3.18)

The MCRB with respect toτ for a baseband signal is [11]

MCRB(τ) ,
N0/2

Ev

{

∫ T0

0

∣

∣

∣

∣

∂s(t, τ, v)

∂τ

∣

∣

∣

∣

2

dt

} (3.19)

whereT0 , L0Ts. Next, using the signal model in (3.18), we get

Eα

{

∫ T0

0

∣

∣

∣

∣

∂s(t; α, τ)

∂τ

∣

∣

∣

∣

2

dt

}

=
4π2h2L0CgEs

T 2
s

where the constant

Cg , Ts

∫ Ts

0

G(t, τ) dt (3.20)

is a function of the frequency pulseg(t). The integrand in (3.20) is periodic int with

periodTs and is defined as
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G(t, τ) , Eα

{
∣

∣

∣

∣

∑

i

αig(t− iTs − τ)

∣

∣

∣

∣

2}

(3.21)

=
∑

i

∑

l

Rα(l)g(t − iTs − τ)g(t − [i + l]Ts − τ)

andRα(l) is the autocorrelation function of the sequenceα.

At this point, the solution can be expressed in closed-form for MIL-STD SOQPSK

using (3.12). In this case, (3.21) simplifies to

GMIL (t, τ) =
1

2

∑

i

g2
MIL (t − iTs − τ) =

1

8T 2
s

(3.22)

where only thel = 0 term is non-zero due to the brief duration ofgMIL (t) (full-response,

L = 1). Evaluating (3.22) yieldsGMIL (t, τ) = 1/8 , using which the final result for

MIL-STD SOQPSK is

1

T 2
s

× MCRBMIL (τ) =
4

π2L0
×

1

Es/N0
. (3.23)

For SOQPSK-TG, a similar closed-form equation is difficult to compute due to

the shape ofgTG(t) which is a custom-designed partial-response pulse withL = 8.

But, (3.21) can be computed numerically with ease. Using (3.12) it is seen that only the

l = 0 andl = ±1 terms will be non-zero as the correlation is zero forl > 1. Hence, for

SOQPSK-TG (3.21) can be simplified as

GTG(t, τ) =
1

2

∑

i

g2
TG(t − iTs − τ)

+
1

2

∑

i

gTG(t − iTs − τ)gTG(t − (i + 1)Ts − τ)

(3.24)

17



Evaluating (3.24) numerically yields the final result for SOQPSK-TG as

1

T 2
s

× MCRBTG(τ) =
1

2π2L0CTG

×
1

Es/N0

(3.25)

whereCTG ≈ 0.09881.
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Chapter 4

Non Data Aided TED

A typical assumption in most communication systems is that the transmitted data

areindependentandidentically distributed, or i.i.d. However, for one reason or another,

this is not always the case. SOQPSK is an example of such a casewith correlated data

symbols.

The problem of symbol timing recovery for CPMs with correlated data has not

been studied previously. There are at least two reasons for this: 1) the only obvious

example of such a CPM is SOQPSK, and 2) as explained earlier inChap.2, CPM-

basedtransmittermodels have always been used for SOQPSK, but it is only recently

that optimal CPM-basedreceivermodels have been used for SOQPSK, e.g. [15].

The contributions in this chapter of the work are the following:

• Develop a maximum-likelihood-based non-data-aided (blind) timing error detec-

tor (TED) for CPMs with correlated data symbols. The proposed TED is an

extension of the one developed in [5] for CPMs with i.i.d. data.

• Develop a quantization scheme for the TED that yields a low-complexity version

of the system with only negligible performance losses. Thisquantization scheme
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is not limited to CPMs with correlated data and can be appliedto conventional

CPMs, i.e. [5].

• Compare the performance of the TED with andwithouttaking the data correlation

into account.

• Evaluate the correctness of the TED by computing the S-curveand thereby es-

tablishing the absence of any false lock points.

Although “MIL-STD” SOQPSK [1] is used as the default example, the TED is de-

rived using general notation and is not specific to this special case. Since the proposed

scheme is shown to have low complexity, no false lock points,and a blind architec-

ture, it is an attractive candidate for a wide range of applications. One such application

is timing recovery for noncoherent detection schemes, where joint timing and phase

recovery approaches are not practical since the phase of thesignal is never recovered.

This chapter is organized as follows. Section4.1 shows the extensions that are

needed for the existing TED, and also discusses the quantization scheme and the origi-

nal formulation of the TED that ignores the correlation in the data. Section4.2presents

the S-curve of the proposed TED. The performance analysis ofthis TED is provided in

Section6.1which contains the numerical results.

4.1 Timing Error Detector

The derivation of the timing error detector (TED) starts andends in similar places

as [5]; however, an important part in the middle of the derivation is different due to the

correlated data symbols instead of i.i.d. data.
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The signal observed at the receiver is

r(t) =

√

Es

Ts

ej[φ(t−τ,α)+2πνt+θ] + w(t)

wherew(t) is complex-valued additive white Gaussian noise (AWGN) with zero mean

and single-sided power spectral densityN0. The frequency offset,ν, is assumed to be

known at the receiver. The variablesα, θ, andτ represent the data symbols, carrier

phase, and timing offset, respectively, which are all assumed to be unknown at the

receiver.

Denoting0 ≤ t ≤ L0T as the observation interval, the joint likelihood functionfor

α̃, θ̃, andτ̃ is given in [5] as

Λ(r|α̃, θ̃, τ̃) = e
1

N0

q

Es
Ts

Re[e−jθ̃
R L0Ts
0 r(t)e−j[2πνt+φ(t−τ̃,α̃)]dt].

Averaging this expression over the carrier phaseθ̃, takingθ̃ to be uniformly distributed

over [0, 2π) results in an intermediate likelihood function, which is found in [5] and is

a function ofα̃ andτ̃ . This intermediate likelihood function is then averaged over α̃ to

yield [5]

Λ(r|τ̃ ) ≈

∫ L0Ts

0

∫ L0Ts

0

r(t1)r
∗(t2)e

j2πν(t2−t1)F (t2−t1, t2−τ̃ )dt1dt2 (4.1)

whereF (∆t, t) contains the expectation overα̃ and is defined as

F (∆t, t) , Eα̃

{

ej[φ(t,α̃)−φ(t−∆t,α̃)]
}

. (4.2)

Using (3.2) we can write (4.2) as
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F (∆t, t) = Eα̃

{

∞
∏

i=−∞

exp [j2πhα̃ip(t − iTs, ∆t)]

}

(4.3)

where

p(t, ∆t) , q(t) − q(t − ∆t).

Evaluating (4.3) is straightforward for i.i.d. data, since the expectationoperator can

be moved inside the product where it is a function of only one symbol, α̃i, and can be

computed with ease (see [5]). However, another option must be pursued here since the

data symbols are assumed to be correlated. This is where the present derivation differs

from that found in [5].

4.1.1 Evaluating the Expectation With Respect tõα

We start by exploiting the fact thatp(t, ∆t) is non-zero for only a few values of

i [this is due to the definition of the phase pulse in (3.3)]. The limits on the product

in (4.3) can be written as

F (∆t, t) = Eα̃

{

K2
∏

i=K1

exp [j2πhα̃ip(t − iTs, ∆t)]

}

(4.4)

where

K1 =

⌊

min(t, t − ∆t)

Ts

⌋

− L + 1

and

K2 =

⌊

max(t, t − ∆t)

Ts

⌋

with ⌊·⌋ denoting the floor function. Therefore, the data sequence{α̃i} in (4.4) has a

finite length of∆K , K2 − K1 + 1 symbols. The problem of evaluating the expec-
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tation in (4.4) reduces to 1) enumerating the possible length-∆K α̃ sequences and 2)

attaching a probability distribution to these sequences.

In the case of SOQPSK, the number of possible length-∆K α̃ sequences is enumer-

ated in (3.13) and the binary(∆K+1)-tuples(S̃, ũ) that produce them are independent

and uniformly distributed.1 Therefore, the expectation in (4.4) can be taken with respect

to the uniformly distributed variable(S̃, ũ), i.e.

F (∆t, t)=
1

N∆K

∑

(S̃,ũ)

K2
∏

i=K1

exp
[

j2πhα̃i(S̃, ũ)p(t − iTs, ∆t)
]

(4.5)

where the ternary symbols̃αi(S̃, ũ) are explicitly shown to be a function of(S̃, ũ). It

is straightforward to evaluate (4.5) numerically. In fact, numerical computations are

already a part of the final derivation in [5] of the TED.

4.1.2 Final Derivation of the TED

The final steps in deriving the TED are the same as found in [5].The ultimate goal

is to compute the argumentτ̃ which maximizesΛ(r|τ̃ ) in (4.1). To achieve this we

must simplify (4.1) due to the cumbersome form ofF (∆t, t); this function, even in its

new form in (4.5), is periodic with respect tot of periodT . Therefore, its Fourier series

expansion is exploited in evaluating (4.1). The final form of Fourier series expansion

of the likelihood function in (4.1), after exploiting various symmetries, is [5].

Λ(r|τ̃ ) ≈ Re

[

∞
∑

m=1

A(m)ej2πmτ̃/Ts

]

(4.6)

1There are actually two values of(S̃, ũ) that produce the all-zeros̃α sequence. Thus, strictly speak-
ing, there is not a one-to-one mapping between(S̃, ũ) andα̃. However, it is true that the underlying
behavior of the precoder is correctly characterized by the uniformly distributed random variable(S̃, ũ),
which means that the all-zeros̃α should appear twice in the expectation.
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Figure 4.1. The impulse responseh1(t) for MIL-STD SOQPSK.

with

A(m) =

∫ L0Ts

0

[

r(t)e−jπmt/Ts
]

y∗
m(t) dt

where

ym(t) ,

∫ L0Ts

0

[

r(σ)ejπmσ/Ts
]

hm(t − σ) dσ

and

hm(t) , ejπmt/Ts
1

Ts

∫ Ts

0

F (−t, u)ej2πmu/Tsdu. (4.7)

The pulseh1(t), which is computed usingF (∆t, t) in (4.5), is shown in Fig.4.1 for

MIL-STD SOQPSK. The trend observed here, which is the same asthat observed in [5],

is that the energy in the pulseshm(t) decreases rapidly as the Fourier series harmonic

indexm increases. Therefore, the likelihood function in (4.6) is well approximated by

the single term wherem = 1.

A discrete-time implementation of (4.6) using them = 1 term only is shown in

block diagram form in Fig.4.2. The impulse response of the filter is sampled atN

samples per symbol to yield

h[k] , h(kT )
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DELAY

r[k]

ejπk/N

e−jπk/N

h[k − ND]

ND

(·)∗

SUM N

SAMPLES
−Im{·}

e[n]

Figure 4.2. Block diagram of the final TED.

whereT , Ts/N is the sampling time. The subscript on this impulse responsehas

been dropped in Fig.4.2, for reasons that will become clear momentarily; however, at

this point it is understood thath[k] = h1[k]. The impulse response of the filter is the

only part of the system in Fig.4.2 that is specific to the modulation format. The block

diagram in Fig.4.2shows that the non-causal impulse responseh[k] is made causal by

introducing an appropriate delay ofND samples.

4.1.3 Quantization ofh1(t)

Although the system in Fig.4.2does not require an unreasonable amount of imple-

mentation complexity, most of its complexity is due to computing theN filter outputs.

With the most efficient discrete-time implementation, these filter outputs require

2N

(

Lh[k] − 1

2
+ 1

)

multiplications per symbol time, whereLh[k] is the number of non-zero samples inh[k].

For MIL-STD SOQPSK withN = 4, this comes to 104 multiplications per symbol
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time.

In an effort to reduce the complexity of the TED while maintaining its performance,

we explore the idea of quantizing the values ofh1(t). One possible quantization scheme

is

Ql(x(t)) = round

(

x(t)2l−1

Mx

)

Mx

2l−1
, l > 0 (4.8)

where round(·) denotes “round towards the nearest integer” and

Mx = max
t

(|x(t)|). (4.9)

The parameterl denotes thatl+1 bits are used to quantize the input signalx(t), wherel

bits quantize the amplitude and one bit is used as the sign bit. While (4.8) and (4.9) use

continuous-time notation, they are equally applicable to adiscrete-time input ofx[k].

The most extreme example of this quantization scheme is withl = 1. The shape of

Q1(h1(t)) for MIL-STD SOQPSK is shown in Fig.4.1. No multiplications are required

to compute the output of the filter in Fig.4.2whenh[k] = Q1(h1[k]). The performance

of the TED withh[k] = Q1(h1[k]) is quantified for the case of MIL-STD SOQPSK in

Section6.1.

4.1.4 Generatingh1(t) When the Correlation is Ignored

We have shown how to evaluate the expectation in (4.2) when the data sequencẽα

is correlated. However, it is reasonable to wonder whether or not the re-derivation of

h1(t) is even necessary. In other words, how well would the TED in Fig. 4.2perform if

the data correlation is ignored whenh1(t) is computed? The answer to such a question

depends, of course, on the degree of correlation inα̃. Thus, while a general answer

cannot be given, the question is worth considering for our example case of MIL-STD

SOQPSK.
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Figure 4.3. The impulse responsef1(t) for MIL-STD SOQPSK.

In order to keep things separate, we usef1(t) to refer to the pulse obtained from (4.7)

with m = 1 whenuncorrelated(i.i.d) data are assumed. In the case of SOQPSK, an un-

constrained ternary alphabet hasN∆K = 3∆K unique sequences of length-∆K. This set

of i.i.d. sequences can be used to evaluate (4.5), or the original formulation ofF (∆t, t)

in [5] can be used. The resulting pulsef1(t), and its quantized versionQ1(f1(t)), are

shown in Fig.4.3 for MIL-STD SOQPSK. Between Figs.4.1 and4.3 there are four

options for the filter responseh[k] in the TED in Fig.4.2. Numerical results on the

individual performances of these four filter options are given in Section6.1.

4.2 S-curve of the TED

The behavior of the TED is characterized by the S-curve, which is the expected

value of the TED outpute[n] as a function of thetiming offset

δ , τ − τ̂ .
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Figure 4.4. S-curve for MIL-STD SOQPSK withh[k] = Q1(h1[k]) and
N = 4.

The S-curve is particularly useful since it identifies the stable lock points for the TED

and proves the correctness of the TED ruling out possibilityof false lock points. Sta-

ble lock points are the zero-crossing points on the curve where the slope is positive,

e.g. [11].

The S-curve for the TED in Fig.4.2 was computed in [12] assuming the original

and exact impulse response is used, i.e. assumingh[k] = h1[k]. The resulting S-curve

is

S(δ) =
EsNH

T
sin

(

2πδ

T

)

. (4.10)

When a generic impulse responseh[k] is used, the S-curve is also given by (4.10), with

the definition ofH altered slightly from [12], i.e.

H ,
∑

k

h1[k]h[k]. (4.11)

Thus, a quantized (or otherwise non-exact) impulse response h[k] changes only the

amplitudeof the S-curve, and not itsshape. When the original and exact impulse

response is used, (4.11) reduces to the expression defined in [12].
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The S-curve in (4.10) is shown in Fig.4.4 for MIL-STD SOQPSK withh[k] =

Q1(h1[k]) andN = 4, along with data points taken from computer simulations. The

simulation points in Fig.4.4show strong agreement with the theoretical S-curve, which

underscores the correctness of (4.11). Also, as (4.10) and Fig.4.4 suggest, only one

stable lock point exists for the TED in Fig.4.2; this point occurs when the timing

estimate is correct, i.e. atδ = 0, which rules out the existence of any false lock points.
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Chapter 5

Data Aided TED

The second option available for timing synchronization is the data aided TED. As

in the previous case, we can use an existing TED for CPM and make the necessary

modifications to suit our needs of SOQPSK. The specific contributions of this chapter

are the following:

• Adapt an existing CPM-based timing error detector (TED) [12] so that the con-

strained ternary nature of CPM is properly taken into account.

• Incorporate the TED into the Viterbi algorithm (VA) based SOQPSK detectors

and properly combine it with the 4-state pulse-truncation (PT) technique.

• Evaluate the correctness of the TED by computing the S-curveand thereby es-

tablishing the absence of any false lock points.

This scheme as we will see shortly has low complexity, low normalized variance that

approaches the MCRB, and is free of false lock points.

This chapter is organized as follows. In Section5.1 we derive the TED using

maximum-likelihood methods and making some minor modifications to the existing
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one. In 5.2, we compute the S-curve and establish the absence of any false lock points.

The lower bound on the performance of the proposed approach has already been es-

tablished in Section3.3 by computing the MCRB and the numerical results for the

data-aided TED are provided in Section6.2.

5.1 Timing Error Detector

The derivation of the timing error detector (TED) is based onmaximum likelihood

principles. The signal observed at the receiver is modeled as

r(t) =

√

Es

Ts
ejφ(t−τ,α) + w(t)

wherew(t) is complex-valued additive white Gaussian noise (AWGN) with zero mean

and single-sided power spectral densityN0. The variablesα andτ represent the data

symbols and timing offset, respectively, which are both unknown to the receiver in

practice.

The operation of the TED is intertwined with the operation ofthe Viterbi algorithm

(VA). Customarily, CPM signals are demodulated using a bankof ML matched filers

(MFs). But, in the case of SOQPSK it is important to note that though the original

underlying data is binary, the precoding operation produces a ternary output and hence

the MF bank for full-response SOQPSK is made of an array of three filters matched

to {−1, 0, 1}. By applying the PT approximation [3, 21], it was shown in [16] that the

same three MFs can be used for partial-response SOQPSK-TG.

Recall the equation from Chap.3, the phase of a CPM signal is given by

φ(t, α) , 2πh
∑

i

αiq(t − iTs).
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Figure 5.1. Four state trellis diagram for SOQPSK.

This equation can be rewritten in the following form

φ(t, α) = η(t, Ck, αk) + φk, kTs 6 t < (k + 1)Ts (5.1)

with

η(t, Ck, αk) , 2πh

k
∑

i=k−L+1

αiq(t − iTs) (5.2)

Ck , (αk−L+1, ..., αk−2, αk−1) (5.3)

and

φk , πh

k−L
∑

i=0

αi mod2π. (5.4)

In the above equationsCk is thecorrelative state, αk is thecurrent symbol, andφk is

thephase stateof the modulator.
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In order to obtain the sampled MF outputs, we assume for the moment thatτ is

known. The MF outputs are sampled atτ + (k + 1)Ts to produce

Zk(Ck, αk, τ) ,

∫ τ+(k+1)Ts

τ+kTs

r(t)e−jη(t−τ,Ck ,αk)dt. (5.5)

The likelihood function of the data is maximized by performing maximum likelihood

sequence detection (MLSD), which is implemented efficiently via the VA. The sampled

MF outputsZk are used to compute the branch metrics within the VA. The trellis of

an SOQPSK modulated signal is shown in Fig.5.1. The state variables in the trellis

are taken from (3.11), and are ordered(uk−2, uk−1) for k-even and(uk−1, uk−2) for k-

odd [19]; thus, the trellis states areSn ∈ {(−1,−1), (−1, +1), (+1,−1), (+1, +1)}.

The branches in Fig.5.1 are labeled with the current-bit/current-symbol pair,uk/αk,

for the given branch. The time-varying nature of the trellisis a result of the time-

dependence in (3.11). The remainder of the details needed to implement the VA are

found in [16].

In order to obtain the TED update, we temporarily assume thatα is known. Using

the above definitions, and denoting the observation interval as0 ≤ t ≤ L0T , it can be

shown that the likelihood function for the unknown parameter τ̃ is

Λ(r|τ̃) = exp

{

1

N0

√

Es

Ts

L0−1
∑

k=0

Re
{

Zk(Ck, αk, τ̃ )e−jφk
}

}

. (5.6)

The maximum ofΛ(r|τ̃ ) with respect to the timing offset estimatẽτ is obtained by

setting equal to zero the partial derivative of (5.6) with respect tõτ . Thus, we now have

L0−1
∑

k=0

Re
{

Y k(Ck, αk, τ̃)e−jφk

}

= 0 (5.7)
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Figure 5.2. Block diagram of the final TED.

whereY k is the derivative ofZk with respect tõτ . A discrete-time differentiator is

used to implementY k, as discussed in Section6.2.

The solution to (5.7) is obtained in an adaptive/iterative manner. As it is formu-

lated, (5.7) assumes the true data sequence{..., αk−2, αk−1, αk} is known, which is not

the case in practice. A logical substitute for the true data sequence is the sequence of

survivors within the VA, which become more reliable the further we trace back along

the trellis. Considering all these issues, the following error signal is obtained as in [12]

e(k − D) , Re
{

Y k−D(Cb
k−D, αb

k−D, τ̂k−D)e−jφb
k−D

}

(5.8)

whereD is the traceback time for computing the error and the superscript b represents

the best survivors of the VA. A largeD could result in longer delays in the timing recov-

ery loop, but it is observed in [12] and Section6.2 thatD = 1Ts produces satisfactory

results that are discussed in detail in Chap.6.

A discrete-time implementation of (5.8) is shown in block diagram form in Fig.5.2.

5.2 S-curve of the TED

The S-curve as explained in4 helps identify the stable lock points for the TED;

these are the zero-crossing points on the curve where the slope is positive, e.g. [11]. In
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Figure 5.3. S-curve for MIL-STD SOQPSK

this case, a closed-form expression for the expected value of e[k] is rather diffiucult to

compute unlike the non-data-aided scheme as the TED is incorporated into the Viterbi

algorithm. Hence we use simulations to study the S-curve. The simulations reveal that

the only stable lock point occurs when the timing is correct,i.e. atδ = 0. This result

holds for both versions of SOQPSK and rules out the existenceof false-lock points. The

constantkp is defined as the slope of the S-curve evaluated atδ = 0 and the value of

kp is determined numerically via simulation. The values ofkp determined numerically

agree with the values given in [11].
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Figure 5.4. S-curve for SOQPSK-TG.

36



Chapter 6

Numerical Results

In this chapter, we discuss the numerical results obtained by computer simulations

for the blind and data-aided TED. The raw TED outpute[k] is refined into a more stable

timing estimatêτ using a feedback scheme. A standard first-order phase-locked loop

(PLL) provides an updated timing estimate after each symboltime with the operation

τ̂ [k] , τ̂ [k − 1] + γe[k]

where thestep sizeis

γ ,
4BTs

kp

(6.1)

andBTs is the user-specifiednormalized loop bandwidth.

The constantkp is obtained from the S-curve of the TED; this curve characterizes

the overall behavior of the TED and is the expected value of the TED outpute[k] as a

function of thetiming offset

δ , τ − τ̂ .

Both TEDs were tested for two loop bandwidths ofBTs = 10−3 andBTs = 10−2,
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the simulation results of which are explained in the following sections.

We now quantify the accuracy of the TED in Fig.4.2 for MIL-STD SOQPSK.

The raw TED output is refined into a more stable timing estimate τ̂ using a feedback

scheme. A standard first-order phase-locked loop (PLL) provides an updated timing

estimate after each symbol time with the operation explained in (6.1). The relationship

between the observation intervalL0 in a feedforward-based scheme and the normalized

loop bandwidthBTs in a feedback-based scheme is [11]

L0Ts =
1

2BTs
.

The accuracy of the feedback scheme is measured with thenormalized timing vari-

ance
1

T 2
s

× σ2
τ ,

1

T 2
s

× Var{τ̂ [n] − τ} . (6.2)

6.1 Numerical Results for non data-aided TED

We have discussed two cases using loop bandwidthsBTs = 1 × 10−3 andBTs =

1 × 10−2. With BTs = 1 × 10−3 all the four filter responses plotted in Figs.4.1

and4.3 have been tested. ForBTs = 1 × 10−2, simulation results are provided using

the filter responseh1[k]. The normalized timing variances for for all these options,

each usingN = 4 are shown in Fig.6.1, along with the MCRB(τ) in (3.23). Using

BTs = 1 × 10−3, the first observation from Fig.6.1 is that the filter responseh1[k]

clearly outperformsf1[k], both with and without quantization. This emphasizes that

the data correlation can andshouldbe taken into account when computing (4.7), which

is one of the primary contributions of this work. The second observation from Fig.6.1

is that the two level quantization schemeh[k] = Q1(h1[k]) has a negligibly small effect
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Figure 6.1. MCRB vs. normalized timing variance for MIL-STD SO-
QPSK withN = 4. Solid curves are forBTs = 1 × 10−3 and dashed
curves are forBTs = 1 × 10−2.

on the variance of the timing estimate. This is rather pleasing sinceh[k] = Q1(h1[k])

reduces the complexity of the TED considerably by a factor asexplained in4.1.3. The

last observation for this case from Fig.6.1 is that the tracking accuracy of the TED

in Fig. 4.2 is significantly worse by 15 dB than the performance limit indicated by

the MCRB(τ). UsingBTs = 1 × 10−2, the performance of the TED is worse than

what was observed withBTs = 1 × 10−3 in terms of normalized timing variance vs.

MCRB. The accuracy in this case is so bad that performance of the TED is rather poor

which can be seen in its BER performance shown in Fig.6.3. This is a drawback with

the proposed scheme, but not an unexpected result based on similar findings reported
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Figure 6.2. Acquisition time of the NDA-TED with a random timing offset

in [5]. However, we emphasize that the proposed scheme has other compelling merits,

such as low complexity, no false lock points, and compatibility with a wide range of

applications, such as noncoherent detectors.

Fig. 6.2 shows the acquisition time of the TED for the two different loop band-

widths. WithBTs = 1 × 10−3, it can be seen that the TED locks on to the correct

timing at around3500Ts. But the fact that its performance in terms of normalized tim-

ing variance vs. MCRB was rather poor being off from the lowerbound by15 dB is

clearly evident here in the form of the jitter in the curve. Incase ofBTs = 1×10−2, the

TED never really locks on to the correct timing and this is an expected result with the

normalized timing variance being too high compared to the MCRB, the effect of which
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Figure 6.3. Probability of bit error for MIL-STD SOQPSK

can also be seen in the BER performance shown in Fig.6.3.

Fig. 6.3 quantifies the bit error performance of a MIL-STD SOQPSK detector

whose timing estimate comes from the feedback-based timingrecovery scheme dis-

cussed above. The theoretical performance of the optimal MIL-STD SOQPSK de-

tector with perfect symbol timing is given in [15]. This ideal performance curve is

shown in Fig.6.3 along with the simulated bit error performance of the detector with

BTs = 1 × 10−3 andh[k] = Q1(h1[k]). The BER performance of the system with

BTs = 1 × 10−2 andh[k] is also shown for the sake of comparison. The detector with

BTs = 1×10−3 achieves near-optimal performance forEb/N0 ≥ 1 dB. In fact, the loss

due to the imperfect timing estimates is only 0.05 dB atPb = 10−5. This demonstrates

the usefulness of the proposed scheme, in spite of the suboptimal tracking performance
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shown in Fig.6.1.
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Figure 6.4. MCRB vs. normalized timing variance for MIL-STD SO-
QPSK withN = 4.

6.2 Numerical Results for data-aided TED

The accuracy of the TED in Fig.5.2is quantified for the two versions of SOQPSK as

it was done for the non-data-aided TED. The discrete-time implementation is sampled

at a rate ofN = 4 samples per symbol. Samples ofZk are used to update the branch
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Figure 6.5. MCRB vs. normalized timing variance for SOQPSK-TG with
N = 4.

metrics within the VA. In addition to the sample used in the VA, anearlysample ofZk

is taken, as well as alatesample. The difference between the early and late samples is

used to approximate the derivativeY k. This procedure is discussed in [12].

In this work, the timing variance has been computed for two different values of

the normalized loop bandwidth, for both versions of SOQPSK (a total of four cases).

Figs.6.4and6.5show the normalized timing variances plotted along with their corre-

sponding MCRB(τ )’s. All four cases reveal that the TED is very effective for SOQPSK,
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Figure 6.6. Acquisition time of the DA-TED with a random timing offset

since the normalized timing variance is within 2.5dB of the lower performance limit in-

dicated by MCRB(τ ).

These synchronization results further validate the CPM model for SOQPSK, which

has already proven effective in detection algorithms. Moreover, in the case of SOQPSK-

TG where the reduced-complexity pulse truncation approximation is used, it is pleasing

that such low values of the timing variance are achieved using the suboptimal MF out-

put samples. The proposed TED shows a marked improvement in performance when

compared to thenon data aidedTED developed in Chap.4. In particular, the TED

presented here allows for much wider loop bandwidths and therapid synchronization

times that result. The acquisition time for this TED is shownin 6.6. It is seen that the

44



0 2 4 6 8 10 12
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

2

5

2

5

2

5

2

5

2

5

2

BTs = 1 × 10−2

BTs = 1 × 10−3

Perfect Timing

Eb/N0 [dB]

B
E

R

Figure 6.7. Probability of bit error for MIL-STD SOQPSK withN = 4.

TED locks on to the correct timing in just over1000Ts whenBTs = 1 × 10−3. When

a wider loop bandwidth ofBTs = 1 × 10−2 is used the synchronization time is even

faster with the TED locking onto the correct timing as fast as200Ts. This is one of the

advantages of this TED over its non-data-aided counterpartwhich failed to synchronize

with the correct timing value at this loop bandwidth.

Figs. 6.7 and6.8 quantify the bit error rate (BER) performances of the proposed

TED for MIL-STD SOQPSK and SOQPSK-TG. The theoretical performance of the
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optimal MIL-STD SOQPSK detector with perfect symbol timingis given in [15]. This

ideal performance curve is shown in Fig.6.7 along with the simulated results for the

bit error performance of the TED withBTs = 1 × 10−3 andBTs = 1 × 10−2. It can

be seen that the detector performs at the theoretical limit,with the simulation points

perfectly lining up over the analytical curve. The fact thatthis performance is achieved

with the wider loop bandwidth ofBTs = 1 × 10−2 is noteworthy.

Similarly, the theoretical performance of SOQPSK-TG with the 4-state pulse trun-
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cation approximation and perfect symbol timing is given in [16]. As in the previous

case, the TED provides accurate results even withBTs = 1 × 10−2. This demonstrates

the applicability of the TED to both versions of SOQPSK, which is significant since the

non data-aidedTED has extremely poor performance in the case of SOQPSK-TG.
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Chapter 7

Conclusion

It is clear that synchronization is a very important problemto be addressed in any

communication system. SOQPSK with its constrained data symbols does not simplify

the task in any way with synchronizers available for CPM’s not always being compat-

ible here. Hence reduced-complexity detectors are required. These timing recovery

schemes are of practical significance since SOQPSK is widelyused in military and

aeronautical telemetry. Moreover, CPM-based detectors have only recently been pro-

posed for SOPQSK and compatible timing recovery schemes, such as the ones proposed

here, are required for these detectors to be implemented in practice.

In this work, two different types of TED’s compatible with SOQPSK have been

proposed namely the non-data-aided (blind) TED and the dataaided TED. Both the

TED’s have their respective merits and demerits. Considering the blind TED it has been

shown that the data correlation can be ignored when constructing the TED; however, the

best results are obtained when the data correlation is takeninto account. The S-curve

of the TED was computed, which ruled out the existence of false lock points. In the

case of SOQPSK, the proposed scheme was shown to have relatively poor performance

by 15 dB in terms of timing error variance, as measured against the MCRB. However,
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due to its simplicity, its blind nature, and the absence of false lock points, the proposed

scheme has potential in a wide range of applications and is anattractive solution to this

highly-motivated problem.

As far as the data aided TED is concerned, unlike the other TED, the performance

is exceptionally good in terms of approaching the theoretical lower bounds on timing

error variance established by the MCRB. Furthermore, the bit error performance of the

detector was identical to the perfect timing case, even whenreasonably large values of

the loop bandwidth were used.

Though the performance of the data aided TED is superior in terms of normalized

variance, the blind TED has its own advantages. In applications where interaction

between phase and timing is not desirable, the blind TED is the only solution available

today. Moreover, the performance of the blind TED is comparable to the data aided

TED considering the BER’s of the two schemes. It is particularly pleasing to note that

a drastically simplified two level quantized blind TED performed close to the theoretical

limit.
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