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Abstract

Inefficient spectrum allocation and the burgeoning problem of spectrum scarcity have
prompted an examination of how the radio frequency spectrum is utilized. The radio
frequency spectrum is an important national resource that impacts the economy, national
security and daily life. Various studies have taken up the task of re-thinking spectrum
licensing and allocation with the intent of encouraging the development of spectrally agile
and efficient technologies. Thus, the ability to accurately measure spectrum usage directly

effects the creation and modification of public policy.

This thesis presents a framework designed to measure, characterize and model spectrum
utilization. While individual organizations have performed spectrum measurements, a
framework does not currently exist to coordinate spectrum data sharing or distributed
measurement campaigns. This thesis discusses the development of a shared database schema
that can accommodate large scale and long term spectrum measurement campaigns. The
implementation of this schema also allows multiple researchers to share experiment
configurations and data. The development of a software program that can automate spectrum
measurements is covered, along with its ability to facilitate the sharing of those
measurements with a central archive. The creation of a spectrum measurement repository is
discussed as well. Research is presented regarding the use of a low cost, mobile software-
defined radio platform as a spectrum data collection device. Finally, various case studies are
presented demonstrating how the technologies and techniques produced during the creation of

this thesis can be used to analyze spectrum measurement data.
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Chapter 1 — Introduction

The growing demand for wireless services and applications shows no sign of abating.
However, the current command-and-control' regulatory structure for licensing spectrum has
been unable to cope with the drastic growth demands of the wireless industry [1]. This has
given rise to an “artificial scarcity” of usable spectrum, resulting in spectrum license pricing
that is prohibitively expensive. This in turn has a chilling effect on innovation and small
business development, preventing many small to medium size businesses from entering the
wireless market [2]. When spectrum licenses are awarded, the licensee must meet various
technical and policy restrictions that govern the usage of the license, but there is no
governmental mandate regarding how efficiently a communications band must be used.
Outside of broadcast bands, very few communications services fully utilize their allocated
bandwidth over a twenty four hour period. For example, a pizza delivery service may have a
land mobile license that covers a metropolitan region and yet they may only use their licensed
band business hours. In an efficient spectrum re-use scenario, the delivery service could
license their spectrum to another party when they are not using it. The band could also be
classified as a dynamic spectrum access (DSA) band, where secondary users look for the
existence of a primary signal before using the band. Unfortunately, there is currently a lack of
policy and technology solutions that enable efficient spectrum re-use in communications

bands where licensees are not efficiently utilizing the band.

Given that there is a finite span of spectrum that is usable for communications services,

various studies have begun to examine the efficiency licensed band usage. These studies aim

! A reference to centrally controlled disbursement of spectrum licenses by the FCC and NTIA



to help the regulatory community re-think the spectrum licensing regime with the goal of
opening underutilized “prime” spectrum for licensed and unlicensed secondary usage [3].
Critical to the various studies that advocate changes in policy and technology is the accurate
measurement of the spectrum. These measurements must be accompanied by signal detection
and analysis methods that can impart meaning to the measurements and provide the
theoretical basis for policy and technology development. This type of development is
especially crucial in the burgeoning field of cognitive radio (CR) development. While several
organizations and entities have performed spectrum measurement campaigns, a framework

does not currently exist that enables and coordinates distributed spectrum measurements.

This thesis will detail the design and implementation of a framework that enables multiple
organizations to coordinate distributed spectrum measurement campaigns, share data and
further the analysis of spectrum utilization. This includes the design and development of a
shared database schema for storing and synchronizing spectrum measurements. It also
includes the development of a measurement automation program and central repository for
the entire research community to share measurements. Finally, this thesis addresses the
development of hardware and software that allows a low cost, mobile software-defined radio
(SDR) platform to act as a spectrum analyzer (SA). This thesis and its associated work for the
National Radio Network Research Testbed (NRNRT) project at the University of Kansas
attempts to provide the scientific and governmental communities with spectrum data
collection mechanisms and analysis techniques that can provide guidance in the formulation

of future spectrum policy.



1.1 Whatis spectrum?

Spectrum is defined as a range of frequencies for electromagnetic waves. In the context of
this thesis, it will refer to electromagnetic spectrum that has properties making it conducive
for use as a communications medium. The frequency of these waves is typically measured in
Hertz (Hz) or cycles per second, and is proportional to the wavelength. Electromagnetic
waves are capable of transporting energy through space. In free space, this happens at the
speed of light, or 3 x 10® m/s. Spectrum is sometimes referred to as the “electrospace” and
can be expressed as a tuple or hyperspace with dimensions of frequency, time, spatial extent,
signal format, angle of arrival and polarization [4]. These properties define the ways in which

electromagnetic waves can be manipulated for the purpose of carrying information.

Frequency

Figure 1 —The Electrospace represented in itsthree most basic dimensions [5]
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The inverse-square law dictates that the power of an electromagnetic wave is proportional to
the inverse square of the distance it has radiated from its source. Thus a receiver that has
doubled its distance from the transmitter would see power levels that are one-quarter of the

previously detected value.

Figure 2 —Inverse square law

Certain frequencies are desirable for telecommunications purposes because their wavelengths
have favorable propagation qualities. For example, television and radio waves are capable of
penetrating the walls of buildings, while higher frequency waves such as light cannot. These
properties can contribute to the monetary valuations applied to spectrum. Lower frequencies
are typically used in broadcasting applications and their ability to propagate over large
geographic areas generally makes them a valuable commodity. Higher frequencies are
advantageous in the realm of micro-electronics, such as cell phones, as their small
wavelengths allow devices to use proportionally small antennas. Table 1 shows the various

bands of the radio frequency (RF) spectrum.

Table 1 — Radio frequency bands

Band Frequency Wavelength
VLF — Very Low Frequency 3-30kHz 100 - 10 km
LF — Low Frequency 30-300 kHz 10- 1 km
MF — Medium Frequency 300-3000 kHz 1000 -100 m
HF — High Frequency 3-30 MHz 10010 m




VHF — Very High Frequency 30 -300 MHz 10-1m
UHF - Ultra High Frequency 300 -3000 MHz 100 -10 cm
SHF — Super High Frequency 3-30 GHz 10-1cm
EHF — Extremely High 30-300 GHz 10— 1 mm
Frequency

What makes the electromagnetic spectrum unique as a medium is that its waves can be used
to carry a message or more generally, information. Modulation is the process of varying a
periodic waveform in order to transmit information. This is similar to how a musician can
convey different emotions or feelings in his music by varying the volume, timing and pitch.
The most basic types of modulation involve varying the phase, frequency or amplitude of the

carrier signal.

1.2 Research Motivation

In the United States, the federal government controls the allocation and licensing of spectrum.
Spectrum is allocated into bands and then licenses for various services are either awarded to
or purchased by private entities (Figure 3). These entities are then free to use the spectrum as
they see fit, even if this means that the spectrum lies dormant or is inefficiently used. This is
highlighted in the Media Access Project’s Ex Parte comments filed on FCC ET Docket No.
03-237 [6]:

“As an initial matter, incumbents have a lengthy history of using the existing lack of

clarity surrounding interference risk management to create artificial barriers to new

technologies that threaten incumbents’ business models. Recent examples include

resistance to the introducing of ultra-wide band technologies, technologies for




sharing Ku-band spectrum, and creation of a low power radio service. In all of these
cases, incumbents succeeded in delaying introduction of innovative and competitive
services and in scaling back the initial proposed services by exploiting the lack of any

clear metric for interference risk management.”
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Figure 3 —FCC spectrum allocation chart

Communications bands can be allocated on either a nation-wide or regional basis. For
example, PCS band cellular allotments are often nationwide. In contrast, there are numerous
local network television affiliates in the country that have the same television channel
assignment, but they are geographically separated so there is no chance of interference. These
geographic spectrum markets help to protect against service interference, but can often be the

source of inefficient spectrum use where spectrum is allocated but not licensed. As seen in



Figure 4, television channels 2-69 are allocated on a per-market basis nationwide. A majority
of this spectrum goes unused in a high percentage of markets because the spectrum allocation
outpaces the number of television broadcasters. This means that hundreds of megahertz of
prime broadcasting spectrum goes unused around the country on a daily basis [7]. The
propagation characteristics of this spectrum would make it ideal for rural wireless broadband
access networks, surplus public safety spectrum, or secondary (unlicensed) spectrum for

cognitive radio networks.

Post-DTV Transition
No. of Vacant | Percent of TV
e Channels Band Spectrum
Between 2-51 Vacant

Juneau, Alaska 37 74%
Honolulu, Hawaii 31 62%
Phoenix, Ariz. 22 44%
Charleston, W.V. 36 72%
Helena, Mont. 31 62%
Boston, Mass. 19 38%
Jackson, Miss, 30 60%
Fargo, N.D. 41 82%
Dallas-Ft. Worth, Tex. 20 40%
San Francisco, Calif. 19 37%
Portland, Maine 33 66%
Tallahassee, Fla. 3 62%
Portland, Ore. 29 58%
Seattle, Wash. 26 52%
Las Vegas, Nev. 26 52%
Trenton, N.J. 15 30%
Richmond, Va. 32 64%
Omaha, Neb. 26 52%
Manchester, N.H. 23 46%
Little Rock, Ark. 30 60%
Columbia, S.C. 35 70%
Baton Rouge, La. 22 44%

Figure 4 —White Spaceasa shareof TV band in sample U.S. media markets[7]

Numerous individuals, including former FCC Chairman Michael Powell, have voiced the
notion that spectrum policy in the United States is antiquated. In a speech at the University

of Colorado at Boulder [8], he said, “...we are still living under a spectrum “management”



regime that is 90 years old. It needs a hard look, and in my opinion, a new direction”. The
United States spectrum policy and its current “spectrum scarcity” stems from regulations
created in the early 1920’s. The advent of commercial radio broadcasts and the desire to
prevent interference among transmitters gave rise to a rigid and exclusive licensing structure
that is still in use today. This structure served powerful broadcast technologies like radio and
television well, but has begun to show its shortcomings with the emergence of new
technologies like cellular communications. In an article encouraging further deregulation of

the spectrum, Thomas Hazlett and Gregory Rosston commented that [9]:

“Wireless operators are typically licensed to offer specific services, according to
technologies and business models bureaucrats prescribe. Government mandates, for
instance, forced analog cellular phone systems on a 1980s world that yearned to be
digital. Worse, restrictions keep licensees in one band from offering services to

compete with those in another, as in the UHF TV mandate.”

These regulations aimed to promote harmony on the airwaves, yet they have put artificial
limits on technology and have failed to efficiently utilize the spectrum as a resource. Modern
advancements in technology however are displacing old ideas about interference, spectrum
scarcity and spectrum sharing. Interference is not an inherent property of spectrum; rather it
is a property of devices. This realization, amongst others, has led the FCC to regroup. In
2002, the FCC organized a Spectrum Policy Task Force to re-evaluate spectrum allocation
and licensing. This task force found that a majority of the licensed spectrum, including
premium frequencies below 3 GHz, is quiet most of the time. By making even small amounts

of this bandwidth available, the door could be opened for a variety of new services. For



example, at least five digital TV shows can be broadcast on the same frequencies that a single
analog channel now occupies. Satellite radios deliver service using just 25 MHz of spectrum,
about the same bandwidth used by four analog television channels. The Personal
Communications Service band used for cellular voice and data services contains 50 MHz of
bandwidth. The IEEE 802.11 standard in wireless local-area networking was started with
only 84 MHz. These examples demonstrate the types of services that can flourish with just a
small amount of bandwidth. The variety of new services and industries that are made possible

by access to affordable spectrum is virtually limitless.

While forward steps have been taken, regulatory change has been slow. Government officials
still cling to rigid allocations of spectrum, which creates artificial scarcity and drives the price
for licenses up. While this methodology may generate increased federal revenue, examples
such as the deregulation of the ISM and UNII bands and the fantastic success of Wi-Fi
demonstrates that the benefits of the free-market far outpace profits from licensing. New
technology is gradually dictating that the entire notion of spectrum allocation should be
overhauled to keep pace with public, private and governmental consumption of wireless
services. Recent advancements in receiver and antenna technology have shown that signals
can overlap without the interference problems experienced years ago. Advancement in
wireless technology must be paired with progress in the policy and regulatory sphere if new
wireless devices are to reach the consumer. To enable this progress, research must be
performed regarding the study of real-world spectrum utilization patterns with respect to

location and time.



1.3 The National Radio Network Research Testbed (NRNRT)
project

This thesis stems from the goals of the National Radio Network Research Testbed (NRNRT)
project at the University of Kansas. This project aims to thoroughly analyze national
spectrum usage and to coordinate the various spectrum measurement efforts currently
underway. The dramatic development of wireless services and mobile communications
devices underscores the fact that the public expects to have access to networks and
information at all times and in all locations. Spectrum allocation and usage may be re-thought
in order to facilitate continued economic growth of communications services in the open
market. The NRNRT project aims to answer the following questions:
e What are the characteristics of the wireless environment over long time periods and
broad frequency ranges?
e How should sensor networks be built and deployed to best measure the wireless
environment?
e How can the RF environment be sounded over a wide frequency range without
interference and remaining within the constraints of government regulations?
e How can wireless measurements be mapped to accurate network-level simulation
models?
e How can the characterized RF environment be used for testing and evaluation of
novel wireless systems?
e How can RF measurements be effectively integrated into emulation/simulation

systems?
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The NRNRT will support the research and development of new radios, services,
architectures, and protocols that will power the next generation of wireless access. The
NRNRT also proposes to provide a facility for the research community to test and evaluate
their systems. The NRNRT consists of the following programs and systems:
1. A field deployed measurement and evaluation system for long-term radio frequency
data collection.
2. An experimental facility for testing and evaluating new radio devices
3. An accurate emulation and simulation system incorporating long-term field
measurement for evaluating new wireless network architectures, policies and network
protocols.
4. Coordination of experiments with innovative wireless networks that integrate

analysis, emulation/simulation and field measurements.

Field measurements produced through the NRNRT will provide real spectrum usage data that
can be used as the input to simulations or to test new radio designs. A centralized database
will store long-term utilization and propagation statistics from RF spectrum measurements.
The emulation system will aid in improving the analysis of radio devices, protocols and
services. All of these services will help aid designers in testing their next generation designs.
The research and coordination provided by the NRNRT will help shape spectrum

management and policy discussion at the national level.

1.4 Research Objectives and Contributions

This thesis will detail the design and implementation of a framework that enables multiple

organizations to coordinate distributed spectrum measurement campaigns, share data and
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further the analysis of spectrum utilization. This includes the design and development of a
shared database schema for storing and synchronizing spectrum measurements. It also
includes the development of a measurement automation program and central repository for
the entire research community to share measurements. Finally, this thesis addresses the
development of hardware and software that allows a low cost, mobile software-defined radio
platform to act as a spectrum analyzer. This thesis and its associated work for the National
Radio Network Research Testbed (NRNRT) project at the University of Kansas attempts to
provide the scientific and governmental communities with spectrum data collection
mechanisms and analysis techniques that can provide guidance in the formulation of future

spectrum policy.

1.5 Thesis Outline

Chapter 1 provides an introduction to the radio frequency spectrum. It discusses the research
project that this thesis is associated with and covers the objectives and contributions of the

thesis. The outline of the thesis is presented in this subsection.

Chapter 2 discusses the regulatory and policy history concerning spectrum management in
the United States. This provides insight into the current situation of spectrum scarcity. The
subjects of spectrum measurement and signal detection are reviewed. These are related to the
development of software-defined and cognitive radios, which promise to make dynamic
access networks a reality in several underutilized communications bands. Finally, the
development of the Kansas University Agile Radio platform is discussed, which will provide

insight into the use of this radio as an experimental platform. In the case of this thesis, the
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versatility of the KUAR will be demonstrated through its use as a spectrum data collection

device.

Chapter 3 highlights the design of a shared database schema, spectrum measurement
automation program and centralized measurement repository. The database design is
discussed table by table, as design decisions have a direct impact on the ability of the
database to store large amounts of spectrum data and to easily facilitate sharing of the data
amongst multiple researchers. The ability to import and export that data to a variety of

analysis tools is addressed.

Chapter 4 covers the implementation of the Spectrum Miner program, a software tool for
measurement automation. This program can interface with a variety of spectrum data
collection devices, including spectrum analyzers and software-defined radios configured to
work as simple spectrum analyzers. This section also includes a discussion of the work
involved to allow the KUAR radio to act as a spectrum analyzer and interface with the
Spectrum Miner program. The program’s user interface and usage is demonstrated as well.
Finally, this chapter addresses the implementation of the Spectrum Repository, a web
application and archival database designed to coordinate measurement gathering and data

sharing.

Chapter 5 highlights how the tools and techniques developed during the creation of this thesis
can be used to perform spectrum measurement campaigns. The calibration and verification of
measurements is addressed. Two case studies are presented that demonstrate how real-world

measurements were performed and analyzed.
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Chapter 6 offers concluding thoughts and summarizes the research and development
accomplished in the thesis. Ideas regarding future work related to topics addressed in the

thesis are suggested and examined.

Appendix A displays Matlab code that is used to import spectrum measurements directly into

the Matlab workspace. Appendix B provides plots of the calibration measurements taken on

the KUAR.
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Chapter 2 — Background

2.1 Regulatory History

The U.S. Radio Act of 1912 marked the beginning of governmental regulation of radio as a
communications medium. This act allowed the Department of Commerce to issue
commercial radio licenses. As many organizations and individuals applied for these licenses,
further oversight became necessary. The Radio Act of 1927 created the Federal Radio
Commission, an independent commission that could grant exclusive radio licenses to a
limited number of broadcasters [10]. As spectrum usage increased in both the public and
private sectors, various government agencies became increasingly responsible for the
management of the spectrum. The Communications Act of 1934 helped to define the various
responsibilities of government agencies for spectrum management in the United States. This
act cr