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Outline
Introduction

• Fiber-to-the-home & WDM-PON Approach
• SCM Approach & Project Goal

SCM Network
• SCM Network Architecture
• Optical Modulator & Optical Signal Side Band Modulation
• Noises Contribution in SCM Externally Modulated Optical Link

Transmission Link Performance Analysis
• System Standard Requirements
• CATV CNR Analysis & SCM Network Scalability Using Conventional MZ Modulator
• Dual Parallel MZ Modulators
• CATV CNR Analysis & SCM Network Scalability Using DPMZ Modulators
• Digital Q-Value Analysis Uisng DPMZ Modulators

Fiber Nonlinearities
• Stimulated Raman Scattering (SRS) Frequency Response
• Cross Phase Modulation (XPM) Frequency Response
• SRS+XPM Crosstalk analysis in SCM Network
• Four-wave Mixing

Overall Transmission Performance Analysis Includes Signal-Crosstalk Noise

Conclusion & Future Work
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Introduction: FTTH & WDM-PON

Technology 
Improvements

• Future Access Network “One for All” 
Architecture

Increasing Data Services 
Requirements

• Continued increasing data bandwidth demand
• DSL & Cable Modem unlikely to meet longer 

term needs

Competition • Entertainment Video Overlay

Cost Improvements • Cost of optoelectronic equipment 
continues to decline

• Reduced maintenance costs
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ITU-T G.983.3 Wavelength Allocation Standard
1.3 µm wavelength band (Upstream)

1260 13601340132013001280

G983.1 Upstream Band
(unchanged at 100 nm bandpass)

Upstream Window (no change)
Basic Band (constrained APON band)
Enhancement Band (other uses)
For future use

1360 14601440142014001380

Reserved for allocation by ITU-T Guard band

1480

Guard band

Intermediate wavelength band (Upstream and/or Downstream)

1.5 µm wavelength band (Upstream and/or Downstream)
Enhancement BandBasic Band

ATM-PON

Downstream
Guard band Guard band

Future L Band

Reserved for
allocation by ITU-T
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ITU-T G.983.3 standard for Enhancement Band
1.5µm wavelength Enhancement band (Upstream and /or Downstream)
Application options at Enhancement Band (1539nm to 1560nm) are:
1) Additional Digital Service Uses
2) Video Distribution Service
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WDM-PON Network Architecture 

Video
(RF)

Data Data

OLT
(Optical Line Terminal)

Downstream
1490 nm 

Data Upstream
1310 nm 

1490nm/1310nm, 1550nm

Data
Data & Video

Optical
Splitter

EDFA
(Erbium Doped Fiber Amplifier)

1310 nm 1490 nm
DownstreamUpstream

Downstream
Digital Data

1550 nm

Video

Analog TV

550 MHz42 MHz

Upstream 
Digital Data

Bandwidths & Services

Optical
Couplers
(WDM)

Video
1550 nm 

Central Office

Customer Premises

ONT
(Optical Network Terminal)

E/O

Requires 3 Wavelengths Bandwidth 
to support Broadband Services
Requires light source at customer 
home
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SCM Approach 

10 Km

1550 nm

FTTX ONT

Central Office/
Hub Site

ONT

ONT

Power Splitter

1550 nm

1550 nm

Downstream
Data at lower sideband of optical carrier (1550nm)
Video at lower sideband of optical carrier (1550nm) 
Optical subcarrier at upper sideband of optical carrier (1550nm)
Upstream
Data at upper sideband of optical carrier (1550nm)

Use Microwave double side band technology
Optical modulated 78 CATV channel & 1 Gb/s digital data at the lower side band of optical 
carrier.
At the same time, Optical modulated a sinusoidal RF signal at the upper side band of optical 
carrier and deliver from CO to Customer, this optical RF signal is used as optical light source 
for upstream data transmission.  Therefore, no laser source requires at customer side.

78 CATV 1Gb/s dataSinusoidal Signal

Upstream digital data
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Project Goal
Examine Physical Transmission Performance Using SCM Approach 
transmitting 78 CATV channel and 1Gb/s digital channel from CO to 
Customer Premises

• Analyze 78 Analog CATV Carrier-to-Noise Ratio (CNR) Performance

• Analyze 1Gb/s Digital Channel Q-Value Performance

• Analyze the fiber crosstalk in SCM Network
• Stimulated Raman Scattering (SRS)
• Cross Phase Modulation (XPM)
• Four wave Mixing (FWM)

• Evaluated the Overall Transmission Performance due to fiber crosstalk

This project is the first time to demonstrate for this comprehensive analysis
using microwave double side band technology for FTTH application
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SCM Network Architecture
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Optical Modulation & MZ Modulator
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Optical Single Side Band Modulation
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Noise Contributions in Optical Transmission 

Thermal Noise: Noise is generated in resistive elements (Photo-detector)
Shot Noise: Noise is generated when an optical signal is incident on the photo-detector
RIN Noise: Noise is generated by spontaneous emission with the laser source
Booster Amplifier Noise: Noise generated by Amplifier
Clipping: It set the fundamental limitation on how much the laser can be clipped for composite input signal
Intermodulation Distortion: Composite second order (CSO) & Composite Triple Beat (CTB) generated by 
Conventional MZ Modulator

Thermal Noise Limited Shot Noise Limited RIN Noise Limited ASE Noise Limited

Optical Receiver Power Increase

G

ASE Noise

Analog or
Digital Data

RF Carrier

Χ

Thermal Noise
Shot Noise

Laser MZ Modulator

Analog or
Digital Data

RF Carrier

Χ

RIN Noise &
Clipping CSO/CTB

Ps Pase , GPs

LPase ,GLPs
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Nonlinear Distortions (CSO, CTB) of Convention MZ Modulator
Transfer function of MZ modulator is a sine wave-like function of input voltage

Composite Second Order (CSO) : Max 79 CSO Distortion terms fall at RF channel 1 
Composite Triple Beat (CTB) : Max 2185 CTB distortion terms fall at RF channel 38
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Nonlinear Distortions (CSO, CTB) of Convention MZ Modulator
Power ratio of CSO/C
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• CSO Cancelled when Applied DC 
Voltage bias at ±0.5Vπ ,±1.5Vπ,…
(Q-point)

• CTB independent of Applied DC 
Voltage

• CSO is negligible
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Transmission Standard & Device Parameter Values

666Digital Q-Value

-60dBc-53dBc +/- 2dB> 51dBc [Section 76.605 (a) (8)]CATV CTB

-60dBc-53dBc +/- 2dB> 51dBc [Section 76.605 (a) (8)]CATV CSO

50dB48dB  +/- 2dB > 43dB [Section 76.605 (a) (7)] CATV Carrier/Noise 

Project TargetTypical ValueFCC RequirementParameter

Laser MZ Modulator Booster Amplifier Photodiode 
Power = 6, 8 &10dBm Loss=5dB Input Power -1, 1 & 3dBm Responsivity = 0.8, 0.9A/W 

Wavelength = 1550nm Bandwidth = 20GHz  Output Power = 17dBm BW = 6MHz (CATV) 

RIN=-155, -160dB/Hz   Noise Figure = 5dB BW = 0.75GHz (Digital) 

  nsp = 1.5849 T=300K, Kb=1.38e-23 

  Coupling and Isolator loss = 2dB Resistance = 1000 ohms 
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CATV CNR Analysis using Conventional MZ Modulator

Parameter Values 
Optical Power budget : 1 end Users
RIN=-155dB/Hz
-1dBm input at Booster Amplifier
R=0.8 A/W

• CNR=43.1dB (Maximum)
C/CTB = 47dB 
OMI = 1.84%

• Disregarding CTB term for the 
moment:
1) CNR increases to 50dB, as OMI 
increases to 3.4% OMI.

2) As OMI continues to increase, 
Clipping becomes dominant  

3) Optimized OMI from 3% to   5% 
range
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Scalability of SCM network using Conventional MZ Modulator
Parameters Line 1 Line 2 Line 3 Line 4 

Input power at Booster Amplifier -1dBm 1dBm 1dBm 3dBm 

Laser RIN -155dB/Hz  -155dB/Hz -160dB/Hz -160dB/Hz 

Photodiode Responsivity  0.8 A/W 0.8 A/W 0.9A/W 0.9 A/W 

Fiber distance 10km 10km 10km 10km 

 

The “SCM/WDM-PON” network scalability can not be improved further as the third order nonlinear distortion 
(CTB) severe limit overall CNR performance 
It cannot implement in practical CATV network without reduced CTB noise 

Increase SCM Network Scalability

Improved ASE Noise
Improved Laser RIN Noise
Improved Receiver Noise
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Dual Parallel Linearized External Modulators

Primary Modulator bias at Q-point (Vdc = 0.5Vπ)
Secondary Modulator bias at Q-point 180º from the point chosen for the primary modulator (Vdc = 1.5Vπ)
Apply higher RF driver power and less Optical power to secondary modulator. This result higher OMI and higher 
distortion.  CTB created in secondary modulator can be made to cancel the distortion products from the primary 
modulator [2]

Transfer Function of DPMZ 

A = Optical Power Ratio B = RF Power Ratio
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DPMZ

Case I: A=0.88, B=2, OMI = (1% - 4.5%), CTB/C > 60 dB

Case II: A=0.93, B=2.5, OMI = (1% - 4.4%), CTB/C > 60 dB

Case III: A=0.96, B=3, OMI = (1% - 3.4%), CTB/C > 60 dB
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CATV CNR Analysis Using Linearized MZ Modulator

Parameter Values
Linear Modulator

• A = 2 & B = 0.88

Optical Power budget  
• 8 Customers
• 30 Customers
• 60 Customers

RIN=-155dB/Hz
-1dBm input at Booster Amplifier
R=0.8 A/W

Results
• Optical Power Budget = 8 

Customers
• CNR=50dB 
• C/CTB = 60.5dBc 

OMI = 4.48%
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Scalability of SCM Externally M0odulated Optical Link Using DPZM
PARAMETERS Line 1 Line 2 Line 3 Line 4

Case I : MZ Modulator A=0.88 & 
B=2

A=0.88 & 
B=2

A=0.88 & 
B=2

A=0.88 & 
B=2

Input power at Booster Amplifier -1dBm 1dBm 1dBm 3dBm
Laser RIN -155dB/Hz -155dB/Hz -1 60dB/Hz -160dB/Hz

Photodiode Responsivity 0.8 A/W 0.8 A/W 0.9A/W 0.9 A/W
Fiber distance 10km 10km 10km 10km

RESULTS
No. of End -Users > 50dB CNR 8 15 22 27

CNR per Channel 50 dB 50.1163 dB 50.0553dB 50.0079 dB
C/CTB per Channel 60.4695 dB 60.6555 dB 60.65dB 60.655dB

OMI per Channel 4.48 % 4.47 % 4.47 % 4.47%
Receiver Optical Power per RF Channel -13.647dBm -16.37dBm -18dBm -18.9dBm
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Scalability of SCM Externally Modulated Optical Link Using DPZM
PARAMETERS Line 1 Line 2 Line 3 Line 4

Case II: MZ Modulator A= 0.93 & 
B=2.5

A=0.93 & 
B=2.5

A=0.93 & 
B=2.5

A=0.93 & 
B=2.5

Input power at Booster Amplifier -1dBm 1dBm 1dBm 3dBm
Laser RIN -155dB/Hz -155dB/Hz -160dB/Hz -160dB/Hz

Photodiode Responsivity 0.8 A/W 0.8 A/W 0.9A/W 0.9 A/W
Fiber distance 10km 10km 10km 10k m

RESULTS
No. of End -Users > 50dB CNR 12 19 26 30

CNR per Channel 50.036 dB 50.085 dB 50.043dB 50.08 dB
C/CTB per Channel 61.9 dB 61.89dB 61.89dB 61.89dB

OMI per Channel 4.34 % 4.34 % 4.34 % 4.34%
Receiver Optical Power per RF Ch -14.8dBm -16.8dBm -18.1dBm -18.8dBm
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Scalability of SCM Externally Modulated Optical Link Using DPZM
Parameters Line 1 Line 2 Line 3 Line 4

Case III: MZ Modulator A=0.96 & 
B=3

A=0.96 & 
B=3

A=0.96 & 
B=3

A=0.96 & 
B=3

Input power at Booster Amplifier -1dBm 1dBm 1dBm 3dBm
Laser RIN -155dB/Hz -155dB/Hz -160dB/Hz -160dB/Hz

Photodiode Responsivity 0.8 A/W 0.8 A/W 0.9A/W 0.9 A/W
Fiber distance 10km 10km 10km 10km

RESULTS
No. of End -Users > 50dB CNR 0 6 12 18

CNR per Channel 49.47 dB 50.062 dB 50.1182dB 50.05 dB
C/CTB per Channel 60.0191 dB 60.0191dB 60.0191dB 60.0191dB

OMI per Channel 3.43 % 3.43 % 3.43 % 3.43%
Receiver Optical Power per RF Channel -4.6dBm -12.38dBm -15.9dBm -17.6dBm
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Digital Data Q-Value Analysis
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Parameter Set 1 Set 2 Set 3
Linear MZ Modulator A=0.88 & B=2 A=0.93 & B=2.5 A=0.96 & B=3

Input power at Booster Amplifier 3dBm 3dBm 3dBm
Laser RIN -160dB/Hz -160dB/Hz -160dB/Hz

Photodiode Responsivity 0.9 A/W 0.9 A/W 0.9A/W
Fiber distance 10km 10km 10km

No. of End-Users 27 30 18
OMI / Channel 4.47% 4.34% 3.43%

Receiver Optical Channel Power -18.9dBm -18.8dBm -17.6dBm
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Digital Data Q-Value Analysis
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1) The Requirements of Digital is more relax 
compared to Analog channel.

2) High Optical Power Transmission in SCM 
Network

3) Q-Value continues to increase as optical power 
increase
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Fiber Nonlinearities (From Linear to Non-linear Propagation)

Types of Fiber Nonlinearities
Stimulated Scattering
• Raman (SRS)

Nonlinear index (Kerr Effect)
• Cross-phase modulation (XPM)
• Four-wave mixing (FWM)

λ
SRS

λ
FWM
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Stimulated Raman Scattering (SRS) Frequency Response Concept in WDM 
Network [3]
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Parameter Values
SM fiber, Slope of Raman Gain = 5e-
15m/W/THz
10dBm optical power entering fiber
10km fiber length
Dispersion = 17ps/nm/km

• Transfer Function of SRS has a low 
pass filter characteristic

• SRS increases, as the Frequency 
Spacing between two channel 
increases.

• SRS is dominant at high frequency 
spacing and at small modulation 
frequency
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Optical Carrier power 
after fiber loss

Interaction between the optical
carriers, results in optical dc 
power gain or loss

Use coupled propagation equations to solve for SRS Crosstalk level
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Cross Phase Modulation (XPM) Frequency Response Concept in WDM 
Network [4]
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Fiber Loss Linear Phase Delay Phase Modulation in the channel J induced by channel k

Fiber Dispersion results in convert Phase Modulation to Intensity Modulation

Parameter Values
10dBm optical power entering fiber
10km fiber length
Dispersion = 17ps/nm/km

• XPM transfer function has a high 
pass filter characteristic

• XPM increases, as the Frequency 
Spacing between two channel 
decreases.

• XPM is dominant at small 
frequency spacing and at large 
modulation frequency
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Constructive & Destructive SRS+XPM Frequency Response Concept in
WDM Network [3]
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Channel 2 Channel 1

Crosstalk at Channel 1 (Constructive)
Power gain through SRS Interaction
XPM crosstalk at Channel 1
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• SRS dominant for small modulated 
frequency or large wavelength 
separation

• XPM is dominant for large modulated 
frequency or small wavelength 
separation

• In between we must consider whether 
the Channel suffered by SRS is going 
through power gain or depletion

Parameter Values
10dBm optical power entering fiber
10km fiber length
17ps/nm/km Dispersion
0.8 nm Frequency spacing
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SRS+XPM crosstalk in SCM Externally Modulated Network
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Parameter Values
Optical Power Budget = 30 End-Users
-15.6dBm optical channel power entering fiber 
10km fiber length, 0.22dB/km
5e-15m/W/THz SRS Gain Slope
17ps/nm/km Dispersion



Department of Electrical Engineering & Computer Science, University of Kansas 31

SRS+XPM Crosstalk in SCM Externally Modulated Network
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SRS is the dominant crosstalk compared to XPM

Overall result, SRS & XPM crosstalk shows very minimal impact between two 
subcarrier under same wavelength
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Four-Wave Mixing
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Parameter Values
Optical Power Budget = 30 End Users
-15.6dBm optical channel power entering fiber 
10km SM standard fiber  
17ps/nm/km Dispersion
D=6 (None of Frequencies are the same)
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Total Crosstalk in SCM Externally Modulated Network
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FWM is the major source of nonlinear crosstalk in SCM optical systems with extremely 
narrow spacing between RF channels

SRS becomes dominant as channel spacing increases
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Total Crosstalk in SCM Externally Modulated Network
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Total Crosstalk in SCM Externally Modulated Network

The CATV Crosstalk level remains constant as 
power increases because FWM is the dominant 
Crosstalk at narrow channel spacing

It demonstrates that as optical power increases, 
FWM becomes the dominant crosstalk in SCM 
externally modulated Network
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Signal-crosstalk Noise in SCM Transmission Performance for CATV 
PARAMETERS Case 1 Case 2 

Linearized MZ Modulator A=0.93 & B=2.5 A=0.93 & B=2.5 
Input power at Booster Amplifier -1dBm 3dBm 

Laser RIN -155dB/Hz  -160dB/Hz 
Photodiode Responsivity  0.8 A/W 0.9 A/W 

Fiber distance 10km 10km 
OMI 4.343% 4.343% 
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Signal-crosstalk Noise in SCM Transmission Performance for Digital Data
PARAMETERS  

Linearized MZ Modulator A=0.93 & B=2.5 
Input power at Booster Amplifier 3dBm 

Laser RIN -160dB/Hz 
Photodiode Responsivity 0.9 A/W 

Fiber distance 10km 
OMI 4.343% 
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Conclusion

Transmission Quality
• Optimizing the Receiver Optical Power per RF Channel = -17dBm to -20dBm
• CATV CNR in the range of 48dB to 48.5dB
• Digital BPSK Q = 13 to 17
• Digital QPSK Q = 9 to 12
• Digital ASK Q = 6 to 8

Network Scalability
• Number of Customers premises = 20 to 40
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Future Work

Analyze the uplink transmission performance and the impact of optical crosstalk under bi-
directional fiber transmission.

Analyze uplink multiple access method such as Time Division Multiple Access (TDMA), 
Subcarrier Multiple Access (SCMA) and their efficiencies.

Because Narrow-band optical filter is relative expensive compared to wide-band optical 
filter, further study in separate upper and lower side-band of optical carrier at end-user is 
suggested.

The even-order distortion produced by a MZ modulator can be cancelled using OSSB 
Modulation.  CSO is also affected by various phenomena such as chirp, fiber chromatic 
dispersion and polarization-mod dispersion (PMD), self-phase modulation (SPM) as well as 
gain-tilt of optical amplifiers.  Future study in CSO distortion in SCM externally modulated 
optical network is suggested.
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