
The University of Kansas
Department of Electrical Engineering 
and Computer Science

TIME FREQUENCY ANALYSIS – An Application to 
FMCW Radars

BALAJI NAGARAJAN
Master’s Project Defense

January 27, 2004

Committee:
Dr. Glenn Prescott (Chair)

Dr. Christopher Allen
Dr. Swapan Chakrabarti



The University of Kansas
Department of Electrical Engineering 
and Computer Science

OUTLINE
� Introduction

� What is Joint Time – Frequency analysis ?
� Application of JTFA to radar signal processing

� Background
� FMCW (sea-ice) radar system design & specifications
� Need for Time – Frequency analysis of radar range profiles

� Time – Frequency Representation
� Different techniques – classification & description

� Experiments and Results
� Ideal simulations
� Sea-ice radar testing

� Conclusions & Future Work



The University of Kansas
Department of Electrical Engineering 
and Computer Science

What is Joint Time – Frequency Analysis ?
� Fourier Analysis

� Signal – superposition of weighted 
sinusoidal functions

� Frequency attributes are exactly 
described

� Joint Time – Frequency 
transforms 
� Characterize behavior of time-varying 

frequency content of signal
� Powerful tool for removing noise & 

interference

� Drawbacks 
� Inability to express signals whose 

frequency contents change over time
� Examples – speech & music 
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Applications of TFD to Radar Signal 
Processing

� Radar
� Electromagnetic instrument used for 

detection & location of targets
� High-resolution image

¾ Transmits electromagnetic energy to 
target

¾ Processes returned signal from target & 
clutter

� Use of TFD
� Generate range profile 
� Target recognition features
� Characterize ‘top’ & ‘bottom’ of range 

profiles
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FMCW Radar Design
� Background

� Measurement of sea-ice thickness
� VHF pulse radars did not have sufficient range resolution

� Frequency Modulated Continuous Wave Radar
� Developed by RSL at University of Kansas
� Different types

¾ 50 – 250 MHz radar      thick 1st year/multiyear sea-ice thickness in Arctic region
¾ 300 – 1300 MHz radar      Antarctic region and thin sea-ice in the Arctic

� Design
� Generates linear chirp signal of frequency 4.5 – 6Ghz & down-converted 
� DAC : 16-bit analog-to-digital converter, sampling beat frequencies at 5MHz 

⇒
⇒
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Sea – ice Radar Specifications
Calculation of beat frequency
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Need for Time – frequency analysis of Radar 
range profiles

� Fourier Spectrum
� Variation of signal amplitude in 

decibels over distance traveled by 
radar signal

� Amplitude-scope of sea-ice radar 
range profile from ‘traverse2.bin’

� Features
� Signals of varying amplitudes over 

different distances 
� Highest signal peak at 0dB 

indicating ‘Top’ of range profile

� Drawbacks
� Prediction of ice-bottom 
� Distinguish surface returns from 

noise signals and multiples
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Need for Time – frequency analysis (contd…)

� Time – frequency spectrum
� 2 – dimensional analysis

¾ Determine range to a target – function of time
¾ Measure the target speed – function of frequency

� Indicates position of different layers 
¾ Layers are identified by peaks at specific frequencies for all time 
¾ Attempts to distinguish between top and bottom of range profiles from other noise signals

� Time – varying filtering
¾ Separating noise from data signal 
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Short Time – Fourier Transform (STFT)

� STFT
� Modified Fourier transform by 

comparing  signals with elementary 
functions localized in time & 
frequency

� Computes the Fourier transform on 
a block-by-block basis

� Analysis window function       
balances time & frequency 
resolutions

¾ Smaller the time duration of        , 
the better the time resolution (poorer 
frequency resolution) and vice-versa
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Short – time Fourier transform (contd…)

� STFT spectrogram
� Squared magnitude of STFT 
� Simple & often used time-dependant spectrum

� Signal reconstruction
� Sampled version of STFT                                         

¾ T, - time & frequency sampling steps

¾ Useful in determining relationship between STFT and Gabor expansion

∫
+∞

∞−

Ω−−=Ω dtemTttsnmTSTFT tjn)()(),( *γ



The University of Kansas
Department of Electrical Engineering 
and Computer Science

Gabor expansion
� Definition

� Use coefficients as description of signal’s local property                                         
¾ are the Gabor coefficients

� Gaussian-type signal was chosen as elementary function  

¾ Offered optimal joint time-frequency concentration

� Necessary condition for existence :                  
¾ - critical sampling ( gives most compact representation )

� Relationship with STFT
� i.e.  STFT     Gabor coefficient
� Gabor expansion – inverse of STFT
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Continuous Wavelet Transform ( CWT)
� Alternative approach to STFT 

� Spectrogram is limited in resolution by extent of sliding window function

� Differences between STFT & CWT
� Fourier transforms of windowed signals are not taken
� Width of window changed as transform is computed

� Definition :                                                    

� (t) denotes the mother wavelet , s represents scale index

� Wavelet Denoising
� Basis is the principle of ‘noise decorrelation’
� Types – soft thresholding & hard thresholding 
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Wigner – Ville Distribution (WVD)
� Introduction

� WVD is defined as 

¾ where time – dependant autocorrelation function is

� Properties
� Satisfies time marginal & frequency marginal condition

¾ i.e. Instantaneous energy of signal at particular instance

¾ i.e. Power spectrum of signal at a particular frequency

� Mean frequency of WVD at time t is equal to signal’s weighted average instantaneous 
frequency

� Energy of WVD is same as the energy content in signal
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Wigner – Ville Distribution ( contd…)
� Advantages

� No window effect 
� Better time & frequency resolutions compared to STFT spectrogram

� Drawbacks
� Cross – term interference

¾ 2 points of TFR interfere to create a contribution on 3rd point located at their geometrical midpoint
¾ Oscillate perpendicularly to line joining two points interfering, with a frequency proportional to 

distance between two points

� Alternatives
� Cohen’s class of distributions
� Gabor spectrogram
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Cohen’s class of distributions
� Smoothed Pseudo – WVD

� Pseudo WVD
¾ Windowed version of WVD because of difficulty in determining

¾ Equivalent to frequency smoothing of WVD  where h(t) is a regular window

¾ Oscillating nature attenuates interferences

¾ Drawback : controlled only by short – time window h(t)

� SPWVD
¾ Separable smoothing kernel                               where g and h are two even windows with 

¾ Progressive and independent control, in both time & frequency
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Choi – Williams Distribution
� Kernel design

� Theory of interference distributions  - developed by Choi & Williams

� Exponential kernel:                                          where  is scaling parameter

� Properties
� Suppresses the  cross-terms created by two functions having different time & frequency

centers
� controls the decay speed 

¾ as decreases the interference is reduced

¾ When                 we obtain the WVD.

� Essentially a low – pass filter in plane which preserves properties of WVD while 
reducing cross-term interference
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Time – Variant Filter
� Application of TFR

� Detection & estimation of noise-corrupted signals 
� SNR is substantially improved in joint time-frequency domain

� Filtering mechanism
� Based on both linear & bilinear time-frequency representations
� Gabor expansion-based filter is most widely used

� Techniques
� Least Square Error (LSE) filter
� Iterative Time – Variant Filter
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Experiments & Results – Outline 
� Ideal Simulations

� Sum of frequency tones
� Linear chirp signal

� Sea – ice radar data
� Measured depth from field tests
� How does TFD distinguish surface return from noise ?

� Time – frequency techniques
� Linear transforms – STFT 
� Quadratic transforms – WVD, SPWVD, CWD

� Time – variant filtering
� Drawbacks of aforementioned techniques
� Wavelet denoising
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Ideal Simulations
� Test of TFR with cosine signal

� Input frequency tones :

where and

� Power spectrum does not indicate 
when frequency tones occur

� TFR results 
� Frequency tones at 50KHz & 150KHz 

varying from (0-2ms), (2.5-4.5ms)
� Image frequencies at 200KHz and 

100KHz respectively
� Differences in amplitudes indicated by 

respective colormap scales of 
frequency tones 
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Ideal Simulations (contd…)
� Test of TFR with chirp signal

� Input chirp signal:

where

� TFR results
� SPWVD applied to linear swept-

frequency signal
� Signal with linearly varying 

frequency for full duration of time 
of 5msec

� Image frequency shown as 
another chirp from 450-300KHz
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Sea – ice radar experimental data

� Sea-ice (FMCW) radar
� Data set from field experiments in 

Barrow, Alaska
� Measured sea-ice depth compared 

with depth calculated from signal 
processing experiments

� Ice thickness data
� Field experiments show the measured 

ice thickness at various depths
� Ascope-60 of file traverse2.bin at 

distance of 0-20m from 1st point
� Calculations suggest

¾ Antenna feedthrough – 3.45m
¾ Ice bottom – 7.35m
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How does TFD distinguish surface return 
from noise ?

� Frequency is expressed as function of distance or range

� Time – dependant spectrum expresses variation of beat signal at 
different instances of time for a given frequency

� Presence of surface return
� Signal exists for entire duration of time interval at given frequency
� Otherwise, signal is assumed to be noise or multiple return
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STFT – based Spectrogram

� Narrow Window 
� Good time resolution & poor 

frequency resolution
� Peaks are well separated from each 

other in time 
� In frequency domain, every peak 

covers a range of frequencies instead 
of a single frequency

� Wide Window
� Good frequency resolution & poor time 

resolution
� Frequency resolution is much better 

with continuous variation in time
� In time domain, peaks are not 

observed
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Wigner – Ville Distribution
� Top of the range profile

� Observed at distance of around 
3.5m 

� Varying over all instances of time 
(high colormap scale)

� Ice - bottom
� Observed at distance of around 

7.5m 
� Yellow colormap scale which is 6dB 

lower than highest scale

� Drawbacks
� Suffers from cross-term interference 

effects

� Best performance 
� Energy distribution being optimally 

concentrated in the joint time-
frequency domain
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Smoothed Pseudo WVD

� Defined by smoothing kernel 

� g & h are time and frequency 
smoothing windows respectively

� Trade – off
� Improves the cross-term 

interference at the cost of lower 
resolution

� More the smoothing in time and/or 
frequency, the poorer the resolution 
in time and/or frequency

� Surface returns 
� clearly visible

)()(),( fHtgftT =ψ
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Choi – Williams Distribution

� Employs the exponential kernel

where      is a scaling factor
� Effect of : 

�
¾ cross-terms diminish in size
¾ width of the signal component 

spreads 
¾ surface returns distinguished easily 
¾ mild loss in resolution

�
¾ approaches the Wigner transform, 

since the kernel is nearly constant
¾ interference terms become more 

prominent
¾ Frequency & time resolution are 

comparable to that of WVD
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Time – Variant Filtering

� Time – variant denoising
� Investigated for FMCW radar signals
� Discrete Gabor transform is used 
� Not suitable for radar chirp signals

� Wavelet denoising
� Radar echogram showing the noisy 

signal

� Alternative
� Wavelet transforms can be used
� Currently used for ‘depth sounder 

radar’ in RSL

� SNR of denoised signal : 1.4 dB 
(clean signal)
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CONCLUSIONS
� Comparison between Fourier analysis & Joint time – frequency analysis

� Time – frequency analysis
� Classification
� Need for TFA of radar range profiles

� Time – variant filtering
� Discrete Gabor transform cannot be used

� Signal processing experiments
� STFT spectrogram – worst resolutions
� WVD – best performance / optimal concentration in joint time-frequency domain

¾ surface returns clearly visible
¾ Depth from radar matched that of measured depth 

� Cohen’s class of distributions – compromise between interference reduction &  loss in 
resolution
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FUTURE WORK

� Wavelet denoising can be investigated for FMCW radars

� Time – variant filtering can be attempted for other radar signals
� Particularly for moving targets

� Applications of Time – frequency analysis
� Speech & music signal processing
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