
A Hardware Implementation of the Soft
Output Viterbi Algorithm for Serially
Concatenated Convolutional Codes

Brett Werling
M.S. Student
Information & Telecommunication Technology Center
The University of Kansas

• Introduction
• Background
• Decoding Convolutional Codes
• Hardware Implementation
• Performance Results
• Conclusions and Future Work

2

OverviewOverview

3

IntroductionIntroduction

• High-Rate High-Speed Forward Error Correction
Architectures for Aeronautical Telemetry (HFEC)

»ITTC – University of Kansas
»2-year project
»Sponsored by the Test Resource Management Center

(TRMC) T&E/S&T Program
»FEC decoder prototypes

•SOQPSK-TG modulation
»LDPC
»SCCC

•Other modulations

HFEC ProjectHFEC Project

4

• There is a need for a convolutional code SOVA decoder
block written in a hardware description language

»Used multiple places within the HFEC decoder prototypes
»VHDL code can be modified to fit various convolutional codes

with relative ease
• Future students must be able to use the implementation for

the SCCC decoder integration
»Black box

MotivationMotivation

5

• Convolutional Codes
• Channel Models
• Serially Concatenated Convolutional Codes

BackgroundBackground

6

• Class of linear forward error correction (FEC) codes
• Use convolution to encode data sequences

»Encoders are usually binary digital filters
»Coding rate R = k / n

•k input symbols
•n output symbols

• Structure allows for much flexibility
»Convolutional codes operate on streams of data

•Linear block codes assume fixed-length messages
»Lower encoding and decoding complexity than linear block

codes for same coding rates

7

Convolutional CodesConvolutional Codes

• Convolutional encoders are binary digital filters
»FIR filters are called feedforward encoders
»IIR filters are called feedback encoders

Convolutional CodesConvolutional Codes

8

• A convolutional encoder can be thought of as a state
machine

»Current memory state and input affect output
»Visualized in a state diagram

Convolutional CodesConvolutional Codes

9

• Another representation is the trellis diagram
»State diagram shown over time
»Heavily used in many decoding algorithms

•Viterbi algorithm
•Soft output Viterbi algorithm
•Others

Convolutional CodesConvolutional Codes

10

K K + 1

Convolutional CodesConvolutional Codes

• Each stage in the trellis
corresponds to one unit
of time

• Useful labels
»State index: q

•Starting state: qS

•Ending state: qE

»Edge index: e
»Input / output:

m(e) / c(e)

11

• All of the information in a trellis diagram can be contained in
a simple lookup table

»Each edge index corresponds to one row in the table

Convolutional CodesConvolutional Codes

12

• Convolutional Codes
• Channel Models
• Serially Concatenated Convolutional Codes

BackgroundBackground

13

• Communication links are affected by their environment
»Thermal noise
»Signal reflections
»Similar communication links

• Two common channel models are used when evaluating
the performance of a convolutional code

»Binary symmetric channel (BSC)
»Additive white Gaussian noise channel (AWGN)

Channel ModelsChannel Models

14

Channel Models Channel Models -- BSCBSC

• Binary symmetric channel
(BSC)
»Bit is transmitted either correctly

or incorrectly (binary)
•Error occurs with probability p
•Success occurs with probability 1 − p

»Transmission modeled as a
binary addition

•XOR operation

15

r = s n+

Channel Models Channel Models -- AWGNAWGN

• Additive white Gaussian noise
channel (AWGN)
»Bits are modulated before

transmission (e.g. BPSK)
• s contains values in {−1, +1}

»Noise values are soft (real)
•Gaussian random variables

»Transmission modeled as an
addition of reals

16

r = s + n

• Convolutional Codes
• Channel Models
• Serially Concatenated Convolutional Codes

BackgroundBackground

17

• SCCC Encoder
»Two differing convolutional codes are serially concatenated

before transmission
•Separated by an interleaver
•Most previous concatenation schemes involved a convolutional
code and a Reed Solomon code

Serially Concatenated Convolutional CodesSerially Concatenated Convolutional Codes

18

• SCCC Decoder
»Two soft-input soft-output (SISO) convolutional decoders

operate on the received sequence
•Separated by an interleaver and de-interleaver
•Multiple iterations before final output (e.g. 10)

Serially Concatenated Convolutional CodesSerially Concatenated Convolutional Codes

19

• SCCC Decoder
»Two soft-input soft-output (SISO) convolutional decoders

operate on the received sequence
•Separated by an interleaver and de-interleaver
•Multiple iterations before final output (e.g. 10)

Serially Concatenated Convolutional CodesSerially Concatenated Convolutional Codes

20

21

Decoding Convolutional CodesDecoding Convolutional Codes

• Most common algorithm for decoding a convolutionally-
encoded sequence

• Uses maximum likelihood sequence estimation to decode a
noisy sequence

»Uses trellis structure to compare possible encoding paths
»Keeps track of only the paths that occur with maximum

likelihood
• Needs only two* passes over a received sequence to

determine output
»BCJR and Max-Log MAP algorithms need three
»*Can use a windowing technique in the second pass

Viterbi AlgorithmViterbi Algorithm

22

• Path metric updates
»Previous path metrics are added to edge metric increments
»Competing updated metrics are selected based on the

channel model being used
•BSC
•AWGN

• Edge metric increments
»Received symbols compared to edge data
»Resulting increments are added to previous path metrics

• Winning edges
»Two edges merge, one is declared the winner (or survivor)

Viterbi Algorithm Viterbi Algorithm –– Forward PassForward Pass

23

• Also known as the traceback loop
• All known information is processed to determine the

decoded sequence
»Forward pass information
»Trellis lookup table

• For long message lengths, a traceback window can
improve performance

»High probability that all paths converge to a single path some
T time steps back

Viterbi Algorithm Viterbi Algorithm –– Backward PassBackward Pass

24

• Extension of the Viterbi algorithm
• Addition of soft outputs allows it to be more useful in an

SCCC system
»Significant performance gain over use of Viterbi algorithm in

an SCCC decoder

Soft Output Viterbi AlgorithmSoft Output Viterbi Algorithm

25

• Same basic calculations as the Viterbi algorithm
• Additional calculations

»Competing path differences
»Path decision reliabilities
»Subtraction of prior probabilities

• Same traceback window applies to the traceback loop
»Includes additional reliability output calculation

Soft Output Viterbi AlgorithmSoft Output Viterbi Algorithm

26

• Begin with an empty trellis and like-valued path metrics

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample

27

00

01

10

11

00

01

10

11

00

01

10

11

r0 = {-1, -1}
0

0

0

0

• Calculate the edge metric increments for the current trellis
stage (in this case AWGN calculations)

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample

28

00

01

10

11

00

01

10

11

00

01

10

11

r0 = {-1, -1}
0

0

0

0

1
-1

0

0
-1

1

0

0

• Add the edge metric increments to their corresponding path
metrics

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample

29

00

01

10

11

00

01

10

11

00

01

10

11

r0 = {-1, -1}
0

0

0

0

1
-1

0

0
-1

1

0

0

1
-1

-1

1

0

0

0

0

• Find the absolute difference between competing edges
• Choose the winning metric as the new path metric

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample

30

00

01

10

11

00

01

10

11

00

01

10

11

r0 = {-1, -1}
0

0

0

0

1
-1

0

0
-1

1

0

0

1
-1

-1

1

0

0

0

0

1

1

0

0

Δ0(0) = 2

Δ0(1) = 2

Δ0(2) = 0

Δ0(3) = 0

• Mark the winning edges

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample

31

00

01

10

11

00

01

10

11

00

01

10

11

r0 = {-1, -1}
0

0

0

0

1
-1

0

0
-1

1

0

0

1
-1

-1

1

0

0

0

0

1

1

0

0

Δ0(0) = 2

Δ0(1) = 2

Δ0(2) = 0

Δ0(3) = 0

• The trellis after two time steps

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample

32

00

01

10

11

00

01

10

11

00

01

10

11

r0 = {-1, -1}
0

0

0

0

1
-1

0

0
-1

1

0

0

1
-1

-1

1

0

0

0

0

1

1

0

0

Δ0(0) = 2

Δ0(1) = 2

Δ0(2) = 0

Δ0(3) = 0

1

2

1

1

-1
1

0

0
1

-1

0

0

0
1

2

-1

1

0

1

0

Δ1(0) = 1

Δ1(1) = 3

Δ1(2) = 1

Δ1(3) = 1

r1 = {1, 1}

• The traceback loop processes the trellis, starting with the
maximum likelihood path metric

• Reliabilities are calculated using the values of Δ that were
found during the forward pass

• Outputs are calculated

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample

33

2

2

3

5
1/101/10

0/01

1/11
0/00

34

Hardware ImplementationHardware Implementation

• Designed to work with a systematic rate R = ½ code
»Systematic – message sequence appears within the encoded

sequence
• Design decisions

»Traceback is done with register exchange
»Overflow is prevented by clipping values at a maximum and

minimum
»Path metrics are periodically reduced to prevent them from

becoming too large
»Two global design variables

•Bit width: B
•Traceback length: T

Hardware ImplementationHardware Implementation

35

• Divided into four blocks
»Metric Manager (MM)
»Hard Decision Traceback Unit (HTU)
»Reliability Traceback Unit (RTU)
»Output Calculator (OC)

Hardware ImplementationHardware Implementation

36

• Metric Manager
»Handles storage and calculation of path metrics
»Determines winning edges
»Finds absolute path metric differences

Hardware ImplementationHardware Implementation

37

• Hard Decision Traceback Unit
»Keeps track of hard decision outputs
»Outputs hard decision comparison

•Used by reliability update process

Hardware ImplementationHardware Implementation

38

• Reliability Traceback Unit
»Keeps track of reliabilities
»Updates each reliability for every clock cycle

Hardware ImplementationHardware Implementation

39

• Output Calculator
»Determines final output of the decoder

Hardware ImplementationHardware Implementation

40

41

Performance ResultsPerformance Results

• The VHDL decoder was compared with a reference
decoder written in Matlab

»Matlab version known to be correct
• Simulations run for varying SNRs and traceback lengths

»Noise values generated in Matlab
»VHDL decoder simulated in ModelSim using Matlab data

• Simulation requirements
»Transmitted information bits ≥ 1,000,000
»Information bit errors ≥ 100

Performance Results Performance Results –– Software ComparisonSoftware Comparison

42

• Traceback length T = 8

Performance Results Performance Results –– Software ComparisonSoftware Comparison

43

B = 6

B = 8

B = 7

B = 9

• Traceback length T = 16

Performance Results Performance Results –– Software ComparisonSoftware Comparison

44

B = 6 B = 7

B = 8 B = 9

• VHDL implementation approaches Matlab implementation
as B increases

»Expected result – higher precision
• Increase in BER performance as traceback length

increases
»Also expected – designer must determine which traceback

length provides “good enough” performance

Performance Results Performance Results –– Software ComparisonSoftware Comparison

45

• VHDL synthesized using Xilinx ISE for the XC5VLX110T
FPGA

»All builds use < 12% of the slices available
»Maximum clock speeds are fast enough to be used in the

SCCC decoder

Performance Results Performance Results –– HardwareHardware

46

T = 8

T = 16

47

Conclusions and Future WorkConclusions and Future Work

• The hardware implementation successfully performs the
soft output Viterbi algorithm

• For all bit widths tested, VHDL curve differs from Matlab
curve by < 1 dB

»For B = 8, difference is < 0.08 dB
• Performance increases as traceback length increases

»Tradeoff between hardware size and decoder precision
• Post-synthesis results

»Small – all designs < 12% slice utilization
»Fast – clock speeds all > 129 MHz

Summary of ResultsSummary of Results

48

• New method of overflow prevention
»Current design “clips” values, restricting them to fall within a

certain range
»Work can be done to maintain precision

• FPGA optimization
»Current design approach is very much software-based
»Future designs can take advantage of FPGA features

•Size and speed can be further improved

• Generalized trellis
»Current design focuses on a particular trellis
»Trellis-defining inputs could offer more flexibility

Future WorkFuture Work

49

50

Questions?Questions?

	A Hardware Implementation of the Soft Output Viterbi Algorithm for Serially Concatenated Convolutional Codes
	Overview
	Introduction
	HFEC Project
	Motivation
	Background
	Convolutional Codes
	Convolutional Codes
	Convolutional Codes
	Convolutional Codes
	Convolutional Codes
	Convolutional Codes
	Background
	Channel Models
	Channel Models - BSC
	Channel Models - AWGN
	Background
	Serially Concatenated Convolutional Codes
	Serially Concatenated Convolutional Codes
	Serially Concatenated Convolutional Codes
	Decoding Convolutional Codes
	Viterbi Algorithm
	Viterbi Algorithm – Forward Pass
	Viterbi Algorithm – Backward Pass
	Soft Output Viterbi Algorithm
	Soft Output Viterbi Algorithm
	Soft Output Viterbi Algorithm – Example
	Soft Output Viterbi Algorithm – Example
	Soft Output Viterbi Algorithm – Example
	Soft Output Viterbi Algorithm – Example
	Soft Output Viterbi Algorithm – Example
	Soft Output Viterbi Algorithm – Example
	Soft Output Viterbi Algorithm – Example
	Hardware Implementation
	Hardware Implementation
	Hardware Implementation
	Hardware Implementation
	Hardware Implementation
	Hardware Implementation
	Hardware Implementation
	Performance Results
	Performance Results – Software Comparison
	Performance Results – Software Comparison
	Performance Results – Software Comparison
	Performance Results – Software Comparison
	Performance Results – Hardware
	Conclusions and Future Work
	Summary of Results
	Future Work
	Questions?

