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• High-Rate High-Speed Forward Error Correction 
Architectures for Aeronautical Telemetry (HFEC)

»ITTC – University of Kansas
»2-year project
»Sponsored by the Test Resource Management Center 

(TRMC) T&E/S&T Program
»FEC decoder prototypes

•SOQPSK-TG modulation
»LDPC
»SCCC

•Other modulations

HFEC ProjectHFEC Project
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• There is a need for a convolutional code SOVA decoder 
block written in a hardware description language

»Used multiple places within the HFEC decoder prototypes
»VHDL code can be modified to fit various convolutional codes 

with relative ease
• Future students must be able to use the implementation for 

the SCCC decoder integration
»Black box

MotivationMotivation
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• Convolutional Codes
• Channel Models
• Serially Concatenated Convolutional Codes

BackgroundBackground
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• Class of linear forward error correction (FEC) codes
• Use convolution to encode data sequences

»Encoders are usually binary digital filters
»Coding rate R = k / n

•k input symbols
•n output symbols

• Structure allows for much flexibility
»Convolutional codes operate on streams of data

•Linear block codes assume fixed-length messages
»Lower encoding and decoding complexity than linear block 

codes for same coding rates
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• Convolutional encoders are binary digital filters
»FIR filters are called feedforward encoders
»IIR filters are called feedback encoders

Convolutional CodesConvolutional Codes
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• A convolutional encoder can be thought of as a state 
machine

»Current memory state and input affect output
»Visualized in a state diagram

Convolutional CodesConvolutional Codes
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• Another representation is the trellis diagram
»State diagram shown over time
»Heavily used in many decoding algorithms

•Viterbi algorithm
•Soft output Viterbi algorithm
•Others

Convolutional CodesConvolutional Codes
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Convolutional CodesConvolutional Codes

• Each stage in the trellis 
corresponds to one unit 
of time

• Useful labels
»State index:  q

•Starting state:  qS

•Ending state:  qE

»Edge index:  e
»Input / output:

m(e) / c(e)
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• All of the information in a trellis diagram can be contained in 
a simple lookup table

»Each edge index corresponds to one row in the table

Convolutional CodesConvolutional Codes
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• Convolutional Codes
• Channel Models
• Serially Concatenated Convolutional Codes

BackgroundBackground
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• Communication links are affected by their environment
»Thermal noise
»Signal reflections
»Similar communication links

• Two common channel models are used when evaluating 
the performance of a convolutional code

»Binary symmetric channel (BSC)
»Additive white Gaussian noise channel (AWGN)

Channel ModelsChannel Models
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Channel Models Channel Models -- BSCBSC

• Binary symmetric channel 
(BSC)
»Bit is transmitted either correctly 

or incorrectly (binary)
•Error occurs with probability p
•Success occurs with probability 1 − p

»Transmission modeled as a 
binary addition

•XOR operation
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Channel Models Channel Models -- AWGNAWGN

• Additive white Gaussian noise 
channel (AWGN)
»Bits are modulated before 

transmission (e.g. BPSK)
• s contains values in {−1, +1}

»Noise values are soft (real)
•Gaussian random variables

»Transmission modeled as an 
addition of reals
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• Convolutional Codes
• Channel Models
• Serially Concatenated Convolutional Codes

BackgroundBackground
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• SCCC Encoder
»Two differing convolutional codes are serially concatenated 

before transmission
•Separated by an interleaver
•Most previous concatenation schemes involved a convolutional 
code and a Reed Solomon code

Serially Concatenated Convolutional CodesSerially Concatenated Convolutional Codes
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• SCCC Decoder
»Two soft-input soft-output (SISO) convolutional decoders 

operate on the received sequence
•Separated by an interleaver and de-interleaver
•Multiple iterations before final output (e.g. 10)

Serially Concatenated Convolutional CodesSerially Concatenated Convolutional Codes
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• SCCC Decoder
»Two soft-input soft-output (SISO) convolutional decoders 

operate on the received sequence
•Separated by an interleaver and de-interleaver
•Multiple iterations before final output (e.g. 10)

Serially Concatenated Convolutional CodesSerially Concatenated Convolutional Codes
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Decoding Convolutional CodesDecoding Convolutional Codes



• Most common algorithm for decoding a convolutionally-
encoded sequence

• Uses maximum likelihood sequence estimation to decode a 
noisy sequence

»Uses trellis structure to compare possible encoding paths
»Keeps track of only the paths that occur with maximum 

likelihood
• Needs only two* passes over a received sequence to 

determine output
»BCJR and Max-Log MAP algorithms need three
»*Can use a windowing technique in the second pass

Viterbi AlgorithmViterbi Algorithm
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• Path metric updates
»Previous path metrics are added to edge metric increments
»Competing updated metrics are selected based on the 

channel model being used
•BSC
•AWGN

• Edge metric increments
»Received symbols compared to edge data
»Resulting increments are added to previous path metrics

• Winning edges
»Two edges merge, one is declared the winner (or survivor)

Viterbi Algorithm Viterbi Algorithm –– Forward PassForward Pass
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• Also known as the traceback loop
• All known information is processed to determine the 

decoded sequence
»Forward pass information
»Trellis lookup table

• For long message lengths, a traceback window can 
improve performance

»High probability that all paths converge to a single path some 
T time steps back

Viterbi Algorithm Viterbi Algorithm –– Backward PassBackward Pass
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• Extension of the Viterbi algorithm
• Addition of soft outputs allows it to be more useful in an 

SCCC system
»Significant performance gain over use of Viterbi algorithm in 

an SCCC decoder

Soft Output Viterbi AlgorithmSoft Output Viterbi Algorithm
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• Same basic calculations as the Viterbi algorithm
• Additional calculations

»Competing path differences
»Path decision reliabilities
»Subtraction of prior probabilities

• Same traceback window applies to the traceback loop
»Includes additional reliability output calculation

Soft Output Viterbi AlgorithmSoft Output Viterbi Algorithm
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• Begin with an empty trellis and like-valued path metrics

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample
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• Calculate the edge metric increments for the current trellis 
stage (in this case AWGN calculations)

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample
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• Add the edge metric increments to their corresponding path 
metrics

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample
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• Find the absolute difference between competing edges
• Choose the winning metric as the new path metric

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample
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• Mark the winning edges

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample
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• The trellis after two time steps

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample
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• The traceback loop processes the trellis, starting with the 
maximum likelihood path metric

• Reliabilities are calculated using the values of Δ that were 
found during the forward pass

• Outputs are calculated

Soft Output Viterbi Algorithm Soft Output Viterbi Algorithm –– ExampleExample
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Hardware ImplementationHardware Implementation



• Designed to work with a systematic rate R = ½ code
»Systematic – message sequence appears within the encoded 

sequence
• Design decisions

»Traceback is done with register exchange
»Overflow is prevented by clipping values at a maximum and 

minimum
»Path metrics are periodically reduced to prevent them from 

becoming too large
»Two global design variables

•Bit width: B
•Traceback length: T

Hardware ImplementationHardware Implementation
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• Divided into four blocks
»Metric Manager (MM)
»Hard Decision Traceback Unit (HTU)
»Reliability Traceback Unit (RTU)
»Output Calculator (OC)

Hardware ImplementationHardware Implementation
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• Metric Manager
»Handles storage and calculation of path metrics
»Determines winning edges
»Finds absolute path metric differences

Hardware ImplementationHardware Implementation
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• Hard Decision Traceback Unit
»Keeps track of hard decision outputs
»Outputs hard decision comparison

•Used by reliability update process

Hardware ImplementationHardware Implementation
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• Reliability Traceback Unit
»Keeps track of reliabilities
»Updates each reliability for every clock cycle

Hardware ImplementationHardware Implementation
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• Output Calculator
»Determines final output of the decoder

Hardware ImplementationHardware Implementation

40



41

Performance ResultsPerformance Results



• The VHDL decoder was compared with a reference 
decoder written in Matlab

»Matlab version known to be correct
• Simulations run for varying SNRs and traceback lengths

»Noise values generated in Matlab
»VHDL decoder simulated in ModelSim using Matlab data

• Simulation requirements
»Transmitted information bits ≥ 1,000,000
»Information bit errors ≥ 100

Performance Results Performance Results –– Software ComparisonSoftware Comparison
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• Traceback length T = 8

Performance Results Performance Results –– Software ComparisonSoftware Comparison
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• Traceback length T = 16

Performance Results Performance Results –– Software ComparisonSoftware Comparison
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• VHDL implementation approaches Matlab implementation 
as B increases

»Expected result – higher precision
• Increase in BER performance as traceback length 

increases
»Also expected – designer must determine which traceback 

length provides “good enough” performance

Performance Results Performance Results –– Software ComparisonSoftware Comparison

45



• VHDL synthesized using Xilinx ISE for the XC5VLX110T 
FPGA

»All builds use < 12% of the slices available
»Maximum clock speeds are fast enough to be used in the 

SCCC decoder

Performance Results Performance Results –– HardwareHardware
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• The hardware implementation successfully performs the 
soft output Viterbi algorithm

• For all bit widths tested, VHDL curve differs from Matlab 
curve by < 1 dB

»For B = 8, difference is < 0.08 dB
• Performance increases as traceback length increases

»Tradeoff between hardware size and decoder precision
• Post-synthesis results

»Small – all designs < 12% slice utilization
»Fast – clock speeds all > 129 MHz

Summary of ResultsSummary of Results
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• New method of overflow prevention
»Current design “clips” values, restricting them to fall within a 

certain range
»Work can be done to maintain precision

• FPGA optimization
»Current design approach is very much software-based
»Future designs can take advantage of FPGA features

•Size and speed can be further improved

• Generalized trellis
»Current design focuses on a particular trellis
»Trellis-defining inputs could offer more flexibility

Future WorkFuture Work
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Questions?Questions?
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