A E=E=Ea=

Reducing the cost of systems-level information

Modular Semantics for Model-Oriented
!'_ Design

Cindy Kong
ckong@ittc.ku.edu

The Information Technology and Telecommunication
Center
The University of Kansas

, | Information and
G — Telecommunication
__ Technology Center

WELCOME
&
ACKNOWLEDGEMENTS

9/15/2004

Problem Statement

“Different paradigms can give quite different
views of the nature of computation and
communication. 1In a large system, different
subsystems can often be more naturally designed
and understood using different models of
computation.” [Burch et al.]

= Integration of different paradigms within one
specification framework dictates:
= Common syntax (domain of discourse)

= Formal semantics that provides notion of
consistency

= Translation of specifications
= Composition of specifications

9/15/2004

Proposed Solution

= Formal semantics

= Institution
« Relates syntax to semantics
= Defines notion of models satisfying a specification

« Defines a logical system, e.g. equational reasoning, first-
order logic, ..

« Provides basis for sound and complete deduction calculus
= Modularity in using several institutions

= Multi-model of computation framework

= ldentify unifying semantic domains (units of semantics)
= Static
= State-based
= Trace-based
= Define models of computation
= State-based: continuous, discrete, finite-state
= Trace-based: csp-trace

9/15/2004

Key Contributions

= Definition of a formal semantics, giving an
entailment system that allows reasoning over
correctness of a heterogeneous design

= Definition of multiple unifying semantic
domains and models of computations within one
framework

= Definition of relations between specifications
= Demonstration of composition of specifications

= Demonstration of new heterogeneous design
methodology

= Demonstration of re-use of domain-specific
VIews

9/15/2004

Overview

= Preliminaries
= Modular semantics

= Static semantics

= State-based semantics
= Hidden algebras
= Coalgebras

= Trace-based semantics
= Specification In the Rosetta Language
= Units of semantics
= Models of computation
Examples and Application
= Hybrid system
= Related work and future work

9/15/2004

PRELIMINARIES

9/15/2004

Category Theory

= Category C
= Collection of objects |C]
= Collection of arrows ||C]|] (with dom and cod)
= Composition of arrows
= ldentity arrow for each object

= Examples

= Category of algebras

= The objects are algebras

= The arrows are homomorphisms between algebras
= Category of sets

= The objects are sets

« The arrows are functions

9/15/2004

Concrete Example

Category of algebras
Algebra 1

sort Bit;
operations
zero:-> Bit;
one:-> Bit;
succ:Bit -> Bit;
equations
succ(zero) = one;
succ(one) = zero;

zero’
“succ(one

9/15/2004

Colimit and Pushout

Colimit Pushout

Functor d:D -> C is called a diagram of shape D in category C

9/15/2004

Institution Theory

= Formalizes:

Truth 1s Invariant under changes of notation
= Institution (Sign,Mod,Sen,|=)

= Sign: category of signatures

= Sen: Sign —» Set functor giving set of sentences
for each signature

= Mod: Sign —» Cat°r functor giving category of
models for each signature

= |=,<|Mod(Z)|xSen(X) signature-indexed family of
satisfaction relations such that for
(p:Z—>Z")€||Sign||,e € Sen(X), M'e| Mod (') |
M'|=,. Sen(#)(e) if and only if Mod(¢)(M') |=, e

9/15/2004

MODULAR SEMANTICS

9/15/2004

Static Semantics - Programming in the small

= Notion of fixed data
= Notion of Invariance
= Signature (S.,X..)
= S set of sorts
= Zsc set of operators Sg X Sg

= Algebra
= S, —indexed family of non-empty sets, carriers A,
= S, xS, —indexed family of maps

: au,s :ZStcu’S — [AStcu — AStcs]
= Algebra morphism from(A,.a)—>(A,.a) is map
f:A,— A, such that f (a(oc)(a,...,a))=a'(c)(f, (a,),..., f, (@,))
= Equation (VX)t1=t2

9/15/2004

Static Semantics - Programming in the large

s Specification Is (Sg.,ZgEg)
= Algebra A, satisfying equation e 1ff
a (t1)=a’(t2) for every assignment a:X —|Ay|,

Agc |:25tc €
= Institution for static algebras (equational-
[Goguen]) (SigStc' AIgStC’EantC!|:Stc)
" Sig, category of static signatures and morphisms
tc

= Alg,, functor giving category of static algebras
for each signature

= Egng, functor giving a set of equations for each
sighature

satisfaction such that

- |: Stc

A‘IStc |:2'StC p(e) Iiff A;tc |¢|:25tc e with ¢: g ™ zIs;tc

9/15/2004

Static Semantics - Specification construction

= Specification extension
= Extension satisfies no confusion and no junk constraint
" (SStc’zStc’ E) eXtendS (SStc’ZStc’ E) - SStc - SStc'zStc - z“Stc’ E - E

= Extension is an inclusion morphism, more specifically it
IS an enrichment signature morphism that is conservative

= Specification parameterization and instantiation

= Parameterization — defines properties over a class of
specifications

= Instantiation — reduces class to a particular
specification, and involves binding signature morphism

Specification inclusion

= Allows 1nformation hiding that involves a signature
inclusion along with an information hiding operator ()

= Specification use
= Use packages
= Specification composition
= Pushout of two specifications — syntactic composition
9/15/2004

State-based Semantics - Programming in the
small

= Notion of observing a current state and change
of observations over a next transformation
function
= A state i1s only identified by 1ts attributes

= Two states that have same attributes are
undistinguishable and are said to be behaviorally
equivalent
= State-based signature (Sg.2g)
= Sy =(State,S,)
s X = (isInit, Y, next,®,Q, A)
Y set of generalized hidden constants CSt:S,, , — State
@ optional set of operations ¢:StatexS, —— State
= Q set of attributes o:Statexs, —3,
A .
Di

set of data operations §:S, —>S
stinction between operators of” Y and next

9/15/2004

State-based Semantics - Programming in the
small

= A state-based signature: hidden signature[Goguen]
= Hidden sort = State
= Visible data universe = (S,,A,Dg)
= At most one hidden sort occurs In Y or Q

= Behavioral Satisfaction

= A context of sort h i1s a visible sorted X-term
that has a single occurrence of a new variable
symbol z of sort h, e.g. x(2), x(hext(z)).

= A hidden algebra behaviorally satisfies equation e
Als, (VX)t=t" if t =t,...t =t
iff for each appropriate context ¢ and assignment 4:X —> A

0" (c[t]) = & (c[t'])

whenever 6°(c;[t,])=6"(c;[t;] for j=1...m and all appropriate c

9/15/2004

State-based Semantics - Programming in the
small

= State-based specification (Sg, 2, E)
¥ C%gngis a state-based signature
s E=E,®E, disjoint union of 2 sets of equations
= Induces a hidden specification (State,Xg,E,)

= Consistency of state-based specification

= Consistent i1ff induced hidden specification has a
model with non-empty carriers and all equations E.
are consistent

= Necessary condition: E is D-safe

= Sufficient condition: locality of equations

« Local equation: local terms and conditions are
visibly sorted and use only W-operations

=« Local term: every proper subterm is a ‘¥Y-subterm
= Non-local: use rewriting and provide a model

9/15/2004

State-based Semantics - Programming in the
large

= State-based signhature morphism
= Hidden signature morphism
=« ldentity over the visible data (V,Y¥)
= Maps hidden sorts to hidden sorts
morphism (g, X)) = (Ssg Zsp)
signature morphism ¢@:X, — X
if oc'ed or oc'eQQ then 3 ced or ceQ|o'=¢(o)

= Sub-system morphism instead of enrichment morphism

= Only one State sort, use of qualified name through
a renaming morphism to distinguish between State
sort of different specifications

9/15/2004

State-based Semantics - Programming in the

large

= Institution for state-based algebras

9/15/2004

Category of state-based signature and morphisms

Signg,
Functor giving a set of equations for each
sighature

Seng,

Functor giving a category of hidden algebras for
each signature
Mod,

Satisftaction relation

|EESB

Satisfaction condition
Al e it Als, o)

State-based Semantics - Coalgebras

= Cirstea’s work: Hidden algebras — Coalgebras

= State-based signature — destructor hidden
signature (by leaving out Y and ¢)— abstract
cosignature
(Setpe,F,_) with F,_ :Set;® — Set;®
XS0, ..n XS0, .n
(Xsl,...,Xsn,Xsmte)—>(X31,...,X5n,k1‘[IXSk XX ™)
= Example: e

= State-based sighature State, Natural
s, .—> State, x: State — Natural, next : State — State, A

Natural
= Destructor hidden subsignhature
({Natural, State},{x : State — Natural, next : State — State} U A.,.a1)
= Associated abstract cosignature
(SetiMerasee By with FXg,,. = N x X
= A coalgebraic structure
o Xe. > N xX

State State

State State

9/15/2004

State-based Semantics - Specification
construction

= Extension: similar in essence to static specification
extension

= The signature morphism Is reverse
(Sss:Zss E) “>(Sep: 2, E') iff 301 (S5, Zg5) = (g1 Z5)
= Parameterization:
= 3 parameter modes: Input, output and design
= Instantiation: may involve state dependent bindings
of parameters
= Translation: mapping of properties of the State sort
from one specification to another

= Inclusion: similar to static inclusion, but may be
supplemented by a translation relating states of
specifications involved 1n inclusion

= Use: as for static. In this work, all packages are
static

9/15/2004

State-based Semantics - Specification
composition

= Category of state-based specifications as
objects and extensions as arrows

= Composition uses categorical notion of colimit

= Composition of two specifications sharing a
common parent through a pushout

= Composition of two specifications on different
subtrees, translation may first be needed

SpecShared

Specl Spec2 <------- OtherSpec2

.

Spec3 = Specl + Spec2

9/15/2004

Trace-based semantics

= Notion of traces and operations over traces to
model computation runs

= Equational signature
= Same semantics as for static

= Institution of equational reasoning
= Enforcement of a Trace(T) sort

= Available Operations: head, tail, add,
sequence, interleave, restriction, order,

9/15/2004

Specification Construction across Semantic
Domains

m Conservative extension from static to state-based and
from static to trace-based

= Institution morphism from static to state-based 1is

strong, persistent and additive similar to CafeOBJ’s
institution morphism

= Specification translation from static to state-based

= Static represents data and invariant properties iIn a
state-based specification

= Minimal representation:
Specys = (S, U{State}, X wnext, Eg U Eg)

= Specification translation from state-based to static
described by Goguen et al.

= Translation of behavioral specification into ordinary
algebraic specification

9/15/2004

Specification Translation from State-based
to Trace-based

= One-way translation Spec, — Spec,

= For each input I InSpec,, an input set of traces of
type of 1 In Spec,

= Same for output parameters
= All declarations of Spec, become declarations of
Spec,,

» Add declarations of

9/15/2004

A variable T ::Trace(State) representing set of traces of
all reachable states

A variable someTrace representing a trace

A variable n of sort natural used as position of state
In trace

All equations of Spec,, are included 1n Spec.,

Add 2 new equations: state def - equating State to
actual, and newT - stating
someTrace e T, s € State such that someTrace[n]=s
and next(s, I,[n],..., 1, [n]) =someTrace [n+1]

SPECIFICATION IN ROSETTA

9/15/2004

The Domain organization

Static (prelude)

state-based trace-based < Unit of
N | emantics
/ 'Y
continuous discrete \
/ / trace-csp
continuous-time discrete-time Model O.f
: \ Computation
frequency | finite-state
e v \ \ Engineering
RF digital sequential-machine synchronous Modeling

9/15/2004

Static Modeling

= Semantics given by the previously defined
static (equational) semantics
= Specification

= Defines a number of types: Universal, Element,
Number, Complex, Real, .., Function, Set, Sequence,

= Defines a number of operators over each sort
= Static domain
= Static domain semantics (Boolean)
S, ={...,Boolean,.. .}

.. =1..., false :— Boolean,true :— Boolean, not : Boolean — Boolean,...
...,0or : Boolean x Boolean — Boolean,...}

9/15/2004

Static Domain Specification

domain static::null is

/) —

// Boolean types

/) -
Boolean :: type i1s enumeration (false, true);

// -

// Functions for boolean type

/) ——

not (R :: Boolean) :: Boolean;
_or__ (L, R :: Boolean) :: Boolean;

begin

not false: (nhot false) = true;

not_true: (not true) = false;
true_or_true: (true or true) = true;
true_or_fTalse: (true or false) true;
false _or_true: (false or true) true;
false or_false: (false or false) = false;

end domain static;

9/15/2004

Initial Algebra for Static

Boolean

“not false

“true or true

N /7 [E
. . s false
S o ’// ! h
- p
[2
_'l not true
- r——
e by \I
1 N ,
\ ‘___)
\ \
\
\\ \
’——5\ \
- ~ \
’ S
’ \ !
4 \ /
7 \ P
1 -
] \
1 1
\ 1
\ 1
\ 1
\ 7/
AN 4
N v
\\ ’/

9/15/2004

State-based Modeling

= State-based semantics

= Institutions of Hidden Algebras, Coalgebras
= Specification

= State type

= Next function that takes a state and a number of
Inputs and returns a new state

» Extends static domain

m State-based domain semantics
S = (State, S,)

Zep = (IsINIt, Yo, next, {3, {}1_Q@__}U2q)

= Coalgebras e
| A |State _>{ }L) | A |State

¢
| Al = | Alsiae

9/15/2004

State-based Domain Specification

domain state based(State::design Type) :: static is

S I: State;
next:: Function;
_ @ [T::Type](lhs::<*(st::State) -> T *>; rhs::State)::T i1s lhs(rhs);

islnit(s::State)::Boolean;

begin
// next: State x Si ... X Sn -> State with Si,..., Sn: one or more types
return_type next: ret(next) = State;
domain_next: dom(next) = State;

end domain state based;

9/15/2004

The Discrete Domain Specification

domain discrete(DiscState::design Type) :: state based(DiscState) is
iIsDiscrete(DiscreteSet: :Type)::Boolean =
exists (fnc::<*(st::DiscreteSet)::Integer*> |
forall(sl,s2::DiscreteSet]|
(sl /= s2) => (fnc(sl) /= Ttnc(s2))));
begin

discrete_attributes: forall (fnc::getAttributes() | isDiscrete(ran(fnc)));

end domain discrete;

9/15/2004

The Finite-state Domain

Finite-state = observations are finite and discrete

O O
O O

Finite

size of set is a natural number
size =4

begin

domain finite_state(FState::design Type) :: discrete(FState) 1is
isFinite(FiniteSet: :Type)::Boolean is
#FiniteSet i1In Natural;

fsl:forall (fnc::getAttributes() | isFinite(ran(fnc)));
end domain finite state;

9/15/2004

The Continuous Domain

Continuous observation of states = all observations have continuous
variations with respect to a continuous observation of states

Af f (next(s)) — f(s)
As contAttr (next(s)) — contAttr(s)

domain continuous :: state based is
contAttr(st::State): :Real;
variation[T::Type](fnc::<*stt::State)::T*>;st::State;next_st::State)::T 1iIs
(f(next_st) - f(st)) / (contAttr(next_st)-contAttr(st));

begin

end domain continuous;

9/15/2004

Trace-based Modeling

= Semantics
= Static semantics (institution of equational logic)

= As traces represent computation runs, can use
coalgebras as models as well

= Specification
= Notion of traces
= Operations as defined iIn trace semantics
= Extends static domain

9/15/2004

Trace-based Domain Specification

domain trace based()::static is
Trace(T::Type)::Type;
emptyTrace: :Trace(Universal) is constant;
add[Event: :Type](tr::Trace(Event);ev::Event)::Trace(Event);
head[Event: :Type] (tr::Trace(Event)): :Event;
tail[Event: :Type](tr::Trace(Event))::Trace(Event);

ISEmpty[Event: :Type](tr::Trace(Event))::Boolean is

tr = emptyTrace;

getEventAt[Event: :Type](tr::Trace(Event);pos::Natural)::Event is
it (not 1sEmpty(tr))
else 1f (pos = 0) then head(tr)
else getEventAt(tail(tr),pos-1)
end i1f;

end if;

9/15/2004

Examples
and
Applications

9/15/2004

Example of a Stack Datatype

facet stackDT::static is
Stack: :type;
emptyStack: :Stack is constant;
push(stcParam: :Stack; n::Natural)::Stack;
pop(stcParam: :Stack): :Stack;
top(stcParam: :Stack): :Natural ;
val : :Natural ;
stcVar: :Stack;

begin
pop_empty: pop(emptyStack) = emptyStack;
top_empty: top(emptyStack) = O;

pop_push: pop(push(val,stcVar))=stcVar;

to ush: to ush(val ,stcVar))=val; _
PP p(p ()) SstackDT - SStc U{StaCk}
end facet stackDT;

2ot = Zg U {emptyStack, push, pop,top}
Eacor = Esc W {PpOp _empty,top _empty, pop _ push,top _ push}
9/15/2004

Initial algebra for stackDT

“5op(push(0, emptyStack))? top(push(0,emptyStack))

“emptyStack” |

“push(succ(succ(0)),emptyStack)”’
“pop(push(succ(0),push(succ(succ(0)),emptyStack)))”

HNaturaI (Val) = O
Oy (SIC) = emptyStack

9/15/2004

Isomorphism between N,..,.pr and Ng,.

NstackDT

top(push(0,emptyStack))’

NstackDT I (p:NstackDT

NstackDTLp satisfies static and is isomorphic to Ngiatic

9/15/2004

Composition of State-based Parameterized

Specifications

StateSet: :Type;

memNext(st: :State;val::Natural)::State;

facet memoryA(val::input Natural)
c:discrete(StateSet) is
memA(st: :State): :Natural;
begin
INItA: isInit(s) => memA@s = O;
next_def: next = memNext;
IA: memA@next(s,val) = val;

end facet memoryA;

facet memoryB(val::input Natural)
c:discrete(StateSet) is
memB(st: :State) : :Natural
begin
INitB: isInit(s) => memB@s = O;
next_def: next = memNext;
IB: memB@next(s,val) = val+memB;

end facet memoryB;

facet twoMemory(val::input Natural)::discrete(StateSet) is

memoryA(val) + memoryB(val);

9/15/2004

Composition of Parameterized
Specifications

Discrete(StateSet)
next: :Function

A

memoryA(val)
memA: :State — Natural
next(st::State;val::Natural)::State

memoryB(val)
memB: :State — Natural
next(st::State;val::Natural)::State

twoMemory(val)
memA: :State — Natural
memB: :State — Natural
next(st::State;val::Natural)::State

Pullback of Signature Morphisms

9/15/2004

Composition of Parameterized
Specifications

| A |State
l 7/discrete - neXt
N
| A |State
| A |State \ | A |State
memorya. = (MEMA, NEXt) Memows = (memB, next)
N
leAlsNtate \ NX|A|State
| A |State

l 7/twoMemory = (memA, memB, neXt)
N x Nx | A|§ue

Pushout of Coalgebras

9/15/2004

Trace-based MemoryA Specification

StateSet: :Type;
memNext(st: :State;val::Natural)::State;

facet traceMemA(val::input Trace(Natural))::trace based() is

memA(st: :State): :Natural;

StateTrace: :Trace(State);

someTrace: :StateTrace;

s::State; next::Function; .. // All declarations from domains

pos::Natural;

begin
INitA: islnit(s) => ((memA(s) = 0) and (pos = 0));
next_def: next = memNext;
1A: memA(next(s,getEventAt(val,pos))) = getEventAt(val, pos);
newTl: getEventAt(someTrace,pos) = S;

newT2: next(s,getEventAt(val,pos)) = getEventAt(someTrace, pos+l);
YtraceMemA

end facet traceMemA; | A|Trace(5tate) — N x| A|Trace(State))

= (memA(head),tail
9/15/2004 7/traceMemA (())

Specification of a Hybrid Automaton

= Hybrid automaton [Henzinger]
= Variables: x, dotted x (X), X~
= Control graph (V,E) of control modes and edges

= Predicates:
= Initial
= Invariant
= Flow conditions: predicate for continuous change
= Jump conditions: predicate for each control switch

= Events over control switches (events)

9/15/2004

Hybrid Automaton of a Thermostat

Two states for the heater: on or off
Continuous variation of the temperature: X
heater on => temperature X Increases at rate of 5 - 0.1x
per minute
heater off => temperature x decreases at rate of -0.1x

per minute

9/15/2004

The Heater Specification

facet heater(x::input Real; ctrl::output ControlMode):: finite_state is
mode(s::State): :ControlMode;
begin
initial: isInit(s) => (mode@s = off);
next _def: next = <*(st::State;x::Real)::State*>;
output: ctrl = mode@s;
off_to on: ((mode@s = off) and (x =< 18)) => (mode@next(s,Xx) = on);
on_to_off: ((mode@s = on) and (x >= 22)) => (mode@next(s,x) = off);
off_to off: ((mode@s = off) and (x >= 19)) => (mode@next(s,x) = off);
on_to_on: ((mode@s = on) and (X =< 21)) => (mode@next(s,x) = on);
grey area off: ((x < 19) and (x > 18) and (mode@s = off)) =>
((mode@next(s,x) = off) xor (mode@next(s,x) = on));
grey_area on: ((x > 21) and (x < 22) and (mode@s = on)) =>
((mode@next(s,x) = off) xor (mode@next(s,X)

end facet heater;

on));

9/15/2004

The Temperature Specification

facet temperatureVariation(ctrl::input ControlMode; x::output Real)::

temp(s::State)::Real;
begin

initial: isInit(s) => ((temp@s = 20) and (contAttr@s = 0);
next _def: next = <*(st::State;ctrl::ControlMode): :State*>;
mono_increase: contAttr@next(s,ctrl) > contAttr@s;

output: x = temp@s;

off_cool: (ctrl = off) =>

(variation(temp,s,next(s,ctrl))

-0.1 * temp@s);
on_heat: (ctrl = on) =>

(variation(temp,s,next(s,ctrl)) 5 - 0.1 * temp@s);

next_heat: temp@next(s,ctrl) = temp@s +
variation(temp,s,next(s,ctrl)) *
(contAttr(next(s,ctrl)) - contAttr(s));

end facet temperatureVariation;

9/15/2004

continuous

The Thermostat Specification

facet thermostat():: state based is
ctri(st::State)::ControlMode;
X(st::State): :Real;

begin

next _def: next = <*(st::State)::State*>;
heater_comp: heater(x@s, ctrl@s);
temperature_comp: temperatureVariation(ctrl@s, x@s);
inv_off: (ctrl@s = off) => (x@s >= 18);
inv_on: (ctrl@s = on) => (X@s =< 22);

end facet thermostat;

9/15/2004

Analysis of the Thermostat Specification

m TwOo observations of the state

= The values of each observation provided by Heater or
by TemperatureVariation specifications

= Models that satisfy Thermostat will have (minimal)
states as pairs (controlmode,temp) with
controlmode=ctrl(s) and temp=x(s)

= Controlmode: on or off
= Temp: a real number between 18 and 22

= [T considering discrete Thermostat models, temp will
have discretized values through “sampling”

9/15/2004

RELATED WORK
AND
FUTURE WORHK

9/15/2004

Related Work

x CafeOBJ — http://www.Idl.jaist.ac.jp/cafteobj

= Ptolemy Il — Heterogeneous Concurrent Modeling
and Design in Java — J. Davis, C. Hylands, B.
Kienhuis, E. Lee, et al.; University of
California at Berkeley

= Metropolis — Overcoming Heterophobia: Modeling
Concurrency i1n Heterogeneous Systems — J.
Burch, R. Passerone, A. Sangiovanni-Vincentelli

9/15/2004

Related Work

= SAL — An Overview of SAL — J. Rushby, S. Owre, N. Shankar,
A. Tiwari et al.

= Viewpoints Modeling — Viewpoints: A Framework for
Integrating Multiple Perspectives In System
Development — A. Finkelstein et al.

= Feature Engineering — Feature-Oriented Description,
Formal Methods, and DFC — P. Zave

= Aspect-oriented —
= Aspect-Oriented Programming — G. Kiczales et al.

= Aspect-Oriented Requirements Engineering for
Component-Based Software Systems — J. Grundy

9/15/2004

Related Work

= The MultiGraph Architecture — Metamodeling — Rapid
Design and Evolution of Domain-Specific Modeling
Environments — G. Nordstrom et al.; Vanderbilt
University

= GME — The Generic Modeling Environment — A. Ledeczi
et al.; Vanderbilt University

= UML-Metamodeling Architecture — An UML-metamodeling
Architecture for Interoperability of Information
Systems — M. Terrasse et al.

9/15/2004

Related Work

= A Framework for Multi-Notation Requirements
Specification and Analysis — N. Day and J. Joyce

= Constructing Multi-Formalism State-Space Analysis
Tools: Using rules to specify dynamic semantics of models
— M. Pezze and M. Young

= A Multi-Formalism Specification Environment — E.
Ipser, Jr and D. Wile

= Acme: An Architecture Description Interchange
Language — D. Garlan, R. Monroe and D. Wile

9/15/2004

Conclusion

= Modular formal semantics

= Framework supporting different models of
computation
= Future Work
= Extension of semantics to order sorted institution

= Definition of engineering domains: definition of
units of measurement, definition of engineering
formulas.

= Automatic verification tool

9/15/2004

