
The Information Technology and Telecommunication
Center

The University of Kansas

Cindy Kong
ckong@ittc.ku.edu

Modular Semantics for Model-Oriented
Design

9/15/2004

WELCOME

&

ACKNOWLEDGEMENTS

9/15/2004

Problem Statement

“Different paradigms can give quite different
views of the nature of computation and
communication. In a large system, different
subsystems can often be more naturally designed
and understood using different models of
computation.” [Burch et al.]

Integration of different paradigms within one
specification framework dictates:

Common syntax (domain of discourse)

Formal semantics that provides notion of
consistency
Translation of specifications
Composition of specifications

9/15/2004

Proposed Solution

Formal semantics
Institution

Relates syntax to semantics
Defines notion of models satisfying a specification
Defines a logical system, e.g. equational reasoning, first-
order logic, …
Provides basis for sound and complete deduction calculus

Modularity in using several institutions
Multi-model of computation framework

Identify unifying semantic domains (units of semantics)
Static
State-based
Trace-based

Define models of computation
State-based: continuous, discrete, finite-state
Trace-based: csp-trace

9/15/2004

Key Contributions

Definition of a formal semantics, giving an
entailment system that allows reasoning over
correctness of a heterogeneous design
Definition of multiple unifying semantic
domains and models of computations within one
framework
Definition of relations between specifications
Demonstration of composition of specifications
Demonstration of new heterogeneous design
methodology
Demonstration of re-use of domain-specific
views

9/15/2004

Overview

Preliminaries
Modular semantics

Static semantics
State-based semantics

Hidden algebras
Coalgebras

Trace-based semantics
Specification in the Rosetta Language

Units of semantics
Models of computation

Examples and Application
Hybrid system

Related work and future work

9/15/2004

PRELIMINARIES

9/15/2004

Category Theory

Category C
Collection of objects |C|
Collection of arrows ||C|| (with dom and cod)
Composition of arrows

Identity arrow for each object

Examples
Category of algebras

The objects are algebras
The arrows are homomorphisms between algebras

Category of sets
The objects are sets
The arrows are functions

9/15/2004

Concrete Example

0

1

+1

Algebra_1

‘zero’
succ

Algebra_2

‘succ(one)’
…

‘one’
‘succ(zero)’

…

…
zero

one

f

f

Category of algebras

sort Bit;
operations
zero:-> Bit;
one:-> Bit;
succ:Bit -> Bit;

equations
succ(zero) = one;
succ(one) = zero;

9/15/2004

Colimit and Pushout

dD dD’

D D’

d d

L C C’

df

fD

dD dD’

L C

dfdD’’ dg

CC

PushoutColimit

Functor d:D -> C is called a diagram of shape D in category C

9/15/2004

Institution Theory

Formalizes:
Truth is invariant under changes of notation

Institution (Sign,Mod,Sen,)
Sign: category of signatures

Sen: Sign → Set functor giving set of sentences
for each signature

Mod: Sign → Catop functor giving category of
models for each signature

signature-indexed family of
satisfaction relations such that for

=|

|)'(|'),(||,||)':(Σ∈Σ∈∈Σ→Σ ModMSeneSignφ

)(|)(|| Σ×Σ⊆=Σ SenMod

eMModifonlyandifeSenM ΣΣ == |)')(())((|' ' φφ

9/15/2004

MODULAR SEMANTICS

9/15/2004

Static Semantics – Programming in the small

Notion of fixed data
Notion of invariance
Signature

set of sorts
set of operators

Algebra
-indexed family of non-empty sets, carriers

-indexed family of maps

Algebra morphism from is map

Equation

),(StcStcS Σ
StcS

StcStc SS ×*

StcS StcA

StcStc SS ×*

][:
,, susu StcStcStcsu AA →→Σα

',, ' αα StcStc AA →
))(,),()((')),,)(((: 11

'
1 nssnsStcStc afafaafthatsuchAAf

n
KK σασα =→

StcΣ

21)(ttX =∀

9/15/2004

Static Semantics – Programming in the large

Specification is
Algebra satisfying equation e iff

,

Institution for static algebras (equational-
[Goguen])

category of static signatures and morphisms

functor giving category of static algebras
for each signature

functor giving a set of equations for each
signature

satisfaction such that

),,(StcStcStc ES Σ

StcA
||:)2()1(**

StcAXaassignmenteveryfortata →=

eA
StcStc Σ=|

)|,,lg,(StcStcStcStc EqnASig =

StcSig
StcA lg

StcEqn

Stc=|
''' :||)(| ' StcStcStcStc witheAiffeA

StcStc
Σ→Σ== ΣΣ

ϕϕ ϕ

9/15/2004

Static Semantics – Specification construction

Specification extension
Extension satisfies no confusion and no junk constraint

Extension is an inclusion morphism, more specifically it
is an enrichment signature morphism that is conservative

Specification parameterization and instantiation
Parameterization – defines properties over a class of
specifications
Instantiation – reduces class to a particular
specification, and involves binding signature morphism

Specification inclusion
Allows information hiding that involves a signature
inclusion along with an information hiding operator (�)

Specification use
Use packages

Specification composition
Pushout of two specifications – syntactic composition

'''''' ,,),,(),,(EESSESextendsES StcStcStcStcStcStcStcStc ⊆Σ⊆Σ⊆⇒ΣΣ

9/15/2004

State-based Semantics – Programming in the
small

Notion of observing a current state and change
of observations over a next transformation
function

A state is only identified by its attributes
Two states that have same attributes are
undistinguishable and are said to be behaviorally
equivalent

State-based signature

set of generalized hidden constants
optional set of operations
set of attributes
set of data operations

Distinction between operators of and

),(SBSBS Σ
),(VSB SStateS =

),,,,,(∆ΩΦΥ=Σ nextisInitSB

Υ
Φ
Ω
∆

StateScst
nV →

,,0
:

K

StateSState
nV →×
,,0

:
K

φ
VV SSState

n
→×

,,0
:

K
ω

VV SS
n
→

,,0
:

K
δ

Υ next

9/15/2004

State-based Semantics – Programming in the
small

A state-based signature: hidden signature[Goguen]
Hidden sort =
Visible data universe =
At most one hidden sort occurs in or

Behavioral Satisfaction
A context of sort h is a visible sorted Σ-term
that has a single occurrence of a new variable
symbol z of sort h, e.g. x(z), x(next(z)).
A hidden algebra behaviorally satisfies equation e

State
),,(SBV DS ∆

ΩΥ

''
11 ,,')(| mm ttttifttXA ===∀≡Σ K

AXassignmentandccontexteappropriateachforiff →:θ

ceappropriatallandmjfortctcwhenever jjjj ,,1][(])[('** K==θθ
])'[(])[(** tctc θθ =

9/15/2004

State-based Semantics – Programming in the
small

State-based specification
is a state-based signature

disjoint union of 2 sets of equations
Induces a hidden specification

Consistency of state-based specification
Consistent iff induced hidden specification has a
model with non-empty carriers and all equations
are consistent
Necessary condition: is D-safe
Sufficient condition: locality of equations

Local equation: local terms and conditions are
visibly sorted and use only -operations
Local term: every proper subterm is a -subterm

Non-local: use rewriting and provide a model

),,(ES SBSB Σ
),(SBSBS Σ

Ω∆ ⊕= EEE
),,(ΩΣ EState SB

∆E

E

Ψ
Ψ

9/15/2004

State-based Semantics – Programming in the
large

State-based signature morphism
Hidden signature morphism
Identity over the visible data
Maps hidden sorts to hidden sorts

Sub-system morphism instead of enrichment morphism
Only one State sort, use of qualified name through
a renaming morphism to distinguish between State
sort of different specifications

),(ΨV

),(),(''
SBSBSBSB SSmorphism Σ→Σ

': SBSBmorphismsignature Σ→Σϕ
)(| σϕσσσσσ =′Ω∈Φ∈∃Ω′∈′Φ′∈′ orthenorif

9/15/2004

State-based Semantics – Programming in the
large

Institution for state-based algebras
Category of state-based signature and morphisms

Functor giving a set of equations for each
signature

Functor giving a category of hidden algebras for
each signature

Satisfaction relation

Satisfaction condition

SBSign

SBSen

SBMod

SBΣ≡|

)(||| ' eAiffeA
SBSB
ϕϕ ΣΣ ≡′≡′

9/15/2004

State-based Semantics – Coalgebras

Cirstea’s work: Hidden algebras → Coalgebras
State-based signature → destructor hidden
signature (by leaving out and)→ abstract
cosignature

Example:
State-based signature

Destructor hidden subsignature

Associated abstract cosignature

A coalgebraic structure

Υ Φ

SB
SB

SB
SBSBSB

SB
SB

S
D

S
D

S
D SetSetFwithFSet →ΣΣ :),(

),,,(),,,(,,0,,0

11 ,,1

nSnS

knn

X
State

lk

X
SSSStateSS XXXXXXX KK

K

KK ∏ ×→
∈

NaturalStateStatenextNaturalStatexStates ∆→→→ ,:,:,:0

NaturalState,

)}:,:{},,({ NaturalStateStatenextNaturalStatexStateNatural ∆∪→→

StateState
StateNatural

N XNFXwithFSet ×=),(},{

StateState XNX ×→:α

9/15/2004

State-based Semantics – Specification
construction

Extension: similar in essence to static specification
extension

The signature morphism is reverse

Parameterization:
3 parameter modes: input, output and design

Instantiation: may involve state dependent bindings
of parameters
Translation: mapping of properties of the State sort
from one specification to another
Inclusion: similar to static inclusion, but may be
supplemented by a translation relating states of
specifications involved in inclusion
Use: as for static. In this work, all packages are
static

),(),(:)',,(),,(''''
SBSBSBSBSBSB

c
SBSB SSiffESES Σ→Σ∃Σ→Σ ϕ

9/15/2004

State-based Semantics – Specification
composition

Category of state-based specifications as
objects and extensions as arrows
Composition uses categorical notion of colimit
Composition of two specifications sharing a
common parent through a pushout
Composition of two specifications on different
subtrees, translation may first be needed

SpecShared

Spec1 Spec2 OtherSpec2

Spec3 = Spec1 + Spec2

9/15/2004

Trace-based semantics

Notion of traces and operations over traces to
model computation runs
Equational signature
Same semantics as for static

Institution of equational reasoning

Enforcement of a Trace(T) sort
Available Operations: head, tail, add,
sequence, interleave, restriction, order, …

9/15/2004

Specification Construction across Semantic
Domains

Conservative extension from static to state-based and
from static to trace-based
Institution morphism from static to state-based is
strong, persistent and additive similar to CafeOBJ’s
institution morphism
Specification translation from static to state-based

Static represents data and invariant properties in a
state-based specification
Minimal representation:

Specification translation from state-based to static
described by Goguen et al.

Translation of behavioral specification into ordinary
algebraic specification

),},{(SBStcStcSpecSB EEnextStateSSpec
Stc

∪∪Σ∪=

9/15/2004

Specification Translation from State-based
to Trace-based

One-way translation
For each input I in , an input set of traces of
type of I in
Same for output parameters
All declarations of become declarations of

Add declarations of
A variable representing set of traces of
all reachable states
A variable someTrace representing a trace
A variable n of sort natural used as position of state
in trace
All equations of are included in
Add 2 new equations: state_def - equating State to
actual, and newT - stating

TBSB SpecSpec →

SBSpec
TBSpec

SBSpec
TBSpec

)(:: StateTraceTSt

SBSpec TBSpec

snsomeTracethatsuchStatesTsomeTrace St =∈∈][,
]1[])[,],[,(0 += nsomeTracenInIsnextand kK

9/15/2004

SPECIFICATION IN ROSETTA

9/15/2004

The Domain organization

Static (prelude)

state-based trace-based Unit of
Semantics

discretecontinuous

discrete-time

finite-state

continuous-time Model of
Computation

trace-csp

frequency

RF digital sequential-machine
Engineering

Modelingsynchronous

9/15/2004

Static Modeling

Semantics given by the previously defined
static (equational) semantics
Specification

Defines a number of types: Universal, Element,
Number, Complex, Real, …, Function, Set, Sequence,
…
Defines a number of operators over each sort
Static domain

Static domain semantics (Boolean)
},,{ KK BooleanSStc =

KK ,:,:,:,{ BooleanBooleannotBooleantrueBooleanfalseStc →→→=Σ
},:, KK BooleanBooleanBooleanor →×

9/15/2004

Static Domain Specification

domain static::null is
// ---
// Boolean types
// ---

Boolean :: type is enumeration (false, true);
// ---
// Functions for boolean type
// ---

…
not__(R :: Boolean) :: Boolean;
__or__ (L, R :: Boolean) :: Boolean;
…

begin
…
not_false: (not false) = true;
not_true: (not true) = false;
true_or_true: (true or true) = true;
true_or_false: (true or false) = true;
false_or_true: (false or true) = true;
false_or_false: (false or false) = false;
…

end domain static;

9/15/2004

Initial Algebra for Static

Boolean

‘true’

‘false’

‘not false’

‘not true’

‘true or true’

‘false or false’

or

not

…

…

‘0’

…

‘1’

‘succ(0)’

…

N
…

9/15/2004

State-based Modeling

State-based semantics
Institutions of Hidden Algebras, Coalgebras

Specification
State type

Next function that takes a state and a number of
inputs and returns a new state
Extends static domain

State-based domain semantics

Coalgebras

),(StcSB SStateS =

){__@__}{},{},,,,(StcSBSB nextisInit Σ∪Υ=Σ

R
State

R
State

StateState

AA

AA
next

||||

||{*}||
ζ

γ

→

∪→

9/15/2004

State-based Domain Specification

domain state_based(State::design Type) :: static is

s :: State;

next:: Function;

__@__[T::Type](lhs::<*(st::State) -> T *>; rhs::State)::T is lhs(rhs);

isInit(s::State)::Boolean;

begin

// next: State x Si ... x Sn -> State with Si,...,Sn: one or more types

return_type_next: ret(next) = State;

domain_next: dom(next) = State;

end domain state_based;

9/15/2004

The Discrete Domain Specification

domain discrete(DiscState::design Type) :: state_based(DiscState) is

isDiscrete(DiscreteSet::Type)::Boolean =

exists (fnc::<*(st::DiscreteSet)::Integer*> |

forall(s1,s2::DiscreteSet|

(s1 /= s2) => (fnc(s1) /= fnc(s2))));

begin

discrete_attributes: forall (fnc::getAttributes() | isDiscrete(ran(fnc)));

end domain discrete;

9/15/2004

The Finite-state Domain

Finite-state ⇒ observations are finite and discrete

size of set is a natural number
size = 4

Finite

domain finite_state(FState::design Type) :: discrete(FState) is

isFinite(FiniteSet::Type)::Boolean is

#FiniteSet in Natural;

begin

fs1:forall (fnc::getAttributes() | isFinite(ran(fnc)));

end domain finite_state;

9/15/2004

The Continuous Domain

Continuous observation of states ⇒ all observations have continuous
variations with respect to a continuous observation of states

)())((
)())((

scontAttrsnextcontAttr
sfsnextf

s
f

−
−

=
∆
∆

domain continuous :: state_based is

contAttr(st::State)::Real;

variation[T::Type](fnc::<*stt::State)::T*>;st::State;next_st::State)::T is

(f(next_st) - f(st)) / (contAttr(next_st)-contAttr(st));

begin

end domain continuous;

9/15/2004

Trace-based Modeling

Semantics
Static semantics (institution of equational logic)
As traces represent computation runs, can use
coalgebras as models as well

Specification
Notion of traces

Operations as defined in trace semantics
Extends static domain

9/15/2004

Trace-based Domain Specification
domain trace_based()::static is

Trace(T::Type)::Type;

emptyTrace::Trace(Universal) is constant;

add[Event::Type](tr::Trace(Event);ev::Event)::Trace(Event);

head[Event::Type](tr::Trace(Event))::Event;

tail[Event::Type](tr::Trace(Event))::Trace(Event);

isEmpty[Event::Type](tr::Trace(Event))::Boolean is

tr = emptyTrace;

getEventAt[Event::Type](tr::Trace(Event);pos::Natural)::Event is

if (not isEmpty(tr))

else if (pos = 0) then head(tr)

else getEventAt(tail(tr),pos-1)

end if;

end if;

…

9/15/2004

Examples
and

Applications

9/15/2004

Example of a Stack Datatype

facet stackDT::static is

Stack::type;

emptyStack::Stack is constant;

push(stcParam::Stack; n::Natural)::Stack;

pop(stcParam::Stack)::Stack;

top(stcParam::Stack)::Natural;

val::Natural;

stcVar::Stack;

begin

pop_empty: pop(emptyStack) = emptyStack;

top_empty: top(emptyStack) = 0;

pop_push: pop(push(val,stcVar))=stcVar;

top_push: top(push(val,stcVar))=val;

end facet stackDT;
}{StackSS StcstackDT ∪=

},,,{ toppoppushemptyStackStcstackDT ∪Σ=Σ
}_,_,_,_{ pushtoppushpopemptytopemptypopEE StcstackDT ∪=

9/15/2004

Initial algebra for stackDT

Stack

‘pop(push(0,emptyStack))’

‘emptyStack’

‘push(succ(succ(0)),emptyStack)’

‘pop(push(succ(0),push(succ(succ(0)),emptyStack)))’

…

…

…

pop

top

push

0)(=valNaturalθ

emptyStackstcStack =)(θ

N

‘top(push(0,emptyStack))’

‘0’

‘succ(0)’

‘1’ …

…

succ

…

9/15/2004

Isomorphism between NstackDT and NStc

NstackDT

‘top(push(0,emptyStack))’

‘0’

‘succ(0)’

‘1’ …

…

succ

‘0’

…

‘1’

‘succ(0)’

…

Nstatic

…

succ

f

f

…

NstackDT|ϕ=NstackDT
NstackDT|ϕ satisfies static and is isomorphic to Nstatic

9/15/2004

Composition of State-based Parameterized
Specifications

StateSet::Type;

memNext(st::State;val::Natural)::State;

facet memoryA(val::input Natural)

::discrete(StateSet) is

memA(st::State)::Natural;

begin

initA: isInit(s) => memA@s = 0;

next_def: next = memNext;

lA: memA@next(s,val) = val;

end facet memoryA;

facet memoryB(val::input Natural)

::discrete(StateSet) is

memB(st::State)::Natural

begin

initB: isInit(s) => memB@s = 0;

next_def: next = memNext;

lB: memB@next(s,val) = val+memB;

end facet memoryB;

facet twoMemory(val::input Natural)::discrete(StateSet) is

memoryA(val) + memoryB(val);

9/15/2004

Composition of Parameterized
Specifications

Discrete(StateSet)
next::Function

memoryA(val)
memA::State → Natural

next(st::State;val::Natural)::State

memoryB(val)
memB::State → Natural

next(st::State;val::Natural)::State

twoMemory(val)
memA::State → Natural
memB::State → Natural

next(st::State;val::Natural)::State

Pullback of Signature Morphisms

9/15/2004

Composition of Parameterized
Specifications

N
State

discrete

State

A
next

A

||

||
=γ

N
State

memoryA

State

AN

nextmemA
A

||

),(
||

×

=γ
N
State

memoryB

State

AN

nextmemB
A

||

),(
||

×

=γ

N
State

twoMemory

State

ANN

nextmemBmemA
A

||

),,(
||

××

=γ

Pushout of Coalgebras

9/15/2004

Trace-based MemoryA Specification
StateSet::Type;

memNext(st::State;val::Natural)::State;

facet traceMemA(val::input Trace(Natural))::trace_based() is

memA(st::State)::Natural;

StateTrace::Trace(State);

someTrace::StateTrace;

s::State; next::Function; … // All declarations from domains

pos::Natural;

begin

initA: isInit(s) => ((memA(s) = 0) and (pos = 0));

next_def: next = memNext;

lA: memA(next(s,getEventAt(val,pos))) = getEventAt(val, pos);

newT1: getEventAt(someTrace,pos) = s;

newT2: next(s,getEventAt(val,pos)) = getEventAt(someTrace, pos+1);

end facet traceMemA;)|(|||)()(StateTraceStateTrace ANA
traceMemA

×→
γ

)),((tailheadmemAtraceMemA =γ

9/15/2004

Specification of a Hybrid Automaton

Hybrid automaton [Henzinger]
Variables: x, dotted x (), x’
Control graph (V,E) of control modes and edges
Predicates:

Initial
Invariant

Flow conditions: predicate for continuous change
Jump conditions: predicate for each control switch

Events over control switches (events)

x&

9/15/2004

Hybrid Automaton of a Thermostat

18
1.0

≥
−=

x
xx

Off
&20=x

22
1.05

≤
−=

x
xx

On
&

21>x

19<x

Two states for the heater: on or off

Continuous variation of the temperature: x

heater on => temperature x increases at rate of 5 - 0.1x

per minute

heater off => temperature x decreases at rate of –0.1x

per minute

9/15/2004

The Heater Specification

facet heater(x::input Real; ctrl::output ControlMode):: finite_state is

mode(s::State)::ControlMode;

begin

initial: isInit(s) => (mode@s = off);

next_def: next = <*(st::State;x::Real)::State*>;

output: ctrl = mode@s;

off_to_on: ((mode@s = off) and (x =< 18)) => (mode@next(s,x) = on);

on_to_off: ((mode@s = on) and (x >= 22)) => (mode@next(s,x) = off);

off_to_off: ((mode@s = off) and (x >= 19)) => (mode@next(s,x) = off);

on_to_on: ((mode@s = on) and (x =< 21)) => (mode@next(s,x) = on);

grey_area_off: ((x < 19) and (x > 18) and (mode@s = off)) =>

((mode@next(s,x) = off) xor (mode@next(s,x) = on));

grey_area_on: ((x > 21) and (x < 22) and (mode@s = on)) =>

((mode@next(s,x) = off) xor (mode@next(s,x) = on));

end facet heater;

9/15/2004

The Temperature Specification

facet temperatureVariation(ctrl::input ControlMode; x::output Real):: continuous is

temp(s::State)::Real;

begin

initial: isInit(s) => ((temp@s = 20) and (contAttr@s = 0);

next_def: next = <*(st::State;ctrl::ControlMode)::State*>;

mono_increase: contAttr@next(s,ctrl) > contAttr@s;

output: x = temp@s;

off_cool: (ctrl = off) =>

(variation(temp,s,next(s,ctrl)) = -0.1 * temp@s);

on_heat: (ctrl = on) =>

(variation(temp,s,next(s,ctrl)) = 5 - 0.1 * temp@s);

next_heat: temp@next(s,ctrl) = temp@s +

variation(temp,s,next(s,ctrl)) *

(contAttr(next(s,ctrl)) - contAttr(s));

end facet temperatureVariation;

9/15/2004

The Thermostat Specification

facet thermostat():: state_based is

ctrl(st::State)::ControlMode;

x(st::State)::Real;

begin

next_def: next = <*(st::State)::State*>;

heater_comp: heater(x@s, ctrl@s);

temperature_comp: temperatureVariation(ctrl@s, x@s);

inv_off: (ctrl@s = off) => (x@s >= 18);

inv_on: (ctrl@s = on) => (x@s =< 22);

end facet thermostat;

9/15/2004

Analysis of the Thermostat Specification

Two observations of the state
The values of each observation provided by Heater or
by TemperatureVariation specifications
Models that satisfy Thermostat will have (minimal)
states as pairs (controlmode,temp) with
controlmode=ctrl(s) and temp=x(s)
Controlmode: on or off
Temp: a real number between 18 and 22

If considering discrete Thermostat models, temp will
have discretized values through “sampling”

9/15/2004

RELATED WORK
AND

FUTURE WORK

9/15/2004

Related Work

CafeOBJ – http://www.ldl.jaist.ac.jp/cafeobj

Ptolemy II – Heterogeneous Concurrent Modeling
and Design in Java – J. Davis, C. Hylands, B.
Kienhuis, E. Lee, et al.; University of
California at Berkeley

Metropolis – Overcoming Heterophobia: Modeling
Concurrency in Heterogeneous Systems – J.
Burch, R. Passerone, A. Sangiovanni-Vincentelli

9/15/2004

Related Work

SAL – An Overview of SAL – J. Rushby, S. Owre, N. Shankar,
A. Tiwari et al.

Viewpoints Modeling – Viewpoints: A Framework for
Integrating Multiple Perspectives in System
Development – A. Finkelstein et al.

Feature Engineering – Feature-Oriented Description,
Formal Methods, and DFC – P. Zave

Aspect-oriented –

Aspect-Oriented Programming – G. Kiczales et al.
Aspect-Oriented Requirements Engineering for
Component-Based Software Systems – J. Grundy

9/15/2004

Related Work

The MultiGraph Architecture – Metamodeling – Rapid
Design and Evolution of Domain-Specific Modeling
Environments – G. Nordstrom et al.; Vanderbilt
University

GME – The Generic Modeling Environment – A. Ledeczi
et al.; Vanderbilt University

UML-Metamodeling Architecture – An UML-metamodeling
Architecture for Interoperability of Information
Systems – M. Terrasse et al.

9/15/2004

Related Work

A Framework for Multi-Notation Requirements
Specification and Analysis – N. Day and J. Joyce

Constructing Multi-Formalism State-Space Analysis
Tools: Using rules to specify dynamic semantics of models
– M. Pezze and M. Young

A Multi-Formalism Specification Environment – E.
Ipser, Jr and D. Wile

Acme: An Architecture Description Interchange
Language – D. Garlan, R. Monroe and D. Wile

9/15/2004

Conclusion

Modular formal semantics
Framework supporting different models of
computation
Future Work

Extension of semantics to order sorted institution
Definition of engineering domains: definition of
units of measurement, definition of engineering
formulas.

Automatic verification tool

