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Problem Statement

“Different paradigms can give quite different 
views of the nature of computation and 
communication.  In a large system, different 
subsystems can often be more naturally designed 
and understood using different models of 
computation.” [Burch et al.]

Integration of different paradigms within one 
specification framework dictates:

Common syntax (domain of discourse) 

Formal semantics that provides notion of 
consistency
Translation of specifications
Composition of specifications
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Proposed Solution

Formal semantics 
Institution 

Relates syntax to semantics
Defines notion of models satisfying a specification 
Defines a logical system, e.g. equational reasoning, first-
order logic, …
Provides basis for sound and complete deduction calculus

Modularity in using several institutions
Multi-model of computation framework

Identify unifying semantic domains (units of semantics)
Static
State-based
Trace-based

Define models of computation
State-based: continuous, discrete, finite-state
Trace-based: csp-trace
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Key Contributions

Definition of a formal semantics, giving an 
entailment system that allows reasoning over 
correctness of a heterogeneous design
Definition of multiple unifying semantic 
domains and models of computations within one 
framework
Definition of relations between specifications
Demonstration of composition of specifications
Demonstration of new heterogeneous design 
methodology
Demonstration of re-use of domain-specific 
views
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Overview

Preliminaries
Modular semantics

Static semantics
State-based semantics

Hidden algebras
Coalgebras

Trace-based semantics
Specification in the Rosetta Language

Units of semantics
Models of computation

Examples and Application
Hybrid system

Related work and future work
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PRELIMINARIES
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Category Theory

Category C
Collection of objects |C|
Collection of arrows ||C|| (with dom and cod)
Composition of arrows

Identity arrow for each object

Examples
Category of algebras

The objects are algebras
The arrows are homomorphisms between algebras

Category of sets
The objects are sets
The arrows are functions
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Concrete Example

0

1

+1

Algebra_1

‘zero’
succ

Algebra_2

‘succ(one)’
…

‘one’
‘succ(zero)’

…

…
zero

one

f

f

Category of algebras

sort Bit;
operations
zero:-> Bit;
one:-> Bit;
succ:Bit -> Bit;

equations
succ(zero) = one;
succ(one) = zero; 
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Colimit and Pushout

dD dD’

D D’

d d

L C C’

df

fD

dD dD’

L C

dfdD’’ dg

CC

PushoutColimit

Functor d:D -> C is called a diagram of shape D in category C
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Institution Theory

Formalizes:
Truth is invariant under changes of notation

Institution (Sign,Mod,Sen,  )
Sign: category of signatures

Sen: Sign → Set functor giving set of sentences 
for each signature

Mod: Sign → Catop functor giving category of 
models for each signature

signature-indexed family of 
satisfaction relations such that for

=|

|)'(|'),(||,||)':( Σ∈Σ∈∈Σ→Σ ModMSeneSignφ

)(|)(|| Σ×Σ⊆=Σ SenMod

eMModifonlyandifeSenM ΣΣ == |)')(())((|' ' φφ
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MODULAR SEMANTICS
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Static Semantics – Programming in the small

Notion of fixed data
Notion of invariance
Signature 

set of sorts
set of operators

Algebra
-indexed family of non-empty sets, carriers

-indexed family of maps 

Algebra morphism from             is map

Equation  

),( StcStcS Σ
StcS

StcStc SS ×*

StcS StcA

StcStc SS ×*

][:
,, susu StcStcStcsu AA →→Σα

',, ' αα StcStc AA →
))(,),()((')),,)(((: 11

'
1 nssnsStcStc afafaafthatsuchAAf

n
KK σασα =→

StcΣ

21)( ttX =∀
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Static Semantics – Programming in the large 

Specification is 
Algebra    satisfying equation e iff

,

Institution for static algebras (equational-
[Goguen])

category of static signatures and morphisms

functor giving category of static algebras 
for each signature

functor giving a set of equations for each 
signature

satisfaction such that 

),,( StcStcStc ES Σ

StcA
||:)2()1( **

StcAXaassignmenteveryfortata →=

eA
StcStc Σ=|

)|,,lg,( StcStcStcStc EqnASig =

StcSig
StcA lg

StcEqn

Stc=|
''' :||)(| ' StcStcStcStc witheAiffeA

StcStc
Σ→Σ== ΣΣ

ϕϕ ϕ
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Static Semantics – Specification construction

Specification extension
Extension satisfies no confusion and no junk constraint

Extension is an inclusion morphism, more specifically it 
is an enrichment signature morphism that is conservative

Specification parameterization and instantiation
Parameterization – defines properties over a class of 
specifications
Instantiation – reduces class to a particular 
specification, and involves binding signature morphism

Specification inclusion
Allows information hiding that involves a signature 
inclusion along with an information hiding operator (�)

Specification use 
Use packages

Specification composition
Pushout of two specifications – syntactic composition

'''''' ,,),,(),,( EESSESextendsES StcStcStcStcStcStcStcStc ⊆Σ⊆Σ⊆⇒ΣΣ
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State-based Semantics – Programming in the 
small

Notion of observing a current state and change 
of observations over a next transformation 
function

A state is only identified by its attributes
Two states that have same attributes are 
undistinguishable and are said to be behaviorally 
equivalent

State-based signature

set of generalized hidden constants
optional set of operations
set of attributes
set of data operations

Distinction between operators of    and 

),( SBSBS Σ
),( VSB SStateS =

),,,,,( ∆ΩΦΥ=Σ nextisInitSB

Υ
Φ
Ω
∆

StateScst
nV →

,,0
:

K

StateSState
nV →×
,,0

:
K

φ
VV SSState

n
→×

,,0
:

K
ω

VV SS
n
→

,,0
:

K
δ

Υ next
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State-based Semantics – Programming in the 
small

A state-based signature: hidden signature[Goguen]
Hidden sort = 
Visible data universe = 
At most one hidden sort occurs in   or

Behavioral Satisfaction 
A context of sort h is a visible sorted Σ-term 
that has a single occurrence of a new variable 
symbol z of sort h, e.g. x(z), x(next(z)).
A hidden algebra behaviorally satisfies equation e 

State
),,( SBV DS ∆

ΩΥ

''
11 ,,')(| mm ttttifttXA ===∀≡Σ K

AXassignmentandccontexteappropriateachforiff →:θ

ceappropriatallandmjfortctcwhenever jjjj ,,1][(])[( '** K==θθ
])'[(])[( ** tctc θθ =
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State-based Semantics – Programming in the 
small

State-based specification
is a state-based signature

disjoint union of 2 sets of equations
Induces a hidden specification 

Consistency of state-based specification
Consistent iff induced hidden specification has a 
model with non-empty carriers and all equations 
are consistent
Necessary condition:  is D-safe
Sufficient condition: locality of equations

Local equation: local terms and conditions are 
visibly sorted and use only  -operations  
Local term: every proper subterm is a  -subterm

Non-local: use rewriting and provide a model

),,( ES SBSB Σ
),( SBSBS Σ

Ω∆ ⊕= EEE
),,( ΩΣ EState SB

∆E

E

Ψ
Ψ
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State-based Semantics – Programming in the 
large

State-based signature morphism
Hidden signature morphism
Identity over the visible data
Maps hidden sorts to hidden sorts

Sub-system morphism instead of enrichment morphism
Only one State sort, use of qualified name through 
a renaming morphism to distinguish between State 
sort of different specifications

),( ΨV

),(),( ''
SBSBSBSB SSmorphism Σ→Σ

': SBSBmorphismsignature Σ→Σϕ
)(| σϕσσσσσ =′Ω∈Φ∈∃Ω′∈′Φ′∈′ orthenorif
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State-based Semantics – Programming in the 
large

Institution for state-based algebras
Category of state-based signature and morphisms

Functor giving a set of equations for each 
signature

Functor giving a category of hidden algebras for 
each signature

Satisfaction relation 

Satisfaction condition

SBSign

SBSen

SBMod

SBΣ≡|

)(||| ' eAiffeA
SBSB
ϕϕ ΣΣ ≡′≡′
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State-based Semantics – Coalgebras

Cirstea’s work: Hidden algebras → Coalgebras
State-based signature → destructor hidden 
signature (by leaving out   and   )→ abstract 
cosignature

Example:
State-based signature

Destructor hidden subsignature

Associated abstract cosignature

A coalgebraic structure

Υ Φ

SB
SB

SB
SBSBSB

SB
SB

S
D

S
D

S
D SetSetFwithFSet →ΣΣ :),(

),,,(),,,( ,,0,,0

11 ,,1

nSnS

knn

X
State

lk

X
SSSStateSS XXXXXXX KK

K

KK ∏ ×→
∈

NaturalStateStatenextNaturalStatexStates ∆→→→ ,:,:,:0

NaturalState,

)}:,:{},,({ NaturalStateStatenextNaturalStatexStateNatural ∆∪→→

StateState
StateNatural

N XNFXwithFSet ×=),( },{

StateState XNX ×→:α
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State-based Semantics – Specification 
construction

Extension: similar in essence to static specification 
extension

The signature morphism is reverse

Parameterization:
3 parameter modes: input, output and design

Instantiation: may involve state dependent bindings 
of parameters
Translation: mapping of properties of the State sort 
from one specification to another
Inclusion: similar to static inclusion, but may be 
supplemented by a translation relating states of 
specifications involved in inclusion
Use: as for static. In this work, all packages are 
static

),(),(:)',,(),,( ''''
SBSBSBSBSBSB

c
SBSB SSiffESES Σ→Σ∃Σ→Σ ϕ
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State-based Semantics – Specification 
composition

Category of state-based specifications as 
objects and extensions as arrows
Composition uses categorical notion of colimit
Composition of two specifications sharing a 
common parent through a pushout
Composition of two specifications on different 
subtrees, translation may first be needed

SpecShared

Spec1 Spec2 OtherSpec2

Spec3 = Spec1 + Spec2
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Trace-based semantics

Notion of traces and operations over traces to 
model computation runs
Equational signature
Same semantics as for static

Institution of equational reasoning

Enforcement of a Trace(T) sort 
Available Operations: head, tail, add, 
sequence, interleave, restriction, order, …
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Specification Construction across Semantic 
Domains

Conservative extension from static to state-based and 
from static to trace-based
Institution morphism from static to state-based is 
strong, persistent and additive similar to CafeOBJ’s
institution morphism
Specification translation from static to state-based

Static represents data and invariant properties in a 
state-based specification
Minimal representation:

Specification translation from state-based to static 
described by Goguen et al.

Translation of behavioral specification into ordinary 
algebraic specification

),},{( SBStcStcSpecSB EEnextStateSSpec
Stc

∪∪Σ∪=



9/15/2004

Specification Translation from State-based 
to Trace-based

One-way translation 
For each input I in     , an input set of traces of 
type of I in
Same for output parameters
All declarations of     become declarations of 

Add declarations of 
A variable               representing set of traces of 
all reachable states
A variable someTrace representing a trace
A variable n of sort natural used as position of state 
in trace
All equations of       are included in
Add 2 new equations: state_def - equating State to 
actual, and newT - stating 

TBSB SpecSpec →

SBSpec
TBSpec

SBSpec
TBSpec

)(:: StateTraceTSt

SBSpec TBSpec

snsomeTracethatsuchStatesTsomeTrace St =∈∈ ][,
]1[])[,],[,( 0 += nsomeTracenInIsnextand kK
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SPECIFICATION IN ROSETTA
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The Domain organization

Static (prelude)

state-based trace-based Unit of
Semantics

discretecontinuous

discrete-time

finite-state

continuous-time Model of
Computation

trace-csp

frequency

RF digital sequential-machine
Engineering

Modelingsynchronous
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Static Modeling

Semantics given by the previously defined 
static (equational) semantics 
Specification

Defines a number of types: Universal, Element, 
Number, Complex, Real, …, Function, Set, Sequence, 
…
Defines a number of operators over each sort 
Static domain

Static domain semantics (Boolean)
},,{ KK BooleanSStc =

KK ,:,:,:,{ BooleanBooleannotBooleantrueBooleanfalseStc →→→=Σ
},:, KK BooleanBooleanBooleanor →×
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Static Domain Specification

domain static::null is
// -------------------------------------------------------------
// Boolean types
// -------------------------------------------------------------

Boolean :: type is enumeration (false, true);
// -------------------------------------------------------------
// Functions for boolean type
// -------------------------------------------------------------

…
not__(R :: Boolean ) :: Boolean;
__or__ ( L, R :: Boolean ) :: Boolean;
… 

begin
…
not_false: (not false) = true;
not_true: (not true) = false;
true_or_true: (true or true) = true;
true_or_false: (true or false) = true;
false_or_true: (false or true) = true;
false_or_false: (false or false) = false;
…

end domain static;
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Initial Algebra for Static

Boolean

‘true’

‘false’

‘not false’

‘not true’

‘true or true’

‘false or false’ 

or

not

…

…

‘0’

…

‘1’

‘succ(0)’

…

N
…
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State-based Modeling

State-based semantics
Institutions of Hidden Algebras, Coalgebras

Specification
State type

Next function that takes a state and a number of 
inputs and returns a new state
Extends static domain

State-based domain semantics

Coalgebras

),( StcSB SStateS =

){__@__}{},{},,,,( StcSBSB nextisInit Σ∪Υ=Σ

R
State

R
State

StateState

AA

AA
next

||||

||{*}||
ζ

γ

→

∪→
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State-based Domain Specification

domain state_based(State::design Type) :: static is

s :: State;

next:: Function;

__@__[T::Type](lhs::<*(st::State) -> T *>; rhs::State)::T is lhs(rhs);

isInit(s::State)::Boolean;

begin

// next: State x Si ... x Sn -> State with Si,...,Sn: one or more types

return_type_next: ret(next) = State;

domain_next: dom(next) = State; 

end domain state_based;
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The Discrete Domain Specification

domain discrete(DiscState::design Type) :: state_based(DiscState) is

isDiscrete(DiscreteSet::Type)::Boolean = 

exists (fnc::<*(st::DiscreteSet)::Integer*> |

forall(s1,s2::DiscreteSet| 

(s1 /= s2) => (fnc(s1) /= fnc(s2))));

begin

discrete_attributes:  forall (fnc::getAttributes() | isDiscrete(ran(fnc))); 

end domain discrete;
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The Finite-state Domain 

Finite-state ⇒ observations are finite and discrete

size of set is a natural number
size = 4

Finite

domain finite_state(FState::design Type) :: discrete(FState) is

isFinite(FiniteSet::Type)::Boolean is

#FiniteSet in Natural;

begin

fs1:forall (fnc::getAttributes() | isFinite(ran(fnc)));

end domain finite_state;
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The Continuous Domain 

Continuous observation of states ⇒ all observations have continuous 
variations with respect to a continuous observation of states

)())((
)())((

scontAttrsnextcontAttr
sfsnextf

s
f

−
−

=
∆
∆

domain continuous :: state_based is

contAttr(st::State)::Real;

variation[T::Type](fnc::<*stt::State)::T*>;st::State;next_st::State)::T is

(f(next_st) - f(st)) / (contAttr(next_st)-contAttr(st));

begin

end domain continuous;
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Trace-based Modeling

Semantics
Static semantics (institution of equational logic)
As traces represent computation runs, can use 
coalgebras as models as well

Specification
Notion of traces

Operations as defined in trace semantics
Extends static domain
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Trace-based Domain Specification
domain trace_based()::static is

Trace(T::Type)::Type;

emptyTrace::Trace(Universal) is constant;

add[Event::Type](tr::Trace(Event);ev::Event)::Trace(Event);

head[Event::Type](tr::Trace(Event))::Event;

tail[Event::Type](tr::Trace(Event))::Trace(Event);

isEmpty[Event::Type](tr::Trace(Event))::Boolean is 

tr = emptyTrace;

getEventAt[Event::Type](tr::Trace(Event);pos::Natural)::Event is

if (not isEmpty(tr))

else if (pos = 0) then head(tr)

else getEventAt(tail(tr),pos-1)

end if;

end if;

…
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Examples
and

Applications
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Example of a Stack Datatype

facet stackDT::static is

Stack::type;

emptyStack::Stack is constant;

push(stcParam::Stack; n::Natural)::Stack;

pop(stcParam::Stack)::Stack;

top(stcParam::Stack)::Natural;

val::Natural;

stcVar::Stack;

begin

pop_empty: pop(emptyStack) = emptyStack;

top_empty: top(emptyStack) = 0;

pop_push: pop(push(val,stcVar))=stcVar;

top_push: top(push(val,stcVar))=val;

end facet stackDT;
}{StackSS StcstackDT ∪=

},,,{ toppoppushemptyStackStcstackDT ∪Σ=Σ
}_,_,_,_{ pushtoppushpopemptytopemptypopEE StcstackDT ∪=
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Initial algebra for stackDT

Stack

‘pop(push(0,emptyStack))’

‘emptyStack’

‘push(succ(succ(0)),emptyStack)’

‘pop(push(succ(0),push(succ(succ(0)),emptyStack)))’

…

…

…

pop

top

push

0)( =valNaturalθ

emptyStackstcStack =)(θ

N

‘top(push(0,emptyStack))’

‘0’

‘succ(0)’

‘1’ …

…

succ

…
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Isomorphism between NstackDT and NStc

NstackDT

‘top(push(0,emptyStack))’

‘0’

‘succ(0)’

‘1’ …

…

succ

‘0’

…

‘1’

‘succ(0)’

…

Nstatic

…

succ

f

f

…

NstackDT|ϕ=NstackDT
NstackDT|ϕ satisfies static and is isomorphic to Nstatic
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Composition of State-based Parameterized 
Specifications

StateSet::Type;

memNext(st::State;val::Natural)::State;

facet memoryA(val::input Natural)

::discrete(StateSet) is

memA(st::State)::Natural;  

begin

initA: isInit(s) => memA@s = 0;

next_def: next = memNext;

lA: memA@next(s,val) = val;

end facet memoryA;

facet memoryB(val::input Natural)

::discrete(StateSet) is

memB(st::State)::Natural

begin

initB: isInit(s) => memB@s = 0;

next_def: next = memNext;

lB: memB@next(s,val) = val+memB;

end facet memoryB;

facet twoMemory(val::input Natural)::discrete(StateSet) is

memoryA(val) + memoryB(val);
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Composition of Parameterized 
Specifications 

Discrete(StateSet)
next::Function

memoryA(val)
memA::State → Natural

next(st::State;val::Natural)::State

memoryB(val)
memB::State → Natural

next(st::State;val::Natural)::State

twoMemory(val)
memA::State → Natural
memB::State → Natural

next(st::State;val::Natural)::State

Pullback of Signature Morphisms
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Composition of Parameterized 
Specifications

N
State

discrete

State

A
next

A

||

||
=γ

N
State

memoryA

State

AN

nextmemA
A

||

),(
||

×

=γ
N
State

memoryB

State

AN

nextmemB
A

||

),(
||

×

=γ

N
State

twoMemory

State

ANN

nextmemBmemA
A

||

),,(
||

××

=γ

Pushout of Coalgebras
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Trace-based MemoryA Specification
StateSet::Type;

memNext(st::State;val::Natural)::State;

facet traceMemA(val::input Trace(Natural))::trace_based() is

memA(st::State)::Natural;

StateTrace::Trace(State);

someTrace::StateTrace;

s::State; next::Function; … // All declarations from domains

pos::Natural;

begin

initA: isInit(s) => ((memA(s) = 0) and (pos = 0));

next_def: next = memNext;

lA: memA(next(s,getEventAt(val,pos))) = getEventAt(val, pos);

newT1: getEventAt(someTrace,pos) = s;

newT2: next(s,getEventAt(val,pos)) = getEventAt(someTrace, pos+1);  

end facet traceMemA; )|(||| )()( StateTraceStateTrace ANA
traceMemA

×→
γ

)),(( tailheadmemAtraceMemA =γ



9/15/2004

Specification of a Hybrid Automaton

Hybrid automaton [Henzinger]
Variables: x, dotted x ( ), x’
Control graph (V,E) of control modes and edges
Predicates: 

Initial
Invariant

Flow conditions: predicate for continuous change
Jump conditions: predicate for each control switch

Events over control switches (events)

x&
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Hybrid Automaton of a Thermostat

18
1.0

≥
−=

x
xx

Off
&20=x

22
1.05

≤
−=

x
xx

On
&

21>x

19<x

Two states for the heater: on or off

Continuous variation of the temperature: x

heater on => temperature x increases at rate of 5 - 0.1x

per minute

heater off => temperature x decreases at rate of –0.1x

per minute
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The Heater Specification

facet heater(x::input Real; ctrl::output ControlMode):: finite_state is

mode(s::State)::ControlMode;

begin

initial: isInit(s) => (mode@s = off);

next_def: next = <*(st::State;x::Real)::State*>;

output: ctrl = mode@s;

off_to_on: ((mode@s = off) and (x =< 18)) => (mode@next(s,x) = on);

on_to_off: ((mode@s = on) and (x >= 22)) => (mode@next(s,x) = off);

off_to_off: ((mode@s = off) and (x >= 19)) => (mode@next(s,x) = off);

on_to_on: ((mode@s = on) and (x =< 21)) => (mode@next(s,x) = on);

grey_area_off: ((x < 19) and (x > 18) and (mode@s = off)) => 

((mode@next(s,x) = off) xor (mode@next(s,x) = on));

grey_area_on: ((x > 21) and (x < 22) and (mode@s = on)) => 

((mode@next(s,x) = off) xor (mode@next(s,x) = on));

end facet heater;
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The Temperature Specification

facet temperatureVariation(ctrl::input ControlMode; x::output Real):: continuous is

temp(s::State)::Real;

begin

initial: isInit(s) => ((temp@s = 20) and (contAttr@s = 0);

next_def: next = <*(st::State;ctrl::ControlMode)::State*>;

mono_increase: contAttr@next(s,ctrl) > contAttr@s;

output: x = temp@s;

off_cool: (ctrl = off) => 

(variation(temp,s,next(s,ctrl)) = -0.1 * temp@s);

on_heat: (ctrl = on) => 

(variation(temp,s,next(s,ctrl)) = 5 - 0.1 * temp@s);

next_heat: temp@next(s,ctrl) = temp@s + 

variation(temp,s,next(s,ctrl)) *

(contAttr(next(s,ctrl)) - contAttr(s));

end facet temperatureVariation;
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The Thermostat Specification

facet thermostat():: state_based is

ctrl(st::State)::ControlMode;

x(st::State)::Real;

begin

next_def: next = <*(st::State)::State*>;

heater_comp: heater(x@s, ctrl@s);

temperature_comp: temperatureVariation(ctrl@s, x@s);

inv_off: (ctrl@s = off) => (x@s >= 18);

inv_on: (ctrl@s = on) => (x@s =< 22);

end facet thermostat;
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Analysis of the Thermostat Specification

Two observations of the state
The values of each observation provided by Heater or 
by TemperatureVariation specifications
Models that satisfy Thermostat will have (minimal) 
states as pairs (controlmode,temp) with 
controlmode=ctrl(s) and temp=x(s)
Controlmode: on or off
Temp: a real number between 18 and 22 

If considering discrete Thermostat models, temp will 
have discretized values through “sampling”
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RELATED WORK 
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FUTURE WORK
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Automatic verification tool


