
An AAL2 based Framework for Efficient Transport of
RTP Voice Streams

by

K. Dhananjaya Rao

B.E. University of Bombay, India, 1997

Submitted to the Department of Electrical Engineering and Computer
Science and the Faculty of the Graduate School of the University of Kansas
in partial fulfillment of the requirements for the degree of Master of Science.

 Professor in Charge

 Committee Members

 Date of Acceptance

2

Abstract

Asynchronous Transfer Mode has been used for a number of years to implement high-

speed networks providing multi-gigabit services for multimedia applications. Of late, it is

being widely deployed for high-bandwidth network access using new technologies such

as DSL. The principal advantages for ATM are its reliability, fine-grained QoS

mechanisms and the ability to efficiently transport integrated services, including voice.

With the rapid development of VoIP as a ubiquitous technology for voice over the

Internet, it becomes necessary to efficiently transport VoIP packets, which are

encapsulated in Real-Time Transport Protocol (RTP) headers, over ATM access links.

The ATM Adaptation Layer 2 is a standard for transporting low bit rate, short and

variable length voice packets. In this work, a framework is implemented for efficient

transport of RTP voice streams using AAL2. The benefits of this scheme are discussed

and the applicability of this framework is studied.

3

Acknowledgements

I would like to thank Dr. Joseph Evans, my advisor and committee chairman for his

guidance and advice throughout my research work. It has been a pleasure working under

him. I’m especially grateful to him for the freedom I have been given to explore new

areas and develop my interests. I would also like to thank Dr. David Petr and Dr. Susan

Gauch for being on my committee.

This project owes a lot to Vishal Moondhra who started it all and to Aarti Iyengar who

worked with me on the initial AAL2 implementation. I am also deeply thankful to Sachin

Sheth for his invaluable advice during my early days here and for his wonderful common

sense.

I cannot forget to mention Brett, Roel and Mike for their immense help and for putting up

with me for these two years. Special thanks to all those anonymous angels who kept the

coffee pot full whenever I badly needed it. I would also like to thank my friends here at

ITTC and KU, Ananth, Aarti, Deepak, Pramodh, Shirish, Harish, Sarav, Anu, Gowri,

Giri, Sriram, Vijay, Phongsak, Ram and many others for making my stay here an

enjoyable and learning experience.

All my endeavors so far have been due to the grace of God and the support of my parents

and sister. My gratitude to them cannot be expressed in mere words.

4

Table of Contents

CHAPTER 1.. 9

INTRODUCTION... 9

1.1 MOTIVATION .. 9
1.2 ORGANIZATION OF THESIS ... 11

CHAPTER 2.. 12

RELATED WORK ... 12

2.1 ITU EFFORTS.. 12
2.2 ATM FORUM EFFORTS.. 13
2.3 IETF EFFORTS .. 14
2.4 VODSL .. 15

CHAPTER 3.. 17

BACKGROUND ... 17

3.1 ASYNCHRONOUS TRANSFER MODE.. 17
3.1.1 ATM Adaptation Layers .. 17
3.1.2 ATM Signaling .. 18

3.2 SWITCHING IN ATM.. 19
3.2.1 User Plane .. 19
3.2.2 Control Plane.. 20
3.2.3 Management Plane ... 20

3.3 SIGNALING ON THE AAL2 GATEWAYS... 20
3.3.1 ATMSIGD... 21
3.3.2 ILMID... 21
3.3.3 ATMARPD and ATMARP ... 21

3.4 ATM ADAPTATION LAYER 2... 22
3.4.1 General Framework of AAL2 .. 22
3.4.2 CPS to ATM data interface.. 23
3.4.3 CPS to SSCS data interface... 23
3.4.4 The Common Part Sublayer .. 23
3.4.5 Format and Encoding of CPS Packet .. 24
3.4.6 Format and Encoding of CPS-PDU... 26
3.4.7 AAL2 CPS Procedure.. 27
3.4.8 AAL2 Negotiation Protocol (ANP) .. 27

3.5 REAL-TIME TRANSPORT PROTOCOL - RTP ... 28
3.5.1 RTP Data Packets ... 29
3.5.2 RTP Control Functionality .. 30
3.5.3 RTP Header Compression... 31

3.6 ROBUST AUDIO TOOL – RAT .. 31

5

CHAPTER 4.. 33

DESIGN AND IMPLEMENTATION.. 33

4.1 DESIGN... 33
4.1.1 Architecture .. 33
4.1.2 End-to-End Signaling.. 34

4.1.2.1 Signaling issues and requirements... 34
4.1.2.2 SVC/Channel setup and teardown ... 38

4.1.3 Data path for voice streams... 39
4.1.3.1 Mechanisms for transport over ATM .. 39
4.1.3.2 Flow identification.. 40
4.1.3.3 Mapping RTP flows to AAL2 channels... 41

4.1.4 RTP Header Compression... 41
4.1.4.1 The compression protocol... 43
4.1.4.2 RTP header compression transport on AAL2.. 46
4.1.4.3 Error Recovery... 47
4.1.4.4 Compression of RTCP Control Packets.. 47

4.1.5 IP/UDP headers... 48
4.1.6 Codecs and packet sizes ... 48

4.1.6.1 A Comparative Analysis of AAL5 and AAL2 for different codecs........... 50
4.2 IMPLEMENTATION ... 54

4.2.1 Real-Time Modifications to AAL2 .. 55
4.2.1.1 Temporal Modifications... 55
4.2.1.2 Additional Modifications ... 56
4.2.1.3 Receiver Modifications .. 57

4.2.2 AAL2 Gateway Module .. 58
4.2.2.1 Signaling.. 59
4.2.2.2 Modifications to the ANP daemon ... 60
4.2.2.3 Media Transport .. 61

CHAPTER 5.. 67

EVALUATION ... 67

5.1 MODIFICATIONS TO AAL2 IN LINUX: .. 67
5.1.1 Test setup .. 67

5.2 RTP OVER AAL2 FRAMEWORK... 71
5.2.1 Test Environment .. 71
5.2.2 Test Application .. 72
5.2.3 Bandwidth Utilization ... 72

5.2.3.1 One voice flow ... 73
5.2.3.2 Two voice flows ... 74
5.2.3.3 Four voice flows ... 76

5.2.4 Determination of jitter... 77
5.2.5 Comparison of Inter-packet times – individual samples................................. 79

5.2.5.1 One voice flow ... 80
5.2.5.2 Four voice flows ... 81

6

CHAPTER 6.. 83

SUMMARY... 83

6.1 CONCLUSIONS... 83
6.2 FUTURE WORK .. 84

BIBLIOGRAPHY ... 86

7

List of Figures

Figure 2.1: H.323 Protocol Suite …………………………………………………….. 13
Figure 3.1: AAL2 Structure ………………………………………………………….. 23
Figure 3.2: AAL2 CPS Packet Format …………………………………………..……24
Figure 3.3: AAL2 CPS PDU Format ………………………………………………….26
Figure 3.4: Translating CPS SDUs to ATM SDUs ……………………………………26
Figure 3.5: Header Structures: RTP, UDP, IP ………………………………………. 29
Figure 4.1: Reference Configuration – RTP over AAL2 framework ………………….33
Figure 4.2: Signaling Architecture ……………………………………………………37
Figure 4.3: RTP Header Compression: Transmitter ………………………………… 43
Figure 4.4: RTP Header Compression: Receiver ……………………………………. 44
Figure 4.5: RTP Compression Call Context ………………………………………… 44
Figure 4.6: RTP Header Compression on AAL2 …………………………………….. 46
Figure 4.7: RTP Flow - AAL2 Channel Mapping …………………………………….58
Figure 4.8: Data flow for RTP packets through framework ………………………….61
Figure 5.1: Average Throughput per channel – 24 kbps ……………………………..67
Figure 5.2: Average throughput per channel – 32 kbps …………………………….68
Figure 5.2: Test Environment ……………………………………………………….. 69
Figure 5.3: Comparison of Bandwidth Required – AAL2 vs. IPoA – 1 flow …………72
Figure 5.4: Comparison of Bandwidth Required – AAL2 vs. IPoA – 2 flows ………..73
Figure 5.5: Comparison: AAL2 vs. IPoA – 2 flows of different sampling intervals …73
Figure 5.6: AAL2 vs. IPoA – 4 flows of different sampling intervals ………………..74
Figure 5.7: Average inter-packet transmission and arrival times– 1 flow …………..77
Figure 5.8: Jitter in average inter-packet transmission and arrival times– 1 flow ….77
Figure 5.9: Average inter-packet transmission and arrival times – 4 flows …………78
Figure 5.10: Average inter-packet times for IP over ATM (AAL5) ………………….79
Figure 5.11: Inter-packet transmission/arrival times – Individual samples – 1 flow ..80
Figure 5.12: Inter-packet transmission/arrival times – Individual samples – 4 flows .81
Figure 5.13: Inter-packet transmission/arrival times for AAL5 – 4 flows ………….. 82

8

List of Tables

Table 3.1: AAL2 CID Values ………………………………………………………… 25
Table 4.1: Default voice packet sizes for standard codecs…………………………….50
Table 4.2: Bandwidth Requirements for G.723.1 codec – AAL5/AAL2 ………………51
Table 4.3: BW Requirements for AAL5 with/without RTP Header Compression ….…52
Table 4.4: BW Requirements for AAL2 with/without RTP Header Compression …….53
Table 5.1: Jitter

9

Chapter 1

Introduction

1.1 Motivation

The ever-increasing demand for faster access to information, data and communications

has led to rising bandwidth requirements. Various broadband access technologies are

being increasingly deployed to reduce last-mile costs while providing multiservice

capabilities.

Multiservice networking is emerging as a strategically important issue for enterprise and

public service provider infrastructures alike. The combination of all types of

communications, all types of data, voice, and video over a single packet-cell-based

infrastructure provides benefits of reduced operational costs, higher performance, greater

flexibility, integration and control, and faster new application and service deployment.

Packetized voice is on the rise in carrier networks, limited corporate trials and next-

generation Wide Area Network (WAN) access. Wide-area bandwidth remains a

premium, so efficient utilization of available bandwidth is a prime area of concern. No

single voice-over-packet technology fits all needs today. The major unification

technologies - voice over IP (VoIP), voice over ATM (VoATM) and voice over Frame

Relay (VoFR) - each have relative strengths and weaknesses, and there is no perfect

technology fit for every problem.

VoIP is the latest voice-over-packet technology, which is rapidly heading towards

becoming the most widespread in future. Its primary appeal is the reach of IP, which

spans any underlying Layer 2 technology. Hence, voice can be converted to packets at

any point in the network - within the carrier core, at the WAN boundary, in the campus or

at the endpoint. VoIP especially targets the end-to-end approach, using network-attached

phones, PCs and PC-like devices, and wireless devices. But even though IP has the

10

widest span, it traditionally provides a best-effort service and lacks the network reliability

and QoS required for applications such as voice and video.

ATM has existed in carrier cores and campus backbones for many years and is being

widely deployed for high-bandwidth network access using DSL in small offices and

Synchronous Optical Network (SONET) in larger facilities. The principal advantages for

ATM are in reliability, fine-grained QoS mechanisms and advanced network

management. It has been demonstrated that ATM is an effective medium to transport

integrated services, including voice.

The most common approach to encapsulating voice over ATM is to use Circuit

Emulation Services (CES) based on the AAL1 encapsulation method. Unfortunately,

CES doesn’t offer the statistical gains required for maximizing network utilization, and it

has a high overhead.

Many enterprise implementations use AAL5 LLC/SNAP encapsulation for voice

services. Although this approach is less complex, it is also less efficient than another

approach using AAL2. The ATM Forum has defined AAL2 for bandwidth efficient

transmission of delay sensitive, low bit-rate voice services.

AAL2 is already in widespread use for trunking purposes as a viable alternative to AAL1

CE. With service providers increasingly looking towards voice as an enhanced revenue

generating service over access technologies such as DSL (VoDSL), AAL2 can be used

for this purpose. Access connections using this scheme can transport voice over the same

facilities as data, minimizing the use of precious bandwidth.

At the same time, VoIP applications are increasingly being used to provide a cheaper and

more flexible means of communication, in the enterprise LAN and also over the Internet.

Voice packets over an IP network are usually encapsulated in Real-Time Transport

Protocol (RTP) headers to provide end-to-end transport functionality required by voice,

between the sources.

11

Hence it becomes important to determine if AAL2 can be deployed to efficiently

transport this RTP encapsulated voice traffic over ATM. This thesis focuses on

developing a framework for transport of RTP voice streams over an ATM network using

AAL2. The salient points of interest are the efficiency in bandwidth utilization that can

be obtained with this framework; the tradeoffs involved, such as any introduced delay;

and the choices taken in this approach.

AAL2 provides inherent multiplexing capabilities within an ATM SVC, which make it

simpler to use multiplexing mechanisms between two gateways or access routers and also

increase the bandwidth efficiency as compared to other RTP over ATM approaches.

Header compression is used here to further improve efficiency.

1.2 Organization of thesis

This document is organized in the following manner: Chapter 2 discusses some of the

related work to this thesis. Chapter 3 gives an overlook about the different protocols and

technologies used in this thesis. Chapter 4 discusses the design aspects of the proposed

framework and explains some of the implementation details. Chapter 5 describes the set

of tests that were conducted to determine the validity and performance of the

implemented framework and presents some results. Chapter 6 contains the conclusions

and future work.

12

Chapter 2

Related Work

This chapter discusses some of the ongoing work in the areas of efficient transport of

real-time voice traffic in IP and ATM networks while providing the necessary quality of

service. It includes efforts being carried out in the ITU, ATM Forum and IETF standards

bodies in the context of RTP. Since the Real-Time Transport Protocol was published as

an RFC [1], there has been growing interest in using RTP as one step to achieve

interoperability among different implementations of network audio/video applications.

2.1 ITU Efforts

The ITU has developed a number of specifications for transport of multimedia including

voice. The most important of these is the H.323 standards suite, which is the most widely

deployed specification for voice over IP. The H.323 standard [3] enables real-time

multimedia communications and conferencing over packet-based networks. It is a

comprehensive standard that covers the selection of audio and video codecs, shared

applications, call control, and system control, allowing vendors to develop interoperable

products for LAN-based audio and video communications.

Figure 2.1 shows the different layers and protocols that are part of the H.323

specification. The H.323 protocol stack uses the H.245 standard for passing control

information and H.225 for passing RAS (registration, admission and signaling)

information. The media channel is carried using RTP. RTCP or Real-Time Control

Protocol is used as the media control channel. Annex C of the ITU-T recommendation

explains the usage of H.323 media on ATM.

13

Figure 2.1 H.323 Protocol Suite

2.2 ATM Forum Efforts

There is work going on in the ATM Forum called RMOA (real-time multimedia over

ATM) for H.323 transport over ATM [4]. The focus of RMOA work is on using RTP

over ATM in an intelligent way by utilizing the QoS features of ATM. It describes the

access to an ATM network using H.323. The H.323 terminal can be on a variety of

network technologies, including non-native ATM IP-based (Ethernet, etc.), and native

ATM. This differs from the ITU-T specification, which only targets native ATM

terminals.

Carrying H.323 media streams over ATM will ensure that the media streams take

advantage of the inherent quality of service of ATM. However, to ensure a suitable end-

to-end quality of service, it is necessary that appropriate QoS mechanisms are applied

outside the ATM network.

14

The specification proposes termination of both signaling and media streams on the

gateways to the ATM network. With respect to control traffic between the endpoints,

each of the gateways to the ATM backbone network serves as an H.323-to-H.323

gateway. With respect to media streams between the endpoints, each of the gateways

terminates the media stream for the near endpoint and acts as a compressor/decompressor

for the RTP media stream.

SVCs are set up for the transport of RTP media streams based on H.245 or H.225.0

control messages exchanged by the endpoints and the gateway. In the ATM network, the

corresponding control messages are sent between the gateways using an IP over ATM

method. This specification is discussed later in some more detail, as this thesis derives a

number of issues from it.

2.3 IETF Efforts

There have been a lot of developments in designing new protocols and adding new

functionality to the existing protocol stacks for efficient voice transport. A number of

IETF working groups are focussing on the development of standards for VoIP, such as

avt (Audio/Video Transport), iptel (IP Telephony), mmusic (Multiparty Multimedia

Session Control) and pint (PSTN and Internet Internetworking).

The Audio/Video Transport Working Group was formed to specify a protocol for real-

time transmission of audio and video over UDP and IP multicast. This is the Real-time

Transport Protocol, RTP, together with its associated profile for audio/video conferences

and payload format documents. The group is currently focussing on revision of the

specification and profile, development of new payload formats and guidelines for

developers.

A number of drafts have been submitted which are aimed at increasing the efficiency of

RTP transport over low speed access links and reduce the protocol overhead. These

15

efforts include RTP multiplexing, tunneling and header compression techniques. This

thesis also draws some of its features from these efforts.

The IETF has also been working diligently to develop specifications to enable real-time

applications such as voice to work over IP networks, notably DiffServ and MPLS. The

current trend indicates that the model of future IP-based networks will use IP to access

the network, where DiffServ mechanisms will be in place to prioritize traffic according to

application requirements. This will then be translated into MPLS mechanisms at the

network ingress with the use of a label to be attached to the packet for transport across

the backbone network. There has been recent effort to propose voice transport over IP

using the MPLS protocol.

2.4 VoDSL

Voice over digital subscriber line (VoDSL) presents a tremendous opportunity for service

providers in the converging data and voice communications market. Since 1996, high-

speed Internet access has been the primary market for new service providers because of

the ever-growing demand from both business and residential customers. In recent years,

DSL has emerged as the most affordable method for carriers to serve both types of

subscribers.

Within the transport, a number of technologies are supported to transfer both voice and

data. While data transport has been optimized, the simultaneous transfer of toll quality

voice needs to be addressed.

Initial VoIP initiatives were not successful because the quality of service could not be

maintained throughout the network. Also, H.323 maintains too many overheads if used

for supporting only voice.

Recently, after much discussion, the ADSL Forum determined in favor of using ATM

technologies as the basis for the first phase standard approach to VoDSL service. An

16

estimated 90 percent of the installed DSLAM (Digital Subscriber Line Access

Multiplexer) equipment uses the ATM transport method back to the switch. Though older

techniques use AAL1, the ADSL Forum is anticipated to adopt the more efficient AAL2

for voice services.

17

Chapter 3

Background

This chapter gives a brief description about the various protocols and technologies that

are part of this thesis work. We start with a basic outline of ATM, its different Adaptation

Layers, and the various signaling entities present in the system. The Adaptation Layer 2,

which is of relevance to this thesis and the Real-time Transport Protocol (RTP) are then

discussed in some detail. Finally, some salient features of the Robust Audio Tool and

different speech coding techniques are explained.

3.1 Asynchronous Transfer Mode

Asynchronous Transfer Mode (ATM) has rapidly emerged as a protocol of choice for the

demands made by multimedia networks [5]. ATM networks have many distinctive

features that help maintain its edge over other network protocols, especially in the area of

high speed networking carrying different kinds of data. ATM transfers data between

network elements using fixed sized ’packets’, or cells of 53 bytes.

3.1.1 ATM Adaptation Layers

Above the ATM Layer lies the Adaptation layer, which provides for the transformation of

the higher-layer service - voice, video, data - into a form suitable for transmission over

the ATM infrastructure. The AAL preserves timing relationships for traffic requiring it

(voice, for example). The ATM Forum defines the following AAL types:

1. AAL1 is used to support Constant Bit Rate (CBR) connections across the ATM

network. Incoming data is placed in an ATM cell along with a 3-bit sequence number

and a 4 bit CRC. The remaining bit in the first byte is used over a series of cells to

indicate, among other things, timing recovery information and whether or not the

AAL1 connection is structured.

18

2. AAL2 is used to multiplex many low bandwidth channels over a single VC. Each

channel has a 3 byte channel overhead, including a Channel Id Number, and a length

indicator. Up to 255 channels can be multiplexed over a VC, and individually setup

and torn down. AAL2 needs a separate AAL2 Negotiation Protocol (ANP), as is

discussed in section 3.4.8.

3. AAL3/4 is an obsolete adaptation standard used to deliver connectionless and

connection- oriented data over the ATM network. This AAL has a substantial

overhead in terms of sequence numbers and multiplexing indicators, and is rarely

used.

4. AAL5 is an outgrowth of the data communication industry. It is optimized for data

transport. The PDU is broken up into ATM cell segments, and the last ATM cell

carries an indication in the PTI. The last cell is padded out to 48 bytes. It contains a

CRC over the entire PDU, and the length of the PDU.

3.1.2 ATM Signaling

When two nodes in an ATM network want to communicate, they first need to establish a

virtual connection [6]. These connections can be either provisioned (in which case they

are called Permanent Virtual Circuits or PVCs) or established on demand (in which case

they are called Switched Virtual Circuits or SVCs). PVCs are analogous to leased lines in

a phone network, while SVCs are analogous to making a call over a phone network.

SVCs require signaling support on the originating node, the switches that lie along the

path, and the on terminating node. ATM networks have dedicated Signaling Channels,

which implement connection setup and tear down between hosts.

The signaling is of two kinds – User-Network Interface, or UNI, and Network-Network

Interface, or NNI. When a user on a host wants to setup a connection, the UNI entity on

the host sends a setup message to the network. The network, which is collection of

19

switches, will use NNI to build a route between the destination, and the final leg between

network and the destination host will again use UNI to setup the connection.

The ATM Forum, a group of industrial representatives and academicians, are responsible

for establishing and standardizing the various aspects of the ATM protocol. The Forum

has currently published Version 4.0 of UNI signaling, and has recently published the

PNNI specification, which is Public NNI. Before PNNI was standardized, ATM networks

implemented the Interim Inter-switch Signaling Protocol, or IISP, as an interim solution.

The work on this project has used and extended UNI 3.1 on the hosts.

3.2 Switching in ATM

An ATM switch contains a set of input ports and output ports, through which it is

interconnected to users, other switches, and other network elements. It might also have

other interfaces to exchange control and management information with special purpose

networks. Theoretically, the switch is only assumed to perform cell relay and support of

control and management functions. However, in practice, it performs some inter-

networking functions to support services such as SMDS or frame relay. It is useful to

examine the switching functions in the context of the three planes of the B-ISDN model

[7].

3.2.1 User Plane

The main function of an ATM switch is to relay user data cells from input ports to the

appropriate output ports. The switch processes only the cell headers and the payload is

carried transparently. As soon as the cell comes in through the input port, the Virtual Path

Identifier/Virtual Channel Identifier (VPI/VCI) information is derived and used to route

the cells to the appropriate output ports. This function can be divided into three functional

blocks: the input module at the input port, the cell switch fabric (sometimes referred to as

switch matrix) that performs the actual routing, and the output modules at the output

ports.

20

3.2.2 Control Plane

This plane represents functions related to the establishment and control of the VP/VC

connections. Unlike the user data cells, information in the control cells payload is not

transparent to the network. The switch identifies signaling cells, and even generates some

itself. The Connection Admission Control (CAC) carries out the major signaling

functions required. Signaling information may or may not pass through the cell switch

fabric, or maybe exchanged through a signaling network such as SS7.

3.2.3 Management Plane

The management plane is concerned with monitoring and controlling the network to

ensure its correct and efficient operation. These operations can be subdivided as fault

management functions, performance management functions, configuration management

functions, security management functions, accounting management and traffic

management. These functions can be represented as being performed by the functional

block Switch Management. The Switch Management is responsible for supporting the

ATM layer Operations and Maintenance (OAM) procedures. OAM cells may be

recognized and processed by the ATM switch. The switch must identify and process

OAM cells, maybe resulting in generating OAM cells. As with signaling cells, OAM

cells may/may not pass through cell switch fabric. Switch Management also supports the

interim local management interface (ILMI) of the UNI. The Switch Management

contains, for each UNI, a UNI management entity (UME), which may use SNMP.

3.3 Signaling on the AAL2 Gateways

The gateway systems exist on a PC platform, running Linux. Networking support on

Linux exists in the form of the BSD socket interface. The Linux ATM driver is patched

in to provide ATM Network and Link Layer support. A standard ATM Network Interface

Card (NIC) is installed to obtain a fiber channel to conventional ATM switches.

21

Signaling on the system is performed by a set of daemons that are part of the ATM driver

for Linux. There are essentially three important signaling daemons.

3.3.1 ATMSIGD

atmsigd is the UNI signaling daemon for the Linux ATM [8]. It implements the UNI 3.1

signaling stack for a single ATM interface on the gateway. The signaling daemon

implements the UNI signaling complexity as part of user space, while a simple protocol

to support ATM signaling resides in the kernel. The user process communicates with the

kernel using a simple Internal Signaling Protocol, which relies on the well-ordered nature

of the system to manage the signaling. The ISP uses synchronous communication based

on BSD sockets.

3.3.2 ILMID

ilmid is the Interim Local Management Interface daemon that is used to manage the

system status and configuration, perform address registration and update at the switch. It

uses existing SNMP standard, and defines a new ATM UNI Management Information

Base (MIB) to perform VC status and management, operational measurement as required,

diagnostics, etc [6].

3.3.3 ATMARPD and ATMARP

atmarp is used to resolve IP addresses over an ATM subnet. The ATMARP requests and

replies are sent using AAL5. The ATMARP structure consists of an ARP server whose

ATM address is well known within the subnet. Hosts wanting to resolve IP addresses to

their respective ATM addresses send queries to the ARP server, which looks up its data

base and responds with the required address. The ARP server updates it’s data base when

it receives ARP requests by sending inverse ARP or InARP REQUEST to the originating

host for each logical IP subnet the server is configured to serve. In the event that the

server is unable to find the corresponding entry in its table, it returns an ARP NAK to the

22

host. The ARP client is responsible for contacting the ARP Server with its own IP

address to register itself. This usually happens at boot-up time. It is also responsible for

initiating and maintaining a VC to the ARP server, responding to ARP and InARP

requests, and generating and transmitting ARP REQUEST when required by applications

wishing to make connections.

3.4 ATM Adaptation Layer 2

AAL2 is an adaptation layer that is used to multiplex more than one low bit rate user

information stream on a single ATM virtual connection [9]. This AAL provides for

bandwidth efficient transmission of low-rate, short, and variable length packets in delay

sensitive applications. In situations where multiple low bit rate data streams need to be

connected on end systems, a lot of precious bandwidth is wasted in setting up individual

VCs for each of the connections. Moreover, most network carriers charge based on the

number of open Virtual Connections, hence it is efficient both in terms of bandwidth and

cost to multiplex as many of these as possible on a single connection. A preliminary

standard published by the International Telecommunication Union (ITU-T) can be found

in [9]. Drafts related to AAL2 SSCS and AAL2 signaling have recently been published.

3.4.1 General Framework of AAL2

The AAL type 2 is subdivided into the Common Part Sublayer (CPS) and Service

Specific Convergence Sublayer (SSCS) as shown in Figure 3.1. Different SSCS protocols

may be defined to support specific AAL2 user services or groups of services. The SSCS

may also be null, providing merely for the required mapping between the CPS and higher

layers. AAL2 provides the capabilities to transfer AAL-SDUs from one AAL-SAP to

another through the ATM network. Multiple AAL2 connections may utilize a single

underlying ATM connection. The multiplexing and de-multiplexing of connections

occurs at the CPS.

23

Figure 3.1 AAL2 Structure

3.4.2 CPS to ATM data interface

The CPS hands a 48-byte ATM payload to the ATM layer below it, a 1-bit ATM

User to ATM User (AUU) indication, and a loss priority (called the Submitted Loss

Priority). SLP is used by the ATM layer to set it’s own CLP bit. CPS also receives from

the ATM layer a 48 byte SDU, and a loss priority bit (called the Received Loss Priority).

The RLP may differ from SLP in case the network changed CLP along the way.

3.4.3 CPS to SSCS data interface

The CPS hands CPS-Interface data packets to the SSCS (1 to 64 bytes). The format and

actual length of the data are determined at setup time. The CPS also hands a 5 bit User to

User Indication to the SSCS. This is data used optionally by the SSCS entity to decide the

destination of the PDU. The CPS also receives the same two units from the SSCS entity.

3.4.4 The Common Part Sublayer

AAL2 CPS offers the following peer to peer operation:

24

• Data transfer of CPS-SDUs of up to 451 (default) or 64 bytes.

• Multiplexing and de-multiplexing of multiple AAL2 channels.

• Maintains the CPS-SDU sequence integrity on each AAL2 channel

• Unassured operation, i.e. lost CPS-SDUs are not retransmitted

• Bi-directional virtual channel connection, using the same VC number in either

direction.

• The VC can be permanent or switched.

The CPS interacts with both the management layer and the control layer. The control

layer establishes the VC as required.

3.4.5 Format and Encoding of CPS Packet

Figure 3.2 AAL2 CPS Packet Format

A CPS Packet consists of a 3 byte Packet Header (CPS-PH), followed by up to 64 bytes

of Packet Payload (CPS-PP). CPS Packets are the data exchange mechanism between

CPS and SSCS. Figure 3.2 shows the field lengths and format.

1 There are some references that specify the maximum AAL2 CPS-SDU length as 44 bytes which is a
logical value, since additional 3 byte CPS header and 1 byte STF fill an ATM PDU perfectly. The value of
45 has been taken from the original ITU-T I.363.2 specification [9].

25

• Channel Identifier (CID) identifies the AAL2 channel user. The AAL2 channel is a

bi-directional-medium, and both directions use the same value of CID.

CID value Use

0 Not used

1

2…7

Reserved for layer management peer-to-peer operations

Reserved

8…255 Identification of SSCS entity

Table 3.1 AAL2 CID Values

• Length Indicator (LI) is a binary encoded value that corresponds to the length of the

payload of the CPS-Packet. The default maximum length is 45 bytes. It can be set to a

maximum of 64 bytes. The maximum channel length needs to be negotiated at setup

time. LI cannot exceed the maximum negotiated value. Each channel can individually

negotiate its maximum value. Maximum lengths between 45 and 64 are not allowed.

• User-to-User Indication (UUI) serves two specific purposes:

- To convey specific information to SSCS entities transparently through the CPS.

- To distinguish between the SSCS entities and Layer Management users of the CPS

The 5 bit UUI field is handed without change by CPS to the SSCS entity. Its usage by

the SSCS entity is optional.

• Header Error Control (HEC) is the reminder (modulo 2) of the division, by generator

polynomial X5 + X2 + 1, of the product of X5 and the contents of the first 19 bits of

the CPS-PH. The receiver uses the HEC field to detect errors in the CPS-PH.

26

3.4.6 Format and Encoding of CPS-PDU

The CPS-PDU consists of a one-byte start field (STF), and 47-byte payload. The 48-byte

CPS-PDU is the ATM cell SDU (Figure 3.4). A CPS-PDU may carry 0, one or more full

or partial CPS-Packets. The packets may overlap over more than one PDUs. Any unused

space in the PDU is padded with 0s. The CPS-Packet may be partitioned anywhere along

it’s length (Figure 3.3). The start field values are:

• Offset Field (OSF): This field carries the binary value of the offset, measured in

number of bytes, of the first start of a CPS-Packet or, in the absence of a start of a

CPS-Packet, to the beginning of the PAD field. A value of 47 indicates that the

packet has overlapped up to the next cell.

• Sequence Number (SN): This 1-bit field is a modulo 2 sequence number of the stream

of CPS-PDUs Parity (P) To detect errors in the STF, a 1 bit odd parity is set as the

last bit of the STF.

Figure 3.3 AAL2 CPS PDU Format

27

Figure 3.4 Translating CPS SDUs to ATM SDUs

3.4.7 AAL2 CPS Procedure

The CPS consists of distinct state machines for transmission and reception that function

independent of each other. The transmission state machine multiplexes the various

channels into as few ATM SDUs as possible, while still maintaining the time

requirements of the CBR traffic, while the reception state machine demultiplex channels

that can be spread over multiple ATM SDUs. The detailed explanation of the two state

machines can be found in [10].

3.4.8 AAL2 Negotiation Protocol (ANP)

The ATM signaling protocol as defined in UNI 3.1 does not cater for setting up and

tearing down individual channels across a switched network. Further, each channel is an

entity by itself, requiring a complete negotiation process like the setup of SVCs over a

switched network. Hence, a separate negotiation protocol is required that can manage

channels on individual VCs. The AAL2 Negotiation Procedures was defined as an annex

to the ITU-T I.363.2 recommendation for dynamic allocation of AAL2 channels.

An implementation of the ANP is described in [10]. The ANP was implemented in the

form of a daemon that runs on the end systems. The setting up and deleting of individual

28

channels is transparent to the switched virtual network. Since no signaling support is

available on any of the component systems, channel setup must work within the

framework of the existing protocol. Some rudimentary form of bandwidth negotiation is

supported so that, channels can be guaranteed the bit rate they started out with. The ANP

restricts additional channels until it can allocate the requested bandwidth. The ANP does

not allocate channel numbers itself, instead well known channel numbers are requested

by the users on both sides, and arriving connections are accepted by the ANP if a process

is listening on that channel number.

The following points outline the functionality of the ANP:

• Channel Setup: Each time a process wants to setup a new channel, the ANP daemon

is contacted. It is provided a channel number by the process. It then contacts its peer

on the called party, and negotiates the channel setup.

• Bandwidth Negotiation: The ANP daemon also watches upon the allocated bandwidth

on the end system. The total bandwidth allocated cannot exceed the practical limit of

the link rate or the PCR for the VC.

• Data Transfer: The ANP provides a transparent path for the data transfer on a

channel.

• Channel Release: When the party at either end wishes to release the connection, the

ANP at that end signifies it’s peer of an end of transmission so that both ends can

release the resources dedicated to the channel.

3.5 Real-time Transport Protocol - RTP

RTP is the Internet-standard protocol for the transport of real-time data, including audio

and video. It has been designed within the Internet Engineering Task Force (IETF) [1]. It

can be used for media-on-demand as well as interactive services such as Internet

29

Telephony. RTP consists of a data and a control part. The latter is called RTCP. If RTP

packets are carried in UDP datagrams, data and control packets use two consecutive

ports, with the data port always being the lower one. If other protocols serve underneath

RTP (e.g. RTP directly over ATM AAL5), other schemes have to be used.

While UDP/IP is its initial target networking environment, efforts have been made to

make RTP transport-independent so that it could be used, say, over CLNP, IPX or other

protocols. RTP is currently also in experimental use directly over AAL5/ATM.

RTP does not address the issue of resource reservation or quality of service control;

instead, it relies on resource reservation protocols such as RSVP.

V=2 P X Source Dest inat ion

Length Checksum

Bit 0 15 16 31

UDP

version IHL Type of service Total Length

Identification flags Fragment offset

Time to live Protocol Header checksum

Source Address

Destination Address

Bit 0 15 16 31

IP

PT Sequence number

Timestamp

synchronization source (SSRC) ident ifier

contributing source (CSRC) ident ifiers
(1-15 items)

Bit 0 15 16 31

RTP

CC M

Figure 3.5 Header Structures: RTP, UDP, IP

3.5.1 RTP Data Packets

The data part of RTP is a thin protocol providing support for applications with real-time

properties such as continuous media (e.g., audio and video), including timing

reconstruction, loss detection, security and content identification.

30

The RTP header format is shown in Figure 3.5. RTP data packets consist of a 12-byte

header followed by the payload e.g. a video frame or a sequence of audio samples. The

payload may be wrapped again into an encoding-specific layer. The header contains the

following information:

• Payload type: A one-byte payload type identifies the kind of payload contained in the

packets, e.g. JPEG video or GSM audio.

• Timestamp: A 32-bit timestamp describes the generation instant of the data contained

in the packet. The timestamp frequency depends on the payload type.

• Sequence number: A 16-bit packet number allows loss detection and sequence within

a series of packets with the same timestamp.

• Marker bit: The interpretation of a marker bit depends on the payload type. For video,

it marks the end of a frame, for audio, it marks the beginning of a talkspurt.

• Synchronization source (SSRC) identifier: A randomly generated 32-bit scalar that

uniquely identifies the source within a session.

Some additional bit fields are not described here for brevity.

3.5.2 RTP Control Functionality

RTP offers a control protocol called RTCP that supports the protocol functionality. An

RTCP message consists of a number of stackable packets, each with its own type code

and length indication. Their format is fairly similar to data packets, the type indication in

particular, is at the same location. RTCP packets are multicast periodically to the same

multicast group as data packets. Thus, they also serve as a liveness indicator of session

members, even in the absence of transmitting media data. RTCP is scalable and provides

31

support for real-time conferencing of groups of any size. RTCP provides the following

functionality:

• QoS monitoring and congestion control

• Inter-media synchronization

• Identification

• Session size estimation and scaling

3.5.3 RTP Header Compression

Protocol header compression has been an active research area for the past couple of years

especially after the maturity of the protocols and standards that drive audio and video

streaming over the Internet. Besides IP and UDP, researchers have also investigated RTP

header compression. Jacobson and Casner [11] proposed an approach for compressing

RTP, UDP, and IP headers to be used over low-speed serial connections to the Internet.

This approach seems ideally suited to better bandwidth utilization of the media streams

since the protocol overhead is significantly reduced. A few companies are currently

working on the deployment of this approach inside the network interface infrastructure in

order to improve multimedia conferencing over the Internet for terminals connected via

low speed links.

3.6 Robust Audio Tool – RAT

RAT is a network audio tool that allows users to participate in audio conferences over the

Internet. These can be between two participants directly, or between a group of

participants on a common multicast group. No special features are required to use RAT in

point-to-point mode, but to use the multicast conferencing facilities of RAT, a connection

to the Mbone, or a similar multicast capable network, is required. RAT is based on IETF

standards, using RTP [1] above UDP/IP as its transport protocol, and conforming to the

RTP profile for audio and video conference with minimal control. In addition to the

32

features provided by other Mbone audio conferencing tools, such as vat, RAT offers the

following additional functionality:

• Sender based repair of damaged audio streams

• FEC in the form of redundant packet transmission

• Support for interleaved audio

• Received based repair of damaged audio streams

• Adaptive scheduling protection

• Secure conferencing

• Improved statistics and diagnostic features

• Conference coordination bus

• Transcoder operation

It is supported on a range of platforms: FreeBSD, HP-UX, IRIX, Linux, Solaris, SunOS,

and Windows 95/NT. The source code is publicly available for porting to other platforms

and for modification by others.

33

Chapter 4

Design and Implementation

This chapter explains the important features of the proposed framework. The first section

describes the implementation architecture and explains some of the design choices. The

next section touches upon the salient points in the actual implementation.

4.1 Design

The following important issues are involved in the design of the proposed framework.

• Signaling required for setting up the voice flows

• Establishment of SVCs/AAL2 channels

• Data path for the transport of voice packets

• Header compression and

• Effect of the choice of coding used on transport efficiency

4.1.1 Architecture

 ATM
 access
 network

 Destn.Non-ATM
IP network

IP-ATM
(AAL2)
Gateway

 Source Non-ATM
IP network

IP-ATM
(AAL2)
Gateway

Figure 4.1 Reference Configuration – RTP over AAL2 framework

Figure 4.1 represents the reference configuration for the proposed framework. The

framework exists on gateways on the periphery of an ATM access network. Voice flows,

encapsulated in RTP headers, arrive at the gateways from an IP based network. These

34

flows are then sent through the ATM link in separate AAL2 channels, multiplexed over a

single ATM SVC, after removing the IP/UDP headers and compressing the RTP header.

At the other end, the IP packets are formed again using a table lookup and sent over the

IP network to their destination.

The two main issues in the proposed architecture are:

• Signaling for channel setup and mapping

• Data path for the media streams

4.1.2 End-to-End Signaling

Signaling has been used for most voice applications since the early circuit based

telephony systems, to set up the connection and a channel for voice flows, as well as to

provide the necessary QoS resources along the path. This signaling extends to the packet

telephony systems to establish paths between the different media gateways. ATM is a

connection-oriented technology where signaling is used to establish virtual connections

before any data flow is sent. Even though IP is based on a connectionless paradigm, the

requirements for transporting voice have led to the development and usage of

telephony/multimedia signaling protocols such as H.323 and SIP.

4.1.2.1 Signaling issues and requirements

H.323 as explained before, is a comprehensive suite of protocols for multimedia

communications over packet networks. The use of H.323 over IP-ATM internetworks is

being standardized by the ATM Forum (RMoA), which has proposed approaches for

signaling through ATM networks, use of AAL5 SVCs between the two ATM gateways

for efficient bandwidth utilization and QoS, and transport of compressed RTP streams

over AAL5.

The RMoA approach proposes termination of the media streams on the gateways, along

with the control streams. With media termination, the RTP packets are directed to local

35

interfaces on the gateways to simplify forwarding over the SVCs, for example by

preventing the gateways from having to inspect all IP traffic crossing them.

The problem with this approach is the edge box now has to do some application level

processing instead of being a pure layer 3/2 device. One option is to stay at layer 3, and

establish VCs based on mechanisms such as RSVP or DiffServ.

 Using H.323 for signaling implies an explicit association between the SVC setup and the

"call/connection" at the H.225.0/H.245 level, which is not always necessary. It would be

required for an end to end ATM case.

But for a network that has IP on the periphery, with an ATM cloud in the middle, other

protocols and technologies could be used for signaling. When the signaling (RSVP for

example) hits the ATM cloud, it causes a SVC to be set up. Incoming RTP packets are

sent through this SVC, possibly after compression, and then completely reproduced, with

all headers at the far end. They are then carried over normal IP to the destination. The

existence of the SVC is completely transparent to the end users.

The advantage of using RSVP or DiffServ as a trigger for SVC establishment is that it is

application independent. By making the setup and QoS mechanism H.323 specific, the

scope of the service that can be provided is narrowed, the edge box is made more

complex, and in general the end to end model is broken.

The H.245 method has the advantage of being very precise on what type of connection

will be required at the SVC level. But it does have the disadvantage that the gateway has

to maintain a substantial amount of software (the H.323 stack). As such, it would be a

relatively complex device.

The emphasis in the current work is on the framework for transporting voice packets

efficiently. Any appropriate signaling protocol can be used for end-to-end path

establishment. With minor modifications, all these mechanisms can be made to interwork

36

with the current framework. The major functionality lies in the gateway modules, which

do the actual SVC/channel setup and establish the necessary mappings. These modules

just need a mechanism to communicate with hosts to receive requests and send responses,

and with their peer gateways.

For the current framework, a simple end-to-end signaling protocol has been designed that

is used to determine the parameters of the voice flow by the two sides. Some necessary

parameters are destination port, packet length, and payload type (coding technique used).

The messages also include the source and destination IP addresses. This model has been

roughly adapted from the H.323 signaling model. However, the framework for data flow

is not restricted to H.323 media only.

This signaling is used to set up the appropriate SVC/channels between the 2 gateways

and to map the SVCs to the appropriate voice channels. This is done prior to the arrival of

the actual media stream. An alternative to this is detecting a voice flow based on the

source/destination address and port numbers and then setting up the SVC/channel and

mapping. However, there is a certain delay in this process and packets have to be queued

until the setup is completed. Also, the SVC and channel setup involves signaling which

can be combined and integrated with any call signaling taking place between the end

points.

The signaling architecture for the AAL2-RTP framework is as shown in Figure 4.2.

37

AAL2
GW

AAL2
GW

Mapping Table Mapping Table

host host

TCP/IP TCP/IP

Signaling - TCP/IP

Ingress Egress

Linux-ATM Linux-ATMLinux-AAL2 Linux-AAL2Switched
ATM network

Signaling Architecture

ATMSIGDANPD ATMSIGD ANPD

Figure 4.2 Signaling Architecture

The source endpoint initiates signaling to establish a voice channel to the destination.

Signaling here takes place in the following steps.

1. The source initiates a connection to the gateway nearest it, on the path to the

destination. This gateway, called the ingress gateway, is the entry point into the ATM

network. When the connection is established, the source sends the flow request

parameters to the gateway. The signaling module on the gateway then determines the

identity and address of its peer gateway for that particular destination and forwards

the request to it. This process continues at the peer gateway, which in this case is the

gateway at the other edge of the ATM network. The ATM network may either be one

link or may pass through multiple ATM switches. The two gateways form the two

ends of the network.

2. The peer ATM gateway, called the egress gateway, then establishes a connection with

the destination host and passes the flow request to it. The destination responds with

38

the accepted parameters and also provides the destination port to which the source

should direct the flow. The egress gateway returns this reply to its peer, along with its

own ATM NSAP address. It also initiates a passive open for a channel through the

ATM network from its peer.

3. The ingress gateway checks to see if an ATM SVC is already open to the other end. If

so, it checks to see if there is enough bandwidth on that VC to satisfy this request. If

there is not, then an ATM VC is opened by signaling. Once a VC has been

established or if there is enough bandwidth available on an existing VC, the gateway

initiates the opening of an AAL2 channel on this VC.

4. If an AAL2 channel for the flow is successfully set up, then the ingress gateway sends

a message confirming the setup to the source that requested the flow along with the

agreed parameters; else it returns a negative message to the source. The two gateways

also add the flow parameters to the mapping table maintained in the kernel.

It is assumed that the egress gateway is determined by the signaling approach used, either

using some IP gateway location protocol, through H.323 mechanisms or by RSVP means.

Both the IP address and the equivalent ATM NSAP address of the peer gateway are thus

known.

4.1.2.2 SVC/Channel setup and teardown

The setup and teardown of AAL2 channels is carried out by the AAL2 Negotiation

Procedures daemon (anpd). The gateway module requests the anpd to open up a channel,

passing the destination ATM NSAP address and channel negotiation parameters to it. The

anpd sets up a channel transparently through the switched ATM network by

communicating with its peer.

When a signaling request for a new flow arrives at the ingress, it checks if a SVC for the

egress already exists. If it does not, then a new SVC is setup as explained above. If it

finds an entry for the gateway, it checks if enough bandwidth is available on the SVC and

39

opens another channel for this flow. The gateway module then adds an entry into the

mapping table.

Signaling is also used for terminating a connection. At the ATM gateways, the

termination messages are used for tearing down the channel and deleting the

corresponding entry in the mapping table. Appropriate AAL2 techniques are used for

channel setup, teardown and maintenance.

4.1.3 Data path for voice streams

The voice streams pass through the framework from the IP layer and are handed off to the

AAL2 layer after lookup, header compression and re-packetization.

4.1.3.1 Mechanisms for transport over ATM

The usual way of transporting IP packets through an ATM network is using IP over ATM

technologies like CLIP [21] or LANE [22]. Though this approach works fine for variable

size data packets, it is sub-optimal when used to transport voice packets which are

usually very small. It is highly bandwidth inefficient because of the significant overhead

introduced by using RTP (at least 12 octets), UDP (8 octets) and IP (at least 20 octets).

The multiprotocol encapsulation header for CLIP (RFC 1483) adds another 8 octets.

LANE also adds a header with its own overhead. It also does not utilize the inherent

Quality of Service capabilities of ATM.

To reduce protocol overhead and to increase the bandwidth utilization/efficiency while

providing the voice stream with necessary QoS, an RTP over ATM approach has been

suggested in H.323/Annex C. It gets rid of the UDP/IP overhead by using AAL5 directly

to transport media streams on RTP. However, it is still quite bandwidth inefficient for

voice sessions because of the significant overhead of the RTP protocol. Also, it is

intended for use only in an end-to-end ATM network.

40

The signaling architecture defined by the ATM Forum terminates the UDP/IP protocols

on the media gateways, removing the need to transport these headers end-to-end. Both

gateways maintain a mapping of RTP flows to the ATM SVC and also the necessary

transport address information for re-creating the packet at the destination end of the ATM

network. Since the UDP/IP headers are not sent over the ATM SVC, only RTP header

compression has to be used. This results in a greater efficiency as compared to the earlier

cases. However, this approach too has a few shortcomings, which are touched upon in

some of the following sections.

AAL2 provides inherent multiplexing capabilities within an ATM SVC, which make it

simpler to use multiplexing mechanisms between 2 gateways/access routers and also

increase the bandwidth efficiency as compared to the compressed RTP over ATM

approach. It also benefits more than AAL5 from RTP header compression as shown later.

4.1.3.2 Flow identification

As mentioned above, the media stream from the source is terminated on the ATM

gateway. Hence the voice packets have to go up to the application level and then back

down the protocol stack in the two gateways. This results in a lot of processing overhead

in the protocol layers. In addition, this approach assumes the existence of a media

gateway with application level signaling such as H.323 and was originally intended for an

ATM backbone network.

However, the framework proposed here can be used with any signaling method and need

not always go through a media gateway. Also, its usage is much more oriented towards

low-speed access networks. It would also be much more beneficial if this application

level processing was avoided.

The alternative is to identify flows at the network layer in the kernel protocol stack.

Typically, this is done by some combination of source IP address and port number,

destination IP address and port number, and protocol type.

41

For RTP and VoIP traffic classification, vendors use a fixed range of UDP port numbers.

For example, Cisco uses UDP port numbers from 16384 to 32767 for RTP flows. In

addition, classification is increasingly being done in hardware after which, the packets are

sent to the appropriate module via an internal bus; hence this is a very fast operation.

The other option to identify RTP flows here is to assign a separate protocol ID for it at

the link layer, so that such packets can be directly handed off to the framework. But this

has not been done, as it would require modifications to the protocol stack at all

transmitting and receiving hosts to set the protocol ID. Hence the source and destination

addresses and port numbers are used to identify flows.

4.1.3.3 Mapping RTP flows to AAL2 channels

Mapping tables are maintained at both the ingress and egress gateways. They contain

information to identify a flow when packets arrive and to send them over the appropriate

AAL2 channel. Since, the packets are transferred from the IP to the ATM network and

back again directly in the kernel, each packet has the entire IP/UDP header overhead.

Since the headers are not required for transport over ATM, they are stripped off. Their

presence, in fact, increases the packet size beyond the range of AAL2 CPS packet sizes.

The headers are required, however, on the other end for transport over the IP network.

Hence, when the first packet in a flow arrives, the IP/UDP headers are stored in the

mapping table on both sides. For the remaining packets, the headers are not sent. Instead,

the complete packets are generated at the other end using the stored headers and some

additional information sent with the data.

4.1.4 RTP Header Compression

The RTP header is not stored in the mapping table. Instead it is sent along with each

packet. This is because the RTP header contains the sequence number and timestamp,

which change from packet to packet. These are important for the receiver to maintain

42

synchronization with the sender. Hence even after removing the IP and UDP headers,

there is still an overhead of 12 bytes per voice packet due to the RTP header.

RTP header compression plays an important role in reducing this overhead. The RTP

header compression technique described in [11] has been partially implemented here,

with modifications to suit it to AAL2.

The big gain in this compression comes from the observation that, although several

header fields change in every packet, the difference from packet to packet is often

constant and therefore the second order difference is zero. By maintaining both the

uncompressed header and the first order differences in the session state shared between

the compressor and the decompressor, all that must be communicated is an indication that

the second order difference was zero. In that case, the decompressor can reconstruct the

original header without any loss of information simply by adding the first order

differences to the saved uncompressed header as each compressed packet is received.

In the RTP header, the SSRC identifier is constant in a given context since it is part of

what identifies a particular context. For most packets, only the sequence number and the

timestamp will change from packet to packet. If packets are not lost, the sequence

number will increment by one for each packet. For audio packets of constant duration, the

timestamp will increment by the number of sample periods conveyed in each packet. The

first order differences of these fields is transmitted to the decompressor along-with the

SSRC identifier.

Note that in each of these cases the second-order difference of the sequence number and

timestamp fields is zero. So the next packet header can be constructed from the previous

packet header by adding the first-order differences for these fields that are stored in the

session context along with the previous uncompressed header. When the second-order

difference is not zero, the magnitude of the change is usually much smaller than the full

number of bits in the field, so the size can be reduced by encoding the new first-order

difference and transmitting it rather than the absolute value.

43

The M bit will be set on the first packet of an audio talkspurt. If it were treated as a

constant field such that each change required sending the full RTP header, this would

reduce the compression significantly. Therefore, one bit in the compressed header will

carry the M bit explicitly.

If the audio packets are flowing through an RTP mixer, then the CSRC list and CC count

will also change. Changes to the CSRC list and CC count need to be communicated

explicitly, hence 1st order differences need not be maintained. In cases where RTP

mixing is not used, these fields will not have any effect on the compression.

4.1.4.1 The compression protocol

The RTP header compression protocol consists of two finite state-machines, one for the

transmitter side shown in Figure 4.3 and the other for the receiver side shown in Figure

4.4. One instance of each state-machine will exist for each channel on both sides on the

link.

Figure 4.3 RTP Header Compression: Transmitter

44

Figure 4.4 RTP Header Compression: Receiver

The compression protocol must maintain a collection of shared information in a

consistent state between the compressor and decompressor. There is a separate context

for each RTP packet stream as defined by the RTP SSRC field.

The context information for a flow consists of the previous RTP header, the first order

difference of the Timestamp field and the link sequence number (C/D). The 4-bit link

sequence number is used to detect packet loss between the compressor and decompressor.

Each context has its own separate sequence number space.

RTP Header

First order difference for the RTP time stamp field

Link Sequence number value

 Figure 4.5 RTP Compression Call Context

In order to communicate packets in the various uncompressed and compressed forms, this

protocol introduces four new packet formats. As with the IETF and ATM Forum

45

approaches, the RTP-only compression relies on the link layer (AAL2, here) being able

to provide an indication of the different packet formats.

1. RTP_FULL_HEADER - communicates the uncompressed RTP header and data to

establish the uncompressed header state in the decompressor for a particular context.

2. RTP_DELTA_HEADER - communicates the new 1st order differences for the RTP

header fields indicated since they incurred a non-zero 2nd order difference. The

header for this type of packet contains a 4-bit flag field to indicate which fields in the

RTP header changed, followed by the respective new 1st order differences. This 4-bit

flag field is named the MSTC sequence.

 The M bit carries the original M bit of the RTP header. The S and the T bits signal

the new 1st order differences for the sequence number and the time stamp,

respectively. The C bit indicates changes to the RTP CSRC list. Note that the RTP

sequence number is expected to always increase by one and therefore if the S bit is

set, the decompressor uses the new delta only once.

3. RTP_COMPRESSED_HEADER - indicates that the RTP header has been fully

compressed, i.e., all changing fields have actually had a 2nd order difference of zero.

The use of a packet type to indicate a fully compressed packet is intended to improve

the performance of the common case; it is expected that null 2nd order differences

will be frequent.

4. RTP_CONTEXT_STATE - is a special packet sent from the de-compressor to the

compressor indicating that the context associated with the SVC may have been

invalidated. The compressor is expected to send the next packet as a

RTP_FULL_HEADER packet.

46

4.1.4.2 RTP header compression transport on AAL2

 ATM SVC/
 AAL2 channel

Header Compressor/De-compressor

IP Network

C
/D A

A
L

2

C
/DA

A
L

2

RTP

UDP

IP End System

IP Network

IP End System

RTP

UDP

R
T

P

R
T

P

U
D

P

U
D

P
Figure 4.6 RTP Header Compression on AAL2

In the case of ATM, because every channel is uniquely identified by the combination of

VPI/VCI and the AAL2 CID, it is not necessary to maintain a separate context id for each

flow.

The AAL2 CPS header has a 5-bit UUI field that is used to carry SSCS information

between 2 AAL2 peer entities. The SSCS field can also be null. Since, this field is not

being used by SSCS entities in the current setup, it can be used to provide information

about the RTP packet type contained in that CPS packet. The 3 LSB bits of the UUI field

are used to provide the information.

The different packet types are:

Packet Type UUI field bits: 4 3 2 1 0

RTP_FULL_HEADER 1 0 0

RTP_CONTEXT_STATE 0 1 1

RTP_DELTA_HEADER 0 1 0

RTP_COMPRESSED_HEADER 0 0 1

NORMAL AAL2 0 0 0

The AAL2 CPS-PDU contains the RTP header extension, if any, and the RTP payload.

47

One byte (the first) in the CPS PDU is used to convey information about the fields that

changed and also the link sequence number. The MS four bits are used to indicate

changes in the M, S, T and C fields and the LS four bits are used to carry the link

sequence number. The link sequence number should increment by 1 for each consecutive

packet.

The other fields of the RTP header (version, P bit, X bit, payload type and SSRC

identifier) are assumed to remain relatively constant. In particular, the SSRC identifier is

defined to be constant for a given context because it is one of the factors selecting the

context. If any of the other fields change, the uncompressed RTP header will be sent.

4.1.4.3 Error Recovery

Whenever the 4-bit sequence number for a particular context increments by other than 1,

the decompressor invalidates that context and sends a CONTEXT STATE packet back to

the compressor indicating that the context has been invalidated. All packets for the

invalid context are discarded until a FULL HEADER packet is received for that context

to re-establish consistent state. If multiple compressed packets arrive in the interim, the

decompressor does not retransmit the CONTEXT STATE packet for every compressed

packet received.

4.1.4.4 Compression of RTCP Control Packets

RTP convention dictates that data is carried on lower port number and the corresponding

RTCP packets are carried on the next higher port. For RTCP, the compression could

apply, but would involve maintaining more state. The RTP protocol suggests that the

RTCP packet interval be scaled so that the aggregate RTCP bandwidth used by all

participants in a session will not be more than 5% of the session bandwidth. Hence there

is not much to be gained from RTCP compression. The current work does not perform

RTCP compression.

48

4.1.5 IP/UDP headers

By not sending IP and UDP headers over the AAL2 channels, a lot of protocol overhead

is eliminated. However, there are some changing fields in both these headers that have to

be considered.

In the IPv4 header, only the total length, packet ID, and header checksum fields will

normally change. The total length is redundant, as the AAL2 layer provides it. The packet

ID is used for handling fragmentation, which would not occur for the small size voice

packets under consideration. If the source sending the voice packets does not insert a new

ID for every packet, then the packet ID can be ignored. Usually, the packet ID increments

by one or a small number for each packet. To maintain lossless compression and also to

avoid checksum errors at the other gateway, the changes in the packet ID are transmitted.

The checksum is not transmitted. Instead it is calculated at the other end, after the IP

packet has been re-created.

In the UDP header, the length field is redundant due to reasons given above. The UDP

checksum field will be a constant zero if the source elects not to generate UDP

checksums. Otherwise, the checksum must be communicated intact in order to preserve

the lossless compression and to maintain end-to-end error detection capabilities.

Since a source will typically include checksums on all packets of a session or none of

them, its presence is determined at the start of the flow and then included in all

subsequent packets, if necessary.

4.1.6 Codecs and packet sizes

Audio codecs normally considered for voice transport over IP are G.711 (PCM), G.722

(SB-ADPCM), G.723.1 (MP-MLQ/ACELP), G.728 (LD-CELP), and G.729 (CS-

ACELP). Maximum packet sizes are to be chosen for these audio codecs. The important

49

implications of this choice are transport efficiency, end-to-end delay and possible voice

quality degradation caused by packet losses.

The focus here is on transporting RTP voice packets efficiently over ATM using RTP

header compression, hence greater emphasis is provided on the impact of maximum

packet sizes on transport efficiency.

Since H.323 is the prevalent standard for IP voice transport, the guidelines provided by

the ATM Forum are used here while considering the capabilities of AAL2.

The default packetization interval for the voice traffic is 20 ms for any voice codec,

unless the codec itself cannot accommodate this value (e.g., for G.723.1 which has a

voice frame size of 30 ms by definition). This means that the default voice packet size (in

octets) varies for every voice codec. However, this size can be negotiated during

signaling.

The packet overhead decreases as the number of frames per packet increases. Intuitively,

high bit-rate audio has slightly less overhead when compared to low bit-rate packets. As

the number of audio frames per packet increases, the packet overhead decreases. The

overhead decrease is explained by more information bytes (audio frames) being included

in a packet with a fixed header.

The latency increases as the number of frames per packet increases. This is expected

since more audio frames require more time to be captured and buffered. Hence, a tradeoff

exists between packet overhead and local latency for audio packet transfer.

A variety of frame sizes and packet sizes can be negotiated and chosen for the different

codecs in use. However, as mentioned above, there is a tradeoff between protocol

overhead and delay in packetization.

50

4.1.6.1 A Comparative Analysis of AAL5 and AAL2 for different codecs

The table below shows the different packet sizes for various codecs supported by H.323

for their default packetization interval [4].

Encoding G.711 G.722 G.723.1 G.728 G.729

PCM SB-ADPCM MP-MLQ/ACELP LD-CELP CS-ACELP

Rate (kbit/s)
64 64 6.3 5.3 16 8

Frame size (ms)
1 1 30 30 2.5 10

Frame size (octet)
8 8 24 20 5 10

Default packet size (ms)
20 20 30 30 20 20

Default Frames per packet
20 20 1 1 8 2

Default payload size (octet)
160 160 24 20 40 20

Table 4.1 Default voice packet sizes for standard codecs

The high bit rate codecs generate packets which are larger than the packet sizes supported

by AAL2 (default maximum SDU size is 45 bytes; if greater, only 64 bytes is allowed)

Hence only the low bit rate codecs are considered for the comparison.

Consider the G.723.1 encoder, the preferred low bit rate codec for H.323 transport.

The G.723.1 encoder provides one frame of audio every 30 milliseconds. The audio

frame size is 20 bytes for the low rate (5.3 kb/s) and 24 bytes for the high rate (6.4 kb/s).

A fixed number of frames are sent per audio packet, the default for G.723.1 being 1.

Increasing the number of frames per packet improves bandwidth utilization and reduces

network packet overhead. However it also introduces added delay for playback.

Each codec packet is then appended to an RTP header, incurring a minimum of 12 octets

of overhead. Over an ATM network, if direct AAL5 is used, at least another 8 octets of

overhead are added due to the AAL5 trailer. The AAL5 payload can be further padded

51

with unused octets to make the AAL5 frame an integral multiple of 48 bytes for

segmentation into ATM cells.

Naturally, normal IP over ATM (CLIP) transport incurs more protocol overhead due to

the presence of the IP and UDP headers.

The table below presents a comparison between AAL5 and AAL2 for the resulting bit

rates when the default packet sizes shown above are used with and without RTP header

compression.

Encoding - G.723.1
 (5.3 kbps)

No RTP Header
Compression

RTP Header
Compression

AAL5 AAL2 AAL5 AAL2

Default packet size (ms)
30 30 30 30

Default packet size (octet)
20 20 20 20

RTP header bytes 12 12 0 1

AAL overhead (octet) *
8 3 8 3

Total bytes required 40 35 28 24

Cells (Bytes required)
1 (53) 1 (40) 1 (53) 1 (29)

Unused bytes 8 0 20 0

Packets/sec 33.33 33.33 33.33 33.33

Bandwidth required(kbps) 14.131 10.665 14.131 7.733

* AAL5 Trailer/ AAL2 CPS Header

Table 4.2 Bandwidth Requirements for G.723.1 codec – AAL5/AAL2

It should be noted that the values given above are for the ideal case assuming that no

padding results for AAL2. The actual bandwidth used may be more depending on the

efficiency of AAL2 multiplexing and the number of flows present. The 1-byte STF field

for AAL2 has also not been considered here because the overhead caused by it is divided

among the different packets that make up the cell.

52

Also, the minimum RTP overhead is considered here. But still the table serves to show

the inherent efficiency in AAL2 for transporting small size packets. It also indicates that

even though the same RTP header compression can be used for AAL5 as well, it is not as

effective as it is for AAL2.

Similar comparisons for the other low bit rate codecs are given in the tables below.

Encoding G.723.1

(6.3 kbps)
G.728 G.729

RTP Header

Compression
No Yes No Yes No Yes

Default packet size (ms) 30 30 20 20 20 20

Default packet size (octet) 24 24 40 40 20 20

RTP header bytes 12 0 12 0 12 0

AAL5 overhead (octet) 8 8 8 8 8 8

Total bytes 44 32 60 48 40 28

Cells (Bytes required) 1 (53) 1 (53) 2 (106) 1 (53) 1 (53) 1 (53)

Unused bytes 4 16 36 0 8 20

Packets/sec 33.33 33.33 100 50 50 50

Bandwidth required(kbps) 14.131 14.131 42.40 21.20 21.20 21.20

Table 4.3 Bandwidth Requirements for AAL5 with/without RTP Header Compression

It is only for the G.728 codec that RTP header compression results in a bandwidth

reduction for AAL5. Further, even for this case, the DELTA_RTP packets would require

the same number of cells as FULL_HEADER packets.

53

Encoding G.723.1
 (6.3 kbps)

 G.728 G.729

RTP Header
Compression

No Yes No Yes No Yes

Default packet size (ms) 30 30 20 20 20 20

Default packet size (octet) 24 24 40 40 20 20

RTP header bytes 12 1 12 1 12 1

AAL2 overhead (octet) 3 3 3 3 3 3

Total bytes required 39 28 55 44 35 24

Cells (Bytes required) 1 (39) 1 (28) 2 (55) 1 (44) 1 (35) 1 (24)

Unused bytes 0 0 0 0 0 0

Packets/sec 33.33 33.33 50 50 50 50

Bandwidth required(kbps) 10.398 7.466 22.00 17.6 14.0 9.6

Table 4.4 Bandwidth Requirements for AAL2 with/without RTP Header Compression

In the table for AAL2, the G.728 codec payload is greater than the default maximum

SDU size in the absence of compression. So, its inclusion may not be wholly appropriate

but is shown only for comparison.

As can be seen, the default sizes may not be suitable for transport over ATM, especially

AAL5 because of a fixed small cell size. If AAL5 is used as the adaptation layer over

ATM, it is seen from the table that only G.728 codec can be used with the default values.

The other codecs need some changes to be done to the default frame size or the number

of frames per packet to reduce the protocol overhead even in the absence of RTP.

If the packet size is too small, then the remaining part of the cell is wasted in padding. If

it exceeds a cell size, then the packet spills over into two cells and again the second cell is

padded (up to a maximum of 47 bytes).

54

But changing the default values in order to better match the protocol overhead

characteristics of ATM may lead to increased latency at the host to fill up the packet.

If AAL2 is used instead, it can be seen from the table that the default packet sizes for

most codecs fall within the one cell size limit (except G.728). Because of the

multiplexing capabilities of AAL2, more than one packet can be sent in the same cell

with possible overlap between cells. Hence even with the default values specified, AAL2

will provide lesser protocol overhead and hence better bandwidth utilization while

maintaining the original delay characteristics of the codec at the source.

One important issue here is the effect of the AAL2 timer_CU, which introduces

additional delay in the network. Studies [16] have shown that the optimum value for the

timer is 1-2 ms. Previous tests have shown that the average delay in the AAL2 transmitter

is also in the range of 1-2 ms. This value is within acceptable limits. Hence, it is

advantageous to use AAL2 in the described context.

With the introduction of RTP, additional 12 bytes of header are added to the calculations.

However, it must be noted that, with RTP header compression, most of the voice packets

will have headers fully compressed, i.e., no RTP header is sent. Hence the above

observations hold good in this case too.

4.2 Implementation

This section describes the implementation details of the AAL2-RTP framework. The first

subsection explains in brief some of the modifications carried out for providing real-time

capabilities to the ATM Adaptation Layer 2 (AAL2) support in the Linux kernel. The

next subsection describes the RTP over AAL2 framework in detail.

55

4.2.1 Real-Time Modifications to AAL2

4.2.1.1 Temporal Modifications

A timer, timer_CU, is associated with every AAL2 VC. On expiry of this timer, an

unfilled cell is transmitted with padding, instead of waiting for more CPS packets to

arrive, thus limiting the experienced delay for existing packets in the cell. The optimum

values for this timer are in the range of 1-2 ms.

In the Linux-ATM protocol stack, the struct atm_vcc data structure consists of all the

elements and data pointers needed to set up, maintain and modify an ATM virtual

connection. A number of additional elements have been added to this structure to support

AAL2, one of which is the struct timer_list..

If any subsystem of the Linux kernel needs asynchronous notification, it creates a timer

and adds it to a list maintained by the kernel. The structure of a timer list is given below.

struct timer_list {

 struct timer_list *next;

struct timer_list *prev;

unsigned long expires;

unsigned long data;

void (*function)(unsigned long);

}

Each timer has an expires field and a function field. The expires field specifies when the

asynchronous notification represented by the timer is to happen and the function field

specifies the function that should be called when the timer expires. Each timer also has a

data value that is passed to the function when it is called. The timers are kept in a doubly

linked list sorted in ascending order of time. Functions are provided to add and delete

timers from this list.

56

UTIME [12], developed here at ITTC, improves the temporal resolution of the Linux

kernel. The standard Linux timing mechanism provides scheduling resolution on the

order of 10 milliseconds, called a jiffy. This resolution is not suitable for real-time

applications like voice. UTIME modifies Linux to provide a microsecond-resolution time

sense, without significantly increasing the overhead of the software clock. Hence it

increases the utility of Linux for soft real-time applications.

With UTIME, an additional member usec is added to the timer structure. This member

specifies the microsecond within the jiffy at which the timer will expire. Also, a global

variable, jiffies_u is used to maintain the microsecond within the current jiffy.

These variables were used as given below, their usage determined by experimentation.

struct atm_vcc {

 :

 :

 struct timer_list timer_cu;

 :

};

/* Initialize timer values */

 vcc->timer_cu.expires = jiffies;

 vcc->timer_cu.usec = jiffies_u + 2000; /* 2 msec */

/* Add timer to the list */

 add_timer(&vcc->timer_cu);

4.2.1.2 Additional Modifications

With enhanced timer resolution, synchronization problems arose with the original

transmitter algorithm implementation. Because the timer was an asynchronous event, it

expired at arbitrary points in the transmitter code, leading to certain critical variables and

states being set to incorrect values. Hence, cells were filled erroneously at the transmitter.

This led to improper operation at the transmitter as well as at the receiver, where packets

were dropped erroneously.

57

The transmitter state machine implementation was modified for it to function without

errors and synchronization problems. In addition, semaphores were used for some critical

execution sequences.

4.2.1.3 Receiver Modifications

In the AAL2 receiver, the flow of data to the various channels is controlled through the

signaling channel, which receives the cells arriving on that VC, and de-multiplexes them

to retrieve individual packets. It then assigns the packets to the appropriate channels. In

the original implementation, this took place under the control of the anpd through a user

level read operation. The read, performed by the anpd every time a cell was received on

its VC, would initiate the receiver operation, where channel de-multiplexing was done on

the arrived cell. The individual channels receiving packets were then signaled to receive

the packet. Each channel, controlled by a user level read, would strip off the CPS header

and read the actual voice data. Packets meant for the anpd would be read directly by it.

Because this process was invoked by a user level system call, it was slow and caused a

delay in reading the data by the individual channels, leading to a drop in both individual

and overall system performance. The operation would be much faster if the control

remained in the kernel.

Hence, a driver level aal2_push function was implemented, specific to VCs opened by

the AAL2 anpd. This function, which is called by the ATM driver whenever a cell for the

anpd VCC arrives, initiates the AAL2 receiver directly in the kernel. As packets are de-

multiplexed from the cell, the individual channels, including the anpd control/signaling

channel are signaled to read the voice packets meant for them. This has led to a much

faster processing of the cell and improved performance.

In order to avoid a lot of this processing being done in the driver, the receiver is called

asynchronously by the driver by means of a task queue, every time a cell is received for

this VCC.

58

 queue_packet(vcc->cell_queue,packet);

 queue_task(&vcc->rqueue, &tq_scheduler); /*invoke task queue */

4.2.2 AAL2 Gateway Module

As mentioned earlier, mapping tables are maintained at both the ingress and egress

gateways. The mapping table format is as shown in the figure below.

 Source Destination MAP ID

IP

Address

UDP

Port

IP

Address

UDP

Port

ATM

VCC

AAL2

CID

Payload

Type

Channel

Length

IP/UDP

Headers

RTP

Header

Comp.

Figure 4.7 RTP Flow - AAL2 Channel Mapping

Flow classification can be done using some or all of the source and destination

information present in the table. Currently for this implementation, the destination IP

address and UDP ports are used to identify voice flows. Each flow/voice stream is

mapped onto an AAL2 channel on a particular ATM VC. Hence the combination of the

two serve to uniquely map the incoming AAL2 packets to the corresponding RTP flow at

the egress. The channel length gives an indication of the maximum SDU size expected on

the AAL2 channel. It is used for validation purposes in the AAL2 receiver. The IP and

UDP headers are maintained on both sides. At the egress, after de-multiplexing in the

AAL2 receiver and decompression of the RTP header, the IP/UDP headers for that flow

are attached to the data portion to re-create the IP packet. Context state information is

maintained for RTP header compression, including the last instance of the RTP header

and the relevant first order differences. These are used to detect changes in the RTP

header at the ingress and to recreate the RTP header at the egress.

59

4.2.2.1 Signaling

The source initiates call signaling by opening a TCP/IP socket to the gateway and issues

a OPEN_CHANNEL request, passing the destination IP address and other parameters.

The gateway module consists of a server that constantly listens on two sockets for

incoming requests – one from hosts and another from peer gateways. It spawns

appropriate processes to service those requests. On receiving the OPEN_CHANNEL

message from a source, the gateway opens a TCP/IP connection to the peer gateway for

that call, and forwards the message. The two gateways are connected over the ATM

network, through an ATM PVC. The peer gateway, i.e. the egress, receives this request

message on its peer socket and forwards it to the destination address mentioned in the

message.

The destination host or the receiver responds with an OPEN_CHANNEL_ACK or

OPEN_CHANNEL_REJECT message. If it can set up the voice call, it sends back its

UDP port number to which the source should send the flow.

The egress returns this message to its peer. If it is an OPEN_CHANNEL_ACK, then it

also sends the ATM NSAP address for the interface on which the ingress sent the request.

The ingress, on getting this reply, opens an AAL2 channel for this flow. If successful, it

adds the entry into the mapping table in the kernel and returns the

OPEN_CHANNEL_ACK to the source along with the destination port number, else it

returns an OPEN_CHANNEL_REJECT.

The important functions of the gateway modules are:

1. Obtain the necessary flow parameters from the end-to-end signaling messages. The

parameters include the source/destination addresses and ports, payload type and

packet length.

2. Initiate the establishment of an ATM SVC/AAL2 channel. This is done by opening an

AAL2 socket, setting the relevant AAL2 socket options and finally issuing a connect

60

system call on the socket at the ingress gateway. At the egress, a corresponding

accept call is issued.

Then, the channel is set up via the ANP negotiation procedures [] as described earlier.

If for any reason the channel cannot be set up, connect fails and an

OPEN_CHANNEL_REJECT message is returned to the source in response.

3. Add the corresponding entry into the AAL2_MAP table in the kernel. This is done by

means of an implemented ioctl system call. The file descriptor for the opened AAL2

socket is stored for later reference, along with the flow identifiers.

4. When the source terminates a flow/call, it sends a CLOSE_CHANNEL message. The

ingress gateway forwards this message to its peer and at the same time, initiates a

close system call on the AAL2 socket for that channel. It retrieves the previously

stored socket file descriptor based on the flow identifiers passed in the request.

5. The peer gateway passes along the message to the destination. It also initiates a close

on the AAL2 socket at its end.

6. Both gateways then delete the corresponding entries in the kernel AAL2_MAP table,

by issuing an ioctl.

4.2.2.2 Modifications to the ANP daemon

In the existing AAL2 Negotiation Procedures daemon, the channel IDs were set by the

applications that open AAL2 sockets to some destination, by issuing a setsockopt system

call. The ANP daemon checks whether a channel with that ID exists and returns an error

if it does. This requires the presence of a channel at the other end, which has set the same

channel ID. However, in the present framework, the gateway modules on both sides open

AAL2 sockets whenever a request for that particular path is received. They are not aware

if an ATM SVC to that destination exists or what channels are free on that SVC.

61

Hence, the ANP daemon was modified to maintain a list of possible channel IDs on each

SVC opened and to keep track of available channel IDs. Whenever a channel_open

request is made, the ANP daemon scans through the list and returns a free channel ID.

This channel ID is also passed to the peer ANP daemon to assign it to the corresponding

channel opened by the peer gateway module. To enable identification of the correct

channel on the other side, additional parameters relating to flow identification were added

to the messages exchanged by the ANP daemons.

4.2.2.3 Media Transport

This section describes some of the implementation details for the data path of the voice

flows and briefly traces their passage through the protocol stack at both the ingress and

egress gateways.

The figure below shows the schematic flow for packets through the protocol layers.

MAP
Module

RTPComp/
Decomp

Input
Module

Route
Lookup

Output
Module

Tx

Rx

Network

Ethernet
D i

ATM
D i

IP Layer IP-AAL2 Framework AAL2

Data flow through Protocol Stack

Figure 4.8 Data flow for RTP packets through framework

62

When the RTP packets for the voice flow arrive at the source gateway, say over an

Ethernet connection, the Ethernet driver hands over the packet to the IP layer via the

network bottom-half routine.

In the IP input module, the protocol header is checked for correctness by doing a

checksum. If the header has any options, they are processed. Next, a check is done to

determine if the packet is meant for the local host (i.e. for itself). If the packet is not

meant for itself, it is passed on to the forwarding module.

In the forwarding module, the packet’s TTL is checked and decremented. Then a routing

table lookup is done to determine the next hop and the output interface for the packet.

Fragmentation, if present, is handled. The packet is then sent off to the network device

associated with the output interface. This is where the RTP over AAL2 framework comes

into the picture.

If the output interface is the ATM interface over which the two gateways are connected

by an ATM PVC, the network device would be the CLIP device set up at the interface.

When the packet arrives at this point, a quick check is done to see if it is a UDP packet

and if the port is an even port. If this check succeeds, then a further lookup is done to

determine if the packet is an RTP flow for which a mapping has been established.

If the packet is identified to be a constituent of an RTP flow, and if it is the first packet

for that flow, then the UDP and IP headers are stored in the mapping table. Since the

other gateway also needs a copy of the two headers, one or more AAL2 CPS packets are

constructed, as necessary, with the two headers making up the payload. They are then

sent to the peer over the channel set up for the flow.

The IP and UDP headers are then stripped off, and the packet given to the RTP

Compression/Decompression module. For the first packet in the flow, the full RTP

header has to be sent for the receiver to establish context state. The full header is also

63

stored in the compressor. The link sequence number and other state information are

initialized. A packet type of RTP_FULL_HEADER is indicated.

For the remaining packets in the flow, after header removal, the RTP compressor checks

the header fields for changes. Depending on changes to the M, S and T fields, a

RTP_DELTA_HEADER or RTP_COMPRESSED_HEADER type is sent. An indication

of what fields changed is sent (MSTC) in the most significant four bits of the first byte in

the CPS payload. The link sequence number is incremented by one for each consecutive

packet and sent in the least significant four bits. The change in the RTP sequence number

is encoded in a single byte as it would be a small number (greater than one). Differences

in the timestamp field are encoded in two bytes and are stored in the context if they are

different from the previous state. If the difference is too large, the context state is

reinitialized by sending the full RTP header. The full header is also sent if any changes

occur in the remaining header fields. The context is updated by storing the current header.

A couple of optional data fields in the AAL2 CPS packet are the changes in the IP ID

field, which takes a byte, and the 16-bit UDP checksum. These are sent only if the source

machine includes them in the packets it generates.

The AAL2 CPS PDU is then assembled. The indicated RTP packet type is put in the UUI

header field. The AAL2 CID and the LI fields are also filled and HEC is calculated. The

packet is then given to the AAL2 transmitter for insertion into a cell and transmission.

At the egress, the ATM driver initiates the AAL2 receiver by means of a task queue2 in

the aal2_push operation, and hands over arriving cells to it. The AAL2 receiver breaks

down the cell and retrieves the constituent packets. Overlapping packets are stored until

the next cell arrives with the remaining bytes. The packets are then put into individual

channel queues and handed over to the IP-AAL2 framework module by means of another

task queue.

2 A task queue is a structure available in the Linux kernel that is used to store tasks to run at a later time. It
can be used in different modes, which determines when the scheduler invokes it.

64

The AAL2 receiver had to be slightly modified here to handle a kernel-level forwarding

operation. The original receiver had to hand over the packets to channels that were

processes reading from open AAL2 type sockets. In that case, the packets were put on to

the individual packet queues, and the processes woken up, who then retrieved the packets

via user-level read system calls.

In the present framework, the packets had to be sent to the mapping module for table

lookup and transmission over the IP network. This operation could have been done in the

receiver itself. However, it is a lengthy process, right from header decompression to

formation of the IP packet and transmission. It would delay the processing of the cells by

the AAL2 receiver. Hence the receiver uses task queues in tq_scheduler mode to

schedule the mapping function at the instant the scheduler next runs. The other modes of

this task queue operation cannot be used, as they are not suitable for the timing

constraints present here.

At the mapping module, the correct entry is located using the ATM VC and AAL2 CID.

The RTP packet type is determined from the UUI field. The IP ID difference value and

the UDP checksum are retrieved if present.

If the packet contains the full RTP header, then the context state is built and the state

variables are initialized. For packets containing the compressed header, the changed

fields are found out from the MSTC field. The link sequence number is checked to detect

packet loss. If there are any 2nd order changes, then the encoded differences are retrieved

and the state updated. The RTP header is reconstructed from the previously stored header

and current indicated changes. If there any error occurs during this process, an

RTP_CONTEXT_STATE type packet is sent to the compressor for that context so that a

full header packet can be sent by the ingress.

After the RTP header is reconstructed, the IP and UDP headers are taken from the

mapping table and a complete IP packet is reconstructed. The new IP ID value is

65

calculated from the difference sent by the ingress and a new checksum is generated.

These values are put into the IP header. The UDP checksum, if present, is updated with

the value obtained from the AAL2 packet. In Linux, the struct sk_buff structure is used to

move the packet among the various layers in the protocol stack. The relevant fields and

pointers in this structure are updated as necessary and the packet is handed off to the IP

layer.

In Linux, the entire forwarding operation of the IP layer takes place in the network

bottom half. The scheduler regularly services the network bottom half among others, such

that its execution takes place in a timely manner. All layer 2 protocol drivers invoke the

network bottom half by calling the netif_rx() function and pass it the packet in the form

of the sk_buff structure. This procedure is also followed by CLIP since it simplifies the

operation and provides a single uniform interface to the IP layer. Hence the framework

also invokes the netif_rx() function to hand over the packet to the IP layer, from where it

is forwarded to the destination as a normal IP packet.

 The AAL2_MAP table in the kernel is implemented in the form of a linked list of

structures, of type struct aal2_map_table.

struct aal2_map_table {
 :
 : /*Flow parameters and headers–as
 explained in table[]*/

 int hdr_flag; /* Flags required in the kernel for
 int in_flag; checking state */

:
:

 struct aal2_map_table *next; /* pointer to next node in
 list */

};

The gateway module needs to add and delete entries from the AAL2_MAP table in the

kernel. Hence, two ioctl3 types – ATMAAL2_MAP_ADD and ATMAAL2_MAP_DEL -

3 An ioctl() is a function by which user-level processes can communicate with and manipulate the
underlying device specific parameters of special files or devices.

66

were added to the ATM device ioctl list and their corresponding functions in the kernel

were implemented.

67

Chapter 5

Evaluation

This chapter describes the tests carried out to evaluate the implementation and

performance of the framework. The first section outlines some of the results for the real-

time modifications to AAL2 in Linux. The next section explains in detail the evaluation

of the RTP over AAL2 framework.

5.1 Modifications to AAL2 in Linux:

5.1.1 Test setup

The setup consisted of two end hosts interconnected by an ATM switch. The hosts were

400 MHz Pentium II based boxes running Linux kernel version 2.2.13 and atm-0.59. The

ATM switch was a ForeRunner ASX-200WG switch running UNI-3.1 with OC-3

interfaces. The hosts had ENI-155 Mbps ATM cards. The two end systems were running

ATM signaling daemons and the ANP daemon.

The ATM VCs used were of type CBR. Each user (channel) source transmits at a given

rate (e.g. 32 kbps), sending data in chunks of payload size with a pacing determined by

the bit rate desired. The CPS packet size from each user is fixed depending on the

sending rate and packetization delay. The bit rates considered in the experiments are 32

kbps, 24 kbps and 16 kbps. The CPS packet size is selected such that the packetization

delay remains constant (8 ms). Here it is 32 bytes and 24 bytes for 32 kbps and 24 kbps

coding rates respectively.

5.1.2 Receiver Modifications

Details of the tests carried out and their results can be found in [13]. One significant

benefit derived from the modifications has been the ability to achieve realistic values of

1-2 ms for the timer_CU, thus making the implementation more practical. Another

68

important enhancement has been the ATM driver-initiated receiver module, which has

improved the performance greatly for increasing number of users. The following plots

represent this fact.

Figure 5.1 Average Throughput per channel – 24 kbps

In Figure 5.1, a comparison of the average throughput per channel at the receiver, is done

for the AAL2 receiver modifications with that of the original receiver implementation, at

a sending bit-rate of 24 kbps. It can be seen that as the number of users/channels

increases, the average throughput per channel steadily decreases in the original receiver,

whereas it remains constant at the maximum rate for the modified receiver. A similar

result can be seen for a sending rate of 32 kbps in Figure 5.2.

Average Throughput per channel - 24 kbps, 2ms

0

5

10

15

20

25

30

0 2 4 6 8 10 12

Number of channels

T
hr

ou
gh

pu
t (

kb
ps

)

Throughput 1

Throughput 2

69

Average Throughput per Channel - 32 kbps, 2ms

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12

Number of channels

T
hr

ou
gh

pu
t (

kb
ps

)

Recr. Modifications

Unmodified

Figure 5.2 Average throughput per channel – 32 kbps

5.1.3 Bandwidth Utilization of AAL5 and AAL2

The following two plots give an indication of the difference between bandwidth required

for AAL5 and AAL2. Intuitively, the presence of wasteful padding in AAL5 PDUs to fill

a cell when the payload is small leads to more bandwidth being used for the same voice

bit rate.

Figure 5.3 compares the bandwidth utilization between AAL2 and AAL5 for increasing

number of voice flows. CBR traffic at 24 kbps with packet size of 24 bytes is used. The

AAL2 timer_CU has a value of 2 ms. Initially, the bandwidth used by both the protocols

are nearly the same. But as the number of channels increases, it can be seen that the

bandwidth used for AAL2 is far lesser than that required for AAL5. With 5 flows

simultaneously sending packets, the bandwidth required for AAL2 is roughly only half of

the AAL5 value. This is due to the increased multiplexing effect for AAL2 with

increased number of flows.

70

Figure 5.3 Bandwidth Utilization – AAL5 vs. AAL2 – 24 kbps

Figure 5.4 Bandwidth Utilization – AAL5 vs. AAL2 – 32 kbps

Figure 5.4 shows a similar plot for channel bit rates of 32 kbps. In this case, the

bandwidth usage for both AAL5 and AAL2 is nearly same for up to 3 simultaneous flows

after which AAL2 starts performing better than AAL5. Here, because of the packet size

and the bit rate, the multiplexing effect is not significant in AAL2 until the number of

flows increases to three. Initially, lot of padding is filled in cells.

Bandwidth Utilization - 32 kbps, AAL2 t_cu=2ms

0
50

100
150
200
250
300
350

1 2 3 4 5

Number of AAl5 SVCs / AAL2 channels

B
an

dw
id

th
 (

kb
ps

)

AAL5

AAL2

Bandwidth Utilization - 24 kbps, AAL2 t_cu = 2ms

0
50

100
150
200
250
300
350

1 2 3 4 5

Number of AAL5 SVCs / AAL2 channels

B
an

dw
id

th
 (

kb
ps

)
AAL5

AAL2

71

It can also be seen from the two plots that the benefits of AAL2 are greater for lower bit

rates. This is because packets get filled in cells more quickly and for increasing number

of channels, multiplexing is better.

5.2 RTP over AAL2 framework

Qost1

Waldorf

Neuromancer

Piggy

Crash

Wintermute

Kermit

Gonzo

Qost3

Qost2
Fore ATM Switch

Ethernet Ethernet

ATM

PCR 1.5Mbps

ATM

PCR 1.5Mbps

Source Destination

Test Setup

Figure 5.5 Test Environment

5.2.1 Test Environment

The setup for the evaluation is shown in Figure 5.5. Two 400 MHz Pentium II based

Linux boxes running kernel version 2.2.13 and atm-0.59, serve as the two gateway nodes.

They are interconnected through a ForeRunner ASX-200WG ATM switch running UNI-

3.1 with OC-3 interfaces. The gateways have ENI-155 Mbps ATM cards. They also have

the ATM signaling daemons and the ANP daemon running on them, along with the

gateway module.

72

The ANPD sets up CBR VCs with a PCR of 1.5 Mbps. There are four sources and four

destination hosts, each of which is set up on a 400 MHz or higher speed Linux box. The

hosts are connected to the test network via 100 Mbps Ethernet links.

5.2.2 Test Application

The Robust Audio Tool or RAT, is the network audio application that is used to generate

audio traffic between pairs of end-hosts. RAT has support for a number of codecs.

However, RAT doesn’t support the standard low-bit rate codecs due to licensing

problems. The only low-bit rate codec in RAT whose payloads fall within the CPS packet

limits of AAL2 is the 5.8 kb/s,10 pole LPC codec. The amount of audio data, in

milliseconds, sent in each packet can be varied. For the LPC codec, audio samples of 20

ms and 40 ms duration generate packets of sizes 26 and 40 bytes respectively, including

the RTP header. Since the values fall within the AAL2 CPS packet limit, these two

packet sizes are used in the evaluation.

RAT is used to send audio files from the transmitter to the receiver. Two different speech

files, each of approximately 5 minutes duration were used between each transmitter-

receiver pair. These two files have different speech and silence characteristics and hence

generate varying output streams. Silence suppression is enabled in the application.

5.2.3 Bandwidth Utilization

Efficient bandwidth utilization is the main focus in this work. Hence it is one of the most

important metrics to evaluate the performance of the framework.

The greater efficiency of AAL2 in transporting small size packets, as compared to AAL5,

has been demonstrated [13] and in Section 5.1.3. Since AAL5 is the other adaptation

layer being considered for voice transport over ATM using RTP header compression,

ideally a comparison between the two AALs should have been done, in the presence of

header compression. However, in the Linux-ATM stack, AAL5 SAR is done in hardware

73

by the ATM network interface card. The AAL5 trailer is not accessible in the kernel to

convey any header compression information between the two ends. Therefore, the RTP

header compression scheme could not be tested with AAL5. However, from the

comparative analysis between AAL2 and AAL5 given in Section 4.1.6.1 and from the

above results, it can be seen that AAL2 does have an inherent advantage over AAL5 due

to its multiplexing capabilities. Moreover, the analysis also shows that RTP header

compression is totally ineffective for AAL5.

Still, in order to get an idea of the bandwidth efficiency provided by the framework when

actual voice traffic is sent over it, its performance is compared with that of the normal IP

over ATM method (CLIP).

As shown in the figure above, there are four transmitter-receiver pairs. Tests were

conducted with one, two and all four pairs simultaneously active. Even though, a larger

number of flows can be sent through the framework (up to 15 channels could be opened

simultaneously on a single host [13] without causing degradation in performance), the

present setup uses only up to four flows. This is due to incompatibilities between RAT

and the Linux boxes and sound cards available here. Only a limited number of capable

end hosts could be set up successfully. Moreover, multiple instances of RAT cannot be

started on the same machine without causing degradation in its performance.

The bandwidth is measured at the ATM switch using SNMP. The MIB ChannelCells is

measured once every 100 ms, and the average of 100 such readings is plotted as a sample

point. This is repeated over the entire duration of the test.

5.2.3.1 One voice flow

A single voice flow was sent for approximately 5 minutes. The LPC codec was used with

20 ms sampling interval. A total of roughly 11,000 packets were transmitted.

74

The bandwidth curve is not constant but keeps continuously varying depending upon the

voice characteristics at the transmitter and hence the packet generation rates.

Bandwidth Utilization - 1 flow

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300

Time (sec)

B
an

dw
id

th
 (k

bp
s)

AAL2

IPoA

Figure 5.6 Comparison of Bandwidth Required – AAL2 vs. IPoA – 1 flow

It can be seen from the plot of Figure 5.6 that the bandwidth curves for AAL2 and IPoA

follow the same varying pattern closely, but the bandwidth used for the IPoA method is

more than twice that for the AAL2 framework with header compression. This is mainly

due to the overhead of the IP and UDP headers, which are present for every packet

transmitted. The absence of these headers in the AAL2 case, along with the compressed

RTP header, causes most of the gain. It should be noted that with only one flow, the cell

does not often get filled within the timer_CU limit and a large number of cells are

padded.

5.2.3.2 Two voice flows

Two tests were run, the first with both flows at 20 ms sampling intervals, and the second

with one flow each at 20 ms and 40 ms sample periods. The results of the first test,

plotted in Figure 5.7, show the same trend as in the 1-flow case. It can also be seen that

the bandwidth used up for the AAL2 framework is greater than for the 1-flow case, which

75

is expected, but it is less than double of it. This indicates that there is multiplexing taking

place between packets of the two flows, leading to a slight reduction in bandwidth

consumption.

BW Utilization - 2 flows (20 ms sample)

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Time (sec)

B
an

dw
id

th
 (k

bp
s)

AAL2

IPoA

Figure 5.7 Comparison of Bandwidth Required – AAL2 vs. IPoA – 2 flows

BW Utilization - 2 flows: Comparison

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150 170 190 210 230 250 270

Time (sec)

B
an

dw
id

th
 (k

bp
s)

AAL2-20ms

IPoA-20ms

AAL2-20,40ms

IPoA-20,40ms

Figure 5.8 Comparison: AAL2 vs. IPoA – 2 flows of different sampling intervals

76

Figure 5.8 has plots of both the 2-flow cases in the same graph. The interesting point to

be noted about the AAL2 plots is that the bandwidth used is less in the case where the

flows have different sampling intervals. The number of packets generated for the 40 ms

frames is considerably less (around 5000) due to the increased sample period. Because of

their larger size, the packets are fitted into cells more efficiently and as a consequence,

the bandwidth utilization is better.

Similarly, from the IPoA plots, it is seen that the bandwidth consumption for the two

different flows, though greater than for AAL2, is lesser compared to the two 20 ms flows.

Again, this is mainly because of the reduction in the number of packets for the 40 ms

flow, which in this case means lesser protocol header overhead and correspondingly

smaller cell rates.

5.2.3.3 Four voice flows

Two flows of 20 ms frame size and two flows of 40 ms frame size were sent

simultaneously. A combination of two different voice files was used, one file with two

host pairs and the other file with the remaining two.

BW Utilization - 4 flows

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350

Time (sec)

B
an

dw
id

th
 (k

bp
s)

AAL2

IPoA

Figure 5.9 AAL2 vs. IPoA – 4 flows of different sampling intervals

77

The results follow the expected pattern where the AAL2 framework performs better than

the IP over ATM method. This trend can be expected to continue for larger number of

voice flows where the multiplexing at the AAL2 level will be greater. It should also be

noted that RTP header compression would have a big effect on the bandwidth for

increasing number of flows. For a small number of flows, compression might not benefit

too much because there may not be enough packets arriving to efficiently fill cells and

the space created by compression will get filled up with useless padding.

5.2.4 Determination of jitter

From the tests conducted in the previous section, it is seen that bandwidth is utilized

much more efficiently using the RTP over AAL2 framework. But the packets have to

undergo extra processing in the two gateways for compression and decompression and

header removal and re-assembly. Another source of delay could be the AAL2 transmitter

and receiver state machines. Packets have to wait for the cell to get filled up or the

timer_CU to expire before they can be transmitted. Similarly at the receiver, the

individual AAL2 CPS packets must be de-multiplexed from arriving cells.

Most audio applications have a playout buffer at the receiver where arriving packets are

collected to account for delayed or re-ordered packets. The packets in the buffer are

converted back into audio samples and played out at the correct rate. Even if packets are

delayed, if they are within a certain limit, the receiver can take care of it. For voice

packets, even more important than delay is the variation in the delay or the jitter.

The following tests attempt to detect if the implemented framework introduces any jitter

and to measure the variation in the delay. The transmitter generates RTP packets at

intervals equal to the sampling period with some additional packetization delay.

However, there will be variations in this interval caused by process scheduling problems,

workstation load effects or due to the characteristics of the audio sample files. In any

78

case, these packets, if they do not suffer delay jitter effects in the network, should arrive

at the receiver at the same intervals.

Hence, the inter-packet transmission times are measured at the source, and the

corresponding inter-packet arrival times at the receiver are also measured. tcpdump

output trace is used to measure these timestamps at both sides. At the transmitter, the

timestamps indicate the instants when packets are written to the UDP socket after

formation. At the receiver, the timestamps represent the instants just before packets are

read by the application.

The difference between two consecutive packet events (transmissions/arrivals) is

calculated over the entire duration of the flows, which again are around 5 minutes each,

with flows of both 20 ms and 40 ms sample periods. The LPC codec is used again.

The individual jitter values are then calculated as the difference between the receiver

intervals and the corresponding transmitter, for all packets. The average and standard

deviation of these jitter values for the entire data range is then calculated. Since the

packets can arrive at the receiver both earlier as well as later than the intervals at the

transmitter, the jitter values can be both positive and negative. This process is carried out

for one and four voice flows. The 4-flow case is compared with a 4-flow IPoA case. The

values are given in Table 5.1.

Number of flows Average (µsec) Standard Deviation (µsec)

1 flow 0.1582 4695.65

4 flows -0.099 3375.28

4 flows (IPoA) -0.0056 169.804

 Table 5.1 Jitter between transmitter and receiver

It can be seen that for all cases, the average value of the jitter is nearly zero, which is the

desired result. The framework does introduce some variation in delay, as can be

79

concluded from the standard deviation values. But the values are still very low (~3-5 ms)

and are well within acceptable limits. The IPoA approach, which doesn’t introduce any

delay, has a much lower standard deviation as compared to the AAL2 case.

It was observed during the tests that there are a large number of timer expiries occurring

throughout the test duration. This is mainly due to the low bit rates and the small number

of flows being used. The packet generation at the transmitter is also not regular because

of the voice file characteristics and also silence suppression. Packets at random have to

wait until the timer expires to be sent. This causes the variation observed in the interval

differences between the two ends. For larger number of flows, this variation is expected

to decrease due to reduced effect of the timer and steady arrival of packets.

5.2.5 Comparison of Inter-packet times – individual samples

The previous section shows the jitter values between the two ends for the entire duration

of the flows. They serve to show that the network maintains the timing characteristics of

the packets throughout the flow duration. However, there could be subtle variations

occurring at different times during the tests. Hence, ten sample sets of 100 consecutive

packets each are selected randomly from the entire range of readings and the individual

values are compared between the source and the receiver. The standard deviation and the

average values within these sample sets are plotted, in microseconds (usec).

80

5.2.5.1 One voice flow

Comparison of Inter-Packet Gap - 1 flow

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Samples

T
im

e
in

te
rv

al
 (

us
ec

)

Avg(Trans) SD(Trans) Avg(Rec) SD(Rec)

Avg(Trans) 27131.70297 20002.23762 21488.64356 30696.48515 26438.55446 20002.22772 20002.19802 26042.61386 20002.25743 26834.64356

SD(Trans) 75722.85353 51.76642706 22363.61389 78575.7932 67568.67421 46.24389283 45.75412982 64787.69756 47.40667748 66596.82944

Avg(Rec) 27144.80198 20001.15842 21490.49505 30677.13861 26439.07921 20003.94059 20001.12871 26043.20792 20004.15842 26834.68317

SD(Rec) 75534.5233 328.115886 22217.41199 78307.44084 67362.64863 332.7553703 295.8736103 64597.08569 311.6966709 66384.44588

1 2 3 4 5 6 7 8 9 10

Figure 5.10 Inter-packet transmission/arrival times – Individual samples – 1 flow

For the 1-flow case plotted in Figure 5.10, it can again be said that even for the individual

packets, the framework maintains the timing constraints. The transmitter itself has a lot of

variations while sending packets but as can be seen, the standard deviations for the

various sample sets are almost the same at both ends.

81

Comparison of Inter-packet Gap - 4 flows

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Samples

T
im

e
in

te
rv

al
 (

us
ec

)
Avg. (Trans) SD. (Trans) Avg(Rec) SD.(Rec)

Avg. (Trans) 27328.42574 19805.52475 28516.9703 20001.79208 20400.72277 23073 20002.20792 20002.17822 20992.42574 20002.20792

SD. (Trans) 75492.18468 19762.25062 89704.74302 917.3974201 4004.944834 34992.50327 42.39960302 47.46270031 14246.05672 40.5248854

Avg(Rec) 27255.29703 19786.25743 28484.27723 20032.58416 20383.13861 23056.23762 20070.0495 19979.92079 20990.60396 19992.61386

SD.(Rec) 75212.39677 19922.62453 90088.79596 3165.807841 5478.936145 34823.05346 3968.320953 3951.72129 14135.05348 4530.748435

1 2 3 4 5 6 7 8 9 10

Figure 5.11 Inter-packet transmission/arrival times – Individual samples – 4 flows

5.2.5.2 Four voice flows

Figure 5.11 gives a similar comparison for 4 flows. Again, in most sample cases, the

averages and standard deviations are nearly same for both ends. In some cases, there is a

very small deviation value at the transmitter but the corresponding value at the receiver is

slightly higher, around 3-4 ms. This is similar to the observations in the previous section.

This could be explained as the probable effect of the AAL2 timer, which is set at 2ms.

One way where this effect could appear is if a packet was partly filled into the last part of

a cell and the remaining bytes of the packet had to wait for the entire 2ms period until the

timer went off, to be sent. This value could decrease for a larger number of simultaneous

flows or for higher bit rate flows, where the number of packets flowing through the

network would be much more. Still, a deviation of 3-4 ms is not a high value and is

acceptable for audio applications to handle. For example, RAT has an internal minimum

jitter limit of 80-100 ms within which it can provide good voice quality.

82

Comparison of Inter-packet Gap - 4 flows (AAL5)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Samples

T
im

e
in

te
rv

al
 (

us
ec

)
Avg. (Trans) SD. (Trans) Avg(Rec) SD.(Rec)

Avg. (Trans) 27626.81188 20002.17822 26143.72277 20200.30693 19999.45545 22874.9802 20002.21782 20002.19802 21187.60396 19805.53465

SD. (Trans) 80695.08789 2254.041638 64196.35768 14998.56055 4888.440885 30877.7886 41.81569178 7458.401223 18898.44234 5318.903412

Avg(Rec) 27626.90099 20002.29703 26143.69307 20200.26733 19999.63366 22886.43564 20002.22772 20002.11881 21187.81188 19805.63366

SD.(Rec) 80694.16658 2258.925163 64196.94171 15001.07092 4887.987747 30877.6368 298.6889647 7460.577553 18871.88555 5316.750746

1 2 3 4 5 6 7 8 9 10

Figure 5.12 Inter-packet transmission/arrival times for AAL5 – 4 flows

Figure 5.12 plots the average and standard deviation for 10 sample sets of inter-packet

events when sent over AAL5 (CLIP). As can be seen, there is almost no difference in the

values at the transmitter and receiver. The standard deviation values are also almost

identical for all the ten sets, unlike the AAL2 case, where for some samples, a small

difference was observed. This is mainly because there are no delay sources in the

network for AAL5 apart from scheduling variations and queuing, if any.

83

Chapter 6

Summary

A framework for transporting RTP voice flows over an ATM network using the ATM

Adaptation Layer 2 was designed and a preliminary implementation of the same was

done in Linux. Real-time modifications were made to the AAL2 support in the Linux

kernel to achieve realistic timing capabilities and performance levels.

Some of the issues involved in transporting RTP encapsulated VoIP packets over ATM

were discussed and the current framework was compared to other similar efforts. A

simple signaling module was implemented to be compatible with the existing AAL2

signaling architecture, and was used to establish AAL2 channels over ATM SVCs for the

voice flows. Some end-to-end interoperability issues were outlined.

A kernel based mapping of RTP flows to AAL2 channels was developed and packet

forwarding was done directly between the IP layer and AAL2, thus avoiding a lot of

application-level processing and protocol overhead. Transfer of IP and UDP protocol

headers over the ATM network was avoided, reducing bandwidth requirements. A RTP

header compression technique was implemented to obtain further bandwidth reduction.

Voice traffic was sent over the framework to validate the functioning of the

implementation and study the performance based on some simple metrics. Some of the

advantages of the framework in carrying low bit rate RTP voice traffic were seen.

6.1 Conclusions

It can be seen from the obtained results that the framework does improve the efficiency

with which voice streams can be transported over ATM. A network audio application,

RAT was used to generate RTP based voice flows of reasonable length. Low bit rate

coding was used with different sampling intervals to generate packets of different sizes.

84

The real-time modifications create a marked improvement in performance of the AAL2

support. The fine-grained timer values make it practically feasible to use the

implementation.

The bandwidth utilization is significantly better using the RTP over AAL2 framework

than for the normal IP over ATM method. This is due to reduction of header overheads

and the multiplexing benefits of AAL2.

The implemented RTP header compression can be used for AAL5 too. However, it can

be seen from the comparative evaluation tables that compression is not effective for

AAL5 with most of the default codec parameters. Whereas for AAL2, the reduced packet

sizes complement the bandwidth efficiency obtained due to multiplexing.

For smaller number of flows, the advantages of compression may not be too apparent

because of the smaller number of packets and reduced multiplexing. But as the number of

flows increases, the cells get filled more efficiently, there is less padding and the

bandwidth gets utilized better. This is in accordance with the properties of AAL2.

It is also seen that the implemented framework does not make the overall operation

complex, and the timing characteristics of the audio packets are faithfully maintained. In

most of the cases seen, the framework does not introduce any additional jitter.

Occasionally a small variation is observed, mainly due to the effects of the timer in the

AAL2 transmitter. However, it is a very insignificant value as compared to the network

jitter limits of audio applications. This has been confirmed by subjective tests to

determine the audio playout quality.

6.2 Future work

This framework is restricted in its applicability due to the limited range of AAL2 CPS

packet sizes. It cannot be used with the high bit rate codecs in their default modes as the

85

resulting RTP payload will exceed the maximum CPS limits. However, it is possible to

use such codecs by using non-default values of packetization intervals such that the

packet sizes decrease. But doing so may decrease the protocol efficiency. Hence, studies

need to be made to determine the usage of these codecs.

Even for the low bit rate codecs, it is possible to increase efficiency by choosing

appropriate sampling intervals. But using different values may compromise the delay

performance for those codecs. Careful consideration of packet sizes is required to

maintain delay performance while increasing efficiency.

The effect of packet losses has not been considered here. It is possible for packet losses to

occur while traversing low speed and congested links in the Internet. Also, losses may

occur on the link containing the framework. In the case of AAL2, a loss of one cell may

affect more than one packet due to multiplexing. The effect of such losses on the

compression states and possible voice quality degradation should be investigated.

The framework has been tested with a small number of flows due to limitations of the test

environment. But it will definitely support a larger number of simultaneous sessions and

the performance should correspondingly improve. It should be tested further to determine

practical limits.

RTP itself supports multiplexing of packets from different sessions into one RTP payload

to make efficient use of bandwidth and reduce protocol overhead. The current framework

cannot effectively deal with such scenarios. It should however be interesting to see how

RTP multiplexing can be mapped on to the AAL2 based framework and if there are any

advantages to doing so.

86

Bibliography

[1] IETF RFC 1889, RTP: A Transport Protocol for Real-Time Applications, January
1996, ftp://ftp.isi.edu/in-notes/rfc1889.txt

[2] IETF RFC 1890, RTP Profile for Audio and Video Conferences with Minimal
Control, January 1996, ftp://ftp.isi.edu/in-notes/rfc1890.txt

[3] ITU-T Recommendation H.323, Packet based multimedia communications systems

[4] ATM Forum Technical Committee, AF-SAA-0124.000, Gateway for H.323 Media
Transport Over ATM, July 1999

[5] de Prycker M., Asynchronous Transfer Mode - Solution for Broadband ISDN,
Prentice Hall International, 1995, pp. 105-159

[6] The ATM Forum Technical Committee, User-Network Interface (UNI) Specification
Version 3.1, Sept 1994

[7] Chen, T. M. and Stephen S. L., ATM Switching Systems, Artech House, Incorporated,
1995, Chapters 5-10, pp. 81-233

[8] Almesberger, W., Linux ATM internal signaling protocol, Draft Version 0.2,
Laboratorie de Re’seaux de Communication, Nov. 5, 1996

[9] ITU-T Recommendation I.363.2, B-ISDN ATM Adaptation Layer Type 2
Specification, Feb 1997

[10] Moondhra, V., Implementation and Performance Analysis of ATM Adaptation
Layer Type 2, Master's thesis, University of Kansas, Lawrence, Kansas, January 1998

[11] IETF RFC 2508, Compressing IP/UDP/RTP Headers for Low-Speed Serial Links,
ftp://ftp.isi.edu/in-notes/rfc2508.txt, February 1999, Casner, Jacobson

[12] Balaji S., Menon R., UTIME - Micro-Second Resolution Timers for Linux.
http://hegel.ittc.ukans.edu/projects/utime.

[13] Dhananjaya Rao, Dr. Joseph B. Evans, Real-Time Modifications to AAL2 in Linux
and Performance Evaluation, Technical Report, Information and
Telecommunications Technology Center, University of Kansas, July 2000

[14] Aarti Iyengar, Dhananjaya Rao, Dr. Joseph B. Evans, Implementation of ATM
Adaptation Layer 2, Technical Report ITTC-FY2000-TR-15662-01, Information and
Telecommunications Technology Center, University of Kansas, July 1999

[15] ATM Forum Technical Committee, AF-VTOA-0113.000, ATM Trunking using
AAL2 for Narrowband Services, February 1999

87

[16] Raghu Vatte, D.W. Petr, Performance Comparison between AAL1, AAL2 and
AAL5, Technical Report ITTC-FY98-TR-13110-03, Information and
Telecommunications Technology Center, University of Kansas, March 1998

[17] IETF Internet Draft, Multiplexing Scheme for RTP Flows between Access Routers,
October 1999, El-Khatib, Luo, Bochmann, Feng

[18] Sheth, S., Implementation of a Congestion Control Scheme for Active
Narrowband ATM Networks, Master’s thesis, University of Kansas, Lawrence,
Kansas, January 1999

[19] Beck M., Bohme H. et al, Linux Kernel Internals, 2nd Edition, Addison-Wesley,
1998

[20] Comer, D. E., Internetworking with TCP/IP Volume I, 3rd Edition, Prentice Hall
International, 1995

[21] IETF RFC 1577, Classical IP and ARP over ATM, January, 1994

[22] ATM Forum Technical Committee, AF-LANE-0112.000, LAN Emulation over
ATM Version 2, February 1999

