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Abstract

Serially concatenated coded (SCC) systems with continuous phase modulations

(CPMs) as recursive inner codes have been known to give very high coding gains at low

operative signal to noise ratios (SNRs). Moreover, concatenated coded systems with it-

erative decoding approach the bit error rate bounds given by the maximum likelihood

criterion at a lesser complexity. However, when highly bandwidth efficient CPMs are

used, they pose two fundamental problems — extremely high decoding complexity and

carrier phase synchronization. Desirable properties of SCC systems and their subse-

quent applications to deep space communication has renewed research interests to look

for possible solutions to the above problems. Several complexity reduction techniques

have been surveyed in this thesis to address the problem of efficient detection at low

SNR operation of the SCC systems. Perfect synchronization at the receiver is often

times a delusive assumption. This makes non-coherent detection an attractive option.

A heuristic and practical non-coherent detection algorithm is proposed for moderate

phase noise environments, which result in huge savings in complexity compared to the

available algorithms for non-coherent detection.
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Chapter 1

Introduction

Digital modulation is the process of converting a digital information bit stream or

code words from the source encoder into functions of time by varying (modulating) the

parameters of waveforms such as amplitude, frequency and phase. The aim of a digital

communication system is to transmit information reliably, being judiciously conserva-

tive in the usage of valuable resources at hand such as bandwidth, power and processing

power (handling computational complexity). In order to achieve this, the chosen mod-

ulation scheme should match the channel characteristics. Prior to the 1980’s, modula-

tion and coding were treated with different abstraction levels, studied and researched

independent of the other to achieve high performance. The first attempt to combine

principles of modulation and coding was done in 1982. Gottfried Ungerboeck, in his

landmark paper [1] showed that one could achieve very high coding gains by signal

set partitioning to achieve improved Euclidean distance. The invention of parallel con-

catenated coding schemes in turbo codes in 1993 by Berrou, Glavieux and Thitima-

jshima [2], propelled a tremendous amount of research towards achieving coding gains

to reach the Shannon’s limit. Since then, a new area of research has focussed on serial

concatenation of modulation with error control coding, which derives its motivation



2

from the principles of turbo codes. The block diagram of a simple digital communi-

cation system in Fig. 1.1, indicates modulation and coding to be a combined area of

study, which is the crux of this thesis.

Source 
Encoding

Error Control 
Coding

Baseband 
Modulation

Up 
Conversion 

(to RF)

Source 
Decoding

Error Control 
Decoding

Baseband 
Demodulation

Down 
Conversion  

(to baseband)

C
H
A
N
N
E
L

Noise

Source 
bits

Decoded 
bits

Figure 1.1. A Simple Digital Communication System.

Continuous phase modulation (CPM) belongs to the class of non-linear digital mod-

ulation schemes with memory.1 CPM signals are endowed with several desirable prop-

erties such as high detection efficiency and high spectral efficiency. The constant en-

velope property of the CPM waveforms give amplifiers high power efficiency. CPMs

can be operated with non-linear power amplifiers. They are also suitable for communi-

cation over non-linear channels which may destroy amplitude relationships. Examples

of non-linear channels are mobile and satellite channels which have a time-varying

channel response (fading). On the other hand, modulations such as pulse amplitude

modulation (PAM) and quadrature amplitude multiplexing (QAM) show performance

deterioration due to distortion of the signal constellation, when passed through a non-

linear power amplifier. In phase shift keying (PSK), the phase of the signal containing

the information is obtained by a simple mapping of the input symbol to a defined signal

1A modulation is said to have memory if the signal (modulated waveform) in any symbol interval
depends on the symbols transmitted during the previous symbol intervals.
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constellation point. The PSK signal can take on finite (discrete) values of phase. Like-

wise, the information in a CPM signal is also contained in its phase. However, CPM

is different from PSK because the phase of the CPM is continuous and at any time is a

relative quantity with respect to the input symbol at that time. In other words, an input

symbol is not tied to any constellation point. This comes from the fact that CPM is a

modulation with memory.

Owing to the several properties described, CPMs are used in deep space communi-

cation [3], wireless modems, 802.11 FHSS and Bluetooth [4]. The European standard

for personal communication system (PCS) global system for mobile communications

(GSM) uses Gaussian minimum shift keying (GMSK), which belongs to the class of

CPMs.

1.1 Signal Representation for CPM

The signal representation for a complex baseband CPM is of the form

s(t; α) = ejφ(t;α), (1.1)

where φ(t; α) represents the phase of the CPM given by the linear filtering of informa-

tion bits/codewords. In the most generic form [5], we have

φ(t; α) = 2π
∞∑

i=−∞
hiαiq(t− iTs), nTs ≤ t ≤ (n+1)Ts, (1.2)

where the phase of the CPM is constrained to be continuous by the use of a phase pulse

q(t) which defines the phase trajectory due to an input symbol,2 hi is the modulation

index associated with the symbol αi in the i-th symbol interval and Ts is the symbol

2An impulse frequency pulse does not have memory and results in regular PSK.
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duration. The modulation index changes cyclically through a finite set of Nh modula-

tion indices (i , i mod Nh). The value of the modulation indices indicate the amount

of phase change introduced at the occurrence of a symbol. If there is more than one

modulation index, then the CPM is called as a multi-h CPM. The source alphabet can

be binary where α ∈ {−1, +1}, quaternary where α ∈ {−3,−1, +1, +3}, octal where

α ∈ {−7,−5, . . . , +5, +7}, etc. Further, the phase pulse q(t) can be viewed as the

time integral of the frequency pulse whose area equals 1
2
, given by

q(t) =





0, t ≤ 0
∫ t

0

g(τ) dτ, 0 ≤ t ≤ LTs

1
2
, t ≥ LTs,

(1.3)

where g(t) is the frequency pulse of duration LTs. Since the area of q(t) is now fixed

to be 1
2
, the amount of phase change for a CPM depends only on the modulation index.

The shape of the frequency pulse is an important parameter which determines the

spectral properties of the CPM. Some of the commonly used pulse shapes are the

length-L rectangular (LREC) pulse and the length-L raised cosine (LRC) pulse. The

telemetry group (TG) standard shaped offset QPSK (SOQPSK) uses a TG standard fre-

quency pulse. An example of a 3RC pulse is shown in Fig. 1.2. The LREC and LRC

pulses are defined by Eq. (1.4) and Eq. (1.5) respectively,
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Figure 1.2. A 3RC Frequency Pulse.

g(t) =





1
2LTs

, 0 ≤ t ≤ LTs

0, otherwise,
(1.4)

g(t) =





1
2LTs

[
1− cos

(
2πt
LTs

)]
, 0 ≤ t ≤ LTs

0, otherwise.
(1.5)

Due to the constraints on the causal phase pulse q(t) in Eq. (1.3), Eq. (1.2) can be

written as

φ(t; α) = π

n−L∑
i=0

hiαi

︸ ︷︷ ︸
ϑn−L

+ 2π
n∑

i=n−L+1

hiαiq(t− iTs)

︸ ︷︷ ︸
θ(t)

, nTs ≤ t ≤ (n+1)Ts. (1.6)

The L-tuple correlative state vector

αn = αn−L+1, . . . , αn, (1.7)
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in θ(t) contains the L most recent symbols modulated by the time-varying part of the

phase pulse q(t), which contribute to the phase trajectory of the CPM in the current

signaling interval. The state of a CPM is specified by

σ′ = [ϑn−L, αn−L+1, . . . , αn−1] . (1.8)

On the assumption that the modulation index is a rational quantity [5], we can write

hi =
2Ki

P ′ , (1.9)

where Ki and P ′ are relatively prime. The cumulative phase ϑn−L in Eq. (1.6) now

becomes

ϑn−L =
2π

P ′

n−L∑
i=0

Kiαi, (1.10)

which can take on P ′ distinct values when taken modulo-2π (property of the complex

phase). The cumulative phase ϑn−L is the the phase of the CPM at the beginning of the

symbol interval (at the current time n), into which symbols older than L symbol times

have been absorbed and the P ′ distinct values of the cumulative phase are given by

ϑn−L ∈ {0·2π
P ′ , 1·2π

P ′ , 2·2π
P ′ , . . . , (P ′−1)·2π

P ′ }. Finite number of values of the cumulative phase

resulting from the assumption of a rational modulation index gives the CPM a finite

state representation (trellis) given by Eq. (1.8). This is desirable since the complexity

of the decoding algorithm is proportional to the state complexity of the CPM. The

details of the algorithm used are described in the Chapter 2.

All the possible phase trajectories in a CPM can be represented by by a phase cylin-

der, which is helpful in visualizing the phase changes in a CPM. The phase cylinders

for minimum shift keying (MSK) and pulse code modulation/frequency modulation are

shown in Fig. 1.3 and Fig. 1.4 respectively. P ′ = 4 values of cumulative phase ϑn−L
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in MSK result from a modulation index of h = 1
2
. In PCM/FM, the cumulative phase

ϑn−L takes on 20 values resulting from h = 7
10

.

Time

Real Axis

Im
ag

in
ar

y 
A

xi
s

ϑ
n−L

MSK signal

Figure 1.3. Phase Cylinder for MSK.

1.2 The Telemetry Standard CPMs

The aeronautical telemetry standard IRIG 106-04 has been developed by range

commanders council (RCC) to serve the technical needs of the department of defense

(DOD). Among the many CPMs (resulting from combinations of h, M , L, pulse shape,

mapping rule, etc), some of them have gained popularity driven by the needs of the ap-

plication, such as spectral efficiency, power efficiency and decoding complexity. Three
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Figure 1.4. Phase Cylinder for PCM/FM.

popular modulation schemes (three tiers of bandwidth efficiency), each with unique

properties, have been developed by the aeronautical telemetry to operate in the UHF

carrier frequencies.

1.2.1 PCM/FM (Tier-0)

Pulse code modulation/frequency modulation (PCM/FM) has been used in the aero-

nautical telemetry standard since 1970’s. PCM/FM is a binary CPM specified by the

CPM parameters h = 7
10

, M = 2, 2RC. It has a moderate decoding complexity. It is

the least spectrum efficient, but the most detection efficient among the three modula-

tions considered. It is also least sensitive to phase noise and consequently the easiest to
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synchronize.

1.2.2 SOQPSK-TG (Tier-1)

In offset quadrature shift keying (OQPSK), the half symbol time delay in the quadra-

ture phase data stream w.r.t the in phase data stream aids in avoiding the instantaneous

180◦ phase shifts. OQPSK also has improved power spectrum compared to QPSK.

However, it still does not avoid the waveform envelope fluctuations due to the instan-

taneous transitions between adjacent phase states. Shaped offset quadrature phase shift

keying (SOQPSK) is often referred to be derivative of OQPSK and MSK. At the cost

of detection efficiency, it is spectrally more efficient than OQPSK/MSK.

Precoder 
(with DE) );( αtsα

CPM
Modulatora

Figure 1.5. Precoding in SOQPSK.

SOQPSK uses a precoder to convert binary information to ternary symbols. The

ternary symbols are modulated by a CPM modulator (MSK modulator, h = 1
2
). While

the use of precoder (see Fig. 1.5) imposes OQPSK like properties, the use of frequency

pulse gives SOQPSK a constant envelope like in a CPM. It is interesting to note that

from the CPM stand point, SOQPSK is not a quadrature signalling scheme, but a binary

signalling scheme, modulated using ternary symbols α ∈ {−1, 0, +1}. Although the

modulating symbols are ternary, in any signaling interval, they assume only 2 values ∈
{−1, 0} or {+1, 0}. Therefore, the bandwidth efficiency is m= log2(M)=1 bit/symbol
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as in a binary scheme.3

The ternary symbol sequence has special properties introduced by the precoder [6]

defined by

dn = an ⊕ dn−2, (1.11)

αn = (−1)nand′n−1d
′
n−2, (1.12)

where d′n is an antipodal version of dn and is given by d′n = 2d′n − 1. an ∈ {0, 1}
is the data bit at time n. The state variables an−1 and an−2 are ordered to ensure that

the inphase bit is always the most significant bit (MSB) and the quadrature phase bit

is always the least significant bit (LSB). Hence the data bits dn−2, dn−1 represent the

state of the double differentially encoded SOQPSK (DSOQPSK) at even symbol times

and the data bits dn−1, dn−2 represent the state at odd symbol times [7]. The precoder

imposes the following constraints on the ternary data —

1. At any symbol interval, αn ∈ {0, +1} or {0,−1}.

2. Whenever αn = 0, the precoded binary alphabet for αn+1 changes from the one

used for αn, otherwise it does not.

3. αn cannot directly change−1 to +1 and viceversa, in successive symbol intervals

i.e., a +1 can be followed by a +1 or 0 but not −1 and similarly a −1 can be fol-

lowed by a−1 or 0 but not +1. This introduces correlation to the ternary symbols

and gives SOQPSK a more compact bandwidth compared to MSK/OQPSK.

The time-varying trellis of the SOQPSK-MIL which uses a 1REC frequency pulse

(just like MSK) is given in Fig. 1.6, which indicates the relation between the input and

3In the literature, SOQPSK is also represented as having h = 1
4 and ternary symbols α∈ {−2, 0, +2}.

However, they both give the same phase change hπα at the occurrence of a symbol.
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the precoded bits. 4 The use of a recursive precoder (which incorporates differential

encoding) is necessary for both SCC systems and non-coherent detection.
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11
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Figure 1.6. SOQPSK-MIL Trellis.

Another aspect in the decoding of SOQPSK as a CPM lies in the mapping of the

trellis states of SOQPSK onto CPM phase states. For this purpose we use the mapping

given in Fig. 1.7 to use the SISO decoding algorithm in Chapter 2.

The SOQPSK-TG is uses a TG standard phase pulse which is 8 symbols long. This

means, the state complexity for SOQPSK-TG given by Eq. (1.8) is 512 states while the

state complexity for SOQPSK-MIL is 4. The SOQPSK-TG frequency in Fig. 1.8, is

4A trellis completely describes the states and phase changes in the CPM.



12

State Pl

00 3
01 2
10 0
11 1

I

Q
11

1000

01

0

1

2

3 Phase State

Trellis State

Figure 1.7. Mapping of SOQPSK Trellis States onto MSK Phase States.

0 1 2 3 4 5 6 7 8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 Normalized time (t/T) 

 A
m

pl
itu

de
 

 

 
Frequency pulse
Phase pulse
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given by

fTG(t) = A
cos

(
πρBt
2Ts

)

1− 4
(

ρBt
2Ts

)2 ×
sin

(
πBt
2Ts

)

πBt
2Ts

× w(t), (1.13)
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where the window is defined by

w(t) =





1, 0 ≤
∣∣∣ t
2Tb

∣∣∣ ≤ T1

1
2
+ 1

2
cos

(
π
T2

(
t

2Tb
−T1

))
, T1 ≤

∣∣∣ t
2Tb

∣∣∣ ≤ T1+T2

0, T1 + T2 <
∣∣∣ t
2Tb

∣∣∣ .

The normalization constant A is chosen to give the pulse an area of 1
2
, T1 =1.5, T2 =0.5,

ρ = 0.7, and B = 1.25. The SOQPSK-TG has the least decoding complexity (with the

pulse truncation technique), of all the three modulations considered and is moderately

sensitive to phase noise.

1.2.3 ARTM CPM (Tier-2)

The advanced range telemetry (ARTM) CPM is a quaternary multi-h CPM specified

by the parameters h = { 4
16

, 5
16
}, M = 4, 3RC. In single-h CPMs, while higher M

improves the bandwidth efficiency, it reduces the power efficiency. Interestingly, the

use of alternating modulation indices improve the distance associated with the error

events and thus also improve the detection efficiency, shown in Fig. 1.9. As one would

anticipate, the gain in ARTM CPM comes at a cost of a 4 fold increase in complexity

compared to the single-h CPM with h = 1
4
. The ARTM CPM has the highest decoding

complexity and the least power efficiency among all the three modulations, but has the

best spectral efficiency. This reduces the required carrier spacing in applications with

limited available bandwidth.
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Figure 1.9. Coding Gain in Multi-h CPMs.

1.3 Previous Work and Motivation for the Thesis

Serially Concatenated Coding (SCC) schemes give high class performance in spec-

tral and power efficiencies but trade-off very badly with implementation complexity.

A qualitative analysis of SCC CPM schemes has been done in [8]. Optimal decod-

ing, which approaches the union bounds defined by the maximum likelihood (ML)

decoding, is often times impractical and unaffordable to be used in digital hardware

implementation, where there is often times a shortage of computing power. Bandwidth

efficient CPMs in particular, have large decoding complexity and are hard to synchro-

nize. Consequently, there is a drain of computational resources in an effort to do opti-

mal decoding. Previous works on reducing decoding complexity have not been applied

to SCC systems [8, 9]. A technique called frequency pulse truncation applied to SCC
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SOQPSK-TG, reported a complexity reduction by a factor of 128 with a performance

loss of just 0.2 dB [6]. This is a motivation to look for complexity reduction techniques

applicable to other systems such as SCC PCM/FM. Previously reported non-coherent

detection schemes use extremely complex metric computations [10] and cannot be ef-

fectively implemented in digital hardware. Hence non-coherent detection is considered

with special interest. In this thesis, some simplified detection schemes are presented

applicable to SCC systems. A summary of the thesis work is given below:

• A SCC system using PCM/FM is developed for the first time.

• Simplified detectors using decision feedback and pulse truncation technique are

presented for SCC PCM/FM, which give a performance close to the optimal de-

tection but with less than half the complexity of optimal decoding.

• A simple heuristic non-coherent algorithm is presented, which is applicable to

SCC CPMs. Using this algorithm, non-coherent detectors have been developed

for uncoded PCM/FM, SOQPSK-MIL, reduced complexity SOQPSK-TG (re-

duced complexity SOQPSK-TG is presented in [6]) and ARTM CPM. Also, pre-

sented here are non-coherent detectors for the SCC reduced complexity SOQPSK-

TG and SCC PCM/FM. The algorithm presented allows recovery of information

in presence of moderate phase noise, and achieves close to optimal coherent de-

tection without a significant increase in needed signal power (less than a fraction

of a decibel in most cases).

• The proposed non-coherent algorithm is also applied to the reduced complex-

ity detector for SCC PCM/FM and uncoded ARTM . Several numerical results

are presented. Among them, a half complexity non-coherent detector for SCC

PCM/FM and a non-coherent detector for uncoded ARTM CPM with one-sixteenth
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complexity, both in comparison to optimal state decoding, are the key contribu-

tions of this thesis.

1.4 Thesis Outline

In this thesis, the contents have been organized as follows. Chapter 2 deals with the

soft-input soft-output (SISO) algorithm, metric computations used in decoding algo-

rithms and also provides an overview of SCC systems. Chapter 3 explains the available

reduced complexity techniques which are applied to CPMs in SCC systems. Chapter

4 presents the non-coherent detection algorithm, which is applicable to both uncoded

and SCC systems. The simulation results with explainations are presented in Chapter

5. The conclusions and a vision for future work are offered in Chapter 6.

1.5 Paper Publication

This thesis is partly based on the following publication:

Dileep Kumaraswamy and Erik Perrins, ”On Reduced Complexity Techniques For

Bandwidth Efficient Continuous Phase Modulations in Serially Concatenated Coded

Systems”, to appear in Proceedings of the International Telemetering Conference (ITC),

Las Vegas, NV, October 22-25, 2007.
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Chapter 2

System Description

2.1 Maximum Likelihood Decoding of CPM

The complex baseband noisy signal at the receiver is

r(t) = s(t; α) + n(t), (2.1)

where n(t) is complex-valued additive white Gaussian noise (AWGN) with double-

sided power spectral density N0

2
. A channel with white noise has an autocorrelation

which is almost an an impulse function, which means it does not have memory and

affects transmitted symbols independently. Further, dependent bit errors in case of a

CPM are only due to the memory of the CPM. Based on the AWGN assumption of

noise, the receiver tries to optimize the log-likelihood function1 for optimal detection

of underlying hypothesized information sequence α̃, which is [5]

L(α̃) ∼ −
∫ ∞

−∞
|r(t)− s(t; α̃)|2dt. (2.2)

1Log-likelihood functions spell out probabilities for possible outcomes of α̃
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Due to the constant envelope property of CPMs, maximizing Eq. (2.2) is equivalent to

maximizing the correlation between the received signal and the transmitted signal

λ(α̃) = Re
{∫ ∞

−∞
r(t)s∗(t; α̃)dt

}
. (2.3)

The correlation up to the current symbol interval is

λn(α̃) = Re

{∫ (n+1)Ts

−∞
r(t)s∗(t; α̃)dt

}
, (2.4)

which can be recursively expanded into

λn(α̃) = λn−1(α̃) + Re

{∫ (n+1)Ts

nTs

r(t)s∗(t; α̃)dt

}
, (2.5)

where a forward incremental metric is computed. We have broadly two (trellis based)

options to implement the recursive ML decoding—

1) The Viterbi algorithm (VA) — which performs maximum likely sequence detec-

tion (MLSD) of the underlying information α̃ using a forward recursion over a

block of data to minimize the word (sequence) error rate.

2) The soft-input soft-output (SISO) algorithm — which minimizes the symbol error

rate of the underlying information α̃ using a forward and a reverse recursion

over a block of data and is more complex than the VA. The SISO algorithm is a

derivative of the popular Bahl Cocke Jelenik Raviv (BCJR) algorithm [11].

Since the focus of the research is on serial concatenation of CPMs with convolutional

codes (CCs), the SISO algorithm for CPM2 is discussed in the following section.

2The SISO algorithm is applicable to both CPMs and CCs, but the focus of the work being on CPMs,
the SISO algorithm for CCs is not discussed.
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2.2 Matched Filtering and SISO Algorithm for CPM

SISO
(CPM)

Bank of 
Matched 
Filters

Introducing 
Phase 

Rotation

{ })~()
~

(
~

nn
Sj ze nLn αϑ −−)~( nnz α

);~( IP α );~( OP α

LMP'
LM

)(tr

Figure 2.1. Matched Filtering for the ML decoding of CPM.

Modulations with memory such as CPMs, can be represented by a trellis which

completely describe the states and phase changes in a CPM. The trellis for MSK is

shown in Fig. 2.2. Each branch of the trellis is completely specified by the state σ′

and the current branch symbol αn. So, from Eq. (1.8), we see that the number of

states in the trellis is P ′ × ML−1 from the P ′ cumulative phases and ML−1 symbol

combinations resulting from the L − 1 tuple. Since each state is associated with M

possible branch symbols, the number of branches is P ′ML. A bank of matched filters

is used implement the ML decoding in Eq. (2.5). Matched filters are nothing but time-

reversed complex-conjugated reference waveforms. The branch metrics for the trellis

based SISO algorithm are obtained by a set of ML matched filtered outputs combined

with P ′ cumulative phases as shown in Fig. 2.1 and are given by

zn(S̃n, Ẽn) = Re
{

e−jeϑn−L(eSn)zn(α̃n)
}

, (2.6)
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where

zn(α̃n) =

∫ (n+1)Ts

nTs

r(t) e−j2π
Pn

i=n−L+1 hieαiq(t−iTs)dt (2.7)

represents the matched filtering operation. S̃n is the starting state for the hypothesized

trellis branch to which the cumulative phase ϑ̃n−L is associated and Ẽn is the ending

state, hi is the modulation index associated with α̃i.3

The SISO processor for CPM incorporates the branch metrics from the matched

filtering operation into the max-log version of the algorithm in [12], which does not

require any knowledge of the noise psd N0. The SISO processor may also use any

available knowledge of the probability distribution of the block of information symbols

α̃ to do the decoding from the noise affected received waveform. When error control

coding is used, the a prior knowledge of the probability distribution of α̃ is obtained

3(ϑ̃n−L, α̃n) can be used to refer to the same branch (S̃n, Ẽn).
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from the soft decision estimates of the channel symbols. In the absence of error control

coding, no assumption is made on the same. The state metrics in the forward recursion

are obtained by

An(Ẽn) =
[
An−1(S̃n−1) + Pn [α̃n; I] +zn(S̃n, Ẽn)

]
, (2.8)

where n = 1, 2, . . . , K. K is the length of the block over which the forward and

reverse recursion state metrics are computed. Among the several branches ending at

the state En, the survivors of the path metrics are used for cumulative metric update

rather than a sum of the path metrics, which is the case in [12]. The path with the

maximum (highest) cumulative metric is chosen as the survivor, the same way as in VA.

No metric normalization is used. Also, A0(·) = 0 are assumed as initial conditions (i.e.,

no assumption is made on the initial state of the CPM given by Eq. (1.8)). Pn [α̃n; I]

represents the a-priori probability on the symbol αn. Likewise, the state metrics in the

reverse recursion are obtained by

Bn(S̃n) =
[
Bn+1(Ẽn+1) + Pn+1 [α̃n+1; I] +zn+1(S̃n+1, Ẽn+1)

]
, (2.9)

where n = K−1, . . . , 1, 0. Again, we assume BK(·) = 0. The soft decision of the

information symbols4 is obtained as

Pn [α̂n; O] =
[
An−1(S̃n−1) + Pn [α̃n; I] +zn(S̃n, Ẽn) + Bn+1(Ẽn)

]
, (2.10)

where Pn [α̂n; I] is the determined a-posteriori probability (APP) for the symbol αn.

The APP need to be adjusted in time (aligned) to spell out correct symbols in the case

4branch symbols of the trellis at time n
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Figure 2.3. Serial Concatenation of CPM with CC.

of partial response CPMs. Finally, the APP are normalized with respect to the a-priori

probability distribution given by

Pn(α̂; O) = Pn(α̂; O)− Pn(α̃; I). (2.11)

2.3 Serial Concatenation of CPM

2.3.1 Background

Shannon’s noisy channel coding theorem established the possibility of information

transfer with arbitrarily low probability of error for rates of transmission less than the

capacity of the channel. A lot of research work was carried out to design modulation

and coding schemes which took the performance close to the Shannon’s limit. While

random codes meant exponentially large decoding complexity for even moderate sizes

of data blocks, structured codes meant a trade off with distance properties of the code.
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Turbo codes [13] were invented in an attempt to design random like codes by parallel

concatenation of relatively simple constituent codes separated by an interleaver. In

principle, the idea behind serial concatenation of modulation and error control coding

is based upon the turbo decoding process.

The block diagram of a serially concatenated coded (SCC) system is shown in

Fig. 2.3. It consists of an inner modulation and an outer code, separated by an inter-

leaver. At the transmitter end, we have input bits, possibly from a source encoder. The

bit stream is encoded by a CC. The encoded bits are mapped into symbols for CPMs

with higher order signalling (quaternary, octal, etc) using natural or gray mapping. The

system model assumes an AWGN channel. The SISO algorithm used is given in the

Section 2.2. Since the CPM modulator operates on the coded (and interleaved) symbols

of the input bits, the SISO processor for CPM uses the APP of the code symbols P [ĉ; O]

produced by the SISO decoder for CC. The SISO processor for CC operates on the de-

interleaved APP of the CPM symbols P [α̂; I] to produce the APP of the input bits to the

system. Since the two decoders exchange decoded information with each other in an

iterative process, there is a sharp improvement (see Fig. 2.5) in the performance of the

system. Although the two SISO devices are each based on the ML decoding criterion,

the overall decoding is not ML based since the burden of jointly decoding the inner

and outer codes is decoupled [12, 13]. Thus the SCC systems are reduced complexity

systems when compared to the ML decoding.

2.3.2 Error Events in CPM

In modulations with memory such as CPM, decoding algorithms produce dependent

bit errors although the noise affecting the system is white (uncorrelated noise samples

even at high sampling rates). An error event occurs when the decoding algorithm traces
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a decoding path in the trellis, which differs from the actual path by a few symbols.5

There can be several possible error events occurring with different probabilities in a

CPM. For example in MSK, the most probable error event (shortest merging path) is

when we have a sequence α1 = {. . . ,−1, +1, . . .} at the transmitter and a decoded

sequence α2 = {. . . , +1,−1, . . .} at the receiver which gives it an Euclidean distance

of 2. This distance [5] can be computed by

d2 =
1

2Eb

∫

(R+L−1)T

|s(t; α1)− s(t; α2)|2 dt, (2.12)

where the difference between α1 and α2 is nonzero for a span of R symbols. The bit

error rate (BER) for MSK is given by the union bound6

Pe ≈ 2 ·Q
(√

2Eb

N0

)
. (2.13)

2.3.3 Interleavers, Inner and Outer Codes

In general, the union bound for the BER in a CPM can consist of probabilities due

to multiple error events which have different distances and can be expressed as

Pe = k1 ·Q
(√

d1Eb

N0

)
+ k2 ·Q

(√
d2Eb

N0

)
+ . . . + kl ·Q

(√
dlEb

N0

)
. (2.14)

Interleavers reduce the coefficients {ki}l
i=0 associated with the error events and im-

prove the system performance. In order that the interleaver should work, the inner code

has to be recursive such as CPM while the outer codes have to be non-recursive. CCs

are popularly used as outer codes. A CC is described by the code rate, the generator

5An error event in linear codes such as convolutional codes is defined as that path which merged back
to the all-zero code path. The number of ones in the codeword gives the distance associated with the
event.

6Q(·) is defined in Appendix A.
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polynomials and the constraint length, which together describe the error control prop-

erties, bandwidth expansion and the coding gain. The choice of CPM parameters for

the inner code (h, M ), the mapping rule (natural/gray) and the rate of the outer code

(Rcc) are discussed in sufficient detail in [8]. All the SCC systems studied have been

chosen to be compliant with these guidelines. The coefficient out in front of the Q(·)
function also depends on the rule used to map bits to symbols and consequently may

result in different bit error rates. For example, in the case of the multi-h CPM given by

h = { 4
16

, 5
16
}, M = 4, 3RC, the performance of gray mapping is marginally better than

natural mapping as seen in Fig. 2.4.
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}, M =4, 3RC.

The interleavers used in SCC systems are S-random (pseudo random) interleavers.

Block interleavers used to mitigate fast fading, will not be effective in SCC systems.



26

However, the S-random interleavers make the SCC CPM a little immune to fading,

which is mentioned in [14]. Further, the coding gain of the SCC system greatly im-

proves with the size of the interleaver. The complexity of the ML decoding exponen-

tially increases with the size of the interleaver, just as they do with increased number of

iterations. However, the decoding complexity is independent of the size of interleavers

in SCC systems. But large interleavers increase latency in the decoding.7 Performance

of the SCC CPM system for varying number of iterations and interleaver sizes is shown

in Fig. 2.5 and Fig. 2.6 respectively. The outer code under consideration is an opti-

mal 4-state, rate 1
2

convolutional code with the generator polynomials g1 = [1 0 1] and

g2 = [1 1 1].
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Figure 2.5. Coded PCM/FM: BER vs. # Iterations (2048 bit Interleaver).

7They also increase the complexity in terms of memory requirement.
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Chapter 3

Reduced Complexity Techniques for

SCC-CPM

3.1 Introduction

It is well established in the literature and summarized in Chapter 2, that SCC sys-

tems with CPM as recursive inner codes give very high coding gains at low operative

signal to noise ratios (SNR), and the performance approaches the union bound for the

ML decoding. Although SCC systems by themselves are reduced complexity systems

when compared to ML decoding, when very highly bandwidth efficient CPMs such as

PCM/FM, SOQPSK-TG and ARTM [15] are used, they present a problem of extremely

high decoding complexity at the receiver. Hence there is a need to develop complexity

reduction techniques for SCC-CPMs..

Complexity reduction techniques attempt to reduce the size of the trellis as seen

by the receiver. They use approximations to sub-optimally decode the CPM, in which

case the signal models at the transmitter differs from the signal model at the receiver.

This affects the Euclidean distances associated with the CPM error events. A way
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to calculate the projected Euclidean distance is given in [16], which is also discussed

in [17]. The ultimate aim of reduced complexity approaches is to achieve as good

a performance as optimal decoding.1 The amount of extra transmitter power needed

to achieve performance close to optimal decoding serves as a figure of merit for each

technique.

3.2 Rimoldi’s Approach

 Even and Odd times

 Even times
 

 Odd times
 

Figure 3.1. Complex Phase States at Even and Odd times in a CPM.

Using the tilted phase approach [18], Rimoldi identified that during any signalling

interval, the CPM actually has only half the number of cumulative phases given by Eq.

(1.10) i.e., P =P ′/2. This means that the optimal decoding itself requires PML states

1Here, it is important to note that optimal refers to the benchmark set by full complexity SCC CPM
systems and not the ML decoding.
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against P ′ML states (see Eq. (1.8)). The phase state reduction is shown in Fig. 3.1.

Hence we can write

hi =
Ki

P
. (3.1)

To realize Rimoldi’s technique, we use the pseudo data symbols ui = (αi+M−1)
2

in the

description of cumulative phase tilt ϑn−L. This transformation decomposes ϑn−L in

Eq. (1.10) into a deterministic data independent phase tilt νn−L and a data dependent

phase state θn−L, given by

ϑn−L =
2π

P ′

n−L∑
i=0

Kiαi =
2π

P

n−L∑
i=0

Kiui − (M−1)π

P

n−L∑
i=0

Ki, (3.2)

which can be written as

ϑn−L = θn−L + νn−L, (3.3)

where

θn−L =
2π

P

n−L∑
i=0

Kiui, (3.4)

and

νn−L = −(M−1)π

P

n−L∑
i=0

Ki. (3.5)

The data independent phase tilt νn−L can be recursively obtained through

νn−L = νn−L−1 − hn−L(M − 1)π, (3.6)

which gives the required phase correction in transition from the even phase states to the

odd phase states and vice-versa. The term θn−L can take on P values resulting from the

modulo 2π property of the complex phase, given by θn−L ∈ {0·2π
P

, 1·2π
P

, 2·2π
P

, . . . , (P−1)·2π
P

}
and similarly we have P ′ values of νn−L given by νn−L ∈ {0·2π

P ′ , 1·2π
P ′ , 2·2π

P ′ , . . . , (P ′−1)·2π
P ′ }.
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The number of states (and branches) in the trellis reduces by half compared to the clas-

sical treatment in [5]. So a new set of branch metrics for the SISO algorithm with

only half the phase multiplications is used in place of zn(S̃n, Ẽn) (see Eq. (2.6)). The

reduced metric computation is given by

kn(S̃n, Ẽn) = Re
{

e−jνn−Le−j eθn−L(eSn)zn(α̃n)
}

, (3.7)

where νn−L is obtained at every symbol time using (3.6). However, the correlative state

vector for the matched filtering remains the same as before in (2.7), which gives the

same number of matched filtering operations. Rimoldi’s technique is a way of optimal

decoding of the CPM, without any approximations and assumptions. It is not applicable

to SOQPSK, which is not a regular CPM and has a slightly different signal model.

All the analyses in the subsequent sections are presented as further simplifications

over the Rimoldi’s technique. In the reduced complexity techniques that follow, the

signal model assumed at the receiver is different from the actual signal model at the

transmitter. In such cases, they are mismatched and the decoding is sub-optimal. The

performance degradation of the reduced complexity technique depends on the projected

Euclidean distance [16, 17].

3.3 Decision Feedback

Decision feedback is a method of reducing the number of phase states via the state

space partitioning approach [9, 17]. The SISO algorithm computes PML branch met-

rics while using the Rimoldi’s technique of optimal decoding. Among them, not all

the branch metrics are competitive. A complexity reduction is achieved by reducing

number of phase state multiplications (Pr) in the branch metric computations, where
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Figure 3.2. Complex Phase State Reduction by Decision Feedback.

Pr <P as shown in Fig. 3.2. The phase state associations with the ML matched filtered

outputs are determined at run time by a phase update equation given by

θ̂n−L+1(Ẽ
f
n) = θ̂n−L(S̃f

n) + πhn−L+1ûn−L+1, (3.8)

where S̃f
n and Ẽf

n represent the states of the reduced trellis
(
n(S̃f

n) < n(S̃n)
)

in the

usual sense.2 ûn−L+1 represents the merging symbol (absorbed into the CPM state) for

the state S̃f
n and hn−L+1 is the associated modulation index. The metric computation

for the SISO algorithm is given by

kn(S̃f
n , Ẽf

n) = Re
{

e−jνn−Le−j θ̂n−L(eSf
n)zn(α̃n)

}
. (3.9)

2n(·) — number of values of (·)



33

Both the phase tilt and cumulative phase updates in Eq. (3.6) and Eq. (3.8) are per-

formed using the merging symbols from the survivor branches in the forward recursion

which maximize the new state metric at time n (The time index in Eq. (3.6) refers to

the update at time n−1 and not n). Decision feedback is a useful complexity reduction

technique for CPMs with large number of phase states. Decision feedback applied to

uncoded PCM/FM, ARTM CPM and SCC PCM/FM presented in Chapter 5, show a

BER performance close to the full state optimal decoding, but at a much lesser com-

plexity.

3.4 Pulse Truncation

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

 Normalized time (t/T) 

 A
m

pl
itu

de
 

Frequency pulse (Tx)
Phase pulse (Tx)
Frequency pulse (Rx)
Phase pulse (Rx)

Figure 3.3. Pulse Truncation in PCM/FM.

The frequency pulse truncation is a useful complexity technique applicable to CPMs

wit long and smooth phase pulses. Pulse truncation exploits the fact that the RC fre-
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Figure 3.4. Pulse Truncation in SOQPSK-TG.
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Figure 3.5. Pulse Truncation in ARTM.
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quency pulse has a low frequency content on each end. This technique reduces the

number of complex matched filtering operations due to correlative state reduction (and

hence reduction in state complexity). For example in the CPMs:

• PCM/FM (L = 2): Truncation from L = 2 to Lr = 1 shown in Fig. 3.3 gives

a complexity reduction by a factor of half. The reduced correlative state (see

Eq. (1.7)) and the truncated pulse are given by

αt
n = αn, (3.10)

and

qPT (t) =





0, t ≤ Ts

2

q(t), Ts

2
≤ t ≤ 3Ts

2

1
2
, t ≥ 3Ts

2
respectively.

(3.11)

• SOQPSK-TG (L = 8): Truncation from L=8 to Lr =1 shown in Fig. 3.4 gives

a complexity reduction by a factor of 128. The truncated pulse is given by

qPT (t) =





0, t ≤ 7Ts

2

q(t), 7Ts

2
≤ t ≤ 9Ts

2

1
2
, t ≥ 9Ts

2
.

(3.12)

• ARTM (L = 3): Truncation from L = 3 to Lr = 2 shown in Fig. 3.5 gives

a complexity reduction by a factor of 4. The reduced correlative state and the
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truncated pulse are given by

αt
n = αn−1, αn, (3.13)

and

qPT (t) =





0, t ≤ Ts

2

q(t), Ts

2
≤ t ≤ 5Ts

2

1
2
, t ≥ 5Ts

2
respectively.

(3.14)

An enticing aspect in the decoding of SOQPSK (MIL and TG) lies in the fact that

multiplication with any of the 4 phase states can otherwise be accomplished by change

of signs associated with the real and complex parts of the matched filter output. So, the

SOQPSK decoding is more easily implementable in hardware.

The metric computations for the SISO algorithm are given by

kn(S̃t
n, Ẽ

t
n) = Re

[
e−jνn−Le−jeθn−L(eSt

n)zn(α̃t
n)

]
, (3.15)

where

zn(α̃t
n) =

∫ (n+1)Ts

nTs

r(t−DTs) e−j2π
Pn

i=n−Lr+1 hieαiqPT (t−iTs)dt (3.16)

gives the reduced number of matched filtering operations compared to Eq. 2.7. S̃t
n

and Ẽt
n represent the states in the reduced trellis. qPT is the truncated pulse used at

the receiver given by Eq. (3.11), Eq. (3.12) and Eq. (3.14) for the discussed cases of

PCM/FM, SOQPSK-TG and ARTM, respectively. Likewise, the respective delays (in

symbol times) needed to be incorporated into the received signal are given by D =

0.5, 3.5, 0.5 respectively.
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3.5 Decision Feedback with Pulse Truncation

While decision feedback helps reduce the number of phase states, pulse truncation

reduces the number of phase states and complex matched filters. A combination of

the above two techniques gives both the advantages (although the loss depends on the

overall approximation). The branch metrics for the SISO algorithm will now be

kn(S̃t
n, Ẽt

n) = Re
[
e−jνn−Le−jθ̂n−L(eSf,t

n )zn(α̃t
n)

]
, (3.17)

where S̃f,t
n and Ẽf,t

n represent the states in the reduced trellis. Decision feedback, with

pulse truncation gives huge savings in complexity in ARTM CPM, which is shown in

Chapter 5. Another way of trellis reduction is achieved by the use of Lr at the receiver

where Lr > L. Increase in the value of L however, allows further reduction in the

number of phase states used compared to decision feedback. This technique as we see

later, does not approximate to the optimal decoding at low SNR and consequently is

suitable only for the uncoded systems. The metric increment for PCM/FM with Lr =3

is given by

kn(S̃f, Lr=3
n , Ẽf, Lr=3

n ) = Re
[
e−jνn−3e−jθ̂n−3(eSf, Lr=3

n )e−jπhn−2ûn−2zn(α̃n)
]
, (3.18)

and the phase update equation is given by

θ̂n−3+1(Ẽ
f, Lr=3
n ) = θ̂n−4+1(S̃

f, Lr=3
n ) + πhn−2ûn−2, (3.19)
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where ûn−2 is the merging symbol at time n. For Lr =4, the metric increment is given

by

kn(S̃f, Lr=4
n , Ẽf, Lr=4

n ) = Re
[
e−jνn−4e−jθ̂n−4(eSf, Lr=4

n )e−jπhn−3ûn−3e−jπhn−2ûn−2zn(α̃n)
]
,

(3.20)

and the phase update equation is given by

θ̂n−4+1(Ẽ
f, Lr=3
n ) = θ̂n−5+1(S̃

f, Lr=3
n ) + πhn−3ûn−3, (3.21)

where ûn−3 is the merging symbol at time n.

3.6 Implementation Issues

1. In decision feedback, Pr phase states take on values from the P phase states of the

full state CPM. Since there are going to be finite and definite phase state values

possible at any point of time, the phase update in Eq. (3.8) can be implemented

in the integer domain as

În−L+1(Ẽ
f
n) =

[
În−L(S̃f

n) + Kn−L+1ûn−L+1

]
mod P

, (3.22)

where

θn−L =
π

P
.In−L =

π

P
.

n−L∑
i=0

2Kiui

︸ ︷︷ ︸
integer

. (3.23)

Thus, the complex phase updates and modulo 2π operations in Eq. (3.8) can be

efficiently implemented using Eq. (3.22) and Eq. (3.23). The computed (updated)

phase indices in Eq. (3.22) can be mapped back to the complex phase values using

a look-up table of all the transmitter phase states, using the Pr values of indices
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as the key as shown in Fig. 3.6. This idea can be extended to the computation of

the data dependent phase terms in Eq. (3.18) – Eq. (3.21), as well as Eq. (3.5).

0 1 2 P-1

pre-computed

[ ]1...,2,1,0 −P
P

j
e

π

Figure 3.6. Lookup Table for Phase States.

2. In using the SISO algorithm, the initial values of the Pr phase states need to

be suitably assumed. A guideline to choose the initial conditions of phase state

indices is given by

In−L =


0, 0, . . . , 0︸ ︷︷ ︸

MLr−1

, 1, 1, . . . , 1︸ ︷︷ ︸
MLr−1

, . . . , Pr−1, Pr−1, . . . , Pr−1︸ ︷︷ ︸
MLr−1


 , (3.24)

where θn−L = π
P
In−L and In−L∈{0, 1, . . . , P−1}.

3. The SISO algorithms do not make any assumption on the initial conditions of

the CPM or on the termination bits for the CC. So all the recursion metrics as-

sume initial conditions to be zero as mentioned before. The CPM modulator may

assume any initial conditions of L − 1 symbols of the correlative state vector

in Eq. (1.7). In all the simulations, these symbols have been chosen to be ’1’,

without any loss of generalization.
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4. Correlative state reduction calls for suitable assumption on the initial condition

of the data independent phase tilt νn−L when the Rimoldi’s technique is applied.

The initial conditions assumed are given by Table 3.1 for PCM/FM and Table 3.2

for ARTM CPM. In the pulse truncation technique, since the CPM phase is

Case Lr Initial condition for

νn−L

1 1 h(M−1)π

2 2 0

3 3 h(M−1)π

4 4 0

Table 3.1. Initial Conditions for Phase Tilt νn−L in PCM/FM.

Case Lr Initial condition for

νn−L

1 1 h2(M−1)π

2 2 h1(M−1)π

3 3 0

Table 3.2. Initial Conditions for Phase Tilt νn−L in ARTM CPM.

being observed only in the truncated pulse interval, appropriate delay before the

matched filtering needs to be introduced. The set of modulation indices used

must correspond to the symbols in the correlative state vector in multi-h CPMs.

5. With large interleavers and sufficient number of iterations, the performance of

the coded system approaches the union bounds for ML decoding. Given an ap-

plication, it is a trade-off problem involving —

• amount of memory available,

• latency and available processing power, and
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• performance.

6. Sometimes the probability distributions P [α̂; O] and P [ĉ; O] are scaled by con-

stants C1 and C2, for improved coding gain at no additional cost of resources.

The scale factors are chosen on a trial and error basis (|C1|, |C2| ≤ 1). The

following table lists the scale factors used for the (5, 7) convolution code (see

Fig. 2.3).

Modulation C1 C2

PCM/FM 0.65 0.65

SOQPSK-TG 0.80 0.75

SOQPSK-MIL 0.75 0.75

Table 3.3. APP scale factors for (5, 7) Coded CPMs.

7. Symbol interleavers could be used for non-binary CPMs. Symbol interleavers

have been shown to give higher coding gains compared to their counterparts in bit

interleavers but have higher error floors. In addition, they have lesser complexity

in terms of recursion metric computations in the SISO algorithm [19].

8. Sampling issues in communication systems have been extensively documented in

the literature. The chosen sampling rate should not only ensure minimal aliasing,

but also preserve the fidelity of waveform. 3

3Inadequately sampled waveforms can deteriorate the Euclidean distance (detection efficiency).
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3.7 Noise Bandwidth Calibration

The white noise affecting the SCC system can be written as n(t) = nI(t)+ j nQ(t).

The total variance σ2
n is given by

σ2
n =

Nsamp

log2(M) Rcc
Eb

N0

,

where

Eb

N0

: Bit-energy to noise ratio (linear scale, not in dB),

Nsamp : Sampling rate at the receiver (# samples/symbol),

M : Cardinality of the source alphabet,

Rcc : Rate of the convolutional code.
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Chapter 4

Non-Coherent Detection of CPM

4.1 Introduction

The received signal representation in Eq. (2.1) represents an ideal system, where the

receiver has complete knowledge of the carrier phase. This requires the use of a phase

locked loop (PLL) in the receiver to track the carrier. A receiver of this kind is called

as a coherent receiver and the detection is called coherent detection. However, due to

the very low operative SNR, the coherent detection in SCC CPMs suffers from false

locks, phase slips, loss of locks due to Doppler shift (fading), carrier frequency jitter,

etc. In such situations, non-coherent detection is an attractive strategy. Not only does it

eliminate the need for PLLs, but it also provides a way to recover the information bits

in the presence of phase noise.

4.2 Previous Efforts

Although several non-coherent detection algorithms are available in the literature

and are suitable for various modulation schemes, only a handful of them are applicable
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to systems using error control coding as highlighted in [20]. [21] presents a way to do

non-coherent sequence estimation by linearizing the CPM using Laurent’s decomposi-

tion. The drawback of this algorithm is that it does not address to the needs of SCC

systems. The authors of [21] have presented algorithms applicable to iterative process-

ing in [22] applicable to non-coherent, fading and ISI channels. Although they have

been demonstrated to be very superior in the presence of strong phase noise, they are

computationally complex due to rectangular window averaging in obtaining the phase

estimates and are usually applicable to simple modulations. This algorithm is not prac-

tical in an environment where computational power is limited and judiciously used.

[10] considers non-coherent detection of SCC MSK, which uses an exponential win-

dow for complexity reduction via recursive phase updation. Still, sufficient complexity

reduction is not achieved in the way the branch metrics are computed. For example,

they require computationally complex bessel functions to be computed for every trellis

branch for both the forward and reverse recursions of the SISO algorithm. Also, the

SISO algorithm presented here compute cumulative branch metrics, rather than cumu-

lative state metrics (see Chapter 2). Due to practical limitations (latency and memory),

the size of interleavers used has to be limited, which is undesirable. Another aspect

in [10] is that the computation equations are considered are not in the log domain un-

like the SISO algorithm in Chapter 2. Inspired by the ideas in [23], [4], a very simple

heuristic non-coherent detection scheme is presented. The proposed algorithm gives a

performance close to the coherent detection at moderate phase noise environments (for

example - aeronautical telemetry applications), with minimal increase in complexity

compared to the optimal non-coherent detection in [10].
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4.3 The Proposed Non-Coherent Algorithm

The complex baseband signal at the receiver affected by phase noise is given by

r(t) = ejψ(t)s(t; α) + n(t), (4.1)

where ψ(t) is the phase noise affecting the received signal. Also, the receiver has no

knowledge of the carrier phase in the absence of the PLL (non-coherent detection).

The non coherent branch metric is given by

kn(S̃n, Ẽn) = Re
{

Q∗
n(S̃n) e−jνn−Le−j eθn−L(eSn)zn(α̃n)

}
, (4.2)

where the complex phase reference Qn(·) is computed using an exponential window

averaging of the previous phase references and is given by

Qn(Ẽn) = κQn−1(S̃n) + (1− κ)
{

e−jνn−Le−j eθn−L(eSn)
}

. (4.3)

The forgetting factor κ defines the rate at which the older phase estimates needs to be

forgotten. Obviously, under larger phase noise, the window needs to be smaller i.e., κ

needs to be smaller and vice-versa. Under no phase noise and κ = 1, the metrics in

Eq. (4.3) and Eq. (4.2) reduce to coherent detection given by Eq. (3.7). When κ < 1,

the algorithm begins to track the unknown carrier phase and it is eliminated out in the

metric computations. The lower the value of κ, the faster is the acquisition time to

track the unknown carrier phase, but higher is the required signal power to achieve

the performance of coherent detection. The phase reference updates in Eq. (4.3) are

computed after the local survivors are declared.
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4.4 Phase Noise Simulation

The phase noise ψ(t) is assumed to be slowly varying such that it can be assumed

to be constant in the duration of any symbol interval. The phase noise at the matched

filter sampling instants can be represented by the auto regressive (AR) model

ψ(k) = ψ(k − 1) + ψ′(k), (4.4)

where {ψ′(k)} are independent and identically distributed Gaussian random variables

with zero mean and variance σ2.

Since the value of the forgetting factor chosen κ defines the span of the exponential

window for averaging out the phase noise, the best value of κ must be determined for a

given value of phase noise and for a given modulation scheme.

4.5 Demerits of the Algorithm

• The algorithm may not be applicable to fading channels since the algorithm tracks

only the phase variations and does not use any amplitude reference symbols as

in [10].
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Chapter 5

Simulation Results

In this chapter, various results on simplified detection schemes for PCM/FM, SOQPSK-

MIL, SOQPSK-TG and ARTM CPM are presented. Performance loss at a BER of 10−5

is used as the figure of merit to evaluate each of the complexity reduction and the non-

coherent detection techniques.

5.1 Serially Concatenated Coded PCM/FM System

An SCC system is developed here for the first time for PCM/FM. Performance of

the system with various interleaver sizes is presented in Fig. 5.2, which is based on

5 iterations. The scale factors C1 and C2 are assumed to be 0.65 each, which was

earlier mentioned in Table 3.3. The performance of the SCC PCM/FM system greatly

improves with the size of interleavers. Since the coded system is always processed

in blocks, we cannot in general use large blocks of data for transmission which would

result in high processing delay. An interleaver size of 2048 is chosen as a good trade-off

between processing time and performance gain.

With an interleaver size of 2048, the system performance is evaluated for varying
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Figure 5.1. Coded PCM/FM: BER vs. # Iterations (2048 bit Interleaver).

number of iterations. Since the processing delay and complexity of the decoding algo-

rithm depend on the number of iterations, we restrict number of iterations in the SCC

system to some nominal value, which can give a nice trade-off between implementa-

tion complexity and performance gain. From the Fig. 5.1 we see that large coding gains

are possible when the number of iterations are increased from 1 to 3. But, beyond 5

iterations, the BER performance of the system does not get significantly better. More

than 5 iterations seem to only add to the decoding complexity. Hence, a maximum of 5

iterations seems to be a good choice. The choice of 2048 bit interleaver and 5 iterations

is also guided by the fact that it gives us a fair chance to compare the performance of

the SCC PCM/FM system to the performance of SCC SOQPSK-TG in [6], which is

based on the same system parameters.

PCM/FM is a highly detection efficient CPM. A signal to noise ratio Eb

N0
of around
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Figure 5.2. Coded PCM/FM: BER vs. Size of Interleaver (5 Iterations).

8.4 dB is needed to achieve a BER performance of 10−5, without the use of error control

coding. The same BER performance is achieved by the SCC PCM/FM system, with

6.55 dB savings in the transmitted signal power, which satisfies our requirement for a

high gain system. However, the optimal decoding of PCM/FM requires a 20 trellis state

representation and 4 complex matched filters. This is still computationally complex to

be realized in digital hardware. So, several complexity reduction techniques have been

applied for the first time to the SCC systems. The results are given in the next section.

5.2 Reduced Complexity Techniques for PCM/FM

The pulse truncation technique discussed in Section 3.4 is used, which reduces the

number of complex matched filters to 2 and the number of trellis states to 10, resulting

in a complexity reduction by half. The BER curve for the 10 state detector (denoted by

Ns =10 using Pr = 10, Lr = 1 closely approximates the optimal detection at all values
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Figure 5.3. Reduced Complexity Techniques for Uncoded PCM/FM.
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of Eb

N0
, and hence is a good technique to adopt to get a near optimal performance. The

performance loss due to complexity reduction is measured in terms of the extra transmit

power needed to achieve the optimal performance. The loss for the 10 state detector in

the uncoded case is just 0.01 dB using pulse truncation. Further complexity reduction

is possible by the use of decision feedback combined with pulse-truncation. An 8 state

detector using Pr = 8, Lr = 1 is considered, which again gives a near optimal perfor-

mance as shown in Fig. 5.3, with the loss in signal power due to approximation being

0.07 dB. Other cases of 8 state detectors given by Pr = 4, Lr = 2 and Pr = 1, Lr = 4

perform well at high Eb

No
, but they do not approximate well, the optimal decoding curve

at low Eb

No
as shown in Fig. 5.4. The performance of the mismatched detectors at low Eb

No
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Figure 5.5. Reduced Complexity Techniques for Coded PCM/FM.

in the uncoded case is important because it indicates how well the curve approximates

the optimal decoder in SCC system. As expected, the best approximations in the un-
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coded case at low Eb

No
, turn out to be the best approximations in the coded case as well.

The 10 state detector described earlier, performs within 0.02 dB of the optimal detector

for SCC PCM/FM as shown in Fig. 5.5. This means that the coding gain in the 10 state

detector achieved over the optimal uncoded PCM/FM is 6.53 (6.55− 0.02) dB. This is

the best result achieved in an attempt to look for low complexity high gain detectors. A

simpler SCC PCM/FM detector with 8 states could be used with a performance loss of

0.17 dB. In any complexity reduction technique, the computational complexity trades

off with performance loss. In general, a performance loss of the order of a tenth of

a dB which is the case in the 10 state SCC PCM/FM detector is permissible. All the

described performance metrics are summarized in Table 5.1.

Case Pr Lr Number

of States

Number

of MFs

Loss in dB

Uncoded

Loss in dB

Coded

Comments

1 10 2 20 4 0 0 Optimal

2 10 1 10 2 0.01 0.02 Recommended

3 8 1 8 2 0.07 0.17 Good

4 4 1 4 2 > 1 1.01 Not recommended

Table 5.1. Comparison of Reduced Complexity Techniques for PCM/FM.

5.3 Reduced Complexity Techniques for ARTM CPM

ARTM CPM is a highly bandwidth efficient CPM. Optimal decoding of ARTM

CPM requires a 256 state trellis representation and 64 complex matched filters. Optimal

decoding is practically unaffordable in terms of the computational power required to get

optimal performance. Pulse truncation technique is considered here, which reduces the

number of complex matched filters to 16. The number of states in the reduced trellis is

64, which gives a complexity reduction by a factor of 4. The BER performance of the

reduced complexity ARTM CPM detectors is presented in Fig. 5.6. The performance
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P=16,L=2  (Ns=64)
P=08,L=2  (Ns=32)
P=02,L=3  (Ns=32)
P=04,L=2  (Ns=16)
P=16,L=1  (Ns=16)
P=02,L=2  (Ns=08)

Figure 5.6. Reduced Complexity Techniques for Uncoded ARTM.

loss due to pulse truncation in the 64 state detector is 0.06 dB for uncoded ARTM CPM

given by Pr = 16, Lr = 2. A further reduction in complexity is achieved when decision

feedback with pulse truncation is considered using Pr = 8, Lr = 2. The performance

loss for the 32 state detector is just 0.1 dB compared to the optimal 256 state detector.

This means an 8 fold reduction in complexity is achieved for a near optimal decoding.

The 32 state ARTM CPM detector approximates well to the optimal decoding at all

values of Eb

No
. A 16 state ARTM CPM detector for uncoded systems is also presented

using the parameters Pr = 4, Lr = 2, which achieves a complexity reduction by a

factor of 16 and suffers a performance loss of only 0.68 dB. The 32 state detector which

gives near optimal in performance (loss of 0.1 dB) but with 8 times lesser complexity is

recommended. Other reduced complexity detectors resulting by the use of parameters

Pr = 16, Lr = 1 and Pr = 2, Lr = 2 give high performance loss of over 2 dB, in
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comparison to the optimal decoding. The loss in performance is because the assumed

signal model at the receiver is highly mismatched to the actual signal model which

gives it poor distance properties (i.e., bad approximations). A summary of some of the

reduced complexity techniques for the uncoded ARTM CPM is given in Table 5.2.

Case Pr Lr Number

of States

Number

of MFs

Loss in dB

Uncoded

Comments

1 16 3 256 64 0 Optimal

2 16 2 64 16 0.06 Near Optimal

3 8 2 32 16 0.10 Recommended

4 4 2 16 16 0.68 Good

Table 5.2. Comparison of Reduced Complexity Techniques for ARTM
CPM.

An SCC ARTM CPM could be developed on the lines of SCC PCM/FM and is

suggested to be a possible future work.

5.4 Non-Coherent Detection of PCM/FM

The trellis based non-coherent detection algorithm presented in Chapter 4 is ap-

plied to PCM/FM. In the absence of phase noise, the standard deviation of phase noise

is given by σ = 0◦/symbol. The non-coherent receiver does not assume any knowledge

of the unknown carrier phase because of the absence of PLL. A forgetting factor κ is

used to compute the complex phase reference metric by exponential window averag-

ing in (4.3). The forgetting factor defines the rate at which the non-coherent algorithm

tracks and acquires the unknown carrier phase. A smaller value of κ allows faster track-

ing of carrier phase, but affects the detection efficiency. The choice of κ decides the

performance trade-off between detection efficiency and acquisition time. In practice,

it is found that a forgetting factor of around κ = 0.9 is a good choice of parameter to
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track the unknown carrier phase.

The performance of non-coherent detection of uncoded and coded PCM/FM is

shown in Fig. 5.7. The coherent detection is the baseline for comparing the perfor-

mance of the non-coherent detection. In the absence of phase noise, the uncoded non-

coherent detector performs with a loss of 0.1 dB and the SCC non-coherent detector

performs with a loss of 0.58 dB compared to the optimal state coherent detection.
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Union Bound
Coherent Detection (Uncoded)
σ=0, κ=0.875
Coherent Detection (Coded)
σ=0, κ=0.875 (Coded)

Figure 5.7. Non-Coherent PCM/FM: σ=0◦/sym.

In presence of a moderate phase noise, the performance of the non-coherent detector

for different values of the forgetting factor κ. The best value of κ is chosen for a given

variance (standard deviation) of phase noise. The performance of the non-coherent

detector in moderate phase noise condition is given in Fig. 5.8 and Fig. 5.9. The best

value of the forgetting factor κ is determined on a trial and error basis, in both the

uncoded and coded systems. The SCC non-coherent detector performs within 0.35 dB
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of the optimal coherent detector. This means that the lack of knowledge of the carrier

phase and presence of moderate phase noise (σ = 2◦/symbol)1 gives a performance as

good as coherent detection but with an additional transmit power of just 0.35 dB.
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Union Bound
Coherent Detection
P=10, L=2, σ=2, κ=0.95
P=10, L=2, σ=2, κ=0.875

Figure 5.8. Non-Coherent PCM/FM (Uncoded): σ=2◦/sym.

The performance of the non-coherent detector under higher phase noise conditions

is shown in Fig. 5.10 and Fig. 5.11. The losses are much higher because of higher

phase noise and also because of the fact that the decoding algorithm is heuristic and not

optimal. The performance of the non-coherent detectors for select (best) cases of κ is

summarized in Table 5.3.

The non-coherent detection is applied to the 10 state reduced complexity SCC

PCM/FM. The performance of the reduced complexity non-coherent detector under

moderate phase noise is shown in Fig. 5.12. The 10 state non-coherent detector is a

1From now on, phase noise is indicated in terms of the standard deviation σ.
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Coherent Detection
σ=2, κ=0.97
σ=2, κ=0.875

Figure 5.9. Non-Coherent PCM/FM (Coded): σ=2◦/sym.
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Union Bound
Coherent Detection
P=10, L=2, σ=5, κ=0.9
P=10, L=2, σ=5, κ=0.7

Figure 5.10. Non-Coherent PCM/FM (Uncoded): σ=5◦/sym.
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Coherent Detection
σ=5, κ=0.9
σ=5, κ=0.7

Figure 5.11. Non-Coherent PCM/FM (Coded): σ=5◦/sym.

reduced complexity high gain detector which performs within 0.4 dB of the optimal (20

state) coherent detector.

Case Phase Noise:

σ (std.dev)

Loss in dB

Uncoded

Loss in dB

Coded

1 0◦ 0.11 0.58

2 2◦ 0.15 0.33

3 5◦ 0.54 2.90

Table 5.3. Non-Coherent Detection of PCM/FM.

5.5 Non-Coherent Detection of SOQPSK-MIL

The performance of the 4 state non-coherent detector for SOQPSK-MIL is pre-

sented in Fig. 5.13 – Fig. 5.17. In the coded system, which is of interest to us, we
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Coherent Detection
Optimal Coherent Detection (Coded)
σ=2, κ=0.97 (20 state)
σ=2, κ=0.97 (10 state)

Figure 5.12. 10 state Non-Coherent PCM/FM (Coded): σ=2◦/sym.

see that the non-coherent detector makes a loss of 0.64 dB in the absence of phase

noise, with the use of κ = 0.875. The Rimoldi’s technique to do optimal decoding of

SOQPSK with 2 states is not possible because SOQPSK is not a regular CPM and is

defined by a slightly different CPM model which uses a precoder, discussed in Chap-

ter 1.

The performance of the coded system under moderate phase noise conditions is

given in Fig. 5.14 and Fig. 5.15. For a phase noise of 2◦/symbol, the best value of

κ for the SCC non-coherent detector is 0.95 which performs with a loss 0.5 dB. As

mentioned earlier, a slightly lower value of κ could be used allowing faster tracking of

carrier phase without much compromise on performance (about 0.75 dB for κ = 0.875).

Under higher phase noise, the detector makes higher loss in performance as ex-

pected, shown in Fig. 5.16 and Fig. 5.17. It could be noted that the value of κ = 0.875
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Union Bound
Coherent Detection (Uncoded)
σ=0, κ=0.8
Const. rotation, κ=0.8
Coherent Detection (Coded)
σ=0, κ=0.875 (Coded)

Figure 5.13. Non-Coherent SOQPSK-MIL: σ=0◦/sym.
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Coherent Detection
σ=2, κ=0.875
σ=2, κ=0.95
σ=2, κ=0.70
σ=2, κ=0.60

Figure 5.14. Non-Coherent SOQPSK-MIL (Uncoded): σ=2◦/sym.
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Coherent Detection
σ=2, κ=0.95
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Figure 5.15. Non-Coherent SOQPSK-MIL (Coded): σ=2◦/sym.

is unsuitable for the uncoded system as shown in Fig. 5.16. But at low Eb

N0
, the BER

curve with κ = 0.875 is better than the BER curve with κ = 0.6. This is the reason

why κ = 0.875 performs better than κ = 0.6 in the coded system as shown in Fig. 5.17.

The performance of the non-coherent detector for best cases of κ is summarized in

Table 5.4.

Case Phase Noise:

σ (std.dev)

Loss in dB

Uncoded

Loss in dB

Coded

1 0◦ 0.90 0.64

2 2◦ 1.38 0.54

3 5◦ 3.95 1.40

Table 5.4. Non-Coherent Detection of SOQPSK-MIL.
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Union Bound
Coherent Detection
σ=5, κ=0.6
σ=5, κ=0.875

Figure 5.16. Non-Coherent SOQPSK-MIL (Uncoded): σ=5◦/sym.
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Coherent Detection
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Figure 5.17. Non-Coherent SOQPSK-MIL (Coded): σ=5◦/sym.
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5.6 Non-Coherent Detection of SOQPSK-TG

Optimal decoding of SOQPSK-TG requires a 512 state decoder which is not prac-

tical. Instead, the reduced complexity detector given in [6], shown to be near optimal

is considered, which uses the pulse truncation to reduce the complexity by a factor of

128, but makes a performance loss of only about 0.2 dB compared to the optimal. The

performance of the 4 state non-coherent detector for pulse truncated SOQPSK-TG is

given in Fig. 5.18 – Fig. 5.22.
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Union Bound
Coherent Detection (Uncoded)
σ=0, κ=0.8
Const. rotation, κ=0.8
Coherent Detection (Coded)
σ=0, κ=0.875 (Coded)

Figure 5.18. Non-Coherent SOQPSK-TG: σ=0◦/sym.

The performance of the non-coherent detector for SOQPSK-TG under no phase

noise is given in Fig. 5.18. We see from Fig. 5.7, Fig. 5.13 and Fig. 5.18, that the per-

formance loss gets higher for the non-coherent detector. The more bandwidth efficient

SOQPSK-TG is harder to synchronize at the receiver than PCM/FM. The performance

loss in SCC non-coherent detector is 0.79 dB under no phase noise conditions.
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Union Bound
Coherent Detection
σ=2, κ=0.875
σ=2, κ=0.95
σ=2, κ=0.75
σ=2, κ=0.60

Figure 5.19. Non-Coherent SOQPSK-TG (Uncoded): σ=2◦/sym.
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Coherent Detection
σ=2, κ=0.95
σ=2, κ=0.875
σ=2, κ=0.6

Figure 5.20. Non-Coherent SOQPSK-TG (Coded): σ=2◦/sym.
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The performance of the non-coherent detector for moderate phase noise conditions

is shown in Fig. 5.19 and Fig. 5.20 for uncoded and coded systems respectively.

Again as expected, the performance loss is higher with higher phase noise as shown

in Fig. 5.21 and Fig. 5.22. As pointed out earlier in the case of SOQPSK-MIL, the

best value of κ needed for a given phase noise, is to be determined separately for the

uncoded and coded cases. The performance of the non-coherent detector for best cases

of κ is summarized in Table 5.5.
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Union Bound
Coherent Detection
σ=5, κ=0.6
σ=5, κ=0.875

Figure 5.21. Non-Coherent SOQPSK-TG (Uncoded): σ=5◦/sym.

5.7 Non-Coherent Detection of ARTM CPM

ARTM CPM is the most bandwidth efficient of all the CPMs considered. A 256

state non-coherent detector for uncoded ARTM CPM is presented in Fig. 5.23. The
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Coherent Detection
σ=5, κ=0.6
σ=5, κ=0.875

Figure 5.22. Non-Coherent SOQPSK-TG (Coded): σ=5◦/sym.

Case Phase Noise:

σ (std.dev)

Loss in dB

Uncoded

Loss in dB

Coded

1 0◦ 1.05 0.79

2 2◦ 2.07 0.71

3 5◦ 7.89 1.88

Table 5.5. Non-Coherent Detection of SOQPSK-TG.

non-coherent detector gives a performance loss of just 0.55 dB compared to the optimal

coherent detection, under no phase noise conditions.

But, the 256 state detector is highly complex to be realized in digital hardware. So,

the non-coherent detection is considered for the reduced complexity detectors presented

in Section 5.3, shown in Fig. 5.24 and Fig. 5.25. The 16 state non-coherent ARTM CPM

detector makes a performance loss of just 0.27 dB compared to the 16 state coherent

detector, which itself is 0.68 dB worse than the optimal coherent detection. So, the 16
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Union Bound
Full State Coherent Detection
σ=0, κ=0.875
σ=0, κ=0.70

Figure 5.23. Non-Coherent ARTM CPM: σ=0◦/sym.

state non-coherent detector for ARTM CPM achieves a huge complexity reduction, by

a factor of 16 compared to the optimal coherent receiver for ARTM CPM, but with a

performance loss of less than 1 dB.

The performance of the non-coherent detector under moderate phase noise con-

ditions given by σ = 2◦/symbol is shown in Fig. 5.26 – Fig. 5.28. The 16 state non-

coherent detector shown in Fig. 5.28 gives a performance loss of just 0.37 dB compared

to the 256 state non-coherent detector shown in Fig. 5.26. So a complexity reduction

by a factor of 16 is achieved with the compromise in performance being only 0.37 dB.

The performance of the non-coherent detector for full state ARTM CPM for the best

cases of κ is summarized in Table 5.6.
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Union Bound
Coherent Detection (Optimal)
Coherent Detection (Ns=32)
σ=0, κ=0.875 (Ns=32)
σ=0, κ=0.70 (Ns=32)

Figure 5.24. 32 state Non-Coherent ARTM CPM (Uncoded): σ=0◦/sym.

0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 (dB)

P
e

 

 

Union Bound
Coherent Detection (Optimal)
Coherent Detection (Ns=16)
σ=0, κ=0.875 (Ns=16)
σ=0, κ=0.70 (Ns=16)

Figure 5.25. 16 state Non-Coherent ARTM CPM (Uncoded): σ=0◦/sym.
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Union Bound
Coherent Detection (Optimal)
σ=2, κ=0.9
σ=2, κ=0.8
σ=2, κ=0.7

Figure 5.26. Non-Coherent ARTM CPM (Uncoded): σ=2◦/sym.
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Union Bound
Coherent Detection (Optimal)
Coherent Detection (Ns=32)
σ=2, κ=0.9 (Ns=32)
σ=2, κ=0.8 (Ns=32)
σ=2, κ=0.7 (Ns=32)

Figure 5.27. 32 state Non-Coherent ARTM CPM (Uncoded): σ=2◦/sym.



70

0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 (dB)

P
e

 

 

Union Bound
Coherent Detection (Optimal)
Coherent Detection (Ns=16)
σ=2, κ=0.8 (Ns=16)
σ=2, κ=0.7 (Ns=16)

Figure 5.28. 16 state Non-Coherent ARTM CPM (Uncoded): σ=2◦/sym.

Case Phase Noise:

σ (std.dev)

Loss in dB

Uncoded

1 0◦ 0.55

2 2◦ 2.04

Table 5.6. Non-Coherent Detection of ARTM CPM.
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Chapter 6

Conclusions

6.1 Key Contributions

1. An SCC PCM/FM system was developed. Optimal (full state) decoding of PCM/FM

in this system gives a coding gain of more than 6.5 dB over uncoded PCM/FM,

with the use of 2048 interleaver and 5 iterations as shown in Fig. 5.2 and Fig. 5.1.

This system gives a higher coding gain than the SOQPSK-TG detector presented

in [6].

2. While optimal decoding of uncoded PCM/FM requires a decoder state complex-

ity of 20 states, a 10 state detector with 0.01 dB performance loss and an 8 state

detector with and 0.07 dB (Pr = 8, Lr = 1) loss were proposed (see Fig. 5.3,

Fig. 5.4 and Fig. 5.5). The 10 state detector for SCC PCM/FM performs with just

0.02 dB loss and the 8 state SCC PCM/FM detector performs within 0.2 dB of

the optimal state detector. The 8 state detector for SCC PCM/FM is better than

the optimal SOQPSK-TG detector presented in [6] by nearly 0.5 dB.
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3. In the case of uncoded ARTM, a 32 state detector (Pr = 8, Lr = 2) with one-

eighth complexity and 0.1dB loss and a 16 state detector (Pr = 4, Lr = 2) with

one-sixteenth complexity and 0.68dB loss are presented (see Fig. 5.6).

4. Non-coherent detectors were presented for uncoded PCM/FM, SOQPSK-TG and

uncoded ARTM CPM. Motivated by high gains achieved by the coherent SCC

systems, non-coherent detectors for SCC PCM/FM and SCC SOQPSK-TG are

developed here for the first time using the proposed algorithm in Chapter 4. Per-

formance of the non-coherent detectors under phase noise is studied. In the un-

coded case, the detectors for PCM/FM, SOQPSK-TG (PT) 1 and ARTM CPM

have a performance loss of 0.15 dB, 2.07 dB and 2.04 dB respectively. And

in the coded case, the non-coherent detectors for PCM/FM and pulse truncated

SOQPSK-TG have a loss of 0.35 dB and 0.71 dB respectively, which is a small

amount of extra signal power needed to build simple, robust and compact re-

ceivers, without the use of PLLs.

5. The discussed reduced complexity techniques were combined with non-coherent

detection in phase noise environments. A 10 state non-coherent detector for SCC

PCM/FM is proposed (Pr = 10, Lr = 1), which performs within 0.04 dB of the

full state non-coherent detector (see Fig. 5.12). In otherwords, the overall perfor-

mance loss due to phase noise, lack of carrier phase recovery system (PLL) and

reduced complexity approximation is 0.35+0.04=0.39 dB relative to the optimal

coherent detection. Secondly, a 16 state ARTM CPM non-coherent detector is

presented, which is just 0.37 dB worse than the full state (256) non-coherent de-

tector, under the same phase noise conditions (standard deviation of 2◦/symbol).
1Pulse truncated SOQPSK-TG is considered in all the simulations.
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This means an overall additional expense of signal power is limited to about 2.4

dB (compare Fig. 5.26 and Fig. 5.28).

6.2 Future Study

On the lines of SCC SOQPSK and SCC PCM/FM, SCC ARTM system could be

built. Since ARTM is a quaternary CPM, the SISO algorithm for rate 1
2

convolutional

codes could be used to compute the needed code word probabilities instead of bit prob-

abilities, which are the same as symbol probabilities for the CPM. In such a case, we

are looking at a symbol interleaved SCC CPM system [19]. Similar to the 10 state SCC

PCM/FM detector, reduced complexity SCC ARTM detectors could be built. Some

initial work in this direction has already been done.
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Appendix A

The choice of a CPM for a given application is guided by mainly 3 factors — detec-

tion efficiency, spectral efficiency and decoding complexity. In the following sections,

each of the properties is highlighted.

A.1 Comparison of Power (Detection) Efficiencies

The BER performance of OQPSK and several CPMs is presented in Fig. 1. PCM/FM

has the highest detection efficiency while ARTM CPM has the least detection efficiency.

The BER union bounds for the modulations is given in Table 6.2, where

Case Modulation Union Bound for Pe

1 PCM/FM (Tier-0) Q
“q

2.61 Eb
N0

”

2 OQPSK Q
“q

2 Eb
N0

”

3 MSK 2Q
“q

2 Eb
N0

”

4 SOQPSK-MIL a Q
“q

2.36 Eb
N0

”
+ Q

“q
1.73 Eb

N0

”

5 SOQPSK-TG (Tier-1) Q
“q

2.59 Eb
N0

”
+ Q

“q
1.60 Eb

N0

”

6 ARTM (Tier-2) 15
128

Q
“q

1.29 Eb
N0

”
+ 108

128
Q
“q

1.66 Eb
N0

”

aThe union bounds for SOQPSK- MIL & TG assume differential encoding.

Table 1. Union bounds for BER.

Q(x) , 1√
2π

∫ ∞

x

e
−x2

2 dx. (1)
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Figure 1. Comparison of BER Performances.

A.2 Comparison of Power Spectral Densities

A comparison of spectral efficiencies of the aeronautical telemetry CPMs against

QPSK is shown in Fig. 2.
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Figure 2. Comparison of Power Spectral Densities.

A.3 Comparison of Decoding Complexities

A comparison of decoding complexities for the aeronautical telemetry CPMs is

presented in Table 6.2.

Case Modulation h M L Pulse Type Number of

States

Comments

1 PCM/FM (Tier-0) 7
10

2 2 RC 20 Regular CPM

2 MSK 1
2

2 1 REC 2 Regular CPM

3 SOQPSK-MIL 1
2

2 1 REC 4 Uses precoder a

4 SOQPSK-TG (Tier-1) 1
2

2 8 TG 512 Uses precoder

5 ARTM (Tier-2) 4
16

, 5
16

4 3 RC 256 Regular CPM

Table 2. Comparison of CPM Parameters.

aRimoldi’s approach not considered for both versions of SOQPSK
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