
University of Kansas

Implementation of Real-Time
Java using KURT

Dinesh Selvarajan

Project Defense
Master of Science (Computer Engineering)

University of Kansas
Oct 21, 2003

Committee
Dr. Jerry James (Chair)
Dr. Douglas Niehaus
Dr. John Gauch

University of Kansas

Talk Content

Need for Real-Time Java (RTJ)
Implementation

RTJ library
Driving example

Evaluation
Conclusion
Future Work

University of Kansas

Need for RTJ

Enable Java for real-time systems
What is real-time?
Proven predictable behavior
Useful in military, aerospace and commercial
process control systems
Java does not suit time-aware systems
Real-Time Specification for Java (RTSJ) –
from Real-Time Java Expert Group

University of Kansas

Basic Differences – RT & non-RT

High resolution timers (micro- and
nanosecond precision)
Scheduling of events is guaranteed to
take place at the exact time specified

University of Kansas

Framework

JVM 1.4.1
Real-time Operating
System (RTOS) –
KURT Linux
RTJ Library
Driving example

javax.realtime
package

JVM

KURT-Linux

University of Kansas

Areas of focus

Under the javax.realtime package,
Real-time Clocks

HighResolutionTime
AbsoluteTime
RelativeTime
RationalTime

Real-time Timers
OneShotTimer
PeriodicTimer

Real-time Threads
RealtimeThread

Real-time Scheduling
Scheduler

Communicate with the RTOS (KURT) through native calls linked
by Java Native Interface (JNI)

University of Kansas

Bouncing Ball

University of Kansas

RT threads & Scheduling

Native calls – directly interact with KURT
Using JNI
Make threads real-time
Schedule those threads

Explicit Plan Schedule
Dynamic Scheduling

University of Kansas

Data Streams with JNI

Timing and schedule of the threads need to be checked using
high-precision timers
DSUI – tool to collect instrumentation data during execution
DSUI made possible using JNI
Instrumentation points – family, events and counters (contained in
namespace file)

APPLICATION (family) 5
EVENT_OPEN 5
EVENT_START 4
EVENT_SUBMIT_SCHED 3
EVENT_SUSPEND 2
EVENT_WAKEUP 1
EVENT_EXIT 0

University of Kansas

Customized JVM

JVM spawns nine threads
System threads that are non-deterministic

Garbage Collector (GC)
Finalizer thread
Reference Handler thread

Signal Dispatcher thread
Compile Thread

Needs to be removed for testing

University of Kansas

Results

testbed55 [6] # java Bounce2 10
kurtdev is: 20
Real-time ID# (as assigned by KURT) are:
ball1: 255
ball2: 254
ball3: 253
ball4: 252
ball5: 251
ball6: 250
ball7: 249
ball8: 248
ball9: 247

University of Kansas

Results (cont…)

DSUI Output Log (xml format):
...
<ENTITY number="1" time_stamp="6791678943066" tag="0" type="Event">
<EVENT name="EVENT_OPEN" family="APPLICATION" id="69" />
</ENTITY>
<ENTITY number="2" time_stamp="6791679225486" tag="0" type="Counter">
<COUNTER name="COUNTER_BOUNCE_SPEED_CONST" family="APPLICATION" id="64"

count="10" first_updatetime="6791679167887"
last_updatetime="6791679167887"/>

</ENTITY>
<ENTITY number="3" time_stamp="6838384115559" tag="0" type="Event">
<EVENT name="EVENT_START" family="APPLICATION" id="68" />
</ENTITY>
<ENTITY number="4" time_stamp="6838384832808" tag="0" type="Event">
<EVENT name="EVENT_SUBMIT_SCHED" family="APPLICATION" id="67" />
</ENTITY>
<ENTITY number="5" time_stamp="6838384854671" tag="0" type="Event">
<EVENT name="EVENT_SUSPEND" family="APPLICATION" id="66" />
</ENTITY>
<ENTITY number="6" time_stamp="6838399036229" tag="0" type="Event">
<EVENT name="EVENT_WAKEUP" family="APPLICATION" id="65" />
</ENTITY>
...

University of Kansas

Results (cont…)

Status of the running real-time threads:

kurt_status program provided by KURT – lists all the current real-time
processes and their status:

...
handled late dropped invalid wdog baddog1 baddog2 baddog3
1316 504 0 0 0 0 0 0
rt_id pid woken missed rt_susp aborts nonrt_susp switches
247 10890 3 0 4 0 0 0
248 10889 19 0 20 0 0 0
249 10888 30 0 31 0 0 0
250 10887 47 0 48 0 0 0
251 10886 63 0 64 0 0 0
252 10885 98 0 99 0 0 0
253 10884 151 0 152 0 0 0
254 10883 195 0 196 1 0 0
255 10882 416 0 417 0 0 0

...

University of Kansas

Results (cont…)
Scheduling of events – timing information, based on timestamp counters:
(Processor speed = 1399.380 MHz; which means 1399380000 cycles per second)

Timestamp
counter of the
wakeup events

Diff. bet. 2
wakeup events

Diff. in
milliseconds =
(diff./cycles per
second)* 1000

Deviation (in ms)
from the

expected 10ms

6838399036229

6838413029334 13993105 9.9995 0.0004

6838427395794 14366460 10.2663 0.266

6838441011820 13616026 9.7300 0.269

6838455003761 13991941 9.9986 0.0013

University of Kansas

Conclusion

javax.realtime package is built
Gaps in Java have been bridged
Widens the scope of Java
Limitations

Overhead due to JNI
Not for hard real-time systems

Other commercial versions of RTJ – not
freely available to all

University of Kansas

Other Challenges

Memory Management
Garbage Collection (GC)
Contribute to unpredictable behavior

University of Kansas

Other Challenges (cont…)

Memory Management
JVM allocates memory from heap
Does not use a specific allocation algorithm – leads
to non-deterministic results
Solution – create No Heap Real-Time (NHRT)
threads
Dynamic checking (at every read & write) – so that
NHRT threads do not access any location into the
GC heap
Limitation – overhead due to this kind of dynamic
checking for memory access for the NHRT threads

University of Kansas

Other Challenges (cont…)

Garbage Collector (GC)
GC acts unpredictably
NHRT threads should be made to preempt GC
Wider perspective – Sun’s Java HotSpot uses a
compacting mark & sweep algorithm for GC
Objects are grouped into following generations:

Nurseries
Older generation

for Nurseries – generational copying collector
for Older generation – mark-compact collection
algorithm

University of Kansas

Thanks for your (real) time!

