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Need for RTJ

Enable Java for real-time systems
What is real-time?
Proven predictable behavior
Useful in military, aerospace and commercial 
process control systems
Java does not suit time-aware systems
Real-Time Specification for Java (RTSJ) –
from Real-Time Java Expert Group
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Basic Differences – RT & non-RT

High resolution timers (micro- and 
nanosecond precision)
Scheduling of events is guaranteed to 
take place at the exact time specified
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Framework

JVM 1.4.1
Real-time Operating 
System (RTOS) –
KURT Linux
RTJ Library
Driving example

javax.realtime
package

JVM

KURT-Linux
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Areas of focus

Under the javax.realtime package,
Real-time Clocks

HighResolutionTime
AbsoluteTime
RelativeTime
RationalTime

Real-time Timers
OneShotTimer
PeriodicTimer

Real-time Threads
RealtimeThread

Real-time Scheduling
Scheduler

Communicate with the RTOS (KURT) through native calls linked 
by Java Native Interface (JNI)
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Bouncing Ball
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RT threads & Scheduling

Native calls – directly interact with KURT
Using JNI
Make threads real-time
Schedule those threads

Explicit Plan Schedule
Dynamic Scheduling
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Data Streams with JNI

Timing and schedule of the threads need to be checked using 
high-precision timers
DSUI – tool to collect instrumentation data during execution
DSUI made possible using JNI
Instrumentation points – family, events and counters (contained in 
namespace file)

APPLICATION (family) 5
EVENT_OPEN 5
EVENT_START 4
EVENT_SUBMIT_SCHED 3
EVENT_SUSPEND 2
EVENT_WAKEUP 1
EVENT_EXIT 0
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Customized JVM

JVM spawns nine threads
System threads that are non-deterministic

Garbage Collector (GC)
Finalizer thread
Reference Handler thread

Signal Dispatcher thread
Compile Thread

Needs to be removed for testing
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Results

testbed55 [6] # java Bounce2 10
kurtdev is: 20
Real-time ID# (as assigned by KURT) are:
ball1: 255
ball2: 254
ball3: 253
ball4: 252
ball5: 251
ball6: 250
ball7: 249
ball8: 248
ball9: 247
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Results (cont…)

DSUI Output Log (xml format):
...
<ENTITY number="1" time_stamp="6791678943066" tag="0" type="Event">
<EVENT  name="EVENT_OPEN" family="APPLICATION" id="69" />
</ENTITY>
<ENTITY number="2" time_stamp="6791679225486" tag="0" type="Counter">
<COUNTER name="COUNTER_BOUNCE_SPEED_CONST" family="APPLICATION" id="64" 

count="10" first_updatetime="6791679167887" 
last_updatetime="6791679167887"/> 

</ENTITY>
<ENTITY number="3" time_stamp="6838384115559" tag="0" type="Event">
<EVENT  name="EVENT_START" family="APPLICATION" id="68" />
</ENTITY>
<ENTITY number="4" time_stamp="6838384832808" tag="0" type="Event">
<EVENT  name="EVENT_SUBMIT_SCHED" family="APPLICATION" id="67" />
</ENTITY>
<ENTITY number="5" time_stamp="6838384854671" tag="0" type="Event">
<EVENT  name="EVENT_SUSPEND" family="APPLICATION" id="66" />
</ENTITY>
<ENTITY number="6" time_stamp="6838399036229" tag="0" type="Event">
<EVENT  name="EVENT_WAKEUP" family="APPLICATION" id="65" />
</ENTITY>
...
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Results (cont…)

Status of the running real-time threads:

kurt_status program provided by KURT – lists all the current real-time 
processes and their status:

...
handled late    dropped invalid wdog baddog1 baddog2 baddog3
1316    504     0       0       0       0       0       0
rt_id pid woken     missed    rt_susp aborts nonrt_susp switches
247 10890          3          0          4          0         0          0
248 10889         19          0         20          0         0          0
249 10888         30          0         31          0         0          0
250 10887         47          0         48          0         0          0
251 10886         63          0         64          0         0          0
252 10885         98          0         99          0         0          0
253 10884        151          0        152          0         0          0
254 10883        195          0        196          1         0          0
255 10882        416          0        417          0         0          0

...
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Results (cont…)
Scheduling of events – timing information, based on timestamp counters:
(Processor speed = 1399.380 MHz; which means 1399380000 cycles per second)

Timestamp 
counter of the 
wakeup events

Diff. bet. 2 
wakeup events

Diff. in 
milliseconds =  
(diff./cycles per 
second)* 1000

Deviation (in ms) 
from the 

expected 10ms

6838399036229 

6838413029334 13993105 9.9995 0.0004 

6838427395794 14366460 10.2663 0.266 

6838441011820 13616026 9.7300 0.269 

6838455003761 13991941 9.9986 0.0013 
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Conclusion

javax.realtime package is built
Gaps in Java have been bridged
Widens the scope of Java
Limitations

Overhead due to JNI
Not for hard real-time systems

Other commercial versions of RTJ – not 
freely available to all
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Other Challenges

Memory Management
Garbage Collection (GC)
Contribute to unpredictable behavior
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Other Challenges (cont…)

Memory Management
JVM allocates memory from heap
Does not use a specific allocation algorithm – leads 
to non-deterministic results
Solution – create No Heap Real-Time (NHRT) 
threads
Dynamic checking (at every read & write) – so that 
NHRT threads do not access any location into the 
GC heap
Limitation – overhead due to this kind of dynamic 
checking for memory access for the NHRT threads
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Other Challenges (cont…)

Garbage Collector (GC)
GC acts unpredictably
NHRT threads should be made to preempt GC
Wider perspective – Sun’s Java HotSpot uses a 
compacting mark & sweep algorithm for GC
Objects are grouped into following generations:

Nurseries
Older generation

for Nurseries – generational copying collector
for Older generation – mark-compact collection 
algorithm
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Thanks for your (real) time!


