
Abstracting the Hardware / Software
Boundary through a Standard System

Support Layer and Architecture

Erik Konrad Anderson

Submitted to the Department of Electrical Engineering &
Computer Science and the Faculty of the Graduate School

of the University of Kansas in partial fulfillment of
the requirements for the degree of Doctor of Philosophy

Thesis Committee:

Dr. David Andrews: Chairperson

Dr. Perry Alexander

Dr. Douglass Niehaus

Dr. Ron Sass

Dr. Yang Zhang

Date Defended

c© 2007 Erik Konrad Anderson

The Thesis Committee for Erik Konrad Anderson certifies

That this is the approved version of the following thesis:

Abstracting the Hardware / Software Boundary through a Standard

System Support Layer and Architecture

Committee:

Chairperson

Date Approved

i

Abstract

Reconfigurable computing is often lauded as having the potential to bridge

the performance gap between computational needs and computational resources.

Although numerous successes exist, difficulties persist bridging the CPU/FPGA

boundary due to relegating hardware and software systems as separate and in-

consistent computational models. Alternatively, the work presented in this thesis

proposes using parallel programming models to abstract the CPU/FPGA bound-

ary. Computational tasks would exist either as traditional CPU bound threads or

as custom hardware threads running within the FPGA.

Achieving an abstract parallel programming model that spans the hardware/

software boundary depends on: extending an existing software parallel program-

ming model into hardware, abstracting communication between hardware and

software tasks, and providing equivalent high-level language constructs for hard-

ware tasks. This thesis demonstrates that a shared memory multi-threaded pro-

gramming model with high-level language semantics may be extended to hard-

ware, consequently abstracting the hardware/software boundary.

The research for this thesis was conducted in three phases, and used the KU-

developed Hybridthread Computational Model as its base operating system and

platform. The first phase extended the semantics of a running thread to a new,

independent and standard hardware system support layer known as the Hardware

Thread Interface (HWTI). In this phase hardware threads are given a standard

interface providing communication between the hardware thread and system. The

second phase of the research extended and augmented the initial design to support

a meaningful abstraction. Mechanisms in this phase include globally distributed

local memory, a standard function call stack including support for recursion, high

level language semantics, and a remote procedure call model. The third phase

evaluated the HWTI by comparing the semantic and implementation differences

ii

between hardware and software threads, by using an adapted POSIX conformance

and stress test-suite, and by demonstrating that well-known algorithms may be

translated and ran as hardware threads using the HWTI.

This thesis concludes that parallel programming models can abstract the hard-

ware/software boundary. Creating a meaningful abstraction depends both on mi-

grating the communication and synchronization policies to hardware, but also

providing high level language semantics to each computational tasks.

iii

Contents

Acceptance Page i

Abstract ii

1 Introduction 1

1.1 Contributions of this Thesis . 12

2 Background and Related Work 16

2.1 Field Programmable Gate Arrays 16

2.2 The CPU/FPGA Boundary . 17

2.3 Computational Models . 19

2.4 Programming Models for Parallel Computing 22

2.5 C to Hardware Languages . 23

2.6 Abstracting the Hardware/Software Interface 25

3 Extending the Shared Memory Multi-Threaded Programming

Model to Hardware Resident Threads 29

3.1 HWTI Standard Register Set . 33

3.2 Abstract Synchronization . 34

3.3 Abstract Communication . 36

4 Extending High-Level Language Semantics to Hardware Resident

Threads 38

4.1 Globally Distributed Local Memory 40

4.2 Function Call Stack . 43

4.3 Dynamic Memory Allocation . 46

4.4 Remote Procedural Calls . 49

iv

4.5 Unsupported CPU Features . 52

5 Semantic and Implementation Differences between Hardware and

Software 54

5.1 Comparing the Context of Hardware and Software Resident Thread 57

5.2 Semantic Differences . 61

5.2.1 hthread attr init . 61

5.2.2 hthread attr destroy . 62

5.2.3 hthread create . 62

5.2.4 hthread join . 65

5.2.5 hthread self . 66

5.2.6 hthread equal . 67

5.2.7 hthread yield . 68

5.2.8 hthread exit . 69

5.2.9 hthread mutexattr init . 70

5.2.10 hthread mutexattr destroy 70

5.2.11 hthread mutexattr setnum 71

5.2.12 hthread mutexattr getnum 71

5.2.13 hthread mutex init . 71

5.2.14 hthread mutex destroy . 72

5.2.15 hthread mutex lock . 72

5.2.16 hthread mutex unlock . 74

5.2.17 hthread mutex trylock . 74

5.2.18 hthread condattr init . 75

5.2.19 hthread condattr destroy 75

5.2.20 hthread condattr setnum 76

5.2.21 hthread condattr getnum 76

5.2.22 hthread cond init . 77

5.2.23 hthread cond destroy . 77

5.2.24 hthread cond wait . 78

5.2.25 hthread cond signal . 79

5.2.26 hthread cond broadcast 79

5.3 Size Comparisons . 80

5.4 Run Time Performance . 87

v

6 Evaluation and Results 92

6.1 Hthread Test-Suite . 93

6.2 Hthread Application Suite . 97

6.2.1 Quicksort . 98

6.2.2 Factorial . 100

6.2.3 Huffman Encoding . 102

6.2.4 Haar Wavelet Transform 105

6.2.5 IDEA Encryption . 108

7 Conclusion 115

7.1 Future Work . 116

7.1.1 Inter-Thread Communication 116

7.1.2 Leveraging Reconfigurable Computing 118

7.1.3 Remote Procedural Calls 120

7.1.4 Design Issues . 121

7.1.5 HLL to HDL Translation 123

7.1.6 Power Constraints . 123

7.2 Concluding Remarks . 123

A System and User Interface Protocols 125

A.1 System Interface . 126

A.1.1 thread id Register . 128

A.1.2 command Register . 128

A.1.3 status Register . 130

A.1.4 argument Register . 131

A.1.5 result Register . 132

A.1.6 timer Register . 133

A.2 User Interface . 133

A.2.1 Memory Sub-Interface . 134

A.2.2 Function Sub-Interface . 137

A.2.3 Control Sub-Interface . 142

B State Machine Implementations 144

B.1 System State Machine . 147

B.2 User State Machine . 149

vi

B.2.1 Dynamic Memory Allocation Mechanism 155

B.2.2 Remote Procedural Call Mechanism 156

References 160

vii

List of Figures

1.1 Hthread system block diagram . 6

1.2 Hardware Thread Interface block diagram 7

2.1 Traditional FPGA Co-Processor Model 21

3.1 Conceptual Pthreads programming model 30

3.2 Implementation of the Pthreads programming model 30

3.3 Migrating threads to hardware faces key abstraction challenges . . 31

3.4 Hthreads system providing context for hardware threads and equal

access for communication and synchronization 32

3.5 HWTI standard register set . 33

3.6 User interface load operation . 37

3.7 User interface store operation . 37

4.1 Simultaneous memory access between four threads 43

4.2 HWTI’s function call stack . 47

4.3 Remote procedural call high level diagram. 51

5.1 Example of danger using hthread join in hardware 67

5.2 Relationship between size of each system call and number of states 85

5.3 Relationship between number of bus operations and execution time

for hardware implemented system calls 91

6.1 Venn Diagram showing relationship between Pthread, hthreads soft-

ware implementation, and hthreads hardware implementation . . 94

6.2 Quicksort performance, comparing software and hardware threads,

and local and global memory. 99

viii

6.3 Execution times for factorial algorithm, implemented as either a

recursive algorithm or a while loop. 101

6.4 Huffman encoding performance, comparing software and hardware

threads. 104

6.5 Huffman algorithm performance, comparing software and hardware

threads. 105

6.6 DWT performance comparison between version 2 and version 3 of

HWTI using an 5000 integer array 107

6.7 DWT complexity comparison between version 2 and version 3 of

HWTI . 108

6.8 Execution times of IDEA implemented in either hardware or soft-

ware, with various data locations. 110

6.9 Execution times of an IDEA hardware thread running with and

without a concurrently running software thread. 111

6.10 Execution times of dual IDEA threads implemented in either hard-

ware or software, with various data locations. 112

6.11 IDEA performance, based on time per encrypted block, comparing

Vuletic’s Virtual Memory Manager threads, and hthread threads

using the HWTI. 114

A.1 HWTI register block diagram . 126

A.2 HWTI sub interfaces block diagram 134

A.3 Pseudo-code example for mutex lock(&mutex) 140

B.1 Block diagram of HWTI implementation 145

B.2 Block diagram of system state machine 149

B.3 State diagram of user state machine initialization sequence 150

B.4 Block diagram of user state machine implementation 151

B.5 HWTI’s function call stack . 153

B.6 HWTI’s remote procedural call pseudo code. 157

B.7 Software thread remote procedural call pseudo code. 159

ix

List of Tables

1.1 User interface opcodes . 8

2.1 Look up table example for a nand gate 17

4.1 Performance of memory operations 42

4.2 Performance of function call stack operations 46

4.3 Performance of selected library calls using the RPC model. 52

5.1 System call size comparison between hardware and software . . . 82

5.2 System call size comparison between hardware and software . . . 86

5.3 Syscall runtime performance comparison, measured in clock cycles,

between hardware and software 89

A.1 HWTI User Interface Register Set 127

A.2 Memory sub-interface opcodes . 135

A.3 Function sub-interface opcodes . 138

A.4 HWTI’s supported library calls 139

x

Chapter 1

Introduction

Reconfigurable computing has come a long way since Gerald Estrin presented

his Fixed-Plus-Variable structure computer in 1960 [32, 33]. His idea was simple:

combine a fixed processor with hardware that could be configured (and reconfig-

ured) to run complex operations with speed and efficiency. Estrin’s proposal was

generations ahead of then-existing technology. It was not until 1993 that reconfig-

urable computing became a mainstream research endeavor when Athana proposed

PRISM-I, using FPGAs to extend the instruction set of general purpose CPUs [11].

Today an entire commercial industry lead by manufacturers Xilinx [107] and Al-

tera [4] is growing up around Field Programmable Gate Arrays (FPGA). Modern

FPGAs are designed as a large array of Configurable Logic Blocks (CLB). Each

CLB may be programmed, post-fabrication, to a small circuit. By connecting

CLBs together, larger and more complex circuits may be produced.

Interestingly, the problem reconfigurable computing was originally intended to

address has not been resolved. Estrin proposed his fixed-plus-variable structure

in response to a challenge from John Pasta. At the time Pasta was the chair-

man of the Mathematics and Computer Science Research Advisory Committee

1

to the Atomic Energy Commission. He wanted to look beyond Von Neumann

architectures to raise the computation power of computers. Estrin proposed his

fixed-plus-variable structure as a way to take advantage of hardware parallelism

where Von Neumann sequential processors could not.

Nearly 50 years later, researchers make the same argument to promote the

promise of reconfigurable computing. A number of recent successes validate the

argument. In 2006 Morris used reconfigurable computing to gain a 1.3x speedup

for mapping conjugate gradients [68], Kindratenko achieved a 3x speedup after

porting NAMD, a molecular dynamics application [60], and Zhou reported a 2x

speedup for LU decomposition [112]. However impressive their gains may have

been, they are not without a cost. For each application the workgroup must

invest considerable time in design-space exploration, determining which portion

of the code can be translated, and how best to translate it. The process that

each group went through during design-space exploration is presented in their

respective publications.

The design-space exploration problem is one of the many issues keeping recon-

figurable computing away from the mainstream. Ideally software programmers

without any hardware-specific knowledge would be able to design, implement, and

debug a hardware/software system in a known high-level language. The decision

as to which portions of the applications get mapped into hardware cores and which

remain as software binaries would be made after verification. Engineers could then

profile their application using on-the-board results and determine which software

and hardware combinations perform the best.

To achieve post-verification hardware/software segmentation, a reliable, effi-

cient, and complete high level language to hardware descriptive language (HLL

2

to HDL) translator is needed. A number of research groups have made impres-

sive strides towards this goal. Most of these groups are focusing either on C

or a derivative of C as the targeted high-level language. Handel-C is perhaps

the most widely known commercial hardware descriptive language [22], Garp [19]

and ROCCC [48] are two well known translators focusing on efficiently unrolling

loops, and Altera’s C2H is perhaps the most complete C to HDL translator [65].

Although existing research in C to HDL translation is impressive, no group has

thus far been able to translate unaltered C to HDL for reconfigurable computing.

Research groups either leave out important semantics within the language, such

as pointers or function calls, or they add constructs to specify hardware details,

such as bus connections or I/O ports.

What makes C to HDL so difficult? C is an abstraction for a general purpose

processor, while an HDL is a layout language for hardware circuits. The two are

solutions to different problems. More to the point, when C is compiled it targets an

existing architecture, namely Von Neumann’s. A HDL has no predefined target;

all details of the circuit must be specified. Existing C to HDL tools overcome

this difference by mapping concepts in C to equivalent circuit details in HDL.

For example, variables become registers, case statements become multiplexers,

and operations become arithmetic circuits. However, these types of translations

leaves out many of C’s intrinsic capabilities. For example, how do you translate

a function call into HDL, how do you pass a software created data structure to

a hardware task, or perhaps most importantly, how do you maintain C’s “write

once run anywhere” abstraction?

Parallel computing programming models that hide the architectural details of

the underlying hardware offer a solution. Skillicorn defined CPU-based parallel

3

processing computing models in [82,83]. Updating his definitions for FPGA/CPU

systems, parallel computing programming models are highlighted by two points.

First the model must be easy to program. A programming model implementation

hides how the operating system and computational model achieve parallelism. The

locations of tasks are irrelevant, either on one or more CPUs or as dedicated hard-

ware cores within the FPGA. Second the model must be architecture-independent.

A program written using a parallel programming model should be cross-platform

and cross-CPU/FPGA compatible without modifications to the code. All archi-

tectural details of the underlying hardware are abstracted from the user by the

programming model interface implementation.

This thesis demonstrates that a programming model and high level language

constructs can be used to abstract the existing hardware/software boundary that

currently exists between CPU and FPGA components. Using the shared mem-

ory multi-threaded programming model, the concept of a thread was extended

to hardware. An abstract standard system interface, known as the Hardware

Thread Interface (HWTI), was written to provide operating system functionality,

programming model methods for synchronization and communication, and high

level language semantics.

The shared memory multi-threaded programming model was chosen because

it is a well-known existing abstraction for specifying task level parallelism [17,80].

To define the model clearly, shared memory means each thread has equal ac-

cess to a global address space. Communication is accomplished by reading and

writing to shared data structures within global memory. The location of data

structures are passed through pointers within the semantics of the programming

model. Multi-threaded is a reference that execution is divided between separately

4

executing independent threads. Threads may have equal or varying priorities, and

may either be running in pseudo-concurrency by sharing a computational unit, or

running in true concurrency by using multiple computational units. “Computa-

tional units” typically refers to CPUs, however in this research their meaning is

extended to include application specific hardware cores located within the FPGA

fabric, referred to as hardware threads.

This research demonstrates that the shared memory multi-threaded program-

ming model can be extended to hardware; as a consequence, parallelism is auto-

matically enabled at the task level. The resulting system may best be described as

a MIMD machine. As a note, this research does not specifically address instruc-

tion level parallelism as many other FPGA researchers do. Equally important to

note is that this research does not prevent instruction level parallelism within the

hardware thread.

The research for this thesis was conducted within the Kansas University devel-

oped Hybridthreads Computational Model (hthreads) [9,10,56,57,73,74]. Hthreads

was initially conceived as a real time embedded operating system that could ab-

stract the hardware/software boundary. Programmers specify their design using

a familiar “Pthreads like” programming model. Their design is then compiled to

run on a hybrid CPU/FPGA core. Hthreads uses a subset of the Pthread’s API

and is intentionally similar to it, supporting thread creations, joins, mutexes, and

condition variables.

A block diagram of the hthread runtime system is shown in Figure 1.1. Hthreads

efficiently implements many operating system functions by moving them to inde-

pendent hardware cores located within the FPGA fabric (note that the hardware

implemented system cores are different from hardware threads). For example, the

5

Scheduler core can make a scheduling decision a priori of a context switch [1, 2].

With hthreads, the CPU is only interrupted when a higher priority thread enters

the scheduler and should be context switched with the currently running thread.

This prevents periodic timer interrupts of the CPU to determine if a context

switch should occur, minimizing jitter due to scheduling decisions. Other impor-

tant operating system hardware cores include the Thread Manager to manage the

creating, running, and joining of threads, the Mutex Manager to manage which

threads may lock and own a mutex, the Condition Variable Manager to manage

signals between threads, and a priority interrupt controller, known as the CPU

Bypass Interrupt Scheduler (CBIS).

CPU
Software Interface

Software
Thread

Software
Thread

Software
Thread

Hardware
Interface
Hardware

Thread

Hardware
Interface
Hardware

Thread

Thread
Manager

Thread
Scheduler

Shared
MemoryCBISConditional

VariablesMutexes

System Bus

Figure 1.1. Hthread system block diagram

Moving operating system management to hardware cores provides efficient

backend implementations of hthread policies. More importantly, because access

to these cores is through memory mapped registers their functionality is available

to both hardware and software interfaces. In fact, many of the hthread APIs that

both the HWTI and software hthread libraries support are simply wrappers for

encoded bus load and store operations. As a note, the development of the syn-

chronization system cores, and the software libraries to call them, was completed

prior to the research presented in this thesis.

A diagram of a hardware thread, showing the internal state machine and high-

level communication between processes is in Figure 1.2. A hardware thread is

6

composed of three entities: the vendor supplied IP bus interconnect (IPIF), the

HWTI, and the user logic. The HWTI has two interfaces, system and user. The

system interface is a set of memory mapped registers, whose protocol permits any

hthread core, including CPUs, operating system cores, or other hardware threads,

to interact with the hardware thread. On the other side, the user interface is a

facade for synchronization, communication, and system services provided by the

HWTI. The details of the interface protocols are in Appendix A.

Figure 1.2. Hardware Thread Interface block diagram

Briefly, the system state machine manages the system interface and protocol

and the user state machine manages the user interface and protocol. The user

state machine also contains the functionality for the hthread API, the HWTI

function call stack, and shared memory communication. Details of the state ma-

chine implementations are in Appendix B. The user logic requests services from

the HWTI by driving the opcode register, along with appropriate values in the

address, function, and value registers. The HWTI responds to requests only

when the goWait register is a ‘1’ (a GO). A ‘0’ indicates the user logic should stall

7

while the HWTI finishes a previous request. Table 1.1 lists the supported opcodes

and their meaning. As an example, if the user logic wanted to read the value at

memory location 0x32007840, the user logic would drive a LOAD to the opcode

register and 0x32007840 to the address register. On the next clock cycle the

HWTI would set the goWait register to WAIT and initiate the bus read. When the

read completes the HWTI updates the value register with the value and returns

goWait to GO.

Opcode Meaning
LOAD Read a value from memory
STORE Write a value to memory
POP Read a function parameter from the stack
PUSH Push a function parameter to the stack
CALL Call a function, system of user defined
RETURN Return from a user defined function
DECLARE Add space on the stack for local variables
READ Read a variable from the stack
WRITE Write a variable to the stack
ADDRESSOF Retrieve a variable’s global address

Table 1.1. User interface opcodes

Extending the hthread API to hardware, with only a few exceptions, is con-

ceptually a straightforward process. Again this is because the synchronization

services are implemented as independent hardware cores and accessed through

encoded bus transactions. For example, neither the hthread software library or

the HWTI has to “know” how to lock a mutex, they only have to know how to

communicate with the Mutex Manager that will lock the mutex for them. Previ-

ous work on hardware threads presented in [6,56,57] demonstrate how the hthread

API acts as a wrapper for the system services. The problem with this work is that

the the HWTI’s user interface is rigid, and does not inherently support expanding

8

the hthread API or a more generalized shared memory programming model. As

it turns out, extending the hthread API to hardware in a meaningful way is much

more difficult. What was needed was a way to declare memory that is globally

accessible and allow threads to call arbitrary functions with arbitrary parameter

lists without making a distinction between user and system functions.

The enabling technology to provide a meaningful abstraction was “globally dis-

tributed local memory,” or local memory for short. The local memory is instanti-

ated into each HWTI using on-chip dual ported memory blocks. Local memory is

accessible by both the user logic though existing load and store primitives and all

other hardware cores through standard bus operations. Access time to the local

memory for the user logic approaches “cache-like” speeds: 3 and 1 clock cycles for

read and write operations respectively. Having a fast memory in turn enabled the

HWTI to support a traditional function call stack. In essence, the HWTI manages

a frame and stack pointer that point to its local memory compared to software

stacks that point to traditional off-chip global memory. The HWTI supports push

and pop operations to pass arbitrarily long parameter lists to the function, as well

as the ability to declare space for user logic’s local variables.

To complete the abstraction, programmers need a methodology to access the

same set of libraries available to them while programming in a high-level language.

Including support for C’s stdio, string, or math libraries has largely been ignored

by other FPGA developers. The HWTI uses one of two methods to add support

for library functions. Specifically in the case of malloc, calloc, and free, the

HWTI implements these functions in the same manner as other hthread system

call functions, through its internal state machines. The memory the HWTI dy-

namically allocates is within its local memory; consequently access to it for the

9

user logic is relatively fast. The second method of implementing libraries is to

signal the CPU to perform the function. The HWTI signals a special CPU-bound

Remote Procedural Call (RPC) system thread using existing support for mutexes

and condition variables. Although relatively slow, this model provides hardware

support for the majority of the existing library functions.

The context of a running thread in software is well known. Each software

thread has a unique ID, a status (running, ready to run, exited, etc), its own

stack, program counter, initial argument, a result, and so forth. A success of the

HWTI is that it maps the context of a software resident thread into an equivalent

context for a hardware resident thread. For example, a hardware thread’s unique

ID, status, initial argument, and result are encapsulated within memory mapped

registers maintained by the HWTI. Each HWTI also manages a frame, stack, and

heap pointer for the user logic (accessible through memory offset bus reads). The

thread’s starting address is encapsulated by the functionality of the thread, and

the program counter is encapsulated by the current state of the user logic state

machine. Encapsulating the same concepts of a running thread helps create and

reinforce the abstraction between hardware and software.

Extending the concept of a thread to hardware is a relatively new concept.

Previous work in this area [56, 96] has not explored the semantics of threads in

hardware, especially the supporting API. Although meanings of many of the API

calls are the same in hardware as they are in software, there are some important

differences. These differences are due to hardware thread resources being statically

allocated at synthesis time. For example, when a hardware thread blocks on

a mutex, the FPGA resources go practically unused. In software if a thread

has to block, the CPU context switches to a different thread. CPU time is not

10

wasted but continues to perform useful work with a different thread. In the future

though, context switching in hardware may have a meaning similar to software. If

and when FPGAs can support partial runtime reconfiguration, conceptually the

blocked hardware thread’s resources may be swapped out for a thread that is not

blocked, allowing the FPGA resources to continue to work.

To demonstrate that the HWTI provides an abstraction for communication

and synchronization, all applicable test-cases from the POSIX test-suite [38] were

adapted for hthreads, specifically the conformance and stress test-cases. A hard-

ware and a software version was written for each test case. The stress cases were

adopted to interact between hardware and software threads. The conformance

tests demonstrated that both the hthread software API and the HWTI hardware

API correctly produced the expected state after it was called. For example, one of

the tests verified that after calling hthread mutex lock, the calling thread owns

the mutex. Stress tests were designed to identify any long-term use errors, such as

insufficient memory resources or insufficient thread IDs. As expected, the HWTI

passed all conformance and stress tests. These tests were important since they

demonstrate abstract communication and synchronization.

To demonstrate the HWTI’s ability to support high level language semantics,

a number of well known algorithms were translated to VHDL targeting the HWTI.

The algorithms were quicksort, factorial, Huffman encoding, Haar discrete wavelet

transform, and IDEA encryption. Collectively these algorithms demonstrated the

HWTI correctly supports reading and writing to global memory using LOAD and

STORE operations, a function call stack using PUSH, POP, and CALL operations,

variable declaration using DECLARE, READ, and WRITE operations, and dynamic

memory allocation using its light version of malloc. On the performance side,

11

these results show that the HWTI’s local memory provides hardware threads with

cache-like performance. They also show that using local memory helps prevent

bus contention, consequently improving overall system performance. Finally, the

IDEA results were compared with the results from Vuletic’s hardware accelera-

tor threads and hand optimized VHDL code [96]. In short, these results show

that Vuletic’s threads achieved better performance by acting as a hardware ac-

celerator, while hthread hardware threads achieved better performance through

multi-tasking.

Both the test-cases adapted from the POSIX test-suite and the algorithms

implemented in VHDL were hand written as user logic entities in VHDL. They

were implemented without any knowledge of the underlying system, including:

bus interconnect, memory hierarchy, hthread system cores, or location (hardware

or software) of other threads. The only communication each user logic entity had

was through the HWTI.

All experiments were conducted using either a Xilinx ML310 development

board [103, 107] or a bus model simulation using ModelSim [47]. The ML310

contains a Virtex II Pro 30 [106] with 2 PowerPC 405 cores and roughly 30,000

equivalent logic gates. The only experiments conducted in simulation were the

conformance and stress test cases for the test-suite. These were run in simulation

due to lengthy synthesis time for the Virtex II Pro.

1.1 Contributions of this Thesis

• The hardware/software boundary may be abstracted using a parallel com-

puting programming model.

• The context of a running thread may be extended to hardware through a

12

standard register set, function call stack, and a user logic state machine.

The context of a hardware resident thread is equivalent to the context of a

software resident thread but they are not equal.

• Abstract synchronization, within the multi-threaded model, is achieved in

hardware by supporting key API calls for the programming model. System

calls may be accessible to hardware threads by: redirecting the call to an

independent system service hardware core, implementing the functionality

within the thread, or using remote procedural calls to execute the system

service on the CPU.

• Migrating system services to hardware cores give equal access to both soft-

ware and hardware interfaces. The software and hardware implementation

of these system calls becomes a wrapper for an encoded bus transaction to

the system service hardware core.

• Abstract communication within the shared memory model is achieved in

hardware by supporting load and store primitives.

• Hardware thread performance is improved while maintaining a shared mem-

ory model by providing abstract access to a dual ported on-chip memory.

One port provides support for bus transactions; the second port provides

support for the thread’s memory requests. This memory is called globally

distributed local memory.

• Function call stacks may be extended to hardware cores by leveraging glob-

ally distributed local memory. Hardware threads maintain their own func-

tion and stack pointer referencing their local memory.

13

• By supporting system calls, abstract communication, a standard function

call mechanism, and local variables, the HWTI is a meaningful target for

high-level language to hardware descriptive language translation.

• The primary difference between hardware resident threads and software res-

ident threads is hardware threads persist physically within the FPGA fabric

and are created at synthesis time, while software threads are non-persistent

and are created virtually at runtime.

– A subtle but important difference between creating a hardware thread

and creating a software thread is that a hardware thread has dedi-

cated resources that run in true concurrency, instead of the pseudo-

concurrence prevalent with software threads. Hardware threads act

like a software thread with a dedicated CPU running at the highest

priority.

– Context switches have no meaning in hardware since a hardware res-

ident thread can not relinquish the CPU. To maintain a consistent

behavior of a context switch, hardware threads block execution until

the synchronization primitives permit the thread to resume.

– FPGA resources within a hardware thread go unused while waiting to

be created, blocking on a mutex, waiting for a condition variable signal,

and after the thread has exited.

– With partial runtime reconfiguration, the semantic meaning of a con-

text switch for hardware resident threads may change to referring to

reconfiguring the FPGA resources for a different user logic.

• The size of hardware supported system calls is proportional to the number

14

of states the implementation uses. The performance of hardware supported

system calls is proportional to the number of bus operations.

• To support the shared memory model, CPUs must run with data cache

off. Any task level parrallelism improvements gained by using dedicated

hardware threads must be significant enough to overcome the CPU’s no-

data cache penalty.

• Hardware threads have the same memory latency and bus contention prob-

lems as CPUs do. Long-term success of hardware threads will depend on

finding inexpensive solutions to these problems.

15

Chapter 2

Background and Related Work

2.1 Field Programmable Gate Arrays

Field programmable gate array chips are growing in popularity in a diverse

set of domains: software defined radio, image processing, encryption, network-

ing, scientific applications, and even satellites. FPGAs are widely seen as the

“middle-ground” between the relatively expensive but fast ASIC designs, and the

inexpensive but sequential CPUs [26,41], this is especially true as the price to man-

ufacturer FPGA chips has decreased. Although they have yet to be integrated

into large numbers of commercial products FPGAs have proven their worth as

prototypes for ASIC designs. Recently FPGAs have been integrated into super-

computers such as the Cray XD1 [29], as well as adapted to fit the HTX slot of the

AMD Opteron processors [25]. It is not unreasonable to predict seeing FPGAs in

desktop machines within 10 years.

There are three primary manufacturers of FPGAs: Xilinx [107], Altera [4],

and Atmel [12], with Xilinx receiving the largest market share. Regardless of

the manufacturer, the basic technology works the same. Each FPGA chip is

16

composed of a two dimensional mesh of configurable logic blocks (CLB). Each

CLB contains a small amount of memory that gets used as a look up table (LUT).

The LUT determines what boolean logic circuit the CLB mimics. As a simplified

example Figure 2.1 shows what a LUT would look like as a nand gate. Note

that LUTs are a physical representation of a truth table. Using a interconnect

network between CLBs, larger and more complicated circuits may be created.

Within each CLB manufacturers also include hard resources to assist in common

circuit designs such as multiplexers, shift registers, or adders. Mindful of the

types of applications industry is targeting, manufacturers are also embedding

memory, fixed point multipliers, and processors within the FPGA chip. As an

example of the state of the art of FPGA technology, Xilinx has recently released its

Virtex-5 family of chips [105]. The 330T model contains 51840 slices (2 slices per

CLB, and each slice containing 4 6-input LUTs), 1458KB of embedded RAM, 192

embedded 25 * 18 multipliers, and off-chip connections for PCI Express, ethernet,

and RocketIO. Virtex-5 family chips may run up to 550MHz and is fabricated

using 65nm technology.

Input A Input B Output
0 0 1
0 1 1
1 0 1
1 1 0

Table 2.1. Look up table example for a nand gate

2.2 The CPU/FPGA Boundary

In [99], the authors survey FPGAs use, specifically in high performance com-

puting (HPC), and discuss the problems and differences of programming FPGA

17

chips compared to software. They note that the flexibility of FPGAs is both a

“blessing and a curse.” Although FPGAs may be configured to application spe-

cific circuits, and once implemented they often have impressive speedups, it takes

a specially trained hardware engineer to design the circuit. To program FPGAs

engineers must design the circuit in a hardware descriptive language (HDL) such

as VHDL or Verilog, and initially test the design in simulation. Where as it may

only take a few minutes to compile a software application, it may take a few

hours to synthesize a hardware application. Consequently the design-test cycle

for hardware is potentially longer and more expensive. Finally, and perhaps most

importantly, hardware engineers often have to deal with chip specific issues and

constraints. In contrast software engineers are accustomed to programming in a

platform independent manner. They sum up the problem best in the following

paragraph.

As a prime example HPC software engineers expect, indeed demand,

cross-platform standards. These abstract the scientific problem from

the hardware, thus enabling the software engineer to design his or her

solution independently of the hardware so enabling the software to be

run in many different environments. Nowadays this is the case whether

the software is serial or parallel, message passing or multithreaded: For

a careful and experienced HPC software engineer code once, run any-

where is now a truly achievable goal. However for hardware this is, as

yet, a very far distant goal.

The hardware/software abstraction problem is restated in a number of other

publications. In 1997, Mangione-Smith [85] states “The community must develop

a set of application-programming interfaces (APIs) to support common interac-

18

tions with any programming hardware.” In 2003 Wolf [102] states “Research

must also look at creating interfaces for both the FPGA fabric and CPU sides

of the system.” In 2004 Andrews [8] states “A mature high-level programming

model would abstract the CPU/FPGA components, bus structure, memory, and

low-level peripheral protocols into a transparent system platform.” And in 2005

Jerraya [55] states “This heterogeneity (between hardware and software) com-

plicates designing the interface and makes it time-consuming because it requires

knowledge of both hardware and software and their interaction. Consequently,

HW/SW interface codesign remains a largely unexplored noman’s-land.” It is

clear that researchers believe abstracting the CPU/FPGA boundary remains a

important problem to solve.

2.3 Computational Models

Computational models provide a slightly abstracted description of the primi-

tive capabilities of a machine [3]. The basic attributes of a computational model

were described by Brown [16] as a machine’s primitive units, control and data

mechanisms, communication capabilities, and synchronization mechanisms. Flynn

created a taxonomy of computational models [50] differentiated by their instruc-

tion and data streams. FPGAs are unique in that they may be configured, post-

fabrication, to conform to any desired computational model. By far, the most

commonly accepted computational models for FPGAs within the reconfigurable

computing community are based on the Single Instruction Stream Multiple Data

Stream (SIMD), and Single Instruction Stream Single Data Stream (SISD) orga-

nizations. Under the SIMD model the FPGA operates on multiple data streams,

typically extracted by unrolling loops, but sequenced by an instruction stream

19

executing on the CPU. The SISD model for FPGAs has evolved from the lineage

of complex instruction set computers (CISC), with the gates replacing traditional

microcode. In the SISD model, sequences of general purpose instructions can be

replaced with customized circuits executed as co-processor type instructions.

Both SIMD and SISD share the common attribute of a single instruction

stream executing on the CPU that acts as a controller for an instruction-level

hardware-accelerator embedded within the fabric of an FPGA. Figure 2.1 out-

lines this basic organization in which the FPGA can be viewed as a co-processor

(slave) that implements a specific portion of an application. During application

execution the CPU (master) must pipe input data into the co-processor module,

and then it must poll the hardware accelerator until it is finished executing. This

means the CPU is forced to remain idle while the FPGA-based co-processor is

active, and only a single instruction stream can be active within the FPGA at

any given point in time. To support the co-processor model, explicit interfaces

are required for passing data between the distinct CPU and FPGA components.

This should be concerning for the reconfigurable computing community, as lessons

learned from historical parallel processing efforts clearly indicate the need to pro-

vide portable parallel programming models composed of unaltered high-level lan-

guages and middle-ware libraries [83].

On small scales this hardware acceleration model can be effective in exploit-

ing instruction-level parallelism (ILP). On larger scales, the hardware-acceleration

model has been used to replace ultra-critical sections of code within applications.

This method, regardless of scale, is certainly not without its merits. In 2006 Morris

used FPGAs to gain a 1.3x speedup for mapping conjugate gradients [68], Kin-

dratenko achieved a 3x speedup after porting NAMD [60], a molecular dynamics

20

Time

Block A Idle/Polling Block CCPU

main() {

}

Block A

for (i = 0; i < max; i++) {

}
Block B

Block C
return(0);

FPGA
Hardware

Coprocessor

F
I
F
O

F
I
F
O

Figure 2.1. Traditional FPGA Co-Processor Model

application, to a SRC-6 CPU/FPGA supercomputer [53], and Zhou reported a 2x

speedup for LU decomposition [112]. The problem with the hardware-acceleration

model is that there is only a finite amount of parallelism to exploit within a single

flow of execution [64,100]. These efforts effectively ignore the benefits of exploiting

coarse grain parallelism historically seen in MIMD models.

In [50], Hennessy and Patterson describe the historical use of SIMD archi-

tectures starting from Unger [94] in 1958 and Slotnick [84] in 1962. They note

that despite numerous attempts at achieving commercial success with an SIMD

architecture, such as Thinking Machines and MasPar, they were all ultimately un-

successful. Their reliance on data parallelism limited the applicability to a small

set of problems (mostly signal and image processing applications). Furthermore,

they failed to take advantage of more flexible and cost effective multiple micro-

processor model. They conclude that with few exceptions all parallel computing

machines today fit the MIMD model.

21

2.4 Programming Models for Parallel Computing

Although the distinction is somewhat ambiguous, a programming model is

an a computation model abstraction. A parallel programming model allows a

developer to specify multiple independent threads of control, the communica-

tion between threads, and synchronize thread execution. A parallel programming

model abstracts the mechanisms of parallelism by providing policies of parallelism

encapsulated within an API.

Skillicorn describes the requirements for a parallel computing programming

model in [82,83], and are highlighted by two points. First the model must be easy

to program. The software engineer should not have to know how the parallelism is

achieved at the OS or hardware layer. To achieve this the policy of the parallelism

must hide data communication, synchronization between tasks, and location of

tasks (tasks located on which processing elements). Second the model must be

architecture-independent. Programs written using a parallel programming model

should be executable on all machines supporting the programming model without

modifications.

Updating the parallel computing programming model definition to hybrid

hardware/software systems requires extending the CPU computational model to

FPGA tasks and abstracting the difference between CPU and FPGA resident

tasks. Easy to program additionally means enabling the programmer to ignore

the location of the task not only between CPUs but more importantly between

hardware and software. This in turn means that the same communication and

synchronization primitives available to software tasks must be extended to hard-

ware tasks. Architecture-independent now implies compiling or translating tasks

from software to hardware without the need to modify the source code prior to

22

translation. This also implies HDL source code describing the functionality must

be portable, without modifications, between different FPGA solutions.

There are two well known programming models for parallel computing. First is

shared memory multi-threaded. POSIX [17] and Microsoft’s .net framework [27]

implement this model. Second is message passing, implemented in MPI [36]. The

research presented in this thesis uses the POSIX Threads, or Pthreads, program-

ming model implementation as its base.

2.5 C to Hardware Languages

A number of research groups have attempted to gain access to the FPGA

through compiling a C [59] or C-like language into a hardware descriptive lan-

guage. Creating hardware cores from C is compelling. There are far more skilled

software engineers who can develop in C than there are hardware engineers that

can develop in VHDL or Verilog. There is also a significant body of pre-written

and pre-tested C code that could be leveraged within hardware. Although varia-

tions exist between C to HDL tools the general process is the same. The compiler

creates and analyzes control and data flow graphs derived from the source code.

The objective is to identify opportunities to parallelize operations. Most oppor-

tunities come from loop unrolling. Once identified the compiler derives, or relies

on user pragmas to derive, hardware/software segmentation. The hardware iden-

tified code is translated to HDL, and a custom interface is created allowing data

to be passed to and from the core. In most cases, the C to HDL compilers rely

on vendor supplied tool chains to synthesize the HDL to netlists that may be

downloaded onto FPGAs.

Unfortunately the translation of C (or any other high-level language) to a hard-

23

ware descriptive language is not an easy task. Survey papers that cover this topic

include Edwards [31] and De Micheli [66]. Unlike the pure software world where

there is a known target, either a processor or a virtual machine, FPGAs provide

only an “open slate.” There is no notion of instructions, memory, stacks, heaps, or

any other semantics common to high level languages. These semantic mechanisms

must either be created by the compiler or inserted by the programmer. Further-

more there is the challenge of converting a language meant for a SISD machine to

either a SIMD or MIMD machine. There remains a debate on how best to achieve

this goal. The three schools of thought are to identify and use instruction level

parallelism to create a SIMD machine (the most common approach), map sequen-

tial instructions into a systolic arrays to create a heavily pipelined SISD machine,

or enable task level parallelism to create a MIMD machine. With the exception

of [21], a yet unexplored fourth option is to combine task and instruction level

parallelisms. Given these difficulties most C to hardware languages either require

the user to insert hardware specific pragmas to take advantage of the underlying

FPGA’s computational model, or they leave out important capabilities within

the language such as support for pointers or recursion. As impressive as some of

these efforts have been, these limitations fail to completely abstract the hardware

software boundary.

The earliest known C to hardware approach came from Cones [92] in 1988,

and supported only a strict subset of C. Cones was also the first to capitalize

on loop unrolling to create parallelism. Later work, including Garp [19, 20] and

ROCCC [18, 48], depended more heavily on loop unrolling to achieve speedups.

However, they discovered that data bandwidth is a major limiting factor regardless

of the efficiency of their core. Streams C [37, 44, 45] with its predecessor NAPA

24

C [43] are perhaps the most well known examples of generating systolic arrays

types of cores. Impulse C [52] and Handel C [22, 24] are commercial products

that use a C like language as a driver for hardware synthesis. Altera’s C2H (C

to Hardware) [65] is unique in that it does not add pragmas to C and supports

nearly the entire C language, recursion and floating point operations being the

exception. Also noteworthy are PipeRench [34], Transmogrifier C [39], the SUIF

compiler [90], DEFACTO [13, 86], C2Verilog [87, 88], SPARK [95], CASH [67],

and SA-C [70]. Lastly, there is JHDL [15] and System C [93], these languages use

objects in Java and C++ respectively to represent low level hardware details.

2.6 Abstracting the Hardware/Software Interface

High-level language to hardware descriptive language compilers attempt to

abstract the hardware/software boundary by allowing the programmer to design

his or her hardware core in a known programming language. The core of the

problem though is more abstract, that is, how to enable and hide communication

and synchronization between hardware and software portions of the application

[102, 110]. Ideally, communication and synchronization is achieved through a

standard policy that may be applied to a large set of problems. The research

of a number of groups investigating this problem follows.

The Processor Architecture Laboratory from Ecole Polytechnique Federale

de Lausanne proposes using an abstract virtualization layer between a software

wrapper thread and the user logic “hardware accelerator” implemented in the

FPGA [96–98]. Lead by Milian Vuletic, this idea has many desirable benefits.

It satisfies the need for a standard interface into the FPGA and the need for

platform independence. Furthermore, since it utilizes the thread model, multiple

25

hardware accelerators may be running simultaneously, in parallel to the CPU, en-

abling thread level parallelism. This is advantageous since this would support the

MIMD model instead of the SIMD model most C to hardware compilers use. How-

ever there are two major drawbacks to the virtualization layer approach. First,

the hardware accelerator requires a separately written software wrapper thread

for control. Second, their virtual memory manager requires interrupting the CPU

whenever the hardware accelerator requires additional data from memory. This is

largely a consequence of their adoption of Linux as their operating system, which

requires hardware threads to access data through virtual addressing. A hardware

thread must maintain a local version of a translation lookaside buffer (TLB),

which is updated and kept consistent through the CPU’s memory management

unit (MMU). When a request for a virtual address not in the TLB is issued, an

interrupt is generated to a custom patch within the Linux memory management

functionality. Thus, the hardware thread remains a slave to the CPU, causing

additional overhead and jitter for the applications running on the CPU, and must

idle while the memory management code is ran on the CPU.

The System-Level Synthesis Group from Techniques of Informatics and Mi-

croelectronics for Computer Architecture has proposed a roadmap for developing

seamless interfaces for hardware/software co-design [14, 54, 55]. They note that

traditional hardware/software design is done by creating custom register sets for

hardware that are interfaced by the CPU through custom software drivers for the

programmer. This reliance on custom partitioning and design must be broken to

solve the hardware software disconnect. They argue for designing system on a

chip (SOC) applications using multiple layers of abstraction. Their abstractions

layers, from lowest level to highest level, are “Explicit interfaces,” “Data transfer,”

26

“Synchronization,” “Communication,” and “Partitioning.” These abstraction lay-

ers are designed to give the engineers an easy methodology to build a system from

the low level architecture details up to the application’s algorithm. If done prop-

erly, they argue that SOC designs will take less time to develop and verify, be

higher quality, enable post-development decisions on the chip’s architecture, and

ultimately be a better return on investment.

From Washington University, John Lockwood, who has specifically been re-

searching FPGA solutions for Network Intrusion Detection Systems (NIDS), has

proposed creating an abstraction to better encapsulate the parallelisms and state-

ful analysis aspects of network analysis algorithms [28, 72]. He notes that while

Moore’s Law is breaking down the need for network analysis continues to grow.

He predicts that future performance advantages will either come from carefully

crafted applications composed of multiple cores, or more likely application specific

hardware cores. Lockwood goes on to state that handcrafting optimal hardware

designs, both because of the differences in architectures as well as differences in

various network analysis algorithms, is a “losing game.” His solution is first to

generate a high level language that can encapsulate the algorithms, second to

generate a “transactor”abstraction from the language which encompasses a par-

allel hardware core, and finally to compile the transactors to a hardware specific

implementation.

Lastly, and perhaps most importantly, is the original hybridthreads work in-

vestigated by Razali Jidin [56, 57]. His work created a prototype of the work

presented in this thesis. Jidin extended the concept of a thread to hardware, de-

veloped mechanisms to support mutexes and condition variables, and supported

communication between hardware and software threads. Still in use today, his

27

work also demonstrated how to migrate operating system functionality into hard-

ware, allowing both software and hardware threads equal access to them. The

downside of his work was the separate treatment given to hardware and software

threads. At the time there was not a unifying mechanism to treat threads, regard-

less of their location, equally. Lastly, his hardware thread interface still needed

customization based on the thread’s functionality.

28

Chapter 3

Extending the Shared Memory

Multi-Threaded Programming

Model to Hardware Resident

Threads

In traditional Pthreads programming, a program consists of n threads running

on m CPUs. A programmer may conceptualize each of his or her threads running

on its own CPU, that is n = m, as depicted in Figure 3.1. Each thread has a

sequential set of instructions to execute, accesses data from global memory, and

synchronizes with the other threads using functionality provided in a middleware

layer. The middleware layer is of course the Pthreads library that each thread

links against.

An abstraction is created because the Pthreads library hides the fact that

n > m (except in rare cases), that is there are more threads than processors as

29

Figure 3.1. Conceptual Pthreads programming model

seen in Figure 3.2. In this case, threads will run in pseudo-concurrency, shar-

ing time on the limited number of CPUs. A programmer does not care which

CPU a thread runs on, and to some extent does not care when or how a thread

runs. A programmer is only concerned that the overall sequence of operation runs

according to the synchronization routines he or she inserted into the application.

Figure 3.2. Implementation of the Pthreads programming model

With FPGAs, the algorithm performed by a thread may be conceptually im-

plemented as a hardware circuit. This is advantageous since it provides threads

with a “dedicated CPU” that is not time shared with other threads and will run in

30

true concurrency. Further advantages may be found if hardware resident threads

perform faster, with less power, or less jitter (for real time applications). Although

we have hardware engineers who can write a thread’s functionality as a hardware

core, depicted in Figure 3.3, there remains three key challenges to creating the

same synchronization and communication abstraction that Pthreads have.

Figure 3.3. Migrating threads to hardware faces key abstraction
challenges

• Access to Synchronization Libraries Hardware resident threads must

be given equal access to the synchronization libraries that software threads

have. This is a problem since the libraries are CPU instructions and not

easily executable by custom, non-CPU, circuits.

• Access to Shared Memory Like the synchronization primitives, hardware

threads must be given equal access to shared memory. With Pthreads,

communication between threads is achieved by passing pointers to abstract

data structures located in a global memory address space. The challenge

for hardware threads is to receive and pass pointers within the semantics

of the programming model, and have equal access to the data structure in

memory.

31

• Standard Register Set No standard register sets exist within the FPGA

fabric to encapsulate API operations. This includes register sets to abstract

synchronization and communication operations from the hardware thread,

and register sets to abstract creating, synchronizing, and joining on a hard-

ware thread.

This research, in conjunction with the Hybridthreads project, solves these

problems. These problems are solved by: creating a standard register set and

interface protocol representing the semantics of the shared memory programming

model, migrating key system synchronization services to hardware providing equal

access to both hardware and software threads, and providing direct memory access

for hardware threads. These services are encapsulated within a standard system

service layer known as the Hardware Thread Interface (HWTI). The new system

is depicted in Figure 3.4.

Figure 3.4. Hthreads system providing context for hardware
threads and equal access for communication and synchronization

32

3.1 HWTI Standard Register Set

Migrating thread functionality to hardware is a solved problem; what may be

represented in software may be implemented in hardware. However, there remains

key questions as to the interface into and out of hardware threads. The HWTI

meets this challenge by providing a standard register set to and from the hardware

thread and system. Each hardware thread has its own copy of the HWTI. The

HWTI remains constant regardless of the threads functionality. The register set is

depicted in Figure 3.5, and consists of two interfaces, the “user interface” and the

“system interface”. The HWTI is a layer between the system’s communication

mechanism (shown in Figure 3.5 as a bus) and the hardware thread “user logic”

entity. The user logic represents a thread’s functionality and is written by the

programmer.

Figure 3.5. HWTI standard register set

The system interface captures the context implied within the system calls

hthread create and hthread join as well as the hthread synchronization poli-

cies. This is important since it enables seamless creation and synchronization of

threads regardless of their location. It is also important since this means the sys-

33

tem interface is specific to the multi-thread shared memory programming model.

If a different programming model was used the system interface may look very

different.

The user interface acts as a facade [40], hiding system and implementation

details from the user logic entity. The user logic requests services through the

user interface that the HWTI performs on its behalf. The user logic is never

concerned as to how the services are fulfilled. The user interface is important

as it satisfies the easy to program and architecture-independent requirements of a

programming model described in Section 2.4.

When porting between different communication mechanism neither the system

interface nor the user interface would change, only the internal implementation

of how the HWTI fulfills the communication mechanism protocol. For instance,

porting the HWTI from a On-chip Peripheral Bus to a Processor Local Bus would

require signal assignment changes to communicate with the new bus. This change

would not effect the user logic implementation.

Details of the HWTI system and user interfaces are in Appendix A. A discus-

sion of similarities and differences between the context of hardware and software

threads is in Section 5.1. Also note, creating and joining on threads remains a

software only capability. Migrating this service to hardware proved too difficult.

This is discussed in detail in Section 5.2.3.

3.2 Abstract Synchronization

Hthreads migrates key system services to hardware. These are specifically

mutex, condition variables [56], thread management [35, 73], and scheduling [1,

2]. Each of these cores are accessible through embedded bus transactions. By

34

reading or writing specific addresses within each core’s address range the calling

thread will be invoking specific functionality. This hardware/software co-design

approach is advantageous since access to synchronization functionality is through

encoded bus transactions and not exclusively in the execution of sequential code

on a CPU [7,9,10]. More importantly, since the functionality is centrally located

and accessible through asynchronous bus transactions heterogeneous threads have

equal access to their functionality.

Given this, an hthread abstract interface, be it in software or hardware, only

has to know how to access the synchronization services within the FPGA. More

precisely, an abstract interface only has to know how to encode an API call as

a bus transaction. The details of how to do the encoding is abstracted from the

user by the interface.

For completeness, there are a number of “init” (initialize) and “destroy” func-

tions within the hthread API, these functions do not require communication with

their respective management cores. Rather, these functions only require the in-

terface to initialize or clear the corresponding data structure. As an example in

hthread mutex init(&mutex t, &mutex attr t) an interface implementation

only has to set the mutex number and type addressed by mutex t with the values

stored in mutex attr t.

A complete discussion of the semantic and implementation differences between

each of the hthread API calls is in Chapter 5. As a note, the migration of synchro-

nization services to hardware, as well as the bulk of the hthread runtime system,

was largely completed prior to the start of the research presented in this thesis.

It is described in [1, 2, 7, 9, 10,56,57,73].

35

3.3 Abstract Communication

Threads communicate by sharing data in a global memory structure. Shared

data is passed to a thread as a pointer to an abstract data structure (typically a

struct in C) when the thread is created. When a thread starts up it reads the

struct and starts execution. However, this creates a problem as it forces hardware

threads to understand the meaning of a pointer.

Oddly, most C to hardware tools leave out support for pointers, Altera’s C2H

being the exception [65]. This is generally because these tools assume the CPU

will pass all needed data to the hardware accelerator, instead of a pointer to

the data. However, implementing support for pointers is not difficult. Hardware

threads simply have to be instantiated as a bus master and use bus protocols to

read and write memory. This is often referred to as “direct memory access.”

To read a memory location the user logic passes the address to read to the

HWTI via the user interface. The HWTI in turn performs a standard bus read

operation, the memory location responds, and the HWTI passes the value back

to the user logic. This operation is depicted in Figure 3.6. To perform a write,

the user logic passes both the address and the value to the HWTI, which in turn

initiates the bus write operation. This operation is depicted in Figure 3.7.

In this manner the thread’s user logic has access to global memory without

knowledge of any low level system details. Bus signals and protocols are suc-

cessfully abstracted from the user logic. The user logic only has to know how to

interact with the HWTI user interface.

36

Figure 3.6. User interface load operation

Figure 3.7. User interface store operation

37

Chapter 4

Extending High-Level Language

Semantics to Hardware Resident

Threads

Abstracting synchronization services for hardware and software threads was

achieved by migrated synchronization services to independent hardware cores and

creating interfaces, in both hardware and software, that know how to commu-

nicate with the appropriate system core. Abstract communication was achieved

by providing a facade for direct memory access. Encapsulating hardware thread

context was achieved by creating a standard interface representing the context in-

herent to the hthread create and hthread join calls. These three mechanisms

alone can abstract the hardware/software boundary between CPU and FPGA res-

ident threads. However, a meaningful abstraction still does not exist for hardware

threads.

As a review, the overall goal is to allow software engineers, and not just hard-

38

ware engineers, to describe a multi-core system on a programmable chip through a

known high level language and programming model. Thus far only the program-

ming model abstractions have been moved to hardware threads. A meaningful

abstraction is still required to complete the goal. A meaningful abstraction im-

plies that a thread’s functionality may be moved from software to hardware with-

out any consideration as to where it will run. Granted, a C to VHDL translator

would be needed for the conversion, but the implementation in C should not be

modified prior to converting to VHDL. Examples of why this is not possible with

the mechanism already discussed are:

• Hardware threads must instantiate their own memory if they want a “scratch-

pad” to locally store variables.

• If a hardware thread does instantiates their own memory, it is impossible to

pass a pointer from that memory to other threads.

• Although a hardware thread may call a system function, there remains no

interface for calling a user defined function.

• Hardware threads can not create, or join on, another thread. Creating a

thread remains a software only capability.

The remainder of this chapter discusses four mechanisms added to the HWTI

to creating a meaningful abstraction. They are globally distributed local memory,

a function call stack, dynamic memory allocation, and remote procedural calls.

39

4.1 Globally Distributed Local Memory

The memory latency problem, the delay between a load or store request from

the CPU to memory, is a well studied and understood problem. In traditional

CPU systems it is addressed through memory hierarchies. The fastest and more

expensive memories are placed close to the CPU, while the slower and inexpensive

memories are placed further away [50]. In more complex architectures, such as chip

multiprocessors [23,111] or network on chip [75], cache and memory organization

continues to be studied. However, there has been very little research in memory

hierarchies for MCSoPC. De Micheli has looked at ways of representing memory

for C to HDL synthesis [81], and Vuletic has looked at ways of using virtual

memory in reconfigurable hardware cores [96,97].

Hardware threads, which operate like application specific processors suffer from

the same memory latency problems as CPUs. If hardware threads only operates

on off chip data their performance would be greatly degraded. To avoid this

penalty hardware threads need access to a localized fast memory. If the data

size the hardware thread is operating on is small, the user logic could instantiate

registers for each data item. Unfortunately, this solution is not practical for any

non-trivial data set. For example, one 32-bit register occupies approximately 16

slices using the D flip flops on a Xilinx Virtex-II Pro FPGA [106]. Instantiating 32

32-bit registers occupies 512 slices. This represents roughly 4% of available slices

on a Xilinx Virtex-II Pro 30 chip [107]. Depending on the application’s needs,

this to may be too expensive.

If the hardware thread is to remain small and access shared memory, it is

clear that like CPUs, it too will need a mechanism similar to cache. However,

for two reasons, a traditional cache is not practical. First the cache manage-

40

ment logic would be too expensive to create. The number of resources grows if

cache coherency protocols are needed, as is the case with multi-core system on

a programmable chip (MCSoPC). Second, assuming a cache could fit within the

FPGA resources, multi-core chips are often architected using separate buses or a

hierarchy of busses. Snoopy cache protocols are useless on multi-bus architectures.

In a different approach, the HWTI instantiates a “globally distributed local

memory.” The global distributed local memory, or “local memory” for short,

is not cache, but rather a fast memory accessible to both the user logic and

other Hthread cores. The local memory is instantiated using on chip dual ported

memory embedded within the FPGA fabric (referred to BRAM on Xilinx chips).

Depicted in Figure 1.2, one port on the BRAM is used to allow access for the user

logic, the second port on the BRAM is used to allow access for other Hthread cores.

The local memory address space is a part of the hardware thread’s address space.

The term “distributed” is a reference to the fact that any two hardware thread’s

address space is non-continuous. Access to the local memory, for other cores, is

through standard bus read and write protocols. The local memory is accessible

to the hardware thread’s user logic through HWTI’s user interface using the same

protocol as would be used for accessing traditional global memory. On each LOAD

or STORE operation, the HWTI checks to see if the address range requested is

“local” (within the HWTI) or “global” (outside the current HWTI). If the address

is local, the HWTI accesses the memory through the BRAM’s signaling protocol.

If the address is global, the HWTI accesses the memory through bus operations. In

this way, the HWTI abstracts the difference between local and global data. The

programmer is only concerned with accessing memory, not where the memory

resides.

41

An advantage of the HWTI’s local memory, is that the user logic may access it

without issuing a bus command. Consequently multiple hardware threads could

perform simultaneous memory accesses, even when the threads share a common

bus. To illustrate this consider Figure 4.1. In this figure four threads, three

hardware and one software, are accessing global memory at the same time. The

largest portion of global memory is on the same bus as the CPU. This is normally

off chip memory, here shown as DRAM. The three hardware threads are sharing

a bus, each thread contains a small segment of memory, shown here as BRAM. If

the shared variables were all stored in traditional global memory, accessing them

would be slower. Not only would each thread have to perform a bus operation,

but the bus would effectively serialize them. When the variables are distributed,

as depicted, four memory operations may be performed in parallel, furthermore

accessing local memory is very quick. As seen in Table 4.1 it takes 3 clock cycles to

load a value from local memory, 1 clock cycle to store a value. This compared with

51 and 28 clock cycles to load and store respectively to off chip memory (labeled

global memory). Although slower than accessing its own memory, a hardware

thread may access another hardware thread’s local memory in 19 clock cycles for

either a load or store operation (labeled HWTI memory).

Operation Clock Cycles
LOAD (local memory) 3
LOAD (HWTI memory) 19
LOAD (global memory) 51
STORE (local memory) 1
STORE (HWTI memory) 19
STORE (global memory) 28

Table 4.1. Performance of memory operations

42

Figure 4.1. Simultaneous memory access between four threads

4.2 Function Call Stack

Implicit in the goal of providing a meaningful abstraction is the goals for the

HWTI to provide a target for HLL to HDL translation. As discussed in section

2.5, this is not an easy task. Where as software can target an existing processor’s

instruction set with a Von Neumann architecture behind it, hardware does not

have any preexisting target. Because of this, there is not any pre-existing support

for high-level language semantics. Pointers and a function call stack are often two

capabilities left out. Support for pointers have largely been solved by translating

a pointer address into a bus operation [6, 65]. Both the HWTI and Altera’s C2H

43

uses this method to support pointers. However, a hardware equivalent function

call stack has not been addressed. Without a stack’s functionality, parameter

passing is difficult and true recursion is impossible.

To address this problem, the HWTI creates a function call stack using its local

memory. The HWTI’s function call stack works analogously to software function

call stacks. There are three key differences. First, the stack and frame pointer are

maintained as registers within the HWTI, pointing to its local memory instead

of traditional global memory. During a call, the HWTI pushes the frame pointer

and the number of passed function parameters values onto the stack. The stack

and frame pointers are then appropriately incremented for the new function.

The second difference is specific to how parameters are passed and stored

during the call. RISC CPU’s such as the MIPS architecture [71] and the PowerPC

use a register convention that reserves general purpose registers to save parameters

during a call. However, the HWTI does not maintain any general purpose registers

that are shared with the user logic prohibiting it from using this option. Instead

it uses a method similar to CISC architectures, like the x86 where all function

parameters are passed by pushing the values onto the stack. The HWTI has a

PUSH operation for this purpose. Once called, the callee function reads the the

parameters by using a POP operation.

The third difference is instead of saving the contents of the program counter

during a function call, as done on CPUs, the HWTI pushes the user logic’s state

machine’s return state onto the stack. The user logic is required to pass the return

state to the HWTI, along with the function to call, during a CALL operation. To

be more specific, the user logic passes a 16-bit variable representing the return

state. The user logic is responsible for mapping this variable to its return state

44

when control is returned to the caller function.

Function returns are implemented with the RETURN operation. Here, the stack

register is set to the current frame register (minus the number of previously pushed

parameters that was stored on the stack), and the frame registers is restored by

popping the value from the stack. The return state and return value, limited to

32 bits, are passed back to the user logic.

The HWTI supports calling system and library functions, as well as user de-

fined functions. The interface and protocol for calling any type of function is the

identical for the user logic. The implementation difference is that for a system or

library call, the HWTI performs the method on behalf of the user logic. For a user

defined function call, the HWTI sets up the function stack for a new function,

and then returns control to the user logic, specify the start state of the function.

In order to give the user logic easy access to the local memory the HWTI sup-

ports similar semantics to HLL variable declarations. To declare local variables,

the user logic uses the DECLARE operation, with the number of words (4 bytes) in

memory it wants to set aside for local variables. The HWTI reserves space on the

stack by incrementing its stack pointer the specified number of words. The user

logic access this memory using READ and WRITE operations in conjunction with

an index number that corresponds to the declared variables. The first declared

variable has index 0, the second declared variable has index 1, and so on. Since

the variables are declared and granted space with the HWTI’s local memory, they

each have an address in global memory. The ADDRESSOF operator works by con-

verting the index number into its equivalent memory address, taking into account

the HWTI’s base address and current frame pointer.

Using local memory as a mechanism to create a function call stack conse-

45

quently allows the HWTI to support recursive function calls in hardware. A

hardware thread may repeatedly call the same function without incurring the

costs of duplicating function logic within the FPGA fabric. The caller function’s

state is saved to the HWTI’s local memory, and then restored when the callee

function returns. The recursive depth of a function is only limited to the avail-

ability of local memory. Two examples of recursive functions are given in the

results section, they are quicksort (section 6.2.1) and factorial (section6.2.2).

To help understand how the HWTI function call stack is implemented, consider

the pseudo code, and stack representation, given in Figure 4.2. This image depicts

the state of the HWTI after calling the foo function.

Lastly, Table 4.2 lists the performance of operations associated with the HWTI

support for function calls, variable declaration, and variable use.

Operation Clock Cycles
POP 5
PUSH 1
DECLARE 1
READ 3
WRITE 1
ADDRESSOF 1
CALL 3
RETURN 7

Table 4.2. Performance of function call stack operations

4.3 Dynamic Memory Allocation

In the related work Section 2.5 a number of HLL to HDL tools were dis-

cussed. Although these tools have made significant progress over the past decade

to automatically and correctly translate an HLL source code into a hardware core

46

Figure 4.2. HWTI’s function call stack

or accelerator there are still limitations that are desirable to engineers. One of

the most common limitations is dynamic memory allocation. Traditionally man-

aged by the operating system, users have access to dynamically allocated memory

through tools such as malloc and free. In [101] the authors survey many of the

allocation and deallocation techniques for software based memory management.

Despite memory allocation use and studies within software, with the exception

of [81], a dynamic memory allocation for custom hardware cores has thus far been

illusive. This is primarily because hardware cores do not have access to the op-

47

erating system, which manages memory allocation. It would be possible for the

HWTI to use its remote procedural call (discussed in section 4.4) to allocate and

deallocate memory for the user thread. However doing so would allocate memory

in traditional global memory. Consequently, the hardware thread would pay a

latency price for accessing it.

Taking advantage of the existing design of the HWTI, namely its ability to

provide operating system services and its local memory, the HWT implements its

own light weight versions of malloc, calloc, and free. Like the existing Hthread

library functions, when the user logic calls malloc, calloc, or free, the HWTI

implements these functions on behalf of the user, acting like an operating system.

The memory the HWTI allocates for the user logic is within its local memory.

To implement dynamic memory allocation the HWTI adds two limitations.

First the same thread that allocates memory must deallocate it. Second, since

the dynamic memory is allocated within the thread’s local memory, there is a

limit to the size and number of memory segments that can be allocated. The

memory the HWTI allocates, known as the heap, is pre-allocated in 8B, 32B, and

1024B segments at the top of the local address range. These sizes were selected

to assist with the dynamic creation of mutexes, condition variables, and threads,

common structures within Hthreads programming. By preallocating memory the

HWTI avoids implementing a defragmentation routine. This is advantageous

since the HWTI should remain as small as possible. When the user logic calls

malloc, the HWTI selects, using a “best-fit” algorithm, the smallest appropriate

preallocated memory space and returns its address to the user. The HWTI marks

the memory used in a malloc state table. If the requested memory size is larger

than 1024B, the HWTI allocates this space by decrementing a heap pointer the

48

specified amount and returning the appropriate address to the user. The heap

pointer is maintained, like the frame and stack pointer, as a register within the

HWTI, always pointing to an address within its local memory. The user logic

may request only a single segment of memory larger than 1024B. If the user logic

requests a memory space larger than the HWTI has available, the HWTI returns a

null pointer (represented as address x0000 0000). When the user logic calls free,

the HWTI marks the appropriate malloc state table entry as unused.

A significant advantage that the HWTI malloc routine has is that the memory

it allocates is local and globally accessible. In [75], the authors discuss the prob-

lems of dynamic memory allocation for multi-core systems on a chip, specifically

looking at softcore processors. Stating the primary challenge is how to allocate

memory for a processor that is fast, but without the benefits of a data cache

(multi-soft-core systems have the same issues with cache coherency as discussed

in section 4.1). Their solution was to identify, at compile time, which dynamic

memory allocation could be local and held in cache, and which have to be global.

To be safe, they had to put any data in global address range, that could not be

guaranteed to only be used by the local core. The HWTI alternatively, when it

allocates memory (or even when it declares memory on the stack), all memory

is globally accessible and fast for the calling thread. Eliminating the problem of

segmenting memory at compile time as to what can be placed in global memory

and what can be placed in local memory.

4.4 Remote Procedural Calls

There are some hthread API calls that are simply too difficult, or too ex-

pensive to implement as part of the HWTI, most notably hthread create and

49

hthread join. However, to create a meaningful abstraction, their inclusion is

necessary. Furthermore it would be beneficial to enable support for all library

functions, most specifically C’s standard library.

To enable support for all other software resident library functions, the HWTI

relies on a remote procedural call (RPC) methodology to a special software system

thread. This model is similar to hardware thread callbacks described in [97]. The

RPC model uses existing hthread mechanisms and is completely abstracted from

the user. A block diagram of the RPC methodology is in Figure 4.3. The user logic

makes the library function call to the HWTI in the same manner as it would any

other function. The HWTI recognizes the function (the function opcode has to be

known at synthesis time) as an RPC function. Using a mutex, the HWTI obtains a

lock protecting the RPC mechanism. Once granted, the HWTI writes the opcode

and all arguments to a global RPC struct. Using a condition variable the HWTI

signals the RPC thread to perform the function. The HWTI then waits for a

return signal from the RPC thread. The RPC thread, which runs as a software

thread on the CPU, will read the RPC struct and call the appropriate function

(the function must be known at compile time) with the passed in arguments. The

return value, if any, is written back to the RPC struct. The RPC thread signals

the HWTI indicating the function is complete. When the HWTI receives the

condition variable signal, it wakes up, reads the return value, unlocks the RPC

mutex, and passes the return value to the user logic.

The RPC model may be used to support any library function or operation too

expensive to implement within the FPGA. For instance, Table 4.3 lists a number

of functions the RPC model was used to implement along with their execution

time. The RPC model does have disadvantages. The CPU has to be interrupted

50

Figure 4.3. Remote procedural call high level diagram.

to perform the RPC which may impact real time constraints. Depending on

the priorities of the threads in the system, a hardware thread may have to wait a

significant amount of time before the RPC is complete. Multiple hardware threads

may be trying to access the RPC thread simultaneously, although a mutex protects

the mechanism, hardware threads will may have to block until they gain access to

the RPC thread. Finally, even when the HWTI gains immediate access to the RPC

mechanism, there is a performance penalty due to the RPC protocol and RPC

thread context switching. There is an approximate 106µs penalty for invoking a

RPC function, which does not include the cost of executing the function. The

penalty is high enough that implementing the function with a RPC is orders of

magnitudes greater than if it was implemented directly in the HWTI. For instance,

malloc is executed in .1µs as a HWTI resident function and in 122µs as a RPC

function.

51

Library Call Execution Time
hthread create (hthread.h) 160µs
hthread join (hthread.h) 130µs
malloc (stdlib.h) 122µs
free (stdlib.h) 120µs
printf (stdio.h) 1.66ms
cos (math.h) 450µs
strcmp (string.h) 114µs

Table 4.3. Performance of selected library calls using the RPC
model.

4.5 Unsupported CPU Features

In the above sections the HWTI features enabling a meaningful abstraction

were described. This discussion would not be complete without also including, at

least briefly, a description of features that may be argued for to achieve the goals

of the HWTI.

The first such feature is the inclusion of global variables. Currently, there is

no way automatically share global variables created in software with a hardware

thread. Doing so would require knowledge of global variable addresses. Global

variable addresses are resolved during software’s link time. Although a software

thread have access to this information, a hardware thread that was synthesized

separately (and usually earlier) does not. If global variables have to be used,

a programmer has the option of passing the address of a global variable to a

hardware thread in the thread’s argument struct. In this case, a global variable

in software becomes just a “normal” variable to hardware.

A second feature that the HWTI could provide is a standard general purpose

register set. This could be useful during function calling. As described in Section

4.2 all parameters must be pushed onto the HWTI’s stack instead of quickly stored

52

in general purpose registers as typically done with RISC architectures. The reason

the HWTI does not provide general purpose registers is first, and simply, the

HWTI is not a CPU. The HWTI provides services and the interconnect for the

user logic, which acts more like a CPU. Second, if the HWTI did provide a general

purpose register set, it would limit the user logic’s options for instantiating its own

register set. Some hardware thread user logics may be designed to run with few

or even zero registers, while others may best perform with many registers. The

option of how many general purpose registers should be a implementation decision

of the user logic entity.

53

Chapter 5

Semantic and Implementation

Differences between Hardware

and Software

Extending the threaded programming model to hardware is conceptually sim-

ple. This thesis demonstrates that such a move is possible. However, with this

migration, there remains key questions to be asked and solved: what is the re-

lationship between a software thread context and a hardware thread context? is

a clean system call implementation in hardware possible? are there performance

limitations? is the migration natural? or does a system call take on a new mean-

ing for a hardware thread? It is these types of questions that this chapter aims

to address.

This chapter first explores the similarities and differences of hardware thread’s

context and software thread’s context. This chapter then compares system calls

implemented in software and system calls implemented in hardware using three

54

criteria. They are the semantic differences, that is, what is the meaning of a

system call implementation in either hardware or software. Second, the relative

size difference for the implementation. Third, the run time performance.

In most cases the difference between hardware and software stems from the fact

that in software the CPU can, and should, be shared between multiple threads. A

number of the implementation syscall routines for software must take this into con-

sideration. Syscalls like hthread join, hthread mutex lock, hthread cond wait

and hthread yield, must include code to perform a context switch if the current

thread has enter a wait state. Where as in hardware, the resources are dedicated

to a single thread. A hardware thread can not, by definition, be context switched

off a CPU. For these system calls the hardware implementation is cheaper and

faster. In most cases the HWTI blocks the user logic from running until the se-

mantics of the programming models allows it to continue. The disadvantage is if

a thread has to be blocked, for instance during hthread mutex lock, a hardware

thread’s resources remain unused, alternatively in software the CPU resource may

be shared with a different thread.

Another primary difference between hardware and software is that a number

of system calls require knowing the current thread ID. In software, this is stored

in the thread id register on the Thread Manager. When the CPU needs to

know this value it performs a load request to the Thread Manager. However,

in hardware, the thread ID is kept local in a dedicated register (on the system

interface). Reading the thread ID is just a matter of propagating the output of

the thread id register signals.

On both the hardware and software sides, there are a number of system calls

that will be identified as effectively “not having a meaning.” This is not to

55

say that a hthreads programer should not know conceptually what the system

calls are doing, but rather the hthread implementation make these calls “noops.”

These functions, are mostly the “destroy” system calls. For example, when calling

hthread mutex destroy, the programmer believes he is marking that mutex unus-

able. However, in hthreads a mutex is physically implemented in the Mutex Man-

ager. It is neither possible to create nor destroy a mutex at runtime. In hthreads

mutex are “created” at synthesis time. When calling hthread mutex init a

programmer is simply telling the system which mutex he or she wants to use.

Since the Mutex Manager was designed without a mutex destroy interface, the

hthread mutex destroy does not have to make a call to the Mutex Manager to

update it. The hthread mutex destroy function simply returns to the user.

Finally, extending the implementation of traditional software system calls to

hardware is for the most part possible. This is largely due to the fact that the

logic that controls synchronization and thread management routines within the

hthread kernel was previously migrated to hardware. The internal implementation

to lock a mutex, signal a condition variable, or join on a thread are all bus read

operations. Since a HWTI has a master slave interface, it too can complete

these same operations that software does. The one area that was proven to be

too difficult to migrate to hardware is the creation, and subsequently joining

on, threads. For these system calls, a hardware thread has to rely the remote

procedural call model to proxy the syscall implementation. While the RPC model

makes these system calls possible, the operations are comparatively slow and

potentially lead to deadlock.

56

5.1 Comparing the Context of Hardware and Software

Resident Thread

A significant component of migrating threads to hardware is the creation of

an equivalent context. However doing so faces key challenges in that independent

hardware threads do not have direct access to the software resident data structures

and CPU controls that encapsulate traditional software threads. These include

such context items as the CPU’s program counter, location of the thread’s stack,

or even the unique thread’s ID. Vuletic’s work [96–98] manages this problem by

creating a software wrapper for each hardware thread. The context of the thread

is split between software and hardware structures. The downside to this approach

is that hardware remains a slave to the CPU. To be independent of the CPU

hardware resident threads must be able to maintain their own context, which

requires hardware resident data structures.

To meet this challenge hardware threads encapsulate the context of a thread

through a number of sources. These are the system interface, the Thread Manager,

the HWTI resident function call stack, and the user logic entity.

The system interface captures the context implied within the system calls

hthread create and hthread join. When a thread is created through hthread -

create four parameters are passed to the system: a pointer to a thread structure,

a pointer to a thread attribute structure, a pointer to the function to run, and a

pointer to the thread’s arguments.

The pointer to the thread structure is a unique identifier for the child thread.

The system populates this structure for the parent thread’s use during thread

creation. Currently executing software threads learn their thread ID by reading

the thread id register maintained by the Thread Manager. Hardware threads

57

alternatively maintain their own independent thread id register as part of their

system interface.

The thread attribute structure contains information on how to create a new

thread. Although the system needs this information when a software thread is

created, the attributes of a hardware thread are either held constant or man-

aged by the Thread Manager. For example, hardware threads are ran with the

highest priority, have a constant stack size (set at synthesis time), and have a

detached/joined state managed by the Thread Manager.

The address of the start function, an unique identifier for the thread’s func-

tionality, is encapsulated within the implementation of the hardware thread’s user

logic entity. A key difference is that many software threads may be started using

the same function pointer. In hardware, to create multiple simultaneous instances

of a thread requires instantiating multiple hardware threads with the same user

logic code. Ideally the system would map the starting address of thread to a hard-

ware thread base address. This would enable true seamless creation of hardware

or software threads. When a user creates a thread, if a hardware thread that maps

to the function the user is trying to create is not used, the system would create

a hardware thread instead of creating a software thread. Currently this mapping

does not exist, identifying which thread to create is managed by the user through

setting a hardware threads base address in the thread attribute structure.

To start executing, hardware threads receive a RUN command in their command

register. The RUN command is received from the Scheduler when the Scheduler in

turn receives an add thread command. This is equivalent to the CPU performing

a context switch, learning the thread ID of a new thread (one that has not ran

on the CPU yet) and loading the starting address of a software thread into the

58

program counter.

The thread’s argument is passed to the hardware thread during the create call

by the system to the argument register on the system interface. The HWTI copies

the argument value to its stack making it available to the user logic through its

user interface POP operation. This is similar to software where the argument value

is placed on the new software thread’s stack.

When a hardware thread exits the return value is stored in its result register.

When the parent thread calls hthread join on a hardware thread the system

reads the result value from the result register. In software, the return value is

stored within an internal data structure.

In software, a thread exists within a finite set of statuses. A software thread is

either running on the CPU, waiting for the CPU in the ready to run queue, blocked

on a mutex, condition variable, or child thread, or exited. Hardware threads have

similar status but with two key differences. At start up, hardware threads have

an additional “not used” status due to their physical existence within the FPGA

fabric. Second, although a hardware thread may wait on a mutex, condition

variable, or child thread, their status is more accurately described as “blocked.”

This is due to hardware’s threads unique nature that they persist with the FPGA

fabric. A blocked status, enforced by the HWTI, prevents the user logic from

interacting with the system. The status of a hardware thread may be read at

anytime through its status register.

During execution of a thread, the context of a thread is encapsulated, at a high

level, by a set of instructions and data. At a more detailed level instructions in

hardware threads are encapsulated within the functionality of the user logic. The

HWTI does not restrict users to any specific implementation of the user logic, but

59

it is convenient to use sequential state machines (or at least think of the user logic

as a sequential state machine). If this is the case there is a rough 1 to 1 mapping

of instructions in a software program to states in a hardware implementation.

The function call context for a software thread is stored within a memory based

stack with the CPU maintaining the stack and frame pointers. Hardware threads

have an equivalent function call stack but implemented within the HWTI’s local

memory, stack pointer, and frame pointer.

Data is conceptually the same for both software and hardware threads. They

each operate in the same global memory address space. Software threads allo-

cate space for local variables within their stack space, as do hardware threads.

Again, the difference is the location of the stack. Also, unless a hardware thread

programmer creates his or her own memory representation within the user logic

entity, all memory declared by the user logic remains globally accessible. There

is no “scratch-pad” memory.

Software and hardware threads each have access to dynamically allocated

memory. When software threads call malloc or calloc the system allocates

memory from the traditional global memory based heap. Hardware threads re-

ceive dynamically allocated memory from within the HWTI’s heap. Both types

of allocated memory may be shared with other threads.

During operation the CPU uses a set of general purpose registers to perform

local data operations. The user logic may implement its own set of general purpose

registers for the same purpose. The HWTI does not restrict or mandate the user

logic to any fixed number of registers, or even any registers.

Lastly, the CPU uses data and instruction caches to speed up performance.

Instruction caches do not have a equivalent context in hardware since all “in-

60

structions” are synthesized as a circuit. Hardware threads also do not use, or

even have access to, a data cache. This is largely due to the expense of creating

a cache within the FPGA. However, since the HWTI’s local memory is relatively

fast, it provides a “cache like” performance to hardware threads.

Creating an equivalent context in hardware is important as it enables a con-

sistent computational model across the CPU/FPGA boundary. Both software

threads running on the CPU and hardware threads running in the FPGA may

be viewed as independent homogenous sequential computational units. Without

this equivalent context a consistent programming model targeting MIMD archi-

tectures would not be possible. It is important to note however that the context

of a hardware thread is not equal to the context of a software thread, there is only

an equivalency between them.

5.2 Semantic Differences

The functional difference between a syscall implemented in hardware and the

same syscall implemented in software is non-existent. A programmer may use the

same system call function in either hardware or software and produce equal re-

sults. This is of course a fundamental tenant of abstracting the hardware/software

boundary. However, there are some subtle and important difference in a set of

syscall implementations. It is these subtle difference that will be explored and

elaborated on next.

5.2.1 hthread attr init

The meaning and practical implementation for hthread attr init is the equiv-

alent for hardware and software. In each instance the user passes a pointer to

61

a hthread attribute’s structure. The system call initializes the attributes with

default values and then returns to the user. The default values specify that a

thread created with these attributes should be joinable, ran in software, have

an initial stack size of 16KB, a null stack pointer (the stack is allocated during

hthread create if it is null), and have a priority of 64. The implementation of

this function is straight forward, as it only requires storing predetermined values

to the hthread attribute structure.

5.2.2 hthread attr destroy

The implementation meaning of hthread attr destroy is in fact the same as

the meaning of hthread attr init. The passed in attribute struct is set to de-

fault values, and then control is returned to the calling function. In software there

are two separate functions (although the compiler may use common code elimina-

tion) between the hthread attr init and hthread attr destroy. Because the

operations are exactly the same, the HWTI implements hthread attr destroy

function by redirecting to the hthread attr init set of states.

5.2.3 hthread create

Creating a thread is the process of starting a new concurrent thread of con-

trol. In much the same way as a programmer does not care which processor an

individual Pthread may be scheduled, the distinction as to where an hthread is

running (either hardware or software) is also irrelevant. A subtle but important

difference in creating a hardware thread, verses a software thread, is that a hard-

ware thread has dedicated resources that run in true concurrency, instead of the

pseudo-concurrence prevalent with software threads.

62

When a software thread is created, the system creates a new thread from the

Thread Manager, sets up the thread’s attributes in an internal data structure, sets

the thread’s priority in the Scheduler, dynamically allocates space for the thread’s

stack (if space was not allocated previously and referenced in the attributes), and

finally the thread is added to the ready to run queue. Conceptually, the process

of creating a hardware thread is much the same. There are however a few key

differences. The first difference is that the system does not need to dynamically

allocate space for the thread’s stack since the stack is allocated using the HWTI’s

local memory during synthesis. Second, the system must set the thread’s argument

in the HWTI’s argument register, instead of the internal data structure. Finally,

the priority of a thread, when passed to the Scheduler, is set to the address of

the HWTI’s command register. This is the indication to the Scheduler that the

thread is a hardware thread and not software. Hardware threads practically run

as the highest priority in the system. As a matter of fact, the only hthread core

that knows which thread is hardware and which is software is the Scheduler. This

is a key subtlety as its permits the hthread cores to treat hardware and software

threads simply as “threads.”

If hardware threads were restricted to creating only other hardware threads,

the creation process would be straight forward. The parent thread would only

interact with the Thread Manager, Scheduler, and the child’s HWTI. The in-

teractions would be performed through standard bus read and write protocols.

The data structure used internally of the software kernel would not need to know

about the created thread. However, the process of creating a software thread from

a hardware thread is quite difficult. The reason is two fold. First the hardware

thread would need access to the internal data structure holding thread attributes.

63

Although somewhat kludgy, this could be accomplished by passing a pointer to

the data structure to each hardware thread prior to execution. Alternatively, the

data structure could potentially be maintained by expanding the Thread Man-

ager. However, the second difficulty presents a larger problem, namely how to

dynamically allocate space for a software thread’s stack.

The HWTI does have a limited dynamic memory allocation capability. How-

ever, when the HWTI allocates memory it does so through its local memory. The

current implementation of the HWTI gives each thread slightly less than 32KB of

local memory. The default size of a software stack is 16KB, at this size, a hard-

ware thread could, at most, create one thread without failing (not being able to

create a thread). Furthermore, the software thread would have to operate out of

the hardware threads memory instead of traditional global memory. Given these

two reasons, it was decided that trying to create a software thread from hardware

directly was not practically possible.

The first proposed method to address this problem was to expand the Thread

Manager to hold all of the thread’s attributes. To solve the dynamic memory

allocation problem the HWTI could issue a CPU interrupt. The CPU would then

context switch to a special “create a thread” thread, read the attributes from the

Thread Manager, and create the thread as normal. Once the interrupt is issued,

the HWTI could return control to the user logic with the assumption that the

thread was created successfully. However, creating a thread could still fail if the

call to malloc fails, or there are no more thread IDs available. The parent thread,

who called hthread create, would have received a SUCCESS return value even

though the create failed. This would be a significant redefinition of the create a

thread process.

64

The second proposal, and the one used to implement creating a thread from

hardware, is to implement hthread create using the remote procedural call

model discussed in section 4.4. Using the RPC model, a hardware thread may

create either software or hardware threads, without redefining the meaning of

hthread create. The disadvantage is the CPU has to be interrupted to perform

the RPC. Furthermore, depending on the priorities of the various threads in the

system, a hardware thread may have to wait a significant amount of time before

the RPC is complete.

An important consequence in using the RPC model to create new threads is

that the RPC system thread will always be seen by the Thread Manager as the

parent thread. This of course is incorrect since the true parent is the hardware

thread that originated the call. Thankfully, the practical consequence of the

proxy relationship is trivial. The parent thread ID stored by the Thread Manager

is only used when the parent thread joins on the child thread. As discusses next,

the hardware thread implementation of hthread join also uses the RPC thread

to join on threads, thus addressing the problem.

5.2.4 hthread join

Joining a thread is a synchronization policy allowing a parent thread to wait

for one of its child threads to exit. This meaning is the same regardless of hardware

or software.

The only implementation difference for joining on a hardware thread verses

joining on a software thread is where the result value is pulled from. In software

it is pulled from the exiting thread’s stack, where as in hardware, it is pulled from

the HWTI’s system interface result register.

65

In much the same reason that the hardware implementation for hthread -

create has to use the RPC model so too does hthread join. The implementation

in hardware is consequently the set of states to call the RPC software thread.

There is a potential of deadlock using the RPC model to call hthread join.

This danger lies when the RPC thread has to wait for the child thread to exit.

While the RPC is waiting, all other threads trying to use the RPC must also wait,

since the RPC thread would not be allowed to run.

To illustrate this consider the example in Figure 5.1. In this example a hard-

ware thread creates a child thread to perform an operation. For this example, as-

sume that the child takes a relatively long time to complete. The parent hardware

thread at some point will join on the child thread. Since the join is implemented

as an RPC that hardware thread signals the RPC thread to perform the join on

its behalf. The RPC thread receives the signal and executes the join. However,

the child thread has not yet completed its execution, therefor the system context

switches the RPC thread off of the processor. The RPC thread will not be al-

lowed to resume execution until the child thread has exited. In the meantime, the

child thread needs the RPC mechanism to perform a floating point operations.

The child thread must block until it has access to the RPC. However, the RPC is

waiting on the child thread. The system is in deadlock.

5.2.5 hthread self

The practical meaning of hthread self is to return the thread ID of the

calling thread. hthread self technically returns a hthread t variable, however,

hthread t is an enumerated unsigned int representing the thread ID. The meaning

between hardware and software is the same.

66

Figure 5.1. Example of danger using hthread join in hardware

The implementation difference is subtle but important. In software, the CPU

must read the Thread Manager’s thread id register. In hardware the thread

ID is stored within the HWTI system interface’s thread id register. The local

access of the thread ID information makes this call noticeable faster in hardware

than in software. Although the hthread self call is seldom used in practical

programming the need to access the thread ID information is used for a number

of system call implementations. Having this information local gives the HWTI a

timing advantage over software for these cases.

5.2.6 hthread equal

The hthread equal call is the process of determining if two threads, specified

by the hthread t variable are the same thread. Since hthread t is enumerated

as an unsigned int, both hardware and software implement this function in the

same manner. This is, simply returning the boolean result of testing if the first

67

thread ID is equal to the second thread ID.

5.2.7 hthread yield

hthread yield has one of the stanchest semantic and implementation differ-

ence between hardware and software. The meaning of calling a yield function

has traditionally always meant that the thread currently running on the CPU is

voluntarily giving up the CPU to allow a different thread (of equal priority) to

run on the processor. Note that in Pthreads, the equivalent call is sched yield.

The implementation in software is straight forward: add the current thread to the

ready to run queue, ask the scheduler for the next thread, and then perform a

context switch if the next thread and the current thread are different. However

in hardware the meaning is quite different.

A hardware thread, by definition, does not run on the CPU, instead it uses

dedicated FPGA resources. Therefor it is impossible for a hardware thread to

yield the CPU since it never uses it. Consequently, the hardware thread conceptual

meaning of hthread yield is the same as a software thread calling hthread yield

but without resulting in a context switch.

The implementation of hthread yield is consequently very different. Hard-

ware implements hthread yield by returning immediately, as opposed to at-

tempting to call the Scheduler for the next thread. Calling hthread yield in hard-

ware has no effect on the status of the HWTI, and practically only serves as a

“noop.”

If partial runtime reconfiguration becomes a reality, hthread yield may have

a very interesting and different meaning in the future. Take for example a system

where threads could switch, in run time, between running in hardware and running

68

on the CPU. In this system, an hthread yield call in hardware may mean to

reconfigure (instead of context switch) the user logic portion of the hardware

thread, for the next thread in the ready to run queue. The resource that the

thread is voluntarily giving up is the HWTI. With partial runtime reconfiguration,

the semantic meaning of a context switch may refer to reconfiguring the FPGA

resources for a different the user logic.

5.2.8 hthread exit

The hthread exit call indicates that the thread’s work is complete and should

no longer be allowed to run. Both hardware and software implementations make

a call to the Thread Manager indicating that the calling thread has exited. The

Thread Manager in return marks the appropriate thread as exited and add its

parent thread to the ready to run queue (assuming the parent thread has joined

on the calling thread). This is useful since in software the Thread Manager insures

that an exited thread is not given the CPU. In hardware it is still possible for the

hardware thread to continue running its processes within the user logic entity.

To prevent the user logic from effecting the state of the system the HWTI sets

its goWait signal to WAIT and stops responding to opcode requests from the user

logic. This may only be changed by a RESET command to the HWTI’s command

register.

Calling hthread exit has the same meaning as calling “return <value>.”

The HWTI is able to implement this by checking the return state value stored on

the stack. If the return state value is 0x0000, which the HWTI sets during stack

initialization, the HWTI knows this is the thread’s main function returning and

to implement this return as an hthread exit call.

69

5.2.9 hthread mutexattr init

The hthread attr init function initializes a mutex attribute structure to

default values. Within hthreads, this is implemented by setting the mutex type

to a blocking mutex and the mutex number to 0. The same mutex attribute may

be used in the creation of multiple mutexes, however this is not necessarily wise.

Unless hthread mutexattr setnum is used to change the value of the mutex’s

number each mutex initialized with the same attributes will point to the same

mutex locking mechanism. This is true for both hardware and software. It is

important to note that the meaning of pthread mutexattr init is different, in

that with Pthreads there is not a notion of a mutex number, instead mutexes are

uniquely created during the pthread mutex init call.

The hardware and software implementation is the same. The passed in pa-

rameter is always a pointer to a mutex attribute structure. It is assumed that the

user has previous allocated space for the mutex attribute. The implementations

simply set the mutex type and mutex number.

5.2.10 hthread mutexattr destroy

hthread mutexattr destroy call conceptually uninitializes a mutex attribute.

However, the implementation in both hardware and software is to simply return

immediately to the caller. This is because there is no memory to deallocate

(allocated memory for the attribute structure must be done by the user) and

there are no actions required by the Mutex Manager.

Considering the implementation of this function is to return immediately, a

compiler could remove this function call from the user’s code without having any

adverse effect on the program’s functionality.

70

5.2.11 hthread mutexattr setnum

Unlike Pthreads, in Hthreads the programmer must specify the mutex to use

in his or her code. This is performed by setting the mutex number in a mutex

attribute structure prior to creating the mutex in hthread mutexattr setnum.

The mutex number is generally a value between 0 and 255. By default the mutex

number is 0. The implementation of hthread mutexattr setnum is simply to

store the passed in mutex number to the mutex attribute structure.

5.2.12 hthread mutexattr getnum

hthread mutexattr getnum is the functional opposite of hthread mutexattr -

setnum, it returns, through a pointer, the value of the mutex attribute’s number.

The implementation of hthread mutexattr getnum is simply to store the mutex

number to the passed in address.

5.2.13 hthread mutex init

The hthread mutex init call conceptually creates a new mutex. However,

in hthreads all mutexes are “created” during synthesis of the Mutex Manager.

The practical meaning of the hthread mutex init call is simply to set up a data

structure used in later lock, unlock, and trylock calls to know which mutex in the

Mutex Manager to interact with.

The mutex structure is specifically defined to be the same as the mutex at-

tribute structure. The implementation, in both hardware and software, is to copy

the mutex type and number from the attribute structure to the mutex structure.

If the user does not pass in a mutex attribute structure, the mutex is initialized

with default values (blocking mutex and mutex number 0).

71

Although the HWTI does not support recursive or error checking mutexes, it

can create either of these types if the passed in mutex attribute has this type

specified. However, this can only be achieved through the Hthread API if the

mutex attribute structure is passed into the hardware thread.

5.2.14 hthread mutex destroy

In Pthreads, the pthread mutex destroy destroys a mutex, disabling it from

future use. In Hthreads this system call has conceptually the same meaning, but

works significantly different. This is again because in Hthreads mutexes are cre-

ated and allocated during synthesis in the Mutex Manager. During runtime is not

possible to “destroy” a mutex. When the user calls hthread mutex destroy, the

system simply returns control to the calling function. This is true for both hard-

ware and software. A compiler could remove all calls to hthread mutex destroy

without effecting the programs functionality.

5.2.15 hthread mutex lock

Mutexes are a mechanism to allow threads to gain exclusive access to a re-

source, usually a set of data. The correct way to use a mutex is to request a

lock on a mutex (the system will halt execution of the calling thread until the

lock is granted) the thread then operates on the corresponding piece of data,

and finally unlocks the mutex to allow other threads to gain access to the data.

hthread mutex lock is the system call that allows a thread to lock a mutex.

The Mutex Manager centrally controls mutex ownership. Both hardware and

software implementations use encoded bus transaction to the Mutex Manager

asking for a lock on the specified mutex. If the lock is granted immediately, the

72

system returns control to the calling function, and the Mutex Manager assigns

the calling thread as the owner to the mutex. If unsuccessful, the software system

will context switch to the next thread in the ready to run queue. Where as the

HWTI will enter a BLOCKED status. In hardware, the user logic only sees the

goWait signal as being a WAIT and may be interpreted as meaning the HWTI is

still executing the system call. Once a thread has been granted a lock on the

mutex, the Mutex Manager sends the thread ID to the Scheduler to be added to

the ready to run queue. If its a hardware thread, the Scheduler immediately sends

a RUN command to that thread’s command register. The hardware thread interprets

this as meaning the mutex lock has been granted, and resumes execution of the

user logic by setting the goWait signal back to GO.

Also important to point out is that the software system call version supports

three types of mutexes, blocking, recursive, and error checking. Hardware only

supports, and as a matter of fact assumes, blocking mutexes.

There is a subtle but very important difference in the meaning of locking a

mutex between a software and hardware thread. That is, if a thread tries to lock

a mutex but can not, because a different thread currently owns the mutex, in

software the calling thread is context switched off to allow another thread to run

on the CPU. In hardware, the HWTI blocks the user logic from further execution.

Consequently, the resources of a hardware thread are sitting idle waiting for the

mutex, where as the CPU may still do useful work by allowing a different thread

to run. Conversely, if a thread has to wait on a mutex, when the thread is granted

the mutex, a hardware thread can resume execution within a few clock cycles.

A software thread may have to wait in the ready to run queue before it has an

opportunity to run again. Interestingly though, a software thread that has a lock

73

on a mutex, and is sitting in the ready to run queue may also be forcing a hardware

thread, who has also requested the same mutex, to wait. Preventing hardware

threads from being blocked may be a important design decision to make, when

deciding which threads should run as software and which to run in hardware.

5.2.16 hthread mutex unlock

hthread mutex unlock is the functional opposite of hthread mutex lock. It

unlocks a mutex the calling thread owns, permitting other threads to gain access

to the data the mutex protects. Like the mutex lock function, the logic is centrally

located within the Mutex Manager. Both hardware and software signal the Mutex

Manager through encoded bus transactions. The only difference is that the HWTI

only supports the unlocking of blocking mutexes.

5.2.17 hthread mutex trylock

hthread mutex trylock is similar to hthread mutex lock. With try lock the

system call always returns control to the calling function regardless of the grant’s

outcome. The system call returns a SUCCESS or FAILURE value to the user indi-

cating if the lock was granted. hthread mutex lock and hthread mutex trylock

work exactly the same if the lock is granted, they differ only when the lock is not

granted.

With hthread mutex trylock, if the Mutex Manager can not grant the lock

to the calling thread, it does not add that thread to the mutex queue list. Because

of this, and unlike hthread mutex lock, there is no chance for the calling thread

to be context switch off the processor or BLOCKED from executing in hardware.

74

5.2.18 hthread condattr init

The hthread condattr init function initializes a condition variable attribute

structure to default values. The hthreads implementation simply sets the condi-

tion variable number to 0. The same condition variable attribute may be used in

the creation of multiple condition variables, however this is not necessarily wise.

Unless hthread condattr setnum is used to change the value of the condition

variable’s number, each condition variable initialized with the same attributes

will point to the same condition variable mechanism. It is important to note

that the meaning of pthread condattr init is different, in that with Pthreads,

there is no notion of a condition variable number, instead condition variables are

uniquely created during the pthread cond init call.

The hardware and software implementation are the same. The passed in pa-

rameter is always a pointer to a condition variable attribute structure. It is

assumed that the user has previous allocated space for the attribute. The imple-

mentations simply sets the condition variable number to 0.

5.2.19 hthread condattr destroy

The hthread condattr destroy call conceptually uninitializes a condition

variable attribute. However, the implementation, in both hardware and software,

returns immediately to the caller. This is because there is no memory to deallo-

cate (allocated memory for the attribute structure must be done by the user) and

there are no action required by the Condition Variable Manager.

75

5.2.20 hthread condattr setnum

Unlike Pthreads, in Hthreads the programmer must specify the condition vari-

able to use in his or her code. This is performed by setting the condition variable

number in a condition variable attribute structure, that is later passed to a condi-

tion variable structure during creation. The condition variable number is a value

between 0 and 255. By default the condition variable number is 0.

The implementation of hthread condattr setnum is simply to store the passed

in condition variable number to the condition variable attribute structure. In hard-

ware this function shares the same states as the hthread mutex setnum function.

This is possible since the number of both the condition variable attribute struc-

ture and the mutex attribute structure is defined first within the struct. Storing

the mutex or condition variable number is the same as storing the number to the

address of the attribute structure.

5.2.21 hthread condattr getnum

hthread condattr getnum is the functional opposite of hthread condattr -

setnum, it returns, through a pointer, the value of the condition variable at-

tribute’s number.

hthread condattr getnum implementation, in both hardware and software

stores the condition variable number to the passed in pointer address. For the same

reason as given with hthread condattr setnum, the get number implementation

in hardware reuses the states in hthread mutex getnum.

76

5.2.22 hthread cond init

hthread cond init is the process of creating a new condition variable. How-

ever, in hthreads all condition variables, similar to mutexs, are “created” during

synthesis. The hthread cond init meaning, in both hardware and software, sets

up a condition variable structure that allows later calls to hthread cond wait or

hthread cond signal to point to the right condition variable.

The condition variable structure is specifically defined to be the same as the

condition variable attribute structure. The implementation, in both hardware

and software, is to simply copy the condition variable number from the attribute

structure to the condition variable structure. If the user does not pass in a condi-

tion variable attribute structure, the condition variable is initialized with default

condition variable number 0.

5.2.23 hthread cond destroy

In Pthreads, the pthread cond destroy destroys a condition variable, dis-

abling it from future use. In hthreads this system call has conceptually the same

meaning, but works significantly different. This is again because in hthreads con-

dition variable are created and allocated during synthesis in a separate hardware

core. During runtime is not possible to “destroy” a condition variable. When the

user calls hthread cond destroy, the system simply returns control to the calling

function. This is true for both hardware and software. A compiler could remove

all calls to hthread cond destroy without effecting the programs functionality.

77

5.2.24 hthread cond wait

From a simplified viewpoint calling hthread cond wait puts the calling thread

into a wait state. The thread resumes execution when a separate thread issues a

signal or broadcast. The implementation of wait is slightly more complex because

each condition variable is also associated with a mutex. Each of these items are

used in conjunction to allow a thread to wait for a condition variable signal. For

example, to correctly use hthread cond wait a programmer may write:

hthread_mutex_lock(myMutex);

hthread_cond_wait(myCondVar, myMutex);

hthread_mutex_unlock(myMutex);

With this sequence of code, a thread has three opportunities to be blocked before

it can resume execution. The first is on hthread mutex lock. After being granted

the lock, and once hthread cond wait is called, the system unlocks the mutex

and simultaneously waits for the condition variable signal. The third opportunity

is after the signal is received. Before the system returns control to the calling

thread, the system must reacquire a lock on the mutex.

According to the Pthread specifications, when pthread cond wait is called the

mutex is unlock autonomously with the condition variable wait. To implement

this behavior, both hardware and software call to the Condition Variable Manager

to indicate a wait, and then call the Mutex Manager to unlock the mutex.

Like locking a mutex, waiting for a condition variable has a subtle but impor-

tant difference between hardware and software. The difference is when a hardware

thread waits for a signal, it has to block execution of the user logic, thus FPGA

resources will go unused. In software, the CPU has the opportunity to context

switch to another thread, allowing useful work to continue.

78

5.2.25 hthread cond signal

Calling hthread cond signal conceptually signals the first thread who is wait-

ing on the specified condition variable to run. In Pthreads, the highest priority

thread on the condition variable is signaled, however in hthreads, the first thread,

not yet signaled, is chosen.

The implementation of the signal system call is the same for both hardware and

software. In each case the system communicates the system call to the Condition

Variable Manager. The logic as to who gets signaled is managed by the Condition

Variable Manager. The “signal” comes in the form of adding the thread ID to the

Scheduler’s ready to run queue. If the thread ID references a hardware thread,

the Scheduler sends a RUN command to the HWTI’s command register. After a

thread is signaled, it does not resume execution immediately, the system must

first reacquire a lock on the associated mutex.

5.2.26 hthread cond broadcast

hthread cond broadcast is very similar to hthread cond signal, the differ-

ence is that calling hthread cond broadcast will signal all threads waiting on

the condition variable, instead of the first thread to wait for it. Only one thread

will be permitted to run though, this is because the system still has to relock the

associated mutex variable.

The implementation of the broadcast system call is the same for both hardware

and software and is similiar to the signal system call. In each case the system

communicates the broadcast to the Condition Variable Manager. Once received

the Condition Variable Manager sends each thread ID waiting on the condition

variable to the Scheduler.

79

5.3 Size Comparisons

Comparing the size of system call implementations in software to hardware is a

bit like comparing apples to oranges. Software is of course a series of instructions

that feed into the processor. Hardware is a set of logic gates, registers, and wires

organized to adhere to some boolean logic function. Furthermore, the generally

accepted method of stating the size of a software program is to give the number

of bytes of the executable file. With FPGAs the generally accepted method is

to state the number slices or (with Xilinx chips) the number of 4 input LUTs.

Trying to compare the system call size using these methods is fairly difficult,

since in the hthread software implementation all system calls are compiled into

a single hthread.a library. In hardware, all supported system calls are generated

together into the HWTI. The size of any one system call is difficult to pull out.

To address these problems, I defined the method for calculating the size of a

software system call, and the size of a hardware system call.

• The software implemented system call size definition is the number of assem-

ble instructions, as compiled by gcc, for the specified system call function,

including any hthread sub-routines and system call handlers it may call.

In particular the gcc compiler for the PowerPC 405 will be used, as this

is the processor chip on the Xilinx ML310 development board used in the

evaluation of this thesis.

• The hardware implemented system call size definition is the difference in

slice count, generate by the xst [108] tool, between a hardware thread with

base functionality that immediately exits, and a hardware thread with base

functionality that makes the specified system call and then exits. The HWTI

80

generally contains the code for all supported system and library calls. For

this comparison though, the HWTI will be stripped of all system and library

calls, except the one being measured.

The software system calls used in this comparison were taken from Hthread

build number 1453 (as recorded by the subversion repository). This is known to be

a stable build. With the notable exceptions of hthread create and hthread join

the bulk of the software implementation has largely gone unchanged in the previ-

ous two years. hthread create and hthread join were modified for interacting

with both software and hardware threads.

The results of the size comparisons are in Table 5.1. Note that by definition,

the size of the hthread exit call is 0. Reviewing these numbers we can gain some

interesting insight as to the why the size of certain functions are what they are.

• The largest software functions, except for hthread create, are all system

calls that could result in a context switch. The reason is the context switch-

ing code is comparatively large despite being written in assemble language

(and not directly in C). This size trend does not carry over to hardware,

since hardware threads do not have a context switch mechanism.

• Software functions that a Pthread programmer may predict to be relatively

large, such as hthread mutex unlock, hthread mutex trylock, hthread -

cond signal, or hthread cond broadcast, are in fact quite small. The

primary functionality of these system calls is implemented in dedicated hard-

ware cores whose size is not included in this study. The software and hard-

warea portions of these system calls are simply wrappers for encoded bus

transactions.

81

System Call SW Size (Instruc-
tion Count)

HW Size (Slice
Count, 4 Input
LUT Count)

hthread attr init 29 116, 203
hthread attr destroy 29 116, 202
hthread create 619 401, 731
hthread join 403 356, 655
hthread self 15 13, 17
hthread equal 16 69, 112
hthread yield 303 12, 16
hthread exit 581 0, 0
hthread mutexattr init 17 113, 119
hthread mutexattr destroy 11 20, 35
hthread mutexattr setnum 24 137, 231
hthread mutexattr getnum 16 132, 225
hthread mutex init 32 268, 466
hthread mutex destroy 11 26, 49
hthread mutex lock 412 73, 129
hthread mutex unlock 75 66, 115
hthread mutex trylock 95 54, 93
hthread condattr init 14 78, 132
hthread condattr destroy 11 20, 35
hthread condattr setnum 24 137, 231
hthread condattr getnum 16 132, 225
hthread cond init 25 198, 337
hthread cond destroy 11 27, 50
hthread cond signal 43 115, 197
hthread cond broadcast 43 117, 204
hthread cond wait 470 197, 336

Table 5.1. System call size comparison between hardware and soft-
ware

82

• The absolute smallest functions, hthread mutexattr destroy, hthread -

mutex destroy, hthread condattr destroy, and hthread cond destroy,

are each 11 instructions. They are the same size because they are imple-

mented identically. Specifically, they immediately return to the user, provid-

ing no effective work. In hardware these functions also return immediately

to the user and are among the smallest hardware implemented functions. In

hardware their sizes range from 20 to 27 slices.

• The smallest system calls in hardware are hthread self and hthread yield,

13 and 12 slices respectively. These functions, like the destroy functions,

also return immediately (with hthread self setting the value register to

the thread ID). The reason hthread self and hthread yield are smaller

than the destroy functions is that the destroy functions must reset the stack

pointer concurrently with returning, as each of them take a single argument.

The hthread self and hthread yield functions do not accept arguments

and therefor the user logic does not push parameters onto the stack that

later have to be removed.

• Comparatively the largest size difference between hardware and software is

hthread yield. In software it is one of the largest at 303 instructions, and

in hardware it is the smallest (not including exit) at 12 slices. Understand-

ing this difference requires understanding the meaning of a context switch

between hardware and software. At stated in 5.2.7, in software yielding

means to give up the CPU to possibly allow another thread to run. Hard-

ware threads can not give up the CPU and therefor hthread yield has no

meaning.

83

• Hardware system calls that share states in their implementations, hthread -

attr init and hthread attr destory, hthread mutex getnum and

hthread cond getnum, and hthread mutex setnum and hthread cond set-

num, predictable have the same size, 116, 132, and 137 respectively. Sharing

states is possible since these sets of functions have the same hthread mean-

ing and the HWTI may only perform one system call at a time. It is not

possible for the user logic to call, for example, call hthread attr init and

hthread attr destory concurrently. Sharing states is advantageous since

both functions may be synthesized without the cost of additional FPGA

resources.

• Two of the largest functions in software, hthread create and hthread exit

are also the largest two in hardware. In software hthread create and

hthread exit are 619 and 581 instructions respectively. In hardware these

functions are 249 and 235 slices respectively. Interestingly, they are large for

different, but related, reasons. In software these functions are large because

they have a lot of requirements to fulfill. Within hthreads hthread create

and hthread exit are the only two functions whose semantics are mostly

implemented in software. The Thread Manager and Scheduler do play a

role in each system call implementation but not to the same extent as other

synchronization system calls. In hardware, precisely because the semantic

meaning is implemented in the hthread software library, hthread create

and hthread exit must be implemented through the remote procedural

call mechanism to gain access to the software library. The RPC implemen-

tation uses 31 of the 147 states in the HWTI user state machine, which

explains the large size of hthread create and hthread exit in hardware.

84

• Unlike in software, in hardware there is not a clear explanation as to why

some system calls are larger than others. In software a system function

is small if it returns immediately, it is quite large if it performs a context

switch, if it does neither, it is about 30 to 60 instructions long. In hardware,

only the system calls that return immediately are small. To learn why some

system calls are larger will take more analysis.

As it turns out there is not a single explanation as to the size of the non-

trivial hardware system calls. The size of a system call seems to be combi-

nation of three reasons: number of states in the implementation, if the call

does one or more load or store operations, and VHDL code techniques.

Table 5.2 expands on the information shown in Table 5.1. Namely it shows

the best case number of states the user state machine transitions through to

complete the call, and if the system call implementation does either a load

(labeled ’L’), a store (’S’), or both (’LS’) operation to any address on the

bus. Figure 5.2 charts the relationship between number of states and size of

the system call.

Figure 5.2. Relationship between size of each system call and num-
ber of states

85

System Call HW Size (Slice
Count)

State Tran-
sitions

Memory
Operations

hthread attr init 116 20 S
hthread attr destroy 116 20 S
hthread create 249 44 LS
hthread join 235 44 LS
hthread self 13 1
hthread equal 69 5
hthread yield 12 1
hthread exit 0 10 L
hthread mutexattr init 113 9 S
hthread mutexattr destroy 20 1
hthread mutexattr setnum 137 8 S
hthread mutexattr getnum 132 11 LS
hthread mutex init 268 18 LS
hthread mutex destroy 26 1
hthread mutex lock 73 9 L
hthread mutex unlock 66 9 L
hthread mutex trylock 54 9 L
hthread condattr init 78 6 S
hthread condattr destroy 20 1
hthread condattr setnum 137 8 S
hthread condattr getnum 132 11 LS
hthread cond init 198 13 LS
hthread cond destroy 27 1
hthread cond signal 115 9 L
hthread cond broadcast 117 9 L
hthread cond wait 197 23 L

Table 5.2. System call size comparison between hardware and soft-
ware

From Figure 5.2, there is clear relationship between the number of state

transitions and the size of a system call. However, this is not an absolute

rule. hthread create and hthread join both require 44 state transitions

and take 249 and 235 slices respectively. However, the largest system call,

hthread mutex init at 268 slices has less than half the number of state

transitions with 18. In this case, the relative large size of the system call is

86

likely due to its VHDL implementation. The code is written such that one

state requires the instantiation of two 13 bit subtracters. Subtracters are

relatively large circuits to synthesize, and since they exist in a single state,

the synthesizer can not take advantage of resource sharing.

There is also an apparent relationship between if a system call uses a load or

store operation, and the size of the implementation. On average, a system

call with at least one store uses 116 slices, with at least one load uses 104

slices (not including hthread exit), with at least one load and one store 202

slices, and without either a load or store 27 slices. However, this relationship

is explained better noting that system calls with either a load or a store have

more state transitions that those without, and system calls with both a load

or a store have more state transitions than those with only one. This non-

relationship is note worthy because there is a strong relationship between the

number of loads and stores a hardware implemented system call completes

and its execution time.

5.4 Run Time Performance

This section compares the run time performance of the supported system calls

between hardware and software implementations. In general the performance of

a software system call was measured by calculating the difference between the

value of a timer register before and after the system call. The timer register is

implemented in a separate hardware core, thus unaffected by any thread running

on the CPU or the state of the hthreads system. The performance of hardware

system calls was determined in simulation by inspection.

In some cases, it is very difficult to measure the performance of a system call

87

because the system call requires action from other threads. For example, the

execution time of hthread join is dependent on wether the thread being join

on has exited or not. System calls with these types of dependencies are noted,

and the method for measuring them is specified. In two cases, hthread exit and

hthread cond wait a measurement was not possible. The syscall performance

results are listed in Table 5.3, with the analysis below.

• With the exception of hthread create and hthread join, the hardware

implementation out performs the software implementation. In some in-

stances the degree of improvement is an order of magnitude or greater.

hthread create and hthread join are slower in hardware since they rely

on the RPC mechanism, which calls out to a software thread to implement

the function.

• The biggest relative difference in time is hthread self. In software hthread -

self runs in 11.9µs, where as in hardware is runs in .02µs. The reason for

the difference is again the semantic meaning of hthread yield in software

verses hardware. In software a context switch may remove the thread from

the CPU, where as in hardware a thread does not run on the CPU and

therefor may not be context switch off. As a note, the 11.85µs listed in

Table 5.3 is the time it takes hthread yield when there are not any other

threads ready to run. It takes 33.70µs if a context switch is needed.

• In software there two general groups of system calls, those that run in 5µs

and those that run in 30µs (and up to 60µs). The set of system calls that ex-

ecute in 30µs (hthread create, hthread join, hthread yield, hthread -

mutex lock, hthread mutex unlock, hthread mutex trylock, hthread -

88

System Call SW HW Notes
hthread attr init 6.78µs 1.08µs
hthread attr destroy 6.81µs 1.08µs
hthread create 57.6µs 160µs Hardware measured on the

board.
hthread join 28.6µs 128µs Child thread already exited.

HW measured on the board.
hthread self 7.22µs .02µs
hthread equal 5.05µs .10µs
hthread yield 11.9µs .02µs For software, no other

thread in the ready to run
queue.

hthread exit Not applicable, system call
does not return to user.

hthread mutexattr init 5.21µs .40µs
hthread mutexattr destroy 4.07µs .04µs
hthread mutexattr setnum 5.88µs .27µs
hthread mutexattr getnum 5.39µs .44µs
hthread mutex init 5.94µs .51µs mutexattr t is NULL.
hthread mutex destroy 4.21µs .04µs
hthread mutex lock 36.4µs .39µs Thread obtains the lock.
hthread mutex unlock 34.0µs .39µs
hthread mutex trylock 36.6µs .39µs Thread obtains the lock.
hthread condattr init 4.74µs .30µs
hthread condattr destroy 4.04µs .04µs
hthread condattr setnum 5.99µs .27µs
hthread condattr getnum 5.32µs .44µs
hthread cond init 5.24µs .23µs condattr t is NULL.
hthread cond destroy 4.39µs .04µs
hthread cond signal 31.6µs .44µs
hthread cond broadcast 32.2µs .44µs
hthread cond wait Not applicable, timing de-

pends on other threads in
the system.

Table 5.3. Syscall runtime performance comparison, measured in
clock cycles, between hardware and software

89

cond signal, and hthread cond broadcast) are the exact same set that

utilize the ‘sc’ assemble instruction. ‘sc’ is the nemonic for system call for

the PowerPC. Even though the system call code to was written in assembly

language, it is note worthy that all functions using ‘sc’ have significantly

longer execution. The HWTI does not make the distinction between privi-

lege and user mode that CPUs do.

• In hardware the amount of time it takes to complete a system call is directly

dependent on the number of load or store operations involved, the exceptions

to this rule are system calls utilizing the RPC model. To better illustrate this

relationship Figure 5.3 compares the number of load and store operations

to the system call execution time (hthread create and hthread join were

excluded from this chart). This relationship is because hardware implements

system calls via a sequential state machine. Each state, in the state machine

only requires 1 clock cycle, except for the load and store states that are

waiting for acknowledgments from the bus. This relationship is particularly

noteworthy since there is not a relationship between the size of a hardware

implemented system call and the number of loads or stores it completes.

90

Figure 5.3. Relationship between number of bus operations and
execution time for hardware implemented system calls

91

Chapter 6

Evaluation and Results

In this chapter, the HWTI is evaluated based on conformance testing, stress

testing, and its applicability for use with well known algorithms. Conformance

tests show that the hardware and software interfaces correctly abstract the syn-

chronization and communication services mandated by the shared memory multi-

threaded programming model. Stress testing shows that the interfaces produces

the same results for repeated calls to the same functions. These two sets of tests

make up a Hthread test-suite that is explained in section 6.1. Evaluating HWTI

for use in the implementation of well known algorithms demonstrates the HWTI’s

ability to be used for “real” applications, as well as its performance within this

applications. This set of tests make up an Application Testsuite and is explained

in section 6.2.

Unless stated otherwise, all tests were conducted on a Xilinx ML310 Develop-

ment Board [103,107]. The ML310 contains a Virtex II Pro 30 [106] and 256MB of

DRAM memory (and a number of other features not used in Hthread evaluation).

The Virtex II Pro 30 contains 2 embedded Power PC 405 CPUs (only one used

during evaluation) and approximately 30,000 equivalent gates. The Virtex 2 Pro

92

is chosen because of existing institutional knowledge and availability within the

ITTC’s CSDL lab. The Hthread system was synthesized such that the PowerPC

would run at 300 MHz, and the DRAM and all FPGA cores run at 100 MHz. In

some cases tests were conducted in simulation. ModelSim was used as the simula-

tion software. Each simulation test was conducted around a bus functional model

of Hthreads.

6.1 Hthread Test-Suite

The purpose of the hthread test-suite is to show conformance to hthread system

requirements. More specifically it shows the an implemented interface correctly

abstracts the communication and synchronization aspects of the shared memory

multi-threaded programming model. If an implementation passes all tests in the

test-suite, then one can reasonably conclude the interface correctly abstracts the

communication and synchronization primitives.

In general, hthread functionality is a sub-set of Pthread functionality. The

system calls supported by the HWTI is a further subset (albeit a key subset)

of the hthread API. The Venn Diagram in Figure 6.1 shows this relationship.

The additional API calls supported by hthreads is due to hthreads hybrid hard-

ware/software model. Conversely, Pthreads is intended only for software.

The creation of a test-suite that can adequately test hthreads is potentially

a difficult endeavor. Rather than trying to develop a comprehensive test-suite

from scratch, an existing open source Pthreads test-suite was ported to evaluate

hthreads. The test-suite chosen was the Open POSIX Test Suite [38]. The Open

POSIX Test Suite is a SourceForge project that aims to create a complete, imple-

mentation independent, test-suite for the entire POSIX set of APIs. Consequently

93

Figure 6.1. Venn Diagram showing relationship between Pthread,
hthreads software implementation, and hthreads hardware implemen-
tation

the POSIX test-suite includes tests for beyond the Pthreads API, it also includes

tests for additional POSIX functionality such as message queues, signals, and

semaphores. The complete POSIX test-suite contains over 2000 tests. Of these,

roughly 300 tests relate to Pthreads APIs. It were these tests that were the basis

of the hthread test-suite. Also, only the “conformance” and “stress” tests were

used. Conformance tests evaluate if an implementation method call performs the

expected behavior. Stress tests evaluate an implementation’s reliability under a

heavy load. The last category of tests “functional” were not converted from the

Pthreads test-suite. This is largely due to the fact that the Pthread functional

tests remain incomplete in the latest version of the POSIX test-suite.

Since the Pthreads test-suite was written with the assumption of a pure soft-

ware implementation, the test cases for the hthread test-suite were modified to

reflect the software/hardware nature of hthreads. Therefore, the hthread test-

suite is not be an exact port of the Pthread test-suite. However the hthread

test-suite does adhere to the Pthread test-suite’s intention. Test-cases that eval-

94

uated Pthread functionality not supported by hthreads were not ported. Lastly,

some additional test cases had to be added to evaluate the communication and

synchronization capabilities across the CPU/FPGA boundary. The best example

of this is in the creation of threads. In Pthreads test cases for pthread create just

has to evaluate if a new thread (running in software) was created. In hthreads,

this test case has to be extended to show that a software thread can not only

create another software thread, but that it can also create a hardware thread.

Furthermore, the HWTI implementation had to show that a hardware thread can

create both a software and another hardware thread.

Two version of the hthread test-suite were created, one to evaluate the software

interface, the second to evaluate the hardware interface. Each version evaluates

the functionality supported by the HWTI, and was derived from a Pthread test

case. The software version was written in C using hthread.h, the hardware ver-

sion was hand written in VHDL using the HWTI. All software test cases were

evaluated with on-the-board testing. Hardware test cases were either evaluated

using simulation or evaluated on-the-board. Due to the lengthy time to synthe-

size a hthread system (up to three hours each), only test cases that could not be

simulated were evaluated on-the-board. These generally were test cases that had

to create a thread or communicated with a software thread. Thread creation in

hardware is done through the remote procedural call mechanism that can not be

adequately simulated. Some stress tests were also evaluated in simulation instead

of on-the-board because the stress test called for more hardware threads than

could fit on the ML310 development board.

Although not done as part of the current research, the hthread test-suite may

later be used to also evaluate a C to VHDL compiler that targets the HWTI. If all

95

test cases in the software version work, then a C to VHDL compiler could create

the equivalent test case in VHDL. Once synthesized the results of the test cases in

hardware should be equivalent to the test cases in software. This type of testing

would not only evaluate the HWTI but also evaluate the C to VHDL compiler.

The conformance test cases ranged from mundane to interesting. For example

“does hthread attr init return SUCCESS?” was one test case, as well as “does

hthread create create a new thread who’s thread ID is different from the calling

thread?” An interesting twist to the conformance tests is that to confirm that

the abstract interface implemented the API call correctly required knowledge of

the backend implementation. As an example, to verify that hthread mutex lock

locks a mutex with the calling thread as the owner, required reading the Mutex

Manager interface register set. There were a total of 65 conformance test cases

applicable for hthreads, with a version of each test case implemented in hardware,

software, and where applicable both. All test cases, both hardware and software

versions passed.

The stress tests typically involving a sequence of creating (using malloc) and

initializing hthread structures, a series of API calls on the structures, and finally

destroying and deallocating the structures. A few stress tests were designed to

continue running until the system ran out of resources. For example, one test

continuously created threads, until there were no more thread IDs left. There were

a total of seven stress tests written. They were written to be configurable between

the number of and type of threads, number of iterations, and, in some cases,

number of synchronization primitives (i.e. number of mutexes). Six of the seven

stress tests passed for all evaluated permutations. The seventh test, evaluating

mutexes, passed all permutations except those involving multiple mutexes. When

96

multiple mutexes were used in this stress test, regardless of the type of thread

locking and unlocking the mutex, the Mutex Manager was discovered to send the

incorrect thread ID to the Scheduler. This error points out a number of interesting

effects of the hthread hardware/software codesign model. First, since the error

was centrally located in the Mutex Manager, it was effecting both hardware and

software threads. Second, using user level API calls as wrappers for interacting

with system hardware cores practically leaves a single location to debug and fix

the error. In other words, even though the mutex API calls are implemented with

two different interfaces, there is only a single design to fix.

6.2 Hthread Application Suite

The hthread application suite was assembled to demonstrate the HWTI’s abil-

ity to support well known algorithms. Unlike the test suite which demonstrates

the HWTI’s conformance to existing system calls, the application suite is targeted

towards applicability and overall performance. The algorithms in this section were

chosen for various reasons. The quicksort and factorial algorithms are included to

demonstrate that the HWTI can correctly maintain a function call stack within a

recursive algorithm. The IDEA and Huffman algorithms were implemented based

on existing, and well tested, software versions, thus showing the HWTI ability to

be a target for HLL to HDL translation. The IDEA and Haar DWT algorithms

are included to allow a comparison with previous or different implementations of

hardware threads.

All algorithms in this section were implemented as sequential state machines

in the user logic entity within a hardware thread. Each thread was translated by

hand, from a C version to VHDL targeting the HWTI. The only memory construct

97

created within each user logic entity were registers. Each application depended on

the HWTI for global memory access, system and library functions, a function call

stack, and local variable address space. The applications were written without

regard to the underlying chip architecture, bus structure, or hthread system.

6.2.1 Quicksort

To demonstrate the HWTI’s globally distributed local memory and function

call stack, the well known quicksort algorithm was implemented as a hardware

thread. Quicksort was chosen because it can demonstrate the HWTI’s support

for recursion, and its performance characteristics are well known and understood.

In the hthread version at start up, the main thread (running in software)

creates an array of random integers and passes a pointer to the array with the array

length to the quicksort thread. The thread then, using the quicksort algorithm,

sorts the array. Using the HWTI’s function call stack to handle the recursion and

the local memory to store intermediate values, the hardware thread correctly sorts

the passed in array.

Figure 6.2 shows the performance of the quicksort thread, using either a soft-

ware or hardware implementation, and operating on an array in either global

memory or local memory (for a software thread this is either running with data

cache off or on). The hardware and software versions were purposefully written to

be functionally equivalent. Optimizations to take advantage of possible instruc-

tion level parallelism in hardware or compiler optimizations in software were not

used. The quicksort hardware thread was implemented in 2770 slices.

From these results we can learn the following.

• Migrating quicksort to hardware, targeting the HWTI, does not change the

98

Figure 6.2. Quicksort performance, comparing software and hard-
ware threads, and local and global memory.

performance characteristics of the algorithm. Regardless of where the algo-

rithm ran or the location of data the predicted O(nlogn) complexity exists.

• The HWTI stack correctly manages the recursive nature of quicksort. The

recursive depth of quicksort is limited only by relatively cheap BRAM, and

not to the more expensive FPGA resources.

• The hardware thread operating on an array in its local memory performs

almost identical to a software thread using data cache. This characteris-

tic strongly supports the notion that the HWTI’s local memory can give a

“cache-like” performance without actually being cache. Indeed, the Pow-

erPC 405 cache has a 1 clock cycle latency, the HWTI’s READ operation has

a 3 clock cycle latency.

• Operating from an array in traditional off-chip global memory limits hard-

ware thread’s performance. In this example the hardware thread has a

roughly a 6x slowdown, and the software thread has a 19x slowdown. The

reason the software thread slows down more, when cache is turned off, is

99

that all of the thread’s variables must be reference in global memory. The

hardware thread was implemented to only operate on the array to sort in

global memory, keeping all other intermediate values as either registers or

data within its local memory.

6.2.2 Factorial

Factorial is a well known mathematical algorithm. It is widely used in both

statistics and calculus. The operation is loosely defined as:

n! = n * (n-1) * (n-2) * ... * 1

A practical implementation typically uses a while loop to perform the opera-

tion.

while (n>1) result = n * (--n);

The operation may also be written recursively.

int factorial(int n) {

if (n > 1) return factorial(n-1) * n;

else return 1;

}

Both versions were implemented as hardware threads using the HWTI, trans-

lated from a software version. Although this algorithm is simple, and not a practi-

cal stand alone thread, the recursive version adds a second example demonstrating

HWTI’s support for recursive function calls. Each implementation correctly cal-

culated results for 1 <= n <= 12. Higher values of n were not tested since the

100

result would have been greater than a signed 32 bit register can hold. The re-

cursive factorial hardware thread version was implemented with 2044 slices, the

while loop hardware thread was implemented with 1756 slices.

The performance results of the two implementations is displayed in Figure

6.3. In this graph software execution times with and without cache turned on

are provided along with the hardware execution times. The following are lessons

learned from this application.

Figure 6.3. Execution times for factorial algorithm, implemented
as either a recursive algorithm or a while loop.

• The hardware implementation performs closer to the software version with

data cache on. This reinforces the notion that the HWTI’s local memory

has a “cache-like” performance but without being a cache.

• There is a 7x speedup in the factorial calculation moving from the hardware

recursive implementation to the while loop implementation. In software with

data cache on there is only a 1.7 speedup. Furthermore, the hardware while

loop implementation is faster than software, while the software recursive

implementation is faster than hardware. This suggests that the hardware

101

method of calling functions is slower than software’s method, this includes

the time to save local data to memory to avoid being overwritten.

• Although not apparent in Figure 6.3, as the size of the input (n) grows,

the rate of execution time change remains constant for hardware, and near

constant for software. Although in a simple factorial example having pre-

dictable times is trivial, in a real time application, the ability to exactly

know how long a thread will take may be very important. When a hardware

thread can operate only on data within it’s core, that is operate without bus

transactions, it’s execution time becomes very predictable. The only vari-

ance comes from the input data. Even if a software thread operates only on

local data and does not need to call out to any hthread cores, its performance

will vary depending on cache misses and access to global memory.

6.2.3 Huffman Encoding

The Huffman Encoding algorithm is a classical compression algorithm first

presented in [51]. The algorithm works by making two passes over a data array.

In the first pass, the algorithm determines and ranks the most widely used values

in the array, and then creates a binary tree that optimally encodes each value.

The second pass, encodes and packs each of the original data values with the code

derived in the first pass. Ideally, the encoded version of the array will be shorter

than the original.

The Huffman Encoding algorithm may easily be divided into multiple tasks,

which consequently makes it easily divided into multiple threads. That is, one

thread to derive the encoding, the second thread to perform the encoding. Creat-

ing the implementation in this manner demonstrates the ability to pass abstract

102

data types between threads.

The hthread implementation started with an existing C implementation of the

Huffman algorithm. The original code came from the KUIM image processing

library [42], it was modified to work under hthreads. In the final version of the

code, the first thread, that creates the code, was kept as a software thread. The

second thread, that encodes the data string, was written as a hardware thread.

This was intentionally done to demonstrate that abstract data could be passed

from a software to a hardware thread. Specifically, the software derivation thread

has to pass an input array, output array, size the array, and a separate data

structure containing the encoding. Consistent with the hthread programming

model, the main thread created this data structure to pass between threads in

traditional global memory. Also important to note, the hardware thread was

written to be functionally equivalent to the original encoding code from the KUIM

library. The Huffman encoding algorithm was implemented in 2479 slices.

Figure 6.4 shows the result of Huffman encoding, comparing the hardware

version to a software version, with data cache turned on and off. Looking only at

the encoding thread, there is a 4.2x slowdown for the hardware thread compared

to the software thread with cache turned on and only a 3.4x speedup over software

without data cache. This occurs despite the fact that the hardware thread could

use its local memory for temporary variables. This example shows a limitation

of converting straight C code into a hardware thread. Although the code can be

translated (in this case by hand) and ran correctly, the hardware thread has to

pay a stiff price for operating on data out of global memory. It could not take

advantage of its local memory to store the encoding array, an array that once

it is passed to the encoding thread does not change and gets read potentially

103

multiple times. Nor could it use hardware’s bit shifting capabilities in the bit

packing portion of the algorithm. These are two examples of techniques a carefully

crafted hardware version of the Huffman encoding algorithm may use to increase

performance.

Figure 6.4. Huffman encoding performance, comparing software
and hardware threads.

Figure 6.5 shows an even more alarming comparison with total execution time.

This is the time from when the first thread is created (derivation thread), deter-

mines the coding, passes the data to the second thread (encoding thread), encodes

the array, and finally exits. Although using a hardware thread to encode the data

array shows a slight speed up over software running without data cache, there is a

16x slowdown compared to software running with data cache. With this example,

it is important to remember that in a hybrid hardware/software environment to

share data correctly data cache must be turned off. This example is notewor-

thy since these results demonstrate that any task level parallelism improvements

gained by using dedicated hardware threads, must be significant enough to over-

come the penalty when you have to turn cache off in the processor.

Amdahl’s law [5] teaches us that the maximum speed up due to concurrently

104

Figure 6.5. Huffman algorithm performance, comparing software
and hardware threads.

running tasks is limited by the percentage of sequential code. Even with a hypo-

thetical situation where the encoding algorithm’s work could be divided between

currently running threads, only 10.5ms of time can be eliminated, the sequential

derivation thread still must complete prior to the encoding thread(s). However,

the manner in which the Huffman algorithm was implemented follows along the

more traditional approach to using FPGAs, that is to use the FPGA as a hard-

ware accelerator (discussed in Section 2.3). The lesson here is not all algorithms

are a good fit for the hybrid runtime system.

6.2.4 Haar Wavelet Transform

The Haar discrete wavelet transform is the oldest, and simplest known, trans-

form with othornomal wavelet basis functions [46, 49]. Although Haar is rarely

used in practical applications today, wavelet transforms are often used in compres-

sion algorithms, such as the Cohen-Daubechies-Feauveau wavelet transform used

in the JPEG2000 standard [58]. The Haar DWT is relatively simple to compute,

needing only integer arithmetic.

105

The Haar DWT was added to the test-suite as a means of comparing the

existing HWTI version and programming model with a previous HWTI version

and a VHDL programming model that used hand optimizations. The existing

version of the HWTI, the one described in this thesis, is referred to as “Version

3.” “Version 2” was a prototype of the HWTI, described in [6], that provided

a minimal set of hthread system calls and abstract communication. It did not

have the services version 3 has to provide the meaningful abstraction described in

Chapter 4, in particular it did not have support for a function call stack or local

variables.

The DWT implemented for version 2 has a distinct performance advantage

in that the user logic instantiates its own block of memory, using the embedded

dual ported BRAM. Version 2 can not use the HWTI’s local memory since this

is only available with version 3. When reading and writing to the instantiated

memory the version 2 DWT may take full advantage of the dual ported BRAM

reading or writing two values simultaneously. Version 2 also does not have to pay

the overhead price for going through the HWTI user interface to read or write

to local memory. The version 3 DWT uses the local memory within the HWTI.

In a manner of speaking comparing these two implementations is a comparison

between a “general” user logic implementation using version 3, and a “custom”

user logic implementation using version 2. Both Haar DWT versions were based

on the same C code. As a note, the version 2 implementation was written by

Lance Feagan as a class project for EECS700 Reconfigurable Computing (Fall

2005).

Figure 6.6 compares the execution time between the two implementations,

Figure 6.7 compares the complexity of the two implementations using lines ofcode.

106

Both hardware threads were ran against an 1 dimensional array of 5000 integers.

Both versions intentionally work similarly. They each create a temporary array

in their respective local memories, copy the array to transform into their local

memory, perform the DWT on the temporary array (requires 2 reads and 2 writes

to each element in the temporary array), and then write the temporary array back

to the original array location. The difference is that the version 2 implementation

uses its own instantiated local memory, while the version 3 implementation uses

the local memory with the HWTI.

Figure 6.6. DWT performance comparison between version 2 and
version 3 of HWTI using an 5000 integer array

As seen in Figure 6.6, the version 2 implementation has a 1.5x speedup over

version 3’s implementation. This speedup is directly related to being able to access

dual ported BRAM directly instead of having to go through the HWTI’s protocol

layer. By instantiating its own local memory, the implementation may be faster,

however it gives up the shared programming model that the HWTI (in version

3) provides. As seen in Figure 6.7, the version 2 implementation pays for this

performance in its complexity, as it is over 4 times as long. Although lines of code

is not the quintessential measurement of complexity, it is recognized as at least

107

Figure 6.7. DWT complexity comparison between version 2 and
version 3 of HWTI

one measurement of complexity [89]. The fact that the version 2 implementation

is 4 times as long does suggest that the HWTI (version 3) has provided a useful

and meaningful abstraction.

6.2.5 IDEA Encryption

The International Data Encryption Algorithm (IDEA) is a 64 bit block cipher

algorithm using 128 bit keys. It was designed in 1991 by James Massey and

Xuejia Lai as an improvement over the existing Proposed Encryption Standard

[63]. Unlike DES, the default standard encryption algorithm of the time, which

can only be efficiently implemented in a hardware circuit, IDEA was designed to

be implemented efficiently in either hardware or software, making performance

comparisons interesting.

The IDEA hardware thread was implemented based on C code from Bruce

Schneier’s Applied Cryptography [79]. Implementing the user logic this way

demonstrates the HWTI’s potential as a target for HLL to HDL translation. The

VHDL version is functionally equivalent to the C version. At a high level, the

108

algorithm works by encrypting 64 bit blocks in 8 rounds. In each round the data

block is operated on by a series of module multiplications, xors, and additions with

an expanded key. Prior to the encryption rounds the key is expanded from 128

bits to 832 bits. For each 64 bit block to encrypt, the implementation must per-

form 28 reads and 2 writes (of 32 bit words). The hardware implementation uses

43 states and synthesized to 2616 slices. Of the 43 states, 31 states implement the

bulk of the encryption algorithm, with 7 of these states issuing LOAD commands to

the HWTI (2 other states issuing STORE commands). Comparatively, the IDEA

implementation is I/O intensive. We will see shortly how this property effects the

performance of hardware threads, in particular the memory location of the data

and key.

Figure 6.8 shows a comparison of execution time between IDEA implementa-

tions in either hardware or software. Each thread encrypted a short (16 bits) data

array of length 1000. The data and key input to each thread was kept constant.

For the hardware thread, the location of the data array and key varied. First

the hardware thread operated on the data and key stored in traditional off-chip

global memory. The second experiment shows results when the key was moved

to local memory prior to the start of the thread’s execution. The third result

is when both the data array and key was stored in the HWTI’s local memory.

The two software threads results are with the software thread running with and

without data cache, and the data and key in traditional off-chip memory. Each

implementation encrypted the data array correctly.

These results show the importance of hardware thread’s local memory. The

hardware thread received a 3.8x speedup just by moving the key from global to lo-

cal memory, and a 5.9x speedup moving both the key and data array. This subset

109

Figure 6.8. Execution times of IDEA implemented in either hard-
ware or software, with various data locations.

of the results speaks to the memory latency problem between hardware threads

and off-chip global memory. It is also interesting to note the 17.0x speedup soft-

ware gets when cache is on. Similar to the results from the Quicksort algorithm,

this demonstrates the impact of being able to use the HWTI’s local memory to

store and manage declared variables. The HWTI provides a cache-like perfor-

mance for local variables without the need for a real cache and while maintaining

the shared global memory programming model. Software threads do not have

access to the same or equivalent mechanism creating an exaggerated slowdown.

Figure 6.9 shows the execution time of an IDEA hardware thread, with and

without a software thread (without data cache) concurrently executing. In this

experiment, the hardware thread (in both setups) was operating on a data array of

length 1000 stored in off-chip memory. Intuitively, the hardware thread operating

by it self should be faster than the system with a concurrently executing software

thread since both software and hardware threads have to compete for access to

the off-chip memory controller. However, the hardware thread has a small 1.01x

speedup in the system with the software thread and not the expected slowdown.

110

Figure 6.9. Execution times of an IDEA hardware thread running
with and without a concurrently running software thread.

Conceptually the system with only the hardware thread does not have to

compete for the bus or access to memory. However, an analysis of the system

as a whole reveals the hardware thread does have to compete for access to the

bus with the system’s idle thread. The system idle thread is, in essence, while

(1) hthread yield();. During an hthread yield the CPU makes a call to the

Thread Manager to determine if it needs to context switch to another thread. As

a review, the Thread Manager and hardware threads are on the OPB, while the

off-chip memory controller and the CPU are on the PLB, with communication

bridges in between the busses. With this system configuration, the hardware

thread has to contend with the idle thread for the OPB and PLB bus. Where as

the system with concurrently running threads, the hardware and software threads

only have to contend for the PLB bus. This is enough of a difference to give the

hardware thread a slowdown when operating pseudo-independently.

The final analysis of the IDEA implementation is in Figure 6.10. This figure

shows the execution time of three dual thread systems. Again, each thread was

operating on an array of 1000 shorts. By comparing the results in Figures 6.8

111

and 6.10 we see the benefit of true concurrency exhibited by hardware threads

as opposed to the pseudo-concurrency of software threads. Not surprisingly, it

takes the processors nearly twice as long to encrypt two data arrays as it does

one. However, there is only a slight slowdown for two hardware threads running

concurrently to encrypt two data arrays. The slowdown is due to the overhead of

creating and joining threads. The benefit of true concurrency is also apparent with

one hardware thread and one software thread running together. In this instance,

the overall execution time is nearly identical to a single software thread. Again the

slowdown is due to the overhead of creating and joining on threads. If the threads

ran against larger arrays the slowdown would approach 1.0 (no slowdown).

Figure 6.10. Execution times of dual IDEA threads implemented
in either hardware or software, with various data locations.

As a note, it was not possible to run a dual hardware thread system with

the key and data in off-chip memory. This is due to a bug in the OPB to PLB

bridge that prevents two hardware cores from continually accessing the bridge. A

separate experiment was conducted with two hardware threads, such that the key

and data the thread operated on was located in the opposite’s hardware thread’s

local data. In this experiment, the data block was encrypted in 2.63ms, a 3.8x

112

slowdown over operating on its own local memory.

To complete the IDEA discussion, the hthread implementation will be com-

pared against Vuletic’s hardware thread virtual memory manager implementation

given in [96, 97]. In both versions we extend the concept of a thread to include

hardware cores and abstract the hardware software boundary through an system

support layer. However, Vuletic uses his hardware threads as an accelerator for

the CPU and the system support layer is a mix of hardware and software design.

Hybridthread threads have hardware based system support layer and consequently

run independent of the CPU. To maintain a consistent memory model Vuletic de-

signed his hardware threads with virtual memory, the CPU is used to load and

store values, with possible prefetching, into the hardware threads virtual mem-

ory manager. Where as hthread hardware threads independently access a shared

global memory. Although not explicitly stated, Vuletic’s IDEA implementation is

using a systolic array type configuration to increase parallelism within the hard-

ware thread accelerator. The hthread version sequentially encrypts each block.

Figure 6.11 compares the performance of the the two systems. Both systems

were implemented on a Virtex II Pro 30. The HWTI Quad Thread number is

estimated based on existing results (it is not possible to fit four IDEA hardware

threads on a V2P30). Comparing results, for a single thread system, Vuletic’s

IDEA thread outperform hthread IDEA thread. This is due to Vuletic’s optimized

VHDL implementation compared to the straight forward C to VHDL version im-

plemented in hthreads. Also important is that these results do not explicitly ex-

press the repeated CPU interrupts to feed data to the Vuletic’s hardware threads.

In the hthread implementation the CPU is free to perform meaningful work. The

hthread system may also take advantage of task level parallelism. When multiple

113

IDEA hardware threads exist in the system, the average time to encrypt each

block decreases nearly linearly. In short, Vuletic’s threads work better as an ac-

celerator (which is what they were designed to do), and hthread threads work

better at increasing task level parallelism (which is what they were designed to

do).

Figure 6.11. IDEA performance, based on time per encrypted
block, comparing Vuletic’s Virtual Memory Manager threads, and
hthread threads using the HWTI.

114

Chapter 7

Conclusion

The research presented in this thesis demonstrates that a programming model

and high-level language constructs can be used to abstract the existing hard-

ware/software boundary that currently exists between CPU and FPGA compo-

nents. This was shown by extending the concept and context of a thread to a

hardware core and by providing a key subset of the hthread API to user level

functionality. A standard system support layer, known as the Hardware Thread

Interface was created to provide the shared memory multi-threaded programming

model policies. To enable a meaningful abstraction the HWTI included support for

high-level language semantics. The enabling technology was globally distributed

local memory. This local memory gives hardware threads access to a fast “cache-

like” memory, without the expense of a cache while maintaining the shared mem-

ory model. The HWTI leveraged this local memory to create a consistent function

call model, support for local variables, and dynamic memory allocation. Migrating

synchronization, communication, and high-level language semantics to hardware

created an equivalent context to CPU bound threads. To analyze the hardware

and software implementation, a comparison was made describing the meaning,

115

size and performance of each support hthread system call. The HWTI support

for abstract communication and synchronization was demonstrated by evaluating

it against an existing POSIX test-suite ported to hthreads. The HWTI support

for high level language semantics was demonstrated by adopting a number of well

known algorithms as hardware threads.

7.1 Future Work

With any research project, there are lessons learned that are both positive and

negative, furthermore there are far more questions that get asked than answered.

The work presented in this thesis is no exception. This section seeks to explore

many of these yet unfulfilled issues and questions.

7.1.1 Inter-Thread Communication

A success of this research was to abstract communication between hardware

and software. The HWTI achieves abstract communication by acting as a facade

for direct memory access. Within hthreads this is more specifically achieved by

hiding the bus read and write protocols. By its very nature “abstracting” any

layer of computation will lead to either a slowdown, or at the very best equal

performance. In the case of hardware threads the HWTI adds 9 clock cycles for

a single read transaction compared to a traditional hardware core as investigated

in [77,78]. This is roughly a 20% penalty. Although by itself it is not a significant

slowdown, it is also not desirable. Furthermore, there are a number of related

system issues that effect overall performance.

First, the HWTI is not designed to leverage burst transactions, which can

significantly improve communication performance. The vendor supplied IPIF [104]

116

is capable of sustaining 16 consecutive and contiguous word reads or writes, one

per clock cycle, without additional overhead compared to a single read. Although

it is technically feasible to implement burst transactions within the HWTI, this

raises questions as to how this would effect abstract communication. The HWTI

only supports the notion of single word read and write. How then could the HWTI

be extended to support up to 16 words without relying on the user to specify burst

transactions, and thus breaking the abstraction?

The second issue is the fact that to achieve a shared memory system within

hthreads you must turn off data caching on the CPU. This of course does not

directly effect hardware thread performance but, as shown in Section 6.2.3, can

significantly degrade CPU performance and consequently overall system perfor-

mance. The question is then, how could the CPU keep data cache on for non-

shared variable but write through to memory all data that is shared. While re-

searching multi-core system on a chip, the authors in [75] addressed this problem

by relying on static analysis techniques and programmer designations to indicate

which data is shared and which is kept local. Although, static analysis techniques

will have to be explored, any modifications in the programming model as the

authors advocate will again break the abstraction. One possibility that hthreads

should explore is keeping data cache on but flushing the cache on each mutex un-

lock, create, or join operation. This would make these operations more expensive,

but may allow a consistent shared memory programming model.

An second possibility is to use a different programming model. The other well

known abstract parallel programming model is message passing. Message pass-

ing, such as MPI [36] is widely used in multi-processor environments. Although

immature there is an effort by Starbridge Systems to use MPI as an abstract

117

programming model for FPGA systems [76]. A message passing model has the

potential to allow CPUs to continue to run with data cache on, as well as allow

hardware threads to continue use of local memory. The downside to message

passing is overhead in communication. It is also likely that system support for

message passing will have to be migrated to a hardware core, much like the Mu-

tex Manager and Condition Variable Manager within hthreads. Until a message

passing protocol can be implemented, it is unknown how this model will effect

abstract communication and performance.

Lastly new interconnect networks between hardware threads need to be inves-

tigated. In [77,78] Schmidt points out that bus communication within the FPGA,

especially with multiple cores, is inefficient. This effect was even seen in a simu-

lation run of the hthread cond init stress test. In this test, additional hardware

threads were added, and each thread ran until a total number of condition vari-

ables were initialized between each thread. To synchronize the total, threads had

to compete for a mutex and then increment a global variable. The tests showed

that with four or more threads each thread spent more time waiting to gain access

to the bus than time performing all other portions of the stress test. It is natural

to conclude that the more hardware threads in a system the more bus contention

there will be, and the more each thread must wait for bus access. Solutions to this

problem are not cheap. Two possibilities are to construct a network on a chip [62]

structure for the FPGA, or create a ring network between hardware threads.

7.1.2 Leveraging Reconfigurable Computing

A concerning issue of hardware threads is the amount of time the hardware

thread resources go unused. A hardware thread resources may be unused for a

118

number of reasons: the thread has not yet been created, the thread has to block

on a mutex or condition variable, the thread is waiting on the CPU to complete

a RPC call, or the thread has exited. Where as processors are designed to allow

context switching between tasks, the HWTI is not. There are two possibilities

that could extend the HWTI to support multiple tasks.

The first, and probable easier to research, is having multiple thread’s functions

reside in the user logic of the hardware thread. Since the HWTI already has a

function register that specifies for the user logic which function to execute, it is

conceivable that the HWTI could “context switch” between threads in the user

logic by specifying the appropriate state machine mapping for the appropriate

thread in the function register. To accomplish this a number of changes and

investigations would have to be made. The thread’s start function value would

have to be passed by the system to the HWTI, such that the HWTI knows which

function to start on a RUN command. Second, the HWTI would have to be ex-

tended to support multiple function call stacks. Finally, the HWTI with perhaps

the support of the Scheduler, would have to manage knowing which thread is

currently running.

The second possibility is to use partial reconfiguration to swap out a blocked

or exited user logic thread for a thread that is not blocked but needs to run.

The difficulty with this solution is partial runtime reconfiguration is still imma-

ture. Only recently has Xilinx released a set of tools (Xilinx Processor Studio

version 8.2i) that has support for partial reconfiguration of blocks [30] within the

FPGA fabric instead of whole columns [109]. Unfortunately, these sets of tools

are still unproven outside of the Xilinx labs. Furthermore, assuming that partial

reconfiguration does work, there is still an issue of reconfiguration time. Can the

119

performance improvement related to better use of FPGA resources overcome the

reconfiguration cost?

In either scenario, hardware threads will have to be associated with a priority.

Currently hardware threads are effectively given the highest priority in the system,

they always have a computational unit to run on. If hardware resident threads

may be context switch, for fairness a notion of priority needs to be established.

This should not be difficult considering hthreads already has built in support for

a priority scheduler.

Lastly, there is the very interesting issue of context switching a thread that

is currently resident in hardware to run in software, or vis-a-versa. This may be

advantageous in cases where the programmer wants to run the highest priority

threads in hardware and the lower priority threads in software, or have a thread

run in hardware during a computationally expensive segment. Context switching

a thread between hardware and software will be no easy feat. Although hardware

threads have an equivalent context in hardware, it is not a equal context. Issues

ranging from stack value to program counter values will have to be mapped 1 to

1 between hardware and software.

7.1.3 Remote Procedural Calls

The remote procedural call model was added to hthreads as a mechanism

to give hardware threads access to system and library calls too difficult or too

expensive to implement within the HWTI. Although the RPC model was used

to successful implement a number of library calls, including hthread create and

hthread join there remains a potential deadlock danger with the RPC model.

As described in Section 5.2.4, a hardware thread who joins on a child thread

120

will lock the RPC mechanism until the child thread exits and the hthread join

call completes. Simultaneously, the child thread may be waiting on the RPC

mechanism for a library call. Each thread is waiting on the other!

To address this problem the system could create a RPC thread for each hard-

ware thread? This would prevent the described deadlock possibility. However,

there remains questions as to how well this model would scale. Using this model

would mean creating one software RPC thread, two mutexes, and one condition

variable per hardware thread. All of these resources need to be allocated even

before the system starts running.

Closely related to the RPC model is the potential to support functions that

are implemented as highly efficient hardware cores. An example of this would be

a fast Fourier transform (FFT), a complicated and expensive function to imple-

ment. However, an efficient hardware FFT core could be developed by hand and

shared between threads. Either a hardware or software thread could call a FFT

function and the system would redirect the call to the FFT core. The FFT core

would be shared between all threads and access to the core could be managed

through a model similar to the RPC model. Such a model would allow for effi-

cient implementation of common or complicated functions while maintaining the

existing programming model.

7.1.4 Design Issues

Although the functionality of the HWTI is complete, and as the test-suite

showed, works as intended, there are a handful of low level design changes that

may be made to improve performance.

The first is to have the HWTI return control to the user logic for calls and

121

system functions that do not return a value, or always return the same value.

The simplest example of this is a STORE command. Currently the HWTI forces

the user logic to stall until the bus is complete with the write operation. This is

an inefficient use of resources since the user logic could continue working while

the HWTI performs the task. If the user logic makes another request to the

HWTI while the HWTI is completing the previous request, the HWTI only then

should have to stall the user logic. Similarly, the HWTI could return control

to the user logic on system calls that always return the same value, such as

hthread mutex unlock or hthread cond signal.

The second change that should occur relates to how the HWTI handles, within

implementation of system calls, local reads and writes. When the user logic makes

a LOAD or STORE operation, the HWTI decides if the call is local or global de-

pending on the address. However, during an system call, if the HWTI needs to

perform a LOAD or STORE it always issues a bus operation even when the address

is local within the HWTI. This works because the user state machine issues the

bus request on the master IPIF interface and the system state machine fulfills the

request through the slave IPIF interface. Although this works, and was simple to

program, it causes a slowdown for the function. Furthermore it also locks the bus

until the local read or write is completed.

Finally, although the user state machine is designed as a state machine, the

Xilinx synthesizer is not correctly picking it up as a state machine. This is disad-

vantageous since the synthesizer can more optimally allocate resources for what

it believes to be a state machine, verses common logic.

122

7.1.5 HLL to HDL Translation

To complete the goal of designing, implementing, and testing a hardware/ soft-

ware system in a known highlevel language (HLL), an efficient HLL to hardware

descriptive language translator is needed. The Hybridthread Compiler (HTC)

project is already underway addressing this need [91]. To compete with existing

HLL to HDL translators, such as Handel C [22] or C2H [65], the HTC will need to

show that its speedup using task level parallelism is in the range of their speedups

using instruction level parallelism. To be successful, the HTC may have to rely

on instruction level parallelism of its own within each hardware thread. However,

this presents a difficulty since the HWTI implies a sequential model. Either the

techniques used to develop user logic code needs to be modified, or the HWTI has

to be modified to allow for more opportunities for instruction level parallelism.

7.1.6 Power Constraints

In Chapter 5 a study of the size, speed, and meaning of the hthread API was

made comparing hardware and software implementations. An important study

comparing power constraints was left out (although as a note a studying concern-

ing power usage between individual functions is not practical). Considering one of

the argument Mudge [69] makes for moving towards a multi-computational unit

implementation of an application is energy conservation, a study of power usage

of hthreads is warranted.

7.2 Concluding Remarks

This thesis demonstrated that the hardware/software boundary can be ab-

stracted through a shared memory multi-threaded programming model. An im-

123

portant follow up question is how well does the the shared memory multi-threaded

programming model abstract the boundary. Hardware threads, which behave

very much like application specific processors, suffer from the same memory bot-

tle necks, bus contention, and cache coherency problems for hardware tasks that

traditional CPUs have, but with the limited FPGA resources. Although these

problems can by managed through globally distributed local memory they can

not be eliminated. The success of hybrid hardware/software systems will depend

on finding meaningful and inexpensive mechanisms to move data between cores

and memory layers while still maintaining an abstract communication model.

In conclusion, this researched focused on the shared memory multi-threaded

programming model and is evidence that a parallel programming models may

be used to abstract the CPU/FPGA boundary. Perhaps the most important

lesson from this research is that the chosen programming model’s middle-ware

must create computational units in hardware that have an equivalent context and

capabilities to traditional CPU bound tasks. This detail enables a homogenous

computational model spanning hardware and software, which in turn enables an

abstract programming model to target both domains.

Acknowledgment

The work in this thesis was partially sponsored by National Science Foundation

EHS contract CCR-0311599.

124

Appendix A

System and User Interface

Protocols

This section provides a detailed description of the system and user interfaces.

The system interface documentation may be used by a hthreads kernel program-

mer when writing drivers that interact with the HWTI. The user interface doc-

umentation could be used to by a either a hardware core developer or a HLL to

HDL developer (targeting the HWTI).

A block diagram of the HWTI system and user interface register set is show in

Figure A.1. As mentioned already, the HWTI sits as a layer between the hthread

system and a hardware thread’s user logic. The system interface permits any

hthread core, which includes CPU drivers, IP cores, or other hardware threads, to

interact with the hardware thread regardless of the hardware thread’s functional-

ity. On the other side, the user interface acts much like a facade design patter [40],

in that it allows the user logic to interact with all other system components , which

include services provided by the HWTI, memory, and other Hthread cores, in a

unified manner.

125

Figure A.1. HWTI register block diagram

A.1 System Interface

The system level API consists of a set of five memory mapped registers for

controlling the interface, a set of debug and state information registers, and an

address space for reading and writing the HWTI’s local memory. The primary

system interface register are thread id, command, status, argument, and result.

It is these five registers that incapsulate the context of a running thread in hard-

ware. The specification and protocol of each of these registers, plus a timer register

(that does not contribute to the thread’s context), are in the below subsections.

All registers are 32 bits wide.

Table A.1 lists all of the system interface registers, their memory offset (from

the base address of the hardware thread), and a brief description.

Read and write access for the hardware thread’s local memory is through the

system interface, using standard bus protocols. Each hardware thread has 32 KB

of local memory. The local memory address range starts at offset 0x0050 and

continues to offset 0x8000. Although any thread or system core may write to

126

Register Offset Description
thread id 0x0000 The thread ID of the thread
command 0x000C Mechanism to allow Hthread kernel to

start or reset the thread.
status 0x0008 Indicates if the thread is running, blocked,

exited, or not used.
argument 0x0010 Initial argument of the thread.
result 0x0014 Return value for the thread.
timer 0x0004 Number of clock cycles between starting

the thread and exiting.
system debug 0x0018 Debug values set by the system state ma-

chine.
user debug 0x001C Debug values set by the user state ma-

chine.
master read 0x0020 Last value read through the master inter-

face.
master write 0x0024 Last value stored through the master in-

terface.
stack ptr 0x0028 Stack pointer value.
frame ptr 0x002C Frame pointer value.
heap ptr 0x0030 Heap pointer value.
8B mem table 0x0034 Allocation table for 8B units.
32B mem table 0x0038 Allocation table for 32B units.
1024B mem table 0x003C Allocation table for 1024B units.
unlimit mem table 0x0040 Allocation table for unlimited units.
not used 0x0044 Address offset not used.
rpc numbers 0x0048 Mutex and Condition Variable numbers

used in RPC.
rpc struct 0x004C Address of the RPC struct.

Table A.1. HWTI User Interface Register Set

any portion of a hardware’s threads local memory, it should only do so within

the context of the programming model. Writing indiscriminately to a hardware

thread’s local memory may damage a hardware threads function call stack or other

state information.

The debug and state information registers, offsets 0x0018 to 0x004C, are read

only (the RPC registers being the exception). The HWTI maintains these registers

127

as part of its internal operations. They provide a glimpse as to the internal state

of the HWTI.

A.1.1 thread id Register

Overview: The thread id register stores the unique ID given to a hardware

thread by the system. The thread ID is assigned by the system at runtime.

Specifically, when a thread is created, the system asks the Thread Manager for a

thread ID, the system then assigns the thread ID to this register.

The thread id register is both readable and writable.

Protocol: On system start up, and after a reset, the thread id is set to 0.

When a write occurs to the thread id register, the status changes from NOT USED

to USED. The thread id may only be written to when the status register reads

NOT USED. With all other statuses, writing to this register has no effect. Bits 24

to 31, of the system bus data lines, are used to set the thread id of the hardware

thread. The thread ID must be non-zero, consequently the minimum thread ID

is 1. The maximum thread ID is 255.

The thread id register may be read from at anytime. The read operation

does not have any side effects.

The thread id must be set prior to the command register receiving a RUN

command.

A.1.2 command Register

Overview: The system may issue one of two commands to the command regis-

ter, either RUN or RESET. A RUN command serves two purposes. First to tell the

hardware thread to start executing, second, if the hardware thread is BLOCKED

128

waiting for a mutex or condition variable, to wake up and check the status of the

synchronization manager core, and potentially resume running. The RESET com-

mand tells the hardware thread to reset all variables and registers specific to the

control and execution of the thread’s user logic. This applies both to the registers

in the HWTI and the user logic. After issuing a RESET, the status is returned to

NOT USED. The system should issue a RESET command prior to creating the thread.

Protocol: A RUN may be issued to the HWTI only if the status register is either

USED or BLOCKED. Issuing a RUN at any other time has no effect on the hardware

thread.

Issuing a RUN while the status is USED changes the status to RUNNING. More

importantly a RUN command results in the HWTI telling the user logic to start

executing. On the user logic interface, the goWait register is updated to a GO, and

the function register is updated to the FUNCTION START value.

Issuing a RUN while the status is BLOCK, tells the HWTI to recheck the operation

causing the block, either a mutex or condition variable. If successful the HWTI

updates the user interface allowing the user logic to resume execution.

Issuing a RESET at anytime sets the status register to NOT USED, the thread id

register to 0, and resets the user interface. The user logic is responsible for reset-

ting any variables it may use. To insure the hardware thread is in an initialized

state, the system should RESET at start up. The system must also issue a RESET

if, after the hardware thread exits, the system wants to reuse the hardware thread

component as a new thread.

The command register may be read from at any time, and has no side effect on

the hardware thread. Reading the command register returns the last command the

hardware thread received.

129

The binary values of each command are as follows:

• RUN (0001)

• RESET (0010)

Bits 28 to 31, of the system bus data lines are read to determine the value of

the command.

A.1.3 status Register

Overview: The status register is a read only register, indicating to the system

the state of the hardware thread. It is intended for debugging purposes. The

possible states the hardware thread may be in are RUNNING, BLOCKED, EXITED,

EXITED WITH ERROR, USED, NOT USED.

Protocol: The HWTI will report each state for the following conditions. Binary

values are in parenthesis.

• NOT USED (0000 0000): This is the state of the hardware thread on system

start up and after a RESET command. No other commands have been issued.

• USED (0000 0001): This is the state after the system assigns a value to the

thread id register, but before the system issues a RUN command.

• RUNNING (0000 0010): This state indicates that the user logic is executing

its state machine. This state occurs when the thread id register has been

populated, the system issued a RUN command, the hardware thread is not

waiting on a mutex or other blocking type of operations, and the hardware

thread has not exited.

130

• BLOCKED (0000 0100): A thread will transition to a BLOCKED state only from

a RUNNING state. This state occurs when the user logic is waiting for a

synchronization primitive (such as a mutex). Once the lock is obtained,

status transitions back to RUNNING.

• EXITED (0000 1000): The hardware thread will transition to this state after

the user logic is done executing. It indicates that the value in the result

register is valid (specific to the meaning of the thread).

• EXITED WITH ERROR (0010 0000): The hardware thread will transition to

the state, upon command from the user logic. This state indicates that the

user logic could not complete its execution as expected, due to an error (for

example, divide by zero).

• EXITED WITH OVERFLOW (0100 0000): During operation of the thread, if the

stack space and heap space collide, an overflow will occur. This may occur

either because the function call stack grows to large, or the user requests

more dynamic memory than available. The hardware thread will terminate,

call exit on the Thread Manager, and set its status to OVERFLOW.

The argument register may be read from at any time without side effect.

Writing to this register has no effect.

A.1.4 argument Register

Overview: Consistent with the Pthreads protocol, when a thread is created by

the system, the system may pass one argument to the thread. The system uses

the argument register to pass this argument. If used, the system must set the

131

argument register after setting the thread id register and prior to issuing a RUN

command.

The meaning of the value of the argument register is thread specific. Generally

it is an address pointer to data the thread is to operate on. Setting the argument

register is not required. If not set, and the user logic asks for its value, the HWTI

returns 0.

Protocol: The system may write to the argument register only if the status

register is USED. This means that the system, when it wants to start the hardware

thread must first issue a RESET command, set the thread id register, set the

argument register (if used), and then issue a RUN command to the command register.

The user logic is allowed to read the argument value in the same way it reads

any passed in arguments to a user defined function. That is, the user logic issues

a POP command, indicating the 0 indexed parameter, to the HWTI. The HWTI

will respond by placing the value of the argument register in the value register

on the user interface.

The argument register is readable at any time, and writable only when the

status is USED.

A.1.5 result Register

Overview: When a thread is created as joinable, runs, and then exits, the

thread has the option of passing results back to the parent thread. To pass back

results to the parent, the hardware thread places the value in the result register.

For consistency with the Pthreads interface, the result value should be a pointer,

although this is not required.

Protocol: When the user logic calls the hthread exit function, it may pass

132

one argument. This argument is passed in the same manner as any other function

call, that is, the user logic will PUSH the result to the HWTI prior to calling

hthread exit. Once the HWTI receives the hthread exit call it will copy the

value of the parameter into the result register.

The system may read the result register at any time, although, it only has

meaning when the thread’s status is EXITED. Writing to this register has no effect.

A.1.6 timer Register

Overview: The timer register reports the number of clock cycles the HWTI

has been running for, if still running, or the number of clock cycles it ran for, if

it has exited.

Protocol: The timer register begins counting when the initial RUN command

is issued, and stops counting when the user logic calls hthread exit.

The system may read from this register at anytime without side effect. Writing

to this register has no effect.

A.2 User Interface

The user interface is designed to provide communication and synchronization

capabilities for the user logic entity of a hardware thread. Each registers on the

user interface may only be accessed by the user logic. The Hthread system has

no direct access to their values.

The user interface has three sub-interfaces: memory, function, and control.

The block diagram in Figure A.2 shows the HWTI with these three sub-interfaces.

Each sub-interface will be explained as if it were physically separated from the

other two. However the physical user interface merges the sub-interfaces into a

133

single unit. The user interface has four registers that the HWTI uses to signal the

user logic. These are the address, value, function, and goWait. Alternatively,

the user logic has four registers to signal the HWTI. These are address, value,

function, and opcode.

Figure A.2. HWTI sub interfaces block diagram

The address and value registers are 32 bits. The function register is 16 bits.

The opcode register is 6 bits. The goWait register is 1 bit.

A.2.1 Memory Sub-Interface

Overview: The memory sub-interface is composed of three registers, opcode,

address, and value. The opcode register is writable by the user logic and enables

the user logic to request operations from the HWTI. When requesting an action

from the HWTI, the user logic must set the address and value registers (as

appropriate) in the same clock cycle. The address register is both readable and

writable and will be used to indicate memory addresses. The value register is

both readable and writable and will be used to indicate data values.

134

There are six operations associated with the memory sub-interface, listed in

Table A.2. These operations are intentionally similar to high level language oper-

ations. Depending on the operation, either the value, address, or both, will be

used.

Opcode Meaning
LOAD Read a value from memory
STORE Write a value to memory
DECLARE Add space on the stack for local variables
READ Read a variable from the stack
WRITE Write a variable to the stack
ADDRESSOF Retrieve a variable’s global address

Table A.2. Memory sub-interface opcodes

The user logic may only request a service to the HWTI when the goWait

register reads GO. If a request is made while the goWait signal is a WAIT, the

HWTI ignores the request.

When issuing an opcode, the user logic must set all appropriate user interface

registers on the same clock cycles. On the clock cycle following the request the

HWTI keeps the goWait register a GO, consequently the user logic must wait during

this clock cycles. After the initial wait, the user logic must continue to wait until

the goWait signal returns high. Any appropriate response will be available, in

either the address or value registers, to the user logic when the goWait signal

returns to GO. Lastly the opcode register, when the user logic issues an operation,

must only be set for one clock cycle. In other words, the user logic must drive a

NOOP to the opcode register following the request.

Protocol: Each of the six permitted operations, there protocols, and high level

language equivalent are listed below.

• LOAD: Performs a word (4 bytes) load operation to memory at the address

135

specified in the address register. LOAD may be used for accessing standard

global memory, the HWTI’s local memory, or any other location in the

hthread address space. Once the operation is complete, the value register

will hold the value of the address. This operation is equivalent to pointer

dereferencing, for example *ptr.

• STORE: Performs a word (4 bytes) store operation to memory at the address

specified in the address register with the value given in the value register.

STORE may be used for saving information to standard global memory, the

HWTI’s local memory, or any other location in the hthread address space.

The HWTI does not return any information to the user logic with this

operation. This operation is equivalent to storing a value to a dereferenced

pointer, for example *ptr = 4.

• DECLARE: Allows the user logic to request space for local variables within

the HWTI’s function stack. Each declared variable will have an address is

accessible by the user logic and other Hthread cores. When requesting a

DECLARE operation, the user logic specifies the number of words it wants

to reserve space for in the value register. The HWTI does not return any

information to the user logic with this operation. The user logic is allowed

to issue multiple declare statements within a function. However, request-

ing a DECLARE after a PUSH request is prohibited. The allocated space is

accessible by the user logic using READ and WRITE operations. The HWTI

will maintain space for the declared variable until the function returns. This

operation is equivalent to declaring a integer, for example int x, y, z.

• READ: Allows the user logic to read the value of an declared variable. The

136

variable to read, is specified as an zero based index, in the address regis-

ter. For example, if a DECLARE 4 was issued previously, to read the second

declared variable the user logic would issue a READ 1. The HWTI responds

by placing the value of the variable, in the value register. This operation is

equivalent to reading a variable.

• WRITE: Allows the user logic to write a value to a declared variable. The

variable to write, is specified as a zero based index, in the address register.

The value to write is specified in the value register. For example, if a

DECLARE 4 was issued previously, to write a 1234 to the second declared

variable the user logic would issue a READ 1 1234. The HWTI does not

return any information to the user logic with this operation. This operation

is equivalent to writing to a variable, for example x = 1234.

• ADDRESSOF: Allows the user logic to request the address of a declared vari-

able. The variable to learn the address of is specified, as a zero based index,

in the address register. For example, if a DECLARE 4 was issued previously,

to learn the address of the second declared variable the user logic would

issue a ADDRESSOF 1. The HWTI responds by returning the address of the

variable in the address register. This operation is equivalent to the address

of operator, for example &x.

A.2.2 Function Sub-Interface

Overview: The function call sub-interface is composed of three registers: opcode,

function, and value. The opcode register, allows the user logic to request opera-

tions from the HWTI. There are four non-noop operations, listed in Table A.3. By

passing parameters via the stack, this enables a consistent function call protocol

137

regardless of the number of parameters.

Opcode Meaning
POP Read a function parameter from the stack
PUSH Push a function parameter to the stack
CALL Call a function
RETURN Return from a user defined function

Table A.3. Function sub-interface opcodes

The function register tells the HWTI which function the user logic wants to

call. The HWTI reserves a number of values, x8000 to x8FFF, for system calls

it supports, and x9000 to xFFFF, for future library calls. The supported system

calls and their defined opcodes are listed in Table A.4. The value x0000 is a signal

to the user logic to reset itself, x0001 signals the user logic to execute any state

it wants, and x0002 signals the user logic to execute its start function. Values

x0003 to x7FFF are reserved for user logic defined functions and states. The

user logic defined function values are analogous to starting addresses for functions

in software. In hardware, these values may be implemented as states in a state

machine. The HWTI will pass control to these states, through the control sub-

interface.

A brief pseudo-code example of how the function sub-interface for calling mu-

tex lock is given in Figure A.3. In state x0101, the user logic pushes the address

of the mutex onto the stack, in this case the mutex is at x0023 8F20. In state

x0102, the user logic calls hthread mutex lock (the Hthread function codes are

listed in the Control Sub-Interface section), while specifying that once the mutex

lock function is completed, the HWTI should return control to the user logic in

state x0103.

As is the case in the memory sub-interface, when issuing an opcode, the user

138

Function Call Library Function code
hthread attr init() hthread.h 0x8000
hthread attr destroy() hthread.h 0x8001
hthread create() hthread.h 0x8010
hthread join() hthread.h 0x8012
hthread self() hthread.h 0x8013
hthread yield() hthread.h 0x8014
hthread equal() hthread.h 0x8015
hthread exit() hthread.h 0x8016
hthread exit error() variation of 0x8020

hthread exit
hthread mutexattr init() hthread.h 0x8021
hthread mutexattr destroy() hthread.h 0x8022
hthread mutexattr setnum() hthread.h 0x8023
hthread mutexattr getnum() hthread.h 0x8024
hthread mutexattr init() hthread.h 0x8030
hthread mutex destroy() hthread.h 0x8031
hthread mutex lock() hthread.h 0x8032
hthread mutex unlock() hthread.h 0x8033
hthread mutex trylock() hthread.h 0x8034
hthread condattr init() hthread.h 0x8040
hthread condattr destroy() hthread.h 0x8041
hthread condattr setnum() hthread.h 0x8042
hthread condattr getnum() hthread.h 0x8043
hthread cond init() hthread.h 0x8050
hthread cond destroy() hthread.h 0x8051
hthread cond signal() hthread.h 0x8052
hthread cond broadcast() hthread.h 0x8053
hthread cond wait() hthread.h 0x8054
hthread malloc() stdlib.h 0xA000
hthread calloc() stdlib.h 0xA001
hthread free() stdlib.h 0xA002
hthread memcpy() string.h 0xA100

Table A.4. HWTI’s supported library calls

139

State Operation
x0101 push x0023 8F20
x0102 call x8032, x0103
x0103 ...

Figure A.3. Pseudo-code example for mutex lock(&mutex)

logic must wait the clock cycle after the request is made to the HWTI. On the

clock cycle following the mandatory wait the user logic must wait only if the

goWait signal is a WAIT. The user logic must continue to wait until the goWait

signal returns to GO. When this occurs, any appropriate response will be available

to the user logic.

Protocol: Each of the four permitted operations and there protocols are listed

below.

• PUSH: Prior to calling a function, the user logic may pass parameters to

the soon to be called function using the PUSH operation. Each PUSH places

the parameter specified in the value register onto the HWTI’s stack. The

user logic may push as many parameters as needed for a function. Each

parameter is 32 bits. The HWTI does not return any value to the user logic

for the PUSH operation. When pushing parameters onto the stack, the user

logic should push the last parameter first. For example, if the user logic is

calling foo(a, b, c), the user logic should push the value of c first, then

b, and finally a.

• POP: Once the HWTI transfers control to a new set of states in the user logic,

representing an user defined called function, the user logic may use the POP

operation to retrieve the values of the parameters. To allow the function

to read any of the parameters any time prior to a RETURN, the user logic

140

specifies the parameter it wants to read in the value register. For example,

if the function foo(a, b, c) was called, to read parameter a, the user logic

would request POP 0, to read parameter b, the user logic would request a

POP 1, and so on. The HWTI responds with the value of the parameter in

the value register.

• CALL: After all parameters are pushed to the HWTI, the user logic may use

CALL to invoke a function. Once the called function finishes, the HWTI re-

turns control to the user logic where the call was made. The CALL operation

may be used for either a system or library function, or transfer control to

a function defined locally within the user logic. When using the CALL oper-

ation, the user logic must specify the function it wants to invoke, and the

state to return control to after the call is complete. The function to invoke

is specified in the function register. The return state is specified in bits 16

to 31 of the value register (bits 0 through 15 are ignored by the HWTI).

When the called function issues a RETURN, the HWTI returns control to the

specified return state, with any return value set in the value register.

• RETURN: To return from a user defined function, the user logic issues a RETURN

operation. The user logic may pass back one 32 bit value to the caller

function. The value to return is specified in the value register. Any declared

variables (from the memory sub-interface) are deallocated from the function

stack on a RETURN. The caller function may read the return value in the

value register.

141

A.2.3 Control Sub-Interface

Overview: The control sub-interface details how the HWTI manages the ex-

ecution and delays of the user logic entity. This sub-interface has two registers,

goWait and function.

Protocol: The goWait register tells the user logic to either continue execution

or wait. The HWTI halts the user logic’s execution to give it time to fulfill a

request. For example, during a load to global memory, the HWTI may require

up to 50 clock cycles to finish the request. It is necessarily for the user logic to

stop execution until the load is complete and the HWTI can report the value back

to the user logic. The single bit goWait register creates a simple hand shaking

protocol between the HWTI and user logic. The user logic may only request a

service from the HWTI when the goWait register reads ‘1’ (a GO), and must halt

execution when it reads ‘0’ (a WAIT). The user logic, must also halt execution on

the same clock cycle a request to the memory or function sub-interface is made.

To be more specific, a WAIT signal does not mean the user logic has to halt

execution, but rather it means it must not request any new services from the

HWTI. The user logic is free to continue processing, however if it makes a request

while goWait is WAIT, the HWTI will ignore the request.

The function register enables the HWTI to tell the user logic which logic

to execute, or which state (for a state machine implementation) to be in. It

is analogous to the program counter in a CPU. Intentionally like the function

register, in the function call sub-interface, certain values have reserved meaning.

A value of x0000 tells the user logic to reset it self, it will be the default value

on power up and HWTI reset. A x0001, tells the user logic to control its own

execution. A x0002, tells the user logic to execute its first instruction. Values

142

x80000 to xFFFF will not be used (since they were reserved for system call or

library functions implemented outside the user logic). Values x0003 to x7FFF will

tell the user logic to execute specific states or logic within its implementation.

143

Appendix B

State Machine Implementations

This section describes the HWTI implementation. Appendix A gave the user

and system interface protocols without regard as to how it is implemented, in

effect this was the “black box” requirements. This chapter describes the content

and internal design of the HWTI. Source code for the HWTI may be found from

within the hthread subversion repository [61].

Loosely speaking, the HWTI is implemented as two state machines, the system

state machine, and the user state machine. Each state machine is written as a

two-process finite state machines as described in [108], using behavioral VHDL.

The system state machine controls the system interface. It monitors the regis-

ters attached to the bus and address range into the HWTI’s local memory. The

user state machine controls the three sub-interfaces forming the user interface,

maintains the function call stack, implements the system and library calls, and

performs master bus transactions for addresses outside of the HWTI’s address

range. A block and logical diagram of the two state machine implementation is

in Figure B.1.

Figure B.1 also demonstrates a number of features important to discuss as to

144

Figure B.1. Block diagram of HWTI implementation

its implementation.

• A hardware thread is made up of three entities: The IPIF [104] that provides

the connection to the OPB bus (not shown in the diagram), the HWTI acting

as the abstraction layer, and the user logic entity.

• The HWTI is further broken down into three primary entities. The system

state machine, user state machine, and a dual ported BRAM.

• Each state machine has access to one of the ports on the BRAM entity. Not

shown in the diagram, the BRAM blocks are configured to be an array of

32 bit words.

• The HWTI is implemented with four additional minor processes (two of

which are not shown). The first process maintains the timer register for the

system interface. The second process watches the stack and heap pointer for

145

overflow detection. The two processes not shown work together for timeout

suppression of the OPB bus.

• Access into the HWTI, from outside the hardware thread, is through the

vendor supplied IPIF which in turn connects to the system interface. There

is no direct access to the user logic.

• Access to the HWTI’s local memory, from the system bus, is through the

system state machine. This is note worthy since the system state machine

represents an overhead (although small) for accessing the local memory.

• The system state machine maintains five primary registers, thread id, com-

mand, status, argument, and results. The sixth register, in the system

interface, timer is maintained by a separate process.

• The low valued addresses, in the local memory, are reserved for debug and

state information. This information, not shown, includes the stack pointer,

frame pointer, heap pointer, debug values, and tables to maintain dynami-

cally allocated memory, and remote procedural call data structures.

• The HWTI’s stack begins at the lowest address possible, right above the

state information, and grows up. The heap starts at the top of the address

range and grows down.

• The user state machine maintains 12 registers. Three of the registers, heap,

stack, and frame, are the heap, stack, and frame pointers. There are four

general use registers, reg1 through reg4, used by library implementation

states, and five registers, address, opcode, value, function, and goWait,

comprising the user interface.

146

• The three user sub-interfaces, function, control, and memory are only virtual

interfaces and their implementation share the five physical registers making

up the user interface.

• A significant portion of the user state machine is the implementation of the

supported library functions.

• The HWTI implementation may be modified in the future, provided that

the implementation does not alter the HWTI protocols.

B.1 System State Machine

The system state machine has three responsibilities. First enforce the system

interface protocol. It does this by monitoring the bus for commands (writes to

the system interface registers), and checking the hardware thread state, prior to

acting on the command. Second, provide read and write access into the hardware

thread’s local memory for other hthread cores. Third, respond to the user state

machine for updates to the threads status.

The first two responsibilities are achieved by monitoring the system bus for

read and write requests, through the IPIF slave interface. Each hardware thread

has the same memory mapped offsets, including the size of the local memory.

The third responsibility, responding to status change requests from the user

state machine, is done through an internal register named system request. When

the user state machine has a status change it wants to make to the hardware

thread, it does so via the system request register. For example, when the

thread exits (the hthread exit implementation is done in the user state ma-

chine), the user state machine sets the values of the system request register to

147

CHANGE STATUS TO EXIT. The system state machine, on the next available clock

cycle reads this request and updates the status register appropriately. The user

state machine maintains (continuing the example) the CHANGE STATUS TO EXIT

value until it sees the value of the status register updated. It is through the

system request register that the user state machine may communicate with the

system state machine. Communication in the opposite direction, from the system

state machine to the user state machine, is either from the user state machine

reading the register values on the system interface (as in the example given here),

or from exchanging information on the stack, which both state machines have

access to through the dual ported BRAM.

On power up, or after a RESET command, the system state machine initializes

the system interface registers. This is handled within one clock cycles. After

initialization, the system state machine, spends most of its time in the IDLE state.

As depicted in the pseudo-state machine diagram in Figure B.2, during each clock

cycles the IDLE state checks for one of three actions. It first checks to see if there

is a write request coming off of the bus. If there is a write request, it checks

the address and for either a system interface register or for access to the local

memory. Second it checks to see if there is a read request coming off of the bus.

Here to, it checks the address for either a system interface register (including the

implementation specific registers), or for access to the local memory. If there

is not any activity on the bus, it checks the system request register for status

updates from the user state machine. It is important to note that the system

state machine only responds to requests from the user state machines if there is

not a read or write request coming from the bus. This may delay the user state

machine’s request from being completed.

148

Figure B.2. Block diagram of system state machine

The system state machine is physically implemented with 8 states.

B.2 User State Machine

The user state machine, shown in Figure B.4 is significantly larger and more

complicated than the system state machine. It is responsible for maintaining and

enforcing the user interface protocol. Second, to provide access to both global

memory and local memory to the user logic (through the user interface). Third,

maintain and manage the function stack. Fourth, maintain and manage the heap,

including dynamic memory allocation. Fifth, implement the supported system

and library calls. And sixth, implement remote procedural calls.

Like the system state machine, the user state machines has an initialization

149

phase, shown in Figure B.3, and a running phase, shown in Figure B.4. The user

state machine enters initialization either on power up, or after a RESET command.

Unlike the system state machine though, the user state machine initialization takes

multiple clock cycle to complete. In fact, initialization steps occur synchronous

to the hardware thread’s state changes. During initialization, internal registers

are reset, the stack and heap initialized, and the user logic is given its own reset

command. The initialization of the stack and heap, which requires multiple writes

to BRAM, is the primary reason why the user state machine requires multiple clock

cycles complete.

Figure B.3. State diagram of user state machine initialization se-
quence

Once initialized the user state machine waits for opcode requests from the

user logic. When an opcode is received, depicted in Figure B.4, the the user state

machine transitions to the corresponding operation while simultaneously setting

the goWait register to WAIT. There are 10 opcodes the user logic may issue.

• LOAD and STORE operations are implemented by inspecting the address passed

by the user logic. If the address is local, within the threads address range,

150

Figure B.4. Block diagram of user state machine implementation

the user state machine performs a BRAM read or write to the corresponding

BRAM location. If the address is global, outside the thread’s address range,

the user state machine performs a bus master read or write. Since Hthreads

does not use virtual memory, the address issued to the bus is exactly the

address passed by the user logic. The user state machine returns control to

the user logic when either the bus or BRAM operation is complete.

• CALL operations are performed by decoding the function register. If the

specified value is known, that is the function being called is either a sup-

ported system or library call, the user state machine transitions to the appro-

priate function start state, implemented internal to the user state machine.

Implementations of each of the supported system and library calls are case

specific. If the function value is not known, the user state machine as-

151

sumes that it is a user defined function. In which case, it saves the number

of parameters passed (in previous PUSH operations) onto the stack, saves the

frame pointer on the stack, saves the user logic return state to the stack,

and finally increments the stack and frame pointer. As a note, the imple-

mentation of the supported system and library calls were covered in section

5.2.

• RETURN operations are implemented by restoring the stack and frame pointer,

that were previously stored on the stack, and by driving the function reg-

ister with the return state previously stored on the stack.

• DECLARE operations are implemented simply by incrementing the stack pointer

a by the number of variables the user logic wants to reserve space for.

• READ and WRITE operations are implemented by performing BRAM oper-

ations (on the stack). The variable number the user logic passes via the

address register is the frame pointer offset. The BRAM location to read or

write to is the frame pointer plus the passed in variable number. The user

state machine assumes that the user logic previously declared space for the

variable.

• PUSH operations are implemented by performing a write BRAM operation,

storing the passed in value to the current stack pointer address. Both the

stack pointer, and a parameter count variable are incremented.

• POP operations are implemented very similar to READ operations. The

difference is that the parameter number passed in the address register is

the negative offset, minus 2, from the frame pointer.

152

• ADDRESSOF operations are implemented by returning the sum of the offset

value in the address register, with the frame pointer and the base address

of the thread.

To help demonstrate the function call stack implementation, consider the

pseudo code, and stack representation, given in Figure B.5. A number of im-

portant items may be learned from this example.

Figure B.5. HWTI’s function call stack

• The HWTI sets up the stack for the primary thread function the same as it

153

would for any user defined function. That is to say, when a hardware thread

starts the HWTI automatically stores a value for the passed in argument,

number of parameters, frame pointer, and return state. Being consistent

in this manner is helpful. As an example, when the user logic issues a POP

operation, because the user state machine does not have to explicitly track

which function the user logic is currently working on. The behavior of POP,

and other opcodes, is identical regardless of which state the user logic is in.

The only operational difference is on a RETURN call. In this case the user

state machine checks the value of the user logic’s return state. A 0x0000

value indicates the user logic is returning from the thread function. Since

this is the same as explicitly calling hthread exit, the user state machine,

implicitly calls the hthread exit implementation.

• The stack pointer always points to the next available address. The frame

pointer always points to the first address location used (or may be used) for

the current function. Also, the stack pointer’s address is always equal to or

greater than the frame pointer, since the stack grows up.

• When calling a function, with multiple parameters, the parameters are

pushed onto the stack in reverse order. This allows an easier POP imple-

mentation.

• The number of parameters in a function call is pushed onto the stack. This

value is used to make sure the user logic does not issue a POP outside the

number of parameters, and to restore the stack pointer on a RETURN. An

alternative would be to push the value of the stack pointer. This was an

implementation decision. The only advantage pushing the number of pa-

154

rameters instead of the stack pointer value, is that the HWTI could support

(although it currently does not) variable length argument lists, such as is

done with printf.

The complete user state machine is implemented in 147 states.

B.2.1 Dynamic Memory Allocation Mechanism

To implement dynamic memory allocation, the HWTI pre-allocates space at

the top of its local memory address range on initialization. The HWTI preal-

locates 32 8B segments, 8 32B segments, and 2 1024B segments. Pre-allocation

is important, as it prevents the HWTI from needing a de-fragmentation routine.

However pre-allocation may also waste space, if for example, the user logic request

64B, the HWTI would have to return a 1024B segment (although the user would

not know it is a 1024B segment). The HWTI tracks which segments have been

allocated using 3 BRAM locations, 1 each for the different segment sizes. These

BRAM locations are seen as memory mapped registers to the system interface.

When the user logic calls malloc, the HWTI determines if the amount of

memory requested is less than 8B, 32B, or 1024B. If so, the HWTI pulls the ap-

propriate segment allocation table from BRAM, and searches for the first segment

not yet used. If the HWTI can not find space, it repeats the search on the next

largest segment allocation table. If after the 1024B allocation table the HWTI

still can not find space, the HWTI may issue 1 memory segment of up to 30,128B.

The variable size segment is maintained by the heap ptr. At start up the

heap ptr points to offset 0x7600, indicating the space that has been pre-allocated.

If a segment of memory larger than 1024B is needed (or all segments are allocated),

the HWTI decrements the heap ptr the requested amount. If the heap ptr is

155

already in use, the HWTI returns a NULL pointer to the user logic. Returning a

NULL pointer is consistent with the stdlib.h implementation when memory space

has been exhausted.

calloc is easily implemented by multiplying the count and size parameters

passed to the HWTI and then transitioning to the malloc sets of states.

free is implemented using a large select statement. One case statement ex-

ists for each of the possible pre-allocated segments pointers. The case statement

returns the BRAM location where the allocation table is stored, and the index

into the allocation table. The HWTI completes the free process by updating the

allocation table.

B.2.2 Remote Procedural Call Mechanism

Figure B.6 shows the pseudo code for the RPC mechanism. The RPC imple-

mentation does not reuse the mutex lock, unlock, or condition variable signaling

functions already implemented within the HWTI. These pre-existing functions

are designed to return to the user when complete, reusing them would require a

substantial redesign of the HWTI. Instead, the HWTI re-implements the mutex

and condition variable functionality for the RPC code in their own sets of states.

The pseudo code listed in Figure B.6 uses four global variables, the mutexes

rpc mutex, and rpc signal, the condition variable rpc signal mutex, and the

structure rpc. Since the HWTI does not support global variables, the addresses

of these structures must be passed to the HWTI when the system starts. To

simplify the implementation, the HWTI only needs to know the mutex num-

bers for rpc mutex, and rpc signal, and the condition variable numbers for

rpc signal mutex. This is because when the HWTI communicates with the Mu-

156

int rpc_hardware(int opcode, int args[5]) {

// Lock the RPC mechanism

hthread_mutex_lock(rpc_mutex);

// Lock the RPC signal

hthread_mutex_lock(rpc_signal_mutex);

// Fill in the RPC arguments

rpc->opcode = opcode;

for(i = 0; i < 5; i++) rpc->args[i] = args[i];

// Send the RPC

hthread_cond_signal(rpc_signal);

// Wait for the RPC to complete

hthread_cond_wait(rpc_signal, rpc_signal_mutex);

// Read the result

result = rpc->result;

// Unlock the RPC mechanism

hthread_mutex_unlock(rpc_signal_mutex);

hthread_mutex_unlock(rpc_mutex);

// Return the result

return result;

}

Figure B.6. HWTI’s remote procedural call pseudo code.

tex Manager or Condition Variable Manager it only sends the respective index

number. To pass this information to the HWTI, the HWTI two system state ma-

chine registers set aside, rpc numbers and rpc struct. The value of rpc numbers

is encoded with the three mutex and condition variable number. The value of

rpc struct is the address of rpc.

The HWTI instantiates one set of states for all functions utilizing the RPC.

The implementation automatically handles the varying number of parameters that

157

could be passed for each function using the parameter count variable that gets

increment for each PUSH operation. The RPC opcode is intentionally the function

opcode passed to the HWTI.

For completeness, the pseudo code the RPC system thread implements, show-

ing implementations for hthread create and hthread join, is in Figure B.7.

The main thread is responsible for creating the system RPC thread at start up.

158

void* rpc_software(void *arg) {

// Lock the RPC signal

hthread_mutex_lock(rpc_signal_mutex);

while(1) {

// Wait for an RPC message

hthread_cond_wait(rpc_signal, rpc_signal_mutex);

// Perform the requested function

switch(rpc->opcode) {

case CREATE:

rpc->result = hthread_create(

rpc->args[0],

rpc->args[1],

rpc->args[2],

rpc->args[3]);

break;

case JOIN:

rpc->result = hthread_join(

rpc->args[0],

rpc->args[1]);

break;

}

// Signal that the RPC is done

hthread_cond_signal(rpc_signal);

}

//Never get here, but to be complete...

hthread_mutex_unlock(rpc_lock);

}

Figure B.7. Software thread remote procedural call pseudo code.

159

References

[1] J. Agron, D. Andrews, M. Finley, E. Komp, and W. Peck. Fpga implementation

of a priority scheduler module. In Proceedings of the 25th IEEE International

Real-Time Systems Symposium, Works in Progress Session (RTSS WIP), Lisbon,

Portugal, December 2004.

[2] J. Agron, W. Peck, E. Anderson, D. Andrews, E. Komp, R. Sass, F. Baijot, and

J. Stevens. Run-time services for hybrid cpu/fpga systems on chip. In Proceedings

of the 27th IEEE International Real-Time Systems Symposium, Rio De Janeiro,

Brazil, December 2006.

[3] G. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin Cummings,

1994.

[4] Altera. Altera. http://www.altera.com/.

[5] G. Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale

Computing Capabilities. In Proceedings of the AFIS Spring Joint Computer Con-

ference, volume 30, pages 483–485, Atlantic City, NJ, 1967.

[6] E. Anderson, J. Agron, W. Peck, J. Stevens, F. Baijot, E. Komp, D. Andrews, and

R. Sass. Enabling a Uniform Programming Model Across the Software/Hardware

Boundary. In Proceedings of IEEE Symposium on Field-Programmable Custom

Computing Machines, Napa, California, Apr. 2006.

[7] D. Andrews, D. Neihaus, and R. Jidin. Implementing the Thread Programming

Model on Hybrid FPGA/CPU Computational Components . In 1st Workshop on

160

Embedded Processor Architectures, Madrid, Spain, Feb. 2004.

[8] D. Andrews, D. Niehaus, and P. J. Ashenden. Programming Models for Hybrid

CPU/FPGA Chips. IEEE Computer, 37(1):118–120, 2004.

[9] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie, J. Ortiz,

E. Komp, and P. Ashenden. Programming models for hybrid FPGA/CPU com-

putational components: A missing link. IEEE Micro, 24(4):42–53, July/August

2004.

[10] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, and R. Sass.

hThreads: A Hardware/Software Co-Designed Multithreaded RTOS Kernel. In

Proceedings of the 10th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA), Catania, Sicily, September 2005.

[11] P. Athanas and H. Silverman. Processor Reconfiguration Through Instruction-Set

Metamorphosis. IEEE Computer, 26:11–18, 1993.

[12] Atmel. Atmel. http://www.atmel.com/.

[13] K. Bondalapati, P. C. Diniz, P. Duncan, J. Granacki, M. W. Hall, R. Jain, and

H. Ziegler. Defacto: A design environment for adaptive computing technology.

In Proceedings of the 11 IPPS/SPDP’99 Workshops Held in Conjunction with

the 13th International Parallel Processing Symposium and 10th Symposium on

Parallel and Distributed Processing, pages 570–578, London, UK, 1999. Springer-

Verlag.

[14] A. Bouchhima, X. Chen, F. Petrot, W. O. Cesario, and A. A. Jerraya. A unified

hw/sw interface model to remove discontinuities between hw and sw design. In

EMSOFT ’05: Proceedings of the 5th ACM international conference on Embedded

software, pages 159–163, New York, NY, USA, 2005. ACM Press.

[15] Brigham Young University. Jhdl: Fpga cad tools. http://www.jhdl.org.

[16] J. C. Browne. Parallel Architectures for Computer Systems. IEEE Computer, 37

no 5:83–87, 1984.

161

[17] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1997.

[18] B. Buyukkurt, Z. Guo, and W. A. Najjar. Impact of Loop Unrolling on Area,

Throughput and Clock Frequency in ROCCC: C to VHDL Compiler for FPGAs.

In International Workshop on Applied Reconfigurable Computing, March 2006.

[19] T. Callahan. Automatic Compilation of C for Hybrid Reconfigurable Architectures.

PhD thesis, University of California Berkeley, 2002.

[20] T. Callahan, J. R. Hauser, and J. Wawrzynek. The GARP Architecture and C

Compiler. IEEE Computer, 33(4):62–69, 2000.

[21] C. L. Cathey, J. D. Bakos, and D. A. Buell. A reconfigurable distributed

computing fabric exploiting multilevel parallelism. In Proceedings of the 14th

Annual IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM’06), pages 121–130, Washington, DC, USA, 2006. IEEE Computer Soci-

ety.

[22] celoxica. Handelc. www.celoxica.com.

[23] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multiprocessors. In

International Symposium on Computer Architecture, Boston, MA, USA, June

2006.

[24] S. Chappell and C. Sullivan. Handel-C for co-processing and co-design of Field

Programmable System on Chip. In Jornadas de Computacion Reconfigurable y

Aplicaciones, September 2002.

[25] D. Computers. Product Information. http://www.drccomputer.com/pages/-

products.html.

[26] A. Corporation. Flash FPGAs in the Value-Based Market White Paper.

http://www.actel.com/documents/ValueFPGA WP.pdf. Technical Report, Jan-

uary 2005.

[27] H. Deitel and P. Deitel. C Sharp for Programmers Second Edition. Prentice Hall,

Inc, Upper Saddle River, New Jersey, 2006.

162

[28] S. Dharmapurikar and J. Lockwood. Fast and scalable pattern matching for

content filtering. In Symposium and Architectures for Networking and Commu-

nications Systems, Princeton, NJ, October 2005.

[29] J. Dongarra and A. V. D. Steen. Overview of Recent Supercomputers.

http://www.netlib.org/utk/papers/advanced-computers/overview.html.

[30] N. Dorairaj, E. Shiflet, and MarkGoosman. PlanAhead Software as a Platform

for Partial Reconfiguration. Xcell Journal Online, (4):68–71, 2005.

[31] S. A. Edwards. The Challenges of Hardware Synthesis from C-like Languages.

In Proceedings of the International Workshop on Logic and Synthesis, Temecula,

California, June 2004.

[32] G. Estrin. Organization of Computer Systems–The Fixed Plus Variable Structure

Computer. In Proceedings of Western Join Conference, pages 33–40, New York,

1960.

[33] G. Estrin. Reconfigurable Computer Origins: The UCLA Fixed-Plus-Variable

(F+V) Structure Computer. IEEE Annals of the History of Computing, pages

3–8, February 2002.

[34] S. G. et al. PipeRench: A Coprocessor for Streaming Multimedia Acceleration.

Proceedings of the International Symposium on Computer Architecture (ISCA),

1999.

[35] M. Finley, E. Anderson, and J. Agron. Thread Manager Design Document.

http://wiki.ittc.ku.edu/hybridthread/Image:ThreadManager.pdf. Technical Re-

port.

[36] M. Forum. Message passing interface forum. http://www.mpi-forum.org/.

[37] J. Frigo, M. Gokhale, and D. Lavenier. Evaluation of the streams-c c-to-fpga

compiler: an applications perspective. In FPGA ’01: Proceedings of the 2001

ACM/SIGDA ninth international symposium on Field programmable gate arrays,

pages 134–140, New York, NY, USA, 2001. ACM Press.

163

[38] E. Fu, J. Fleischer, L. Yu, and R. Selbak. Open POSIX Test Suite.

http://posixtest.sourceforge.net/.

[39] D. Galloway. The transmogrifier c hardware description language and compiler for

fpgas. In FCCM ’95: Proceedings of the IEEE Symposium on FPGA’s for Custom

Computing Machines, page 136, Washington, DC, USA, 1995. IEEE Computer

Society.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patters: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Boston, MA, 1995.

[41] P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu. An overview of re-

configurable hardware in embedded systems. EURASIP Journal on Embedded

Systems, 2006:1–19, 2006.

[42] J. Gauch. Ku image processing library.

http://www.ittc.ku.edu/ jgauch/teaching/742.s07/hw/kuim.tar.

[43] M. B. Gokhale and J. M. Stone. Napa c: Compiling for a hybrid risc/fpga

architecture. In FCCM ’98: Proceedings of the IEEE Symposium on FPGAs

for Custom Computing Machines, page 126, Washington, DC, USA, 1998. IEEE

Computer Society.

[44] M. B. Gokhale and J. M. Stone. Automatic allocation of arrays to memories

in fpga processors with multiple memory banks. In FCCM ’99: Proceedings of

the Seventh Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, page 63, Washington, DC, USA, 1999. IEEE Computer Society.

[45] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski. Stream-oriented fpga

computing in the streams-c high level language. In FCCM ’00: Proceedings of

the 2000 IEEE Symposium on Field-Programmable Custom Computing Machines,

page 49, Washington, DC, USA, 2000. IEEE Computer Society.

[46] R. C. Gonzalez and R. E. Woods. Digital Image Processing, Second Edition.

Prentice Hall, Inc., Upper Saddle River, New Jersey, 2002.

164

[47] M. Graphics. Modelsim. http://www.model.com/.

[48] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers. Optimized Generation of

Data-Path from C Codes. In Proceedings of the ACM/IEEE Design Automation

and Test, March 2005.

[49] A. Haar. Zur Theorie der Orthogonalen Funktionensysteme. Math. Annal.,

69:331–371, 1910.

[50] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative

Approach, Third Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA,

2003.

[51] D. A. Huffman. A Method for the Construction of Minimum-Redundancy Codes.

In Proceedings of the Institure of Radio Engineers, volume 40, pages 1098–1101,

September 1952.

[52] Impulse Accelerated Technologies. Impulse c. http://www.impulsec.com/.

[53] S. C. Inc. Src computers inc. http://www.srccomp.com/.

[54] A. A. Jerraya and W. Walf. Multiprocessor Systems On Chip. Morgan Kaufmann,

Sanfrancisco, CA, 2005.

[55] A. A. Jerraya and W. Wolf. Hardware/software interface codesign for embedded

systems. Computer, 38(2):63–69, 2005.

[56] R. Jidin. Extending the Thread Programming Model Across CPU and FPGA

Hybrid Architectures. PhD thesis, University of Kansas, Apr. 2006.

[57] R. Jidin, D. Andrews, and D. Neihaus. Implementing Multi Threaded System

Support for Hybrid FPGA/CPU Computational Components. In Proceedings

of the International Conference on Engineering of Reconfigurable Systems and

Algorithms (ERSA), pages 116–122, 2004.

[58] Joint Photographic Experts Group. Jpeg 2000. http://www.jpeg.org/jpeg2000/.

[59] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second

Edition. Prentice Hall, Englewood Cliffs, New Jersey, 1988.

165

[60] V. Kindratenko and D. Pointer. A Case Study in Porting a Production Scientific

Supercomputing Application to a Reconfigurable Computer. In Proceedings of

IEEE Symposium on Field-Programmable Custom Computing Machines, pages

13–22, Napa, California, Apr. 2006.

[61] KU HybridThreads. Hybridthread Subversion Control.

http://wiki.ittc.ku.edu/hybridthread/Hybridthread Version Control.

[62] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J.-P. Soininen, M. Forsell, K. Tien-

syrja, and A. Hemani. A network on chip architecture and design methodology.

isvlsi, 00:0117, 2002.

[63] X. Lai and J. L. Massey. A Proposal for a New Block Encryption Standard.

In Proceedings of the Workshop on the Theory and Appiation of Cryptographic

Techniques on Adnaces in Cryptology, pages 389–404, 1991.

[64] M. S. Lam and R. P. Wilson. Limits of Control Flow on Parallelism. In ISCA,

pages 46–57, 1992.

[65] D. Lau, O. Pritchard, and P. Molson. Automated generation of hardware accelera-

tors with direct memory access from ansi/iso standard c functions. In Proceedings

of IEEE Symposium on Field-Programmable Custom Computing Machines, Napa,

California, Apr. 2006.

[66] G. D. Micheli. Hardware Synthesis from C/C++ Models. In Proceedings of

Design, Automation and Test in Europe, pages 382–283, Munich, Germany, March

1999.

[67] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Goldstein, and

M. Budiu. Tartan: evaluating spatial computation for whole program execution.

In ASPLOS-XII: Proceedings of the 12th international conference on Architectural

support for programming languages and operating systems, pages 163–174, New

York, NY, USA, 2006. ACM Press.

166

[68] G. R. Morris, V. K. Prasanna, and R. D. Anderson. A Hybrid Approach for

Mapping Conjugate Gradient onto a FPGA Augmented Reconfigurable Super-

computer. In Proceedings of IEEE Symposium on Field-Programmable Custom

Computing Machines, pages 3–12, Napa, California, Apr. 2006.

[69] T. Mudge. Power: A first-class architectural design constraint. IEEE Computer,

pages 52–58, April 2001.

[70] W. A. Najjar, W. Bohm, B. A. Draper, J. Hammes, R. Rinker, J. R. Beveridge,

M. Chawathe, and C. Ross. High-level language abstraction for reconfigurable

computing. In IEEE Computer, pages 63–69. IEEE Computer, August 2003.

[71] D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The

Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San Francisco,

CA, 1994.

[72] V. Paxson, K. Asanovic, J. Lockwood, R. Pang, R. Sommer, and N. Weaver.

Rethinking Hardware Support for Network Analysis and Intrusion Prevention.

In USENIX First Workshop on Hot Topics in Security, Vancouver, British

Columbia, July 2006.

[73] W. Peck, J. Agron, D. Andrews, M. Finley, and E. Komp. Hardware/software

co-design of operating system services for threaded management and scheduling.

In Proceedings of the 25th IEEE International Real-Time Systems Symposium,

Works in Progress Session (RTSS WIP), Lisbon, Portugal, December 2004.

[74] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. Andrews. Hthreads:

A computational model for reconfigurable devices. In 16th International Confer-

ence on Field Programmable Logic and Applications, Madrid, Spain, August 2006.

[75] F. Petrot, A. Greiner, and P. Gomez. On cache coherency and memory consistency

issues in noc based shared memory multiprocessor soc architectures. In DSD ’06:

Proceedings of the 9th EUROMICRO Conference on Digital System Design, pages

53–60, Washington DC, USA, 2006. IEEE Computer Society.

167

[76] M. Scarpino. Implementing the Message Passing Interface (MPI) with FPGAs.

In 9th Annual International MAPLD Conference, Washington D.C., September

2006.

[77] A. Schmidt. Quantifying Effective Memory Bandwidth in Platform FPGAs. Mas-

ter’s thesis, The University of Kansas, Lawrence, KS, May 2007.

[78] A. Schmidt and R. Sass. Quantifying Effective Memory Bandwidth in Platform

FPGAs. In Proceedings of IEEE Symposium on Field-Programmable Custom

Computing Machines, Napa, CA, April 2007.

[79] B. Schneier. Applied Cryptography Second Edition: Protocols, Algorithms, and

Source Code in C. John Wiley and Sons, Inc., New York, NY, 1996.

[80] L. R. Scott, T. Clark, and B. Bagheri. Scientific Parallel Computing. Princeton

University Press, Princeton, New Jersey, 2005.

[81] L. Semeria, K. Sato, and G. D. Micheli. Resolution of dynamic memory allocation

and pointers for the behavioral synthesis form c. In DATE ’00: Proceedings of

the conference on Design, automation and test in Europe, pages 312–319, New

York, NY, USA, 2000. ACM Press.

[82] D. Skillicorn. Foundations of Parallel Programming (Cambridge International

Series on Parallel Computation). Cambridge University Press, New York, NY,

USA, 2005.

[83] D. B. Skillicorn and D. Talia. Models and languages for parallel computation.

ACM Comput. Surv., 30(2):123–169, 1998.

[84] D. L. Slotnick, W. C. Borck, and R. C. McReynolds. The Solomon Compuer.

pages 97–107, Philadelphia, PA, December 1962.

[85] W. H. M. Smith, B. Hutchins, D. Andrews, A. DeHon, C. Ebeling, R. Hartenstein,

O. Mencer, J. Morris, K. Palem, V. K. Prassana, and H. A. E. Spannenburg.

Seeking Solutions in Configurable Computing. IEEE Computer, 30(12):38–43,

December 1997.

168

[86] B. So, M. Hall, and P.Diniz. A Compiler Approach to Design Space Exploration

in FPGA-Based Sysems. In Proceedings of the ACM Conference on Programming

Language Design and Implementation, June 2002.

[87] D. Soderman and Y. Panchul. Implementing c algorithms in reconfigurable hard-

ware using c2verilog. In FCCM ’98: Proceedings of the IEEE Symposium on FP-

GAs for Custom Computing Machines, page 339, Washington, DC, USA, 1998.

IEEE Computer Society.

[88] D. Soderman and Y. Panchul. Implementing C Designs in Hardware: A Full-

Featured ANSI C to RTL Verilog Compiler in Action. In IVC-VIUF ’98: Pro-

ceedings of the International Verilog HDL Conference and VHDL International

Users Forum, page 22, Washington, DC, USA, 1998. IEEE Computer Society.

[89] I. Sommerville. Software Engineering, 6th Edition. Addison-Wesley, Harlow,

England, 2001.

[90] Standord Compiler Group. Stanford university intermediate form.

http://suif.stanford.edu/suif/NCI/suif.html.

[91] J. Stevens and F. Biajot. Hybridthreads compiler.

http://www.ittc.ku.edu/hybrdithreads/downloads. Technical Report.

[92] C. E. Stroud, R. R. Munoz, and D. A. Pierce. Behavioral model synthesis with

cones. IEEE Design and Test of Computers, 5(3):22–30, 1988.

[93] SystemC. Systemc. http://www.systemc.org.

[94] S. H. Unger. A Computer Oriented Towards Spatial Problems. In Proceedings of

the Institue of Radio Engineers, volume 46, pages 1744–1750, October 1958.

[95] University of California, San Diego, Microelectronic Embedded Systems Labora-

tory. Spark project. http://mesl.ucsd.edu/spark/.

[96] M. Vuletic. Unifying Software and Hardware of Multithreaded Reconfigurable Ap-

plications within Operating System Processes. PhD thesis, Ecole Polytechnique

Federale de Lausanne, July 2006.

169

[97] M. Vuletic, L. Pozzi, and P. Ienne. Seamless hardware-software integration in

reconfigurable computing systems. IEEE Design and Test, 22(2):102–113, 2005.

[98] M. Vuletic, L. Pozzi, and P. Ienne. Virtual memory window for application-specific

reconfigurable coprocessors. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 14(8):910–915, August 2006.

[99] R. Wain, I. Bush, M. Guest, M. Deegan, I. Kozin, and C. Kitchen. An

overview of FPGAs and FPGA programming; Initial experiences at Dares-

bury. http://www.cse.clrc.ac.uk/disco/publications/FPGA overview.pdf. Dares-

bury Laboratory Technical Report, June 2006.

[100] D. W. Wall. Limits of instruction-level parallelism. SIGARCH Comput. Archit.

News, 19(2):176–188, 1991.

[101] P. Wilson, M. Johnson, and D. Boles. Dynamic Storage Allocation, A Survey and

Critical Review. In International Workshop Memory Management, Sept. 1995.

[102] W. Wolf. A decade of hardware/software codesign. Computer, 36(4):38–43, 2003.

[103] Xilinx. Ml310 documentation and tutorials.

http://www.xilinx.com/products/boards/ml310/current/index.html.

[104] Xilinx. Opb ipif. http://www.xilinx.com/bvdocs/ipcenter/data sheet/opb ipif.pdf.

Product Specification.

[105] Xilinx. Virtex-5 Family Overview LX, LXT, SXT Platforms. Xilinx Documenta-

tion. http://direct.xilinx.com/bvdocs/publications/ds100.pdf.

[106] Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FP-

GAs: Complete Data Sheet. Xilinx Documentation.

http://direct.xilinx.com/bvdocs/publications/ds083.pdf.

[107] Xilinx. Xilinx. http://www.xilinx.com/.

[108] Xilinx. Xst user guide. http://toolbox.xilinx.com/docsan/xilinx7/books/docs/-

xst/xst.pdf.

170

[109] Xilinx. Two Flows for Partial Reconfiguration: Module Based or Difference Based.

http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf, September 2004. Xilinx

Application Note 290.

[110] T.-Y. Yen and W. Wolf. Communication synthesis for distributed embedded

systems. In Proceedings of the 1995 IEEE/ACM International Conference on

Computer Aided Design, pages 288–294, 1995.

[111] M. Zhang and K. Asanovic. Victim Replication: Maximizing Capacity while

Hiding Wire Delay in Tiled Chip Multiprocessors. In International Symposium

on Computer Architecture, Madison, WI, USA, June 2005.

[112] L. Zhuo and V. K. Prasanna. High-Performance and Parameterized Matrix Fac-

torization. In 16th International Conference on Field Programmable Logic and

Applications, Madrid, Spain, August 2006.

171

