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What Is The Problem?

Many empirical studies on a variety of networks have shown
that traflic exhibits high variability

— traffic is bursty (variable) over a wide range of time scales

High variability was shown to have a significant impact on

network performance

Several studies claim that the high variability in traffic is due
to long-range dependence (LRD) property of traffic process
The assertion that traffic has LRD triggered a large effort in
— explaining the cause of LRD in traffic

— studying the impact of LRD on network performance, and

— creating new traffic models that have LRD
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What Is This Research All About?

e Develop a new theoretical and practical framework to
accurately characterize the variability and correlation structure

of a typical network traffic process at each time scale

e Determine that conventional traffic models can capture the
high variability of traffic empirically observed over a wide range

of time scales

e Investigate the contribution of TCP’s dynamics to LRD or high

variability of traffic




On the Variability of Internet Traffic

Why New Measure of Variability?

e Most commonly used measures of traflic burstiness are
— peak-to-mean ratio (= 1 for CBR Flows)

— squared coefficient of variation of interarrival times:

— indices of dispersion for intervals and counts:
Jk: Var[ X1+ -+ Xg] IDC( ): Var[N(t)

k(E[X])? E[N(1)]
= any value other than one — bursty traffic

— Hurst parameter (H)
= do not capture the fluctuation of the degree of traffic

burstiness across time scales
= our novel measure of variability based on the slope of the

IDC curve at each time scale and directly related to H
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Why Care About Conventional Traffic Models?

Analytically simpler and tractable than models with LRD

The exact degree of traffic variability over all time scales can

analytically be obtained

Considerable amount of work has already been done on

analyzing network performance (i.e., queueing behavior)

associated with these models

Performance evaluation depends on traffic characteristics over a
finite range of time scales specific to system under study (i.e.,

maximum buffer size)

— any model can be used as long as it captures traffic behavior

over this range of time scales
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Does Network Tratfic Have LRD?

e There are not strong evidence that real network traffic exhibits

long-range dependence
— definition of LRD applies only to infinite time sequences
— need to check the tail of correlation structure for LRD

— all empirically collected and analyzed traffic traces were one

to about three hours long

= 360000 to 1000000 samples for sampling period of 10 ms

= long enough for capturing the variability and correlation
structure over the time scales associated with network
performance

= but not long enough to assert that traffic processes have
LRD
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What TCP Has to Do With the Variability of Traffic?

e TCP traflic was used in most studies to
— detect the presence of LRD in network traffic, or

— give a possible explanation of what causes the asserted LRD

e The results from these studies claim that

— aggregate TCP traflic exhibits LRD behavior over a wide
range of time scales
— not surprising observation since TCP is a bursty protocol
= transmits packets as fast as it cans and then becomes idle

waiting for acknowledgments

— presence of LRD depends on whether a reliable, flow- and

congestion-controlled protocol is employed at transport layer

— natural to assume that the dynamics of TCP have a great

impact on its traffic variability
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Major Contributions

e A new measured of variability: index of variability H,(7)

— a plot of H,(7) describes the behavior of a traffic process in

terms of its variability over a range of time scales

— better measure for capturing the burstiness of traffic than H

e The results show that

— traditional models can capture the high variability observed

in network traffic over a wide range of time scales

— the amount of correlation that a traffic process has at a
particular time scale does not alone determine the degree of

variability at that time scale

— the dynamics of TCP alone can not cause considerable

variability over a substantial range of time scales
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Long-Range Dependence

Definition: A weakly stationary discrete-time real-valued
stochastic process Y= {Y;,t =0,1,2,...} (u= E[Y:] = constant,

o? = E[(Y: — n)?] < o0) with an autocorrelation function r(k) is called
long-range dependent if

>3O O

DO . (D VAT B

e (k) measures the correlation between elements of Y separated by &
units of time

e correlations between observations that are separated in time decay

to zero at a slower rate that one would expect from data following
Markov-type (i.e., SRD) models

e Self-Similar Processes: most popular models with LRD

— statistical properties remain same over all time scales

— several definitions, asymptotically second-order
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Asymptotically Second-Order Self-Similar Processes

Assume that
r(k) ~ kP L(k) as k — oo
where 0 < 8 < 1 and L is slowly varying at infinity, that is,

lim Likz) _

i.e., L(t) = const, L(t) = log(t).
For each m =1,2,3,..., let V(") = {Y,fm), k=1,2.3,...}, where

Ykm—m—l—l Tt Ykm
m

1 Ve > 0

Y™ = k> 1

Definition: Y is called asymptotically second-order self-similar

with self-similarity parameter H if % has the same variance and

autocorrelation as Y as m — oco. That is, Vk large enough,

rm (k) — r(k) as m — oo
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Hurst Parameter

Most important parameter of self-similar processes
— measures the degree of self-similarity

— expresses the speed of decay of autocorrelation function

— 05 < H <1:= LRD 0<H<05:= SRD

Claimed to be a good measure of variability

— the higher the value of H, the burstier the traffic

Popular belief: higher the H, poorer the queueing performance

— but, there are examples showing otherwise

— different processes with same H can generate vastly

different queueing behavior

Conclusion: the single value Hurst parameter does not capture

the fluctuation of traffic burstiness across time scales

11
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Estimation of Hurst Parameter: Aggregated Variance Method

Assume a traffic sequence Y of length V. Construct y (m) by
dividing Y into blocks of length m, and averaging the sequence

over each block. Its sample variance is then given by:

) w (Y (k) — V)2 _ Ny
Var[y(m)] _ Zk:1( ( ) ) whe’re Y — Zt:l t

N N

m

For successive values of m that are equidistant on a log scale, the
sample variance of the aggregated series is plotted versus m on a

log-log plot. By fitting a least-squares line

slope
2

H=1-
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Relating Packet Traffic With Point Processes (I)
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Relating Packet Traffic With Point Processes (II)

Counting process: {N(t),t > 0}, (weakly) stationary where
N(t) =sup{n:n=0,1,2,...; 5, <t}
Traffic process: Y ={Y,(7),7 > 0,n=1,2,...} where
Y,(7) = N[nt] — N[(n — 1)7]

Index of dispersion for counts:

Var|N(t)] _ Var|N(t)]
E[N(t)] At

IDC(t)

A @ mean event (packet) arrival rate

IDC(t =mr1) = %Va'r[Y(m)] m=12,3,...
Y (m): aggregated packet (byte) count process

14
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Index of Variability for Traffic Processes

For a self-similar process, plotting log(IDC(mT)) versus log(m)
results in an asymptotic straight line with slope 2H — 1

Definition: For a general stationary traffic process Y, we call
d(log(IDC(1)))
dllog()) T 1
2

the index of variability of Y for the time scale 7
Suppose Y results from the superposition of M independent traffic
streams:

B Zj\il dVarC[i]ji(T)] 1 ZM d(IDC (1)) (AL)
A S rmrorml) Rl R WS (IDC )
=1 v =1

H, (1)

Do d(IDC; (1))
A= 3)\; Poisson: o
i T

If lim, s o (ZM (%)) = ¢ < oo, then lim, o, H,(7) = 0.5

=0 Vr,i = Hy(r) =05 Vr

=1 7
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Correlation Structure of Traffic Process Y

Autocovariance function:

Cr(r) = Var[N((k+1)7)] 4+ 1Var[N((k — 1)7)] = Var[N(kT)] k> 1,
¢ LV ar[N(27)] — Var[N(7) k=1,

Autocorrelation function: r(7) = Vﬁ?g()T)] k=0,1,2,...

Correlation intensity:

R =Y mim) = 5 (2= 013 f(’”) -1)
k=1

Suppose Y is a superposition of M independent renewal processes

k— oo

lim IDC(kt) = Z (Cf(X)) where C*(X) = Var|X]

A, (B[X])?

=1

If C#(X) = oo for at least one i = R(1) = co = Y is LRD process
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Example: Hyperexponential Distribution of Order Two (I)

Suppose the underlying point processes of Y is a stationary renewal
process with interarrival times hyperexponentially distributed of
order two

Pdf: fo(z) = wiae™ % + wobe b where w4+ wy = 1

C2(X)=2 { a”wy +b%wy } —1

(awz+bwy)?

_ 2A[(aw; +bw )2—(a2w +b%w )] —lawa+bwq T 2
1 (a"j2+b’w1)31 - (1_6 o ! >+>‘C (X)7

IDC(1)= 2[(awy +bwz)? —(a® w1 +b%ws)] <1—€_[aw2+bw1]T> +C%(X)

(awz+bwy)3 T

limr 00 IDC(7) = C3(X) = R(7) < 00 = Y is SRD process

If a = b then [(aw1 + bw32)? — (a?w; + b?w2)] =0 and C*(X) =1
= Var[N(t)] = At and IDC(t) = 1, i.e., Poisson process
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Example: Hyperexponential Distribution of Order Two (II)
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Example: Hyperexponential Distribution of Order Two (III)

b =0.0001 w, =0.0000001

10ms)

W

Autocorrelation, r
[
o

N
S}
&

10 10°
T (seconds)

a= 100 b= 0.0001 we = (i) 107° (ii) 10~7 (iii) 1072 (iv) 10™°
(v) 10719 (vi) 1071 (vii) 10712
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Example: Superposition of Heterogeneous Traffic Processes (I)

Suppose the underlying point-process of the packet (byte) count

sequence Y is the superposition of:

e 10 renewal processes with interarrival times hyperexponentially
distributed of order two (RPH2)

e 20 two-state Markov Modulated Poisson processes (MMPP)

e 16 packetized voice streams

e 40 packet streams generated by ON/OFF traffic sources whose
ON and OFF periods are both exponentially distributed
— C?(X) = 5.6323x10° = Y is not Poisson
— Y is SRD
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Example: Superposition of Heterogeneous Traffic Processes (II)

—— Superposition
| — — RPH2 Only

1 1
10" 107
T (seconds)

e Y has high variability over a range of time scales that spans 8 order of

magnitude

e the amount of correlation that the process Y has at a particular time scale

does not alone determine the degree of its variability at that time scale
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ON/OFF /Exponential Model = Renewal Process

M essage
Length

OFF Time

14T

e W : number of packets during ON period: geometrically distributed
— packet stream: renewal process

o Pdf: f(z) =pS(x —T)+ (1 —p)Be PeTy(z — T)
— B~ : mean OFF period

T : packet transmission time

_ E[W]-1
P = —Emw

1 — p : probability that the next interarrival time is I + T’

. probability that the next interarrival time is T°

A= (l_p[)g —57 - ean packet arrival rate
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ON/OFF /Exponential Model : Exact Analysis

o G(x,y) =

F(y)

2)\2 (T—nT)u(T—nT)—l—2)\ZZ p"_ z(l_p)z

{B(T—HT)G[B(T—HT),Z] — ZG[B(T—NT),Z+ 1}u(r — nT)
—A\T — ()\7')2

— 2)\219 u(t —nT) + QAZZ n_z(l—p)z

n=1 z=1

[5(7' — nT), Z] U(T — nT) — = 2)\ T

f ty"le tdt y >0, x > 0: incomplete Gamma function

o limy_, o IDC(kT) =C?*(X) = \? (1

° R(T):%<

B2IDC(T)

2 2
M—l):YisSRD
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ON/OFF /Exponential Model : Fluid Analysis

a~!'= E[WI]T : mean ON period p= a+f3

Var(N(r)] = 24 =P [ !

52 T — p (1—e"7)

d 2(1 —p)A°

— (Var[N(n)]) = =]

Enormous gain in computational speed

. Var[N(T)] )
limr; Var[N(7)] — 1+p

lim, 0 IDC(1) = 135 C*(X)
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ON/OFF /Exponential Model : Index of Variability

——————

Br=06s
Link Speed = 5Mbps

MML = 4 Packets

MML = 10000 Packets

3 1=1000s

MML = 10000 Packets
Link Speed = 1 Mbps

(1)t=1s pt=100s
(2)1=10s Bt =100s
(3)1=50s Bt =100s

(4)1=100s B =100s

T(S)

a’t (seconds)

1=1s Bt =1000s

1=1s p1=05s

a’t (seconds)
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Simulation Study

e Main Goals:

— validate or invalidate our assumption that the primary

factor contributing to high variability empirically observed
in TCP traffic is the dynamics of TCP

— validate the theory

26
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Simulation Study: Network Model

27
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Simulation Study: ON/OFF /Exponential Model (I)

Estimated H = 0.89
T T T T

"logvar" ¢

"VFitLine" ----- |

"VSlope-1.0" -----

Log10(Var[Y™j)
Log10(Var)

2 25 3
Log10(m)

2 25 3
Log10(m)

E[W]= 10000 pkts 8~ '= 240s Link Speed=5Mbps Flows=64 TCP RTT=200-250ms
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Simulation Study: ON/OFF /Exponential Model (II)

Estimated H = 0.85 b) File Size & OFF Time: Exponentially Distributed
T T T T T T

Log10(Var[Y™])

25 3 35 . 3
Log10(m) Log10(m)

25
Log(m)

Flows=64 : E[W]= 4 pkts 8~ '= 0.6s Link Speed=10Mbps TCP RTT=200-250ms

Flows=64 : E[W]= 10000 pkts 8~ '= 900s
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ON/OFF /Heavy-Tailed Model vs. ON/OFF /Exponential Model

c) Pareto/Exponential - Aggregation Time Interval: 10 ms d) Exponer tial 1 Time Interval: 10 ms
T T T T T T T

10 H I ( A
s i
A AR U (LA

. AL ‘
16020 16030 16040 16050 16060 16070 16080 8010 8030
Time (sec) Time (sec)

Traffic Rate (Mbps)
Traffic Rate (Mbps)

18

a) File Size: Pareto Distr. -- OFF Time: Exponentially Distr. b) File Size: Exponentially Distr. -- OFF Time: Exponentially Distr.
T T T T T T T T T T T T T T T T
"Rate" —

16 |-
14
12

10 [

Traffic Rate (Mbps)
Traffic Rate (Mbps)

0 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (sec) -- (Aggregation Time Interval: 10 sec) Time (sec) -- (Aggregation Time Interval: 10 sec)

Top: Time Scale 10ms Bottom: Time Scale 10s — UDP case Flows=64
Left: ON/OFF /Heavy-Tailed Right: ON/OFF /Exponential
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ON/OFF /Heavy-Tailed Model vs. ON/OFF /Exponential Model

Estimated H = 0.87 -- R/S Method -- Aggregation Time Interval: 10 ms
T T T T T T

T

Estimated H = 0.84 -- R/S Method -- Aggregation Time Interval: 10 ms
T T T T T

agoIstat’ o "RSstat" <
PS4 ﬂ itLine" ---- "RSFitLine" ------]

"B$&lope0.5" 5 "RSslope0.5, o
0g88%5 e LI
Qoozgﬁgo 3 |
/Xizé ° S
& o
000% 2
0238096§§°00 - 2 1
° ngw
oY
Ogo// 500%9 1
00 ,6’5020
6/9006

4 5 3
Log10(d) Log10(d)
1

0.95

0.9

0.85

0.8

H = slope Heavy-Tailed: H= 0.87 Exponential: H= 0.84 H,(10ms)=H,(10s)= 0.86
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ON/OFF /Heavy-Tailed Model vs. ON/OFF /Exponential Model

200 400 600 800 1000 1200 1400 1600 1800 2000
k

Left: ON/OFF /Heavy-Tailed TCP Win=1MB BDP=3.2MB
Right: ON/OFF /Exponential Model TCP Win= 64K B BDP=244KB 7=10ms
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ON/OFF /Heavy-Tailed Model vs. ON/OFF /Exponential Model

1 1 1 1 1 . 1 1 1 2 1 1 1 1 1 1 1 1
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Time (sec) -- (Aggregation Time Interval: 100 sec) Time (sec) -- (Aggregation Time Interval: 100 sec)

1

0.95-

0.9

0.85

0.8

10" 10°
T(s)

Time Scale = 100s H,(100s) = 0.55 TCP traffic
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Simulation Study: Connections With Greedy Sources

e Goal: Determine if the dynamics of TCP alone can cause high

variability over a wide range of time scales in traffic
— all application-level factors that might contribute to the
variability of traffic were eliminated
e Simulation experiments were conducted for the cases of

— no packet losses
= several with uniformly distributed RTT (300ms to 600ms)

— packet losses due to queue overflows

— random packet losses

e Resulting aggregate TCP traffic
— did not have LRD

— had considerable variability only at short time scales (< 1s)
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Conclusions (I)

e Constructed a new and theoretical practical framework for
characterizing network traffic at all time scales based on the

statistical properties of the underlying point processes

— novel measure of variability: index of variability H,(7)

= captures degree of burstiness at each time scale
= completely characterized by Var[N(7)] or IDC(T)

— new and straightforward way of calculating the
autocovariance for all lags and all time scales

— new and practical way for computing the infinity sum of the

autocorrelation function for each time scale

35



On the Variability of Internet Traffic

Conclusions (II)

e Results from analyzing several traffic models show that

conventional traffic models can capture the high variability
empirically observed in network traffic over a considerable
range of time scales

H,(7) is a better measure for capturing the burstiness of

network traffic than the Hurst parameter

the amount of correlation that a traffic process has at a
particular time scale does not alone determine the degree of

variability at that time scale

the mean file size, the mean OFF period, and the source
link speed have a great impact on the variability of traffic
generated by ON/OFF /Exponential sources
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Conclusions (III)

e Results from analyzing TCP/UDP traffic streams suggest that

— the dynamics of TCP alone can not cause high variability
over a considerable range of time scales

— the presence of high variability over a wide range of time
scales does not necessarily depend on whether a reliable,
flow- and congestion-controlled protocol is employed at
transport layer

— without prior knowledge about the traffic process

= we can not conclude based alone on the estimated value
of the Hurst parameter that an empirically collected finite
trafic sequence exhibits LRD

= the number of samples that might be required to get a
good estimated of the Hurst parameter can be extremely
large

37



On the Variability of Internet Traffic

Future Work

Find a relation that associates H,(7) with queueing
performance metrics (packet loss rate and delay)

— expect different queueing behavior for each different H,(7)
curve over all performance relevant time scales

Construct a methodology of how to estimate H,(7) from

empirically measured traffic traces

— will help to develop accurate traffic models and traffic
control mechanisms

Analyze the ON/OFF /Hyperexponential traffic model

— compromise between the ON/OFF /Heavy-Tailed and
ON/OFF /Exponential models

Obtain H,(7) for several stochastic processes thad have LRD

— support our claim that H,(7) is a better measure than H

38



