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What Is The Problem?

� Many empirical studies on a variety of networks have shown

that traÆc exhibits high variability

{ traÆc is bursty (variable) over a wide range of time scales

� High variability was shown to have a signi�cant impact on

network performance

� Several studies claim that the high variability in traÆc is due

to long-range dependence (LRD) property of traÆc process

� The assertion that traÆc has LRD triggered a large e�ort in

{ explaining the cause of LRD in traÆc

{ studying the impact of LRD on network performance, and

{ creating new traÆc models that have LRD
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What Is This Research All About?

� Develop a new theoretical and practical framework to

accurately characterize the variability and correlation structure

of a typical network traÆc process at each time scale

� Determine that conventional traÆc models can capture the

high variability of traÆc empirically observed over a wide range

of time scales

� Investigate the contribution of TCP's dynamics to LRD or high

variability of traÆc
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Why New Measure of Variability?

� Most commonly used measures of traÆc burstiness are

{ peak-to-mean ratio (= 1 for CBR Flows)

{ squared coeÆcient of variation of interarrival times:
V ar[X]

(E[X])2

{ indices of dispersion for intervals and counts:

Jk=

V ar[X1+���+Xk]

k(E[X])2

IDC(t)=

V ar[N(t)

E[N(t)]

) any value other than one ! bursty traÆc

{ Hurst parameter (H)

) do not capture the uctuation of the degree of traÆc

burstiness across time scales

) our novel measure of variability based on the slope of the

IDC curve at each time scale and directly related to H
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Why Care About Conventional TraÆc Models?

� Analytically simpler and tractable than models with LRD

� The exact degree of traÆc variability over all time scales can

analytically be obtained

� Considerable amount of work has already been done on

analyzing network performance (i.e., queueing behavior)

associated with these models

� Performance evaluation depends on traÆc characteristics over a

�nite range of time scales speci�c to system under study (i.e.,

maximum bu�er size)

{ any model can be used as long as it captures traÆc behavior

over this range of time scales
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Does Network TraÆc Have LRD?

� There are not strong evidence that real network traÆc exhibits

long-range dependence

{ de�nition of LRD applies only to in�nite time sequences

{ need to check the tail of correlation structure for LRD

{ all empirically collected and analyzed traÆc traces were one

to about three hours long

) 360000 to 1000000 samples for sampling period of 10 ms

) long enough for capturing the variability and correlation

structure over the time scales associated with network

performance

) but not long enough to assert that traÆc processes have

LRD
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What TCP Has to Do With the Variability of TraÆc?

� TCP traÆc was used in most studies to

{ detect the presence of LRD in network traÆc, or

{ give a possible explanation of what causes the asserted LRD

� The results from these studies claim that

{ aggregate TCP traÆc exhibits LRD behavior over a wide

range of time scales

{ not surprising observation since TCP is a bursty protocol

) transmits packets as fast as it cans and then becomes idle

waiting for acknowledgments

{ presence of LRD depends on whether a reliable, ow- and

congestion-controlled protocol is employed at transport layer

{ natural to assume that the dynamics of TCP have a great

impact on its traÆc variability
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Major Contributions

� A new measured of variability: index of variability Hv(�)

{ a plot of Hv(�) describes the behavior of a traÆc process in

terms of its variability over a range of time scales

{ better measure for capturing the burstiness of traÆc than H

� The results show that

{ traditional models can capture the high variability observed

in network traÆc over a wide range of time scales

{ the amount of correlation that a traÆc process has at a

particular time scale does not alone determine the degree of

variability at that time scale

{ the dynamics of TCP alone can not cause considerable

variability over a substantial range of time scales
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Long-Range Dependence

De�nition: A weakly stationary discrete-time real-valued

stochastic process Y= fYt; t = 0; 1; 2; : : :g (� = E[Yt] = constant,

�2 = E[(Yt � �)2] <1) with an autocorrelation function r(k) is called

long-range dependent if

1X
k=1

r(k) =

1X
k=1

E[(Yt � �)(Yt+k � �)]

�2

=1

� r(k) measures the correlation between elements of Y separated by k

units of time

� correlations between observations that are separated in time decay

to zero at a slower rate that one would expect from data following

Markov-type (i.e., SRD) models

� Self-Similar Processes: most popular models with LRD

{ statistical properties remain same over all time scales

{ several de�nitions, asymptotically second-order
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Asymptotically Second-Order Self-Similar Processes

Assume that

r(k) � k��L(k) as k !1

where 0 < � < 1 and L is slowly varying at in�nity, that is,

lim
k!1

L(kx)

L(k)
= 1 8x > 0

i.e., L(t) = const, L(t) = log(t).

For each m = 1; 2; 3; : : :, let Y (m) = fY
(m)

k ; k = 1; 2; 3; : : :g, where

Y
(m)

k =

Ykm�m+1 + � � �+ Ykm

m

k � 1

De�nition: Y is called asymptotically second-order self-similar

with self-similarity parameter H if Y (m)

mH�1 has the same variance and

autocorrelation as Y as m!1. That is, 8k large enough,

r(m)(k)! r(k) as m!1
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Hurst Parameter

� Most important parameter of self-similar processes

{ measures the degree of self-similarity

{ expresses the speed of decay of autocorrelation function

{ 0:5 < H < 1 : ) LRD 0 < H � 0:5 : ) SRD

� Claimed to be a good measure of variability

{ the higher the value of H, the burstier the traÆc

� Popular belief: higher the H, poorer the queueing performance

{ but, there are examples showing otherwise

{ di�erent processes with same H can generate vastly

di�erent queueing behavior

� Conclusion: the single value Hurst parameter does not capture

the uctuation of traÆc burstiness across time scales
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Estimation of Hurst Parameter: Aggregated Variance Method

Assume a traÆc sequence ^Y of length N . Construct ^Y (m) by

dividing ^Y into blocks of length m, and averaging the sequence

over each block. Its sample variance is then given by:

^V ar[Y (m)] =

PN
m

k=1(Y
(m)(k)� �Y )2

N
m

where �Y =

PN
t=1 Yt

N

For successive values of m that are equidistant on a log scale, the

sample variance of the aggregated series is plotted versus m on a

log-log plot. By �tting a least-squares line

^H = 1�
slope

2
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Relating Packet TraÆc With Point Processes (I)
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Relating Packet TraÆc With Point Processes (II)

� Counting process: fN(t); t � 0g, (weakly) stationary where

N(t) = supfn : n = 0; 1; 2; : : : ;Sn � tg

� TraÆc process: Y = fYn(�); � > 0; n = 1; 2; : : :g where

Yn(�) = N [n� ]�N [(n� 1)� ]

� Index of dispersion for counts:

IDC(t) �

V ar[N(t)]

E[N(t)]

=

V ar[N(t)]

�t

� : mean event (packet) arrival rate

� IDC(t = m�) = m
��
V ar[Y (m)] m = 1; 2; 3; : : :

Y (m): aggregated packet (byte) count process
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Index of Variability for TraÆc Processes

For a self-similar process, plotting log(IDC(m�)) versus log(m)

results in an asymptotic straight line with slope 2H � 1

De�nition: For a general stationary traÆc process Y , we call

Hv(�) �

d(log(IDC(�)))

d(log(�))

+ 1

2

the index of variability of Y for the time scale �

Suppose Y results from the superposition of M independent traÆc

streams:

Hv(�) = 0:5�
 P

M
i=1

dV ar[Ni(�)]

d�P
M

i=1

V ar[Ni(�)]
!

=

1
2

(
1 + �

 P
M

i=1

d(IDCi(�))

d�

�
1

�i
�

P
M

i=1

�
IDCi(�)

�i

�
!)

�i=

P
M

j=1
�j

�i

Poisson:
d(IDCi(�))

d�

= 0 8�; i ) Hv(�) = 0:5 8�

If lim�!1

�P
M

i=1
�
IDCi(�)

�i

��
= c <1; then lim�!1Hv(�) = 0:5
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Correlation Structure of TraÆc Process Y

Autocovariance function:

Ck(�) =
(

1
2

V ar[N((k + 1)�)] + 1
2
V ar[N((k � 1)�)]� V ar[N(k�)] k > 1;

1
2

V ar[N(2�)]� V ar[N(�)] k = 1:

Autocorrelation function: rk(�) =

Ck(�)

V ar[N(�)]

k = 0; 1; 2; : : :

Correlation intensity:

R(�) �

1X
k=1

rk(�) =

1
2

�
limk!1 IDC(k�)

IDC(�)

� 1
�

Suppose Y is a superposition of M independent renewal processes

lim
k!1

IDC(k�) =

MX
i=1

�
C
2

i (X)

�i

�
where C
2
(X) =

V ar[X]

(E[X])2

If C2
i
(X) =1 for at least one i ) R(�) =1 ) Y is LRD process
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Example: Hyperexponential Distribution of Order Two (I)

Suppose the underlying point processes of Y is a stationary renewal

process with interarrival times hyperexponentially distributed of

order two

Pdf: f2(x) = w1ae
�ax + w2be
�bx where w1 + w2 = 1

Then:

� �= 1

E[X]

= ab

aw2+bw1

C2(X)= 2
h

a
2
w2+b
2
w1

(aw2+bw1)
2
i

� 1

� V ar[N(�)]=

2�[(aw1+bw2)
2
�(a
2
w1+b
2
w2)]

(aw2+bw1)
3

�
1� e�[aw2+bw1]�
�

+ �C2(X)�

� IDC(�)=

2[(aw1+bw2)
2
�(a
2
w1+b
2
w2)]

(aw2+bw1)
3

�
1�e
�[aw2+bw1]�

�

�
+ C2(X)

� lim�!1 IDC(�) = C2(X) ) R(�) <1 ) Y is SRD process

� If a = b then [(aw1 + bw2)
2 � (a2w1 + b2w2)] = 0 and C2(X) = 1

) V ar[N(t)] = �t and IDC(t) = 1, i.e., Poisson process
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Example: Hyperexponential Distribution of Order Two (II)
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Example: Hyperexponential Distribution of Order Two (III)
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Example: Superposition of Heterogeneous TraÆc Processes (I)

Suppose the underlying point-process of the packet (byte) count

sequence Y is the superposition of:

� 10 renewal processes with interarrival times hyperexponentially

distributed of order two (RPH2)

� 20 two-state Markov Modulated Poisson processes (MMPP)

� 16 packetized voice streams

� 40 packet streams generated by ON/OFF traÆc sources whose

ON and OFF periods are both exponentially distributed

{ C
2(X) = 5:6323x105 ) Y is not Poisson

{ Y is SRD



On the Variability of Internet TraÆc 21

Example: Superposition of Heterogeneous TraÆc Processes (II)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ (seconds)

H
v(τ

)

Superposition
RPH2 Only    

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

(b)

τ

R
(τ

)
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ON/OFF/Exponential Model ) Renewal Process

T

OFF Time

Message
Length

I +T

� W : number of packets during ON period: geometrically distributed

{ packet stream: renewal process

� Pdf: f(x) = pÆ(x� T ) + (1� p)�e��(x�T )u(x� T )

{ ��1 : mean OFF period

{ T : packet transmission time

{ p =

E[W ]�1

E[W ]

: probability that the next interarrival time is T

{ 1� p : probability that the next interarrival time is I + T

{ � = �

(1�p)+�T

: mean packet arrival rate
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ON/OFF/Exponential Model : Exact Analysis

V ar[N(�)] = 2�

1X
n=0

p
n
(� � nT )u(� � nT ) + 2�

1X
n=1

nX
z=1

�n
z
�pn�z(1� p)z

�

f�(� � nT )G [�(� � nT ); z]� zG [�(� � nT ); z + 1]gu(� � nT )

��� � (��)
2

d
d�
(V ar[N(�)]) = 2�

1X
n=0

p
n
u(� � nT ) + 2�

1X
n=1

nX
z=1

�n
z
�

p
n�z
(1� p)
z

G [�(� � nT ); z]u(� � nT )� �� 2�
2
�

� G(x; y) = 1
�(y)
R
x

0

ty�1e�t dt y > 0; x > 0 : incomplete Gamma function

� limk!1 IDC(k�) = C
2(X) = �2
�

1�p2

�2

�

� R(�) = 1
2

�
�2(1�p2)

�2IDC(�)
� 1
�

: Y is SRD
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ON/OFF/Exponential Model : Fluid Analysis

� ��1= E[W ]T : mean ON period � = �+ �

~V ar[N(�)] =

2(1� p)�3

�2

�
� �

1
�
�

1� e���
��

d
d�

�
~V ar[N(�)]
�

=

2(1� p)�3

�2

�
1� e���
�

� Enormous gain in computational speed

� lim�!1

~V ar[N(�)]

V ar[N(�)]
= 2
1+p

� lim�!1

~IDC(�) = 2
1+p

C
2(X)
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ON/OFF/Exponential Model : Index of Variability
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Simulation Study

� Main Goals:

{ validate or invalidate our assumption that the primary

factor contributing to high variability empirically observed

in TCP traÆc is the dynamics of TCP

{ validate the theory
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Simulation Study: Network Model
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Simulation Study: ON/OFF/Exponential Model (I)
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Simulation Study: ON/OFF/Exponential Model (II)
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ON/OFF/Heavy-Tailed Model vs. ON/OFF/Exponential Model
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ON/OFF/Heavy-Tailed Model vs. ON/OFF/Exponential Model

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

Lo
g1

0(
R

/S
)

Log10(d)

Estimated H = 0.87 -- R/S Method -- Aggregation Time Interval: 10 ms

"RSstat"
"RSFitLine"

"RSslope0.5"

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6

Lo
g1

0(
R

/S
)

Log10(d)

Estimated H = 0.84 -- R/S Method -- Aggregation Time Interval: 10 ms

"RSstat"
"RSFitLine"

"RSslope0.5"

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ (s)

H
v(τ

)

^H = slope Heavy-Tailed: ^H= 0:87 Exponential: ^H= 0:84 Hv(10ms)=Hv(10s)= 0:86



On the Variability of Internet TraÆc 32

ON/OFF/Heavy-Tailed Model vs. ON/OFF/Exponential Model
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ON/OFF/Heavy-Tailed Model vs. ON/OFF/Exponential Model
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Simulation Study: Connections With Greedy Sources

� Goal: Determine if the dynamics of TCP alone can cause high

variability over a wide range of time scales in traÆc

{ all application-level factors that might contribute to the

variability of traÆc were eliminated

� Simulation experiments were conducted for the cases of

{ no packet losses

) several with uniformly distributed RTT (300ms to 600ms)

{ packet losses due to queue overows

{ random packet losses

� Resulting aggregate TCP traÆc

{ did not have LRD

{ had considerable variability only at short time scales (< 1s)
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Conclusions (I)

� Constructed a new and theoretical practical framework for

characterizing network traÆc at all time scales based on the

statistical properties of the underlying point processes

{ novel measure of variability: index of variability Hv(�)

) captures degree of burstiness at each time scale

) completely characterized by V ar[N(�)] or IDC(�)

{ new and straightforward way of calculating the

autocovariance for all lags and all time scales

{ new and practical way for computing the in�nity sum of the

autocorrelation function for each time scale
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Conclusions (II)

� Results from analyzing several traÆc models show that

{ conventional traÆc models can capture the high variability

empirically observed in network traÆc over a considerable

range of time scales

{ Hv(�) is a better measure for capturing the burstiness of

network traÆc than the Hurst parameter

{ the amount of correlation that a traÆc process has at a

particular time scale does not alone determine the degree of

variability at that time scale

{ the mean �le size, the mean OFF period, and the source

link speed have a great impact on the variability of traÆc

generated by ON/OFF/Exponential sources
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Conclusions (III)

� Results from analyzing TCP/UDP traÆc streams suggest that

{ the dynamics of TCP alone can not cause high variability

over a considerable range of time scales

{ the presence of high variability over a wide range of time

scales does not necessarily depend on whether a reliable,

ow- and congestion-controlled protocol is employed at

transport layer

{ without prior knowledge about the traÆc process

) we can not conclude based alone on the estimated value

of the Hurst parameter that an empirically collected �nite

traÆc sequence exhibits LRD

) the number of samples that might be required to get a

good estimated of the Hurst parameter can be extremely

large
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Future Work

� Find a relation that associates Hv(�) with queueing

performance metrics (packet loss rate and delay)

{ expect di�erent queueing behavior for each di�erent Hv(�)

curve over all performance relevant time scales

� Construct a methodology of how to estimate Hv(�) from

empirically measured traÆc traces

{ will help to develop accurate traÆc models and traÆc

control mechanisms

� Analyze the ON/OFF/Hyperexponential traÆc model

{ compromise between the ON/OFF/Heavy-Tailed and

ON/OFF/Exponential models

� Obtain Hv(�) for several stochastic processes thad have LRD

{ support our claim that Hv(�) is a better measure than H


