Spatial and Temporal Processing for a Compact Landmine Detection Radar

> Guruvayurappan Masters Thesis Defense October 29, 2002

Committee: Dr. James Stiles Dr. Christopher Allen Dr. Glenn Prescott

Outline

- Introduction & Motivation
- Our Approach
- A Compact Landmine Detector
- Experiments and Results
- Optimum Signal Processing Algorithms
- Conclusions & Future Work

Landmine Detection – The Challenge

- UN estimates 70 million mines buried all over the world.
- Challenges in Landmine Detection
 - Clearance Rate
 - Probability of False $alarm(P_{FA})$ and Missed detection (P_M) .
- Landmine Detection Schemes use
 - Metal Detectors.
 - Infra Red Sensors.
 - Chemical Sensors.
- Efficient Landmine Detection Scheme: High P_D and also a low P_{FA} .

Our Approach

- Is there a property in landmines which is absent in clutter?
- Mines are symmetric and clutter is asymmetric.
- Landmines exhibit reflection symmetry.
- Reflection Symmetry?

- TP is Target Reflection Symmetric Plane.
- How can we detect Symmetry in Landmines?
- **Our Approach** : Use Ground Penetrating Radar (GPR).
- GPR can be used for detecting subsurface target, but....
- How can symmetry be established with GPR?

Bistatic Measurements

- Bistatic Measurement T_X - R_X .
- Target has reflection Symmetry: Record measurement T_X - R_X . Reflect the target about TP. Record measurement T_X - R_X again.
- Reflect the bistatic measurement T_X - R_X .
 - TP is also Measurement Reflection Symmetric Plane.
- Identical Bistatic measurements y₁(t) and y₂(t).

 $x_1(t) = w(t)y_1(t)$ $x_2(t) = w(t)y_2(t)$

Mirrored Bistatic Observation Pair

• Is a subsurface target present?

sum (
$$\Sigma$$
)= $\int |x_1(t) + x_2(t)|^2 dt$

• Is the subsurface target symmetric?

$$m = \frac{\int |x_1(t) - x_2(t)|^2 dt}{\int |x_1(t) + x_2(t)|^2 dt} = \frac{\int |x_1(t) - x_2(t)|^2 dt}{\operatorname{sum}(\Sigma)}$$

- Typical values for *m* coefficient
 - Low *m* values for symmetric targets.
 - For asymmetric targets:ranges from low to high values.
- Is one *m* value sufficient for Target classification?

- Single *m* coefficient \Rightarrow High P_{FA}.
- How many *m* coefficients are needed?
 - Higher the number *m* values, higher is the confidence level in target classification.
- Solution: Collect many mirrored observation pairs.

A Compact Landmine Detector

• Possible Handheld model (Top View)

- TP is the target reflection symmetric plane.
- MP is the measurement reflection symmetric plane.
- The combination $T_X R_X T_X^{-1} R_X^{-1}$ is called a *Sensor Geometry*.
- MP for every point in the scan: *Measurement Plane*

Multiple Sensor Geometry Handheld

- Scan with a single Sensor geometry
 - Target classification based on one *m* value.
 - P_{FA} can be high.
- Solution
 - Repeat scans with different sensor geometries.
 - Develop a Multiple Sensor Geometry handheld.
- N sensor geometries \Rightarrow N m values for classifying the target.

• Higher N lesser the P_{FA} ... but greater the complexity.

Data Collection Scheme

- The data collection scheme should
 - reduce the complexity greatly.
 - synthesize Multiple Sensor Geometry Handheld.
- The data collection scheme consists of two scans.

A_i: bistatic measurement at location i

- B_j: bistatic measurement at location j
- Synthesize Multiple sensor geometry handheld!! How?

Synthesizing Multiple Sensor Geometry Handheld

- Reconstruct Multiple sensor geometry handheld
 - Combine A_i and B_j to form mirrored bistatic observation pairs.
 - u = i-j defines the sensor geometry.

Multiple measurement planes for a single sensor geometry (u is constant).

u = -3 ; v = 3 Multiple sensor geometries for a single measurement plane (v is constant)

Expected Results

• For each sensor geometry-measurement plane combination

• sum
$$\Sigma(u,v) = \int |x_{A_i}(t) + x_{B_j}(t)|^2 dt$$

• $m(u,v) = \frac{\int |x_{A_i}(t) - x_{B_j}(t)|^2 dt}{\int |x_{A_i}(t) + x_{B_j}(t)|^2 dt}$ Sensor Geome

Geometry (u)

Measurement Plane (v)

Is a subsurface target present?

Inspect the **sum** value matrix. The presence of the subsurface target is reflected as high sum values for some measurement planes.

Is the subsurface target symmetric?

Inspect the *m* value matrix. Low *m* values for all sensor geometries when measurement plane aligns with plane of target symmetry.

Experiments in Sandbox

- Targets used in sandbox experiments
 - Styrofoam Disc.
 - Rock.
 - Crushed Milk Jug.

Wooden Mounting Board

Antenna

- Data Processing
 - Matched Filter radar response as function of time
 - Form *m* values and sum values matrices
 - Generate color-coded plots.

uncertainty in target detection.

Sandbox Experiment Styrofoam Disc

Sandbox Experiment-Rock

Field Experiment PMA-3

Field Experiment Irregular Wood

Field Experiment TM-46

- Time domain side lobes mask subsurface target.
- Can a better signal processing algorithm be developed?

Optimum Signal Processing Algorithms

- Conventional solution
 - Use Windowing Functions.
 - Is it an efficient solution?
- Motivation
 - Interference dominated by clutter....not by noise.
 - Matched Filter maximizes SNR.
 - Criterion: Maximize SIR

Basis for developing a robust signal processor:

a priori information about the scattering scenario.

MMSE GPR Processor

- Radar Response Model: $r = \sum_{j} \gamma_{j} \rho_{j} + n$
 - Using Linear Algebra $r = P\gamma + n$ where P is the expected response matrix.
- The estimate of scattering $\ \hat{\gamma} = W_{EST} r$
- The criterion to be minimized $\mathbf{\epsilon} = \hat{\gamma} \gamma$
- The MMSE Estimator $W_{EST} = K_{\gamma} P' [PK_{\gamma} P' + K_n]^{-1}$
 - $\bullet W_{EST}$ is the MMSE Estimator.
 - $K_{\gamma} = E\{\gamma\gamma'\}$ is the target correlation matrix.
 - K_n is the noise covariance matrix.

MMSE GPR Processor-Summary

- MMSE GPR Processor
 - Reduces the effects of surface clutter on subsurface scattering.
 - Maximizes SIR, performs better than Matched Filter.
 - Gives accurate estimates of scattering.
- Problems with the MMSE GPR Processor
 - Time consuming algorithm.
 - If target buried at very shallow depths.

Kalman Filter Implementation

- Motivation
 - Reduce processing time.
 - Performance improvement.
- Kalman Filter based on two fundamental equations
 - State Equation : x(m+1) = A(m)x(m) + u(m)
 - Observation Equation: $y(m) = C(m)x(m) + n_1(m)$
- Develop a Kalman filter for our application.

Simulations

- Initial Conditions set for
 - Error Covariance Matrix
 - Target Correlation matrix
 - Initial Scattering
- Optimum length of radar data segment: One

Kalman Filter performs better than Matched Filter.

How is this a performance improvement over MMSE GPR Processor?

Simulation Results

Conclusions and Future Work

- Detection Scheme with a potential of a low P_{FA} .
- Proposed a working model for a handheld detector.
- On the signal processing front
 - Developed a robust signal processor for subsurface target detection.
 - Validated and tested the algorithms.
- As future work
 - Combination of MMSE GPR Processor and Kalman Filter.
 - Develop a Robotic arm for data collection!

