
University of Kansas

Using Time Division Multiplexing to support
Real-time Networking on Ethernet

Hariprasad Sampathkumar
25th January 2005

Master’s Thesis Defense

Committee
Dr. Douglas Niehaus, Chair
Dr. Jeremiah James, Member
Dr. David Andrews, Member

University of Kansas

Outline

• Introduction
• Related Work
• Objectives
• Background
• Implementation
• Evaluation
• Conclusion
• Future work

University of Kansas

Introduction

• Ethernet dominant LAN technology in office and
educational environment

• Advantages – Low cost and ease of installation
• Ideal technology for industrial automation, if it can

support applications with time constrained QoS
• Traditional Ethernet based on CSMA/CD
• Disadvantages – Collisions and exponential back-off

causing random delay in packet transmission
• Unable to support real-time applications due to non-

determinism in packet transmission

University of Kansas

Related work

• Hardware Approaches
• Expensive, require specialized hardware and software

• Token bus and Token Ring Architectures
– Token passing protocol, collision free, deterministic transmission

• Switched Ethernet
– Private collision domain for machines on destination port

• SCRAMNet – Shared Common Random Access Memory Network

– Write to shared memory to transmit, reflects data throughout the
network in bounded time

University of Kansas

Related Work

• Software Approaches
• RTnet – Hard Real-Time Networking for Linux/RTAI

– TDMA based collision free transmission

– separate network stack for real-time processes

• RETHER Protocol

– Timed-token protocol suitable for video transmission

• Traffic Shaping

– statistical guarantees for collision-free transmission

– controls rate of transfer of non-real-time packets

• Master/Slave Protocols

– Master controls transmission of packets

University of Kansas

Objectives

• Make Ethernet suitable to support real-time applications by
providing collision-free packet transmission

• Solution should support existing Ethernet Hardware

• Modifications need to be minimal without affecting existing
network and transmission protocols

• Proposed Solution

• Implement Time Division Multiplexing on Ethernet

• Use the framework provided by KURT-Linux

University of Kansas

Background

• UTIME – High Resolution Timers

• Datastreams Kernel Interface (DSKI)

• Group Scheduling Framework

• Time Synchronization in a Distributed Network

• Control Flow of a Packet through the Linux kernel
during transmission and reception

• NetSpec

University of Kansas

UTIME

• Standard Linux notion of time is jiffies – timing resolution of
10ms in 2.4.20 kernel – not sufficient for real-time
applications

• UTIME modifications to support subjiffy resolution,
typically in microseconds

• UTIME offset timers take into account timer interrupt
overhead and schedule accurate timer events

• UTIME provides a privileged timer that allows timer
handling routines to be executed in interrupt context

University of Kansas

Datastreams Kernel Interface (DSKI)
• Method to gather data relating to operating system’s state or

performance
• Used to log and timestamp events as they happen inside the kernel
• Data collected as events, counters or histograms
• Data is presented in a standard XML format
• Post-processing applied on the collected data to generate graphs
• Supports visualization of events collected from a distributed network

on a global timescale
• Accessed by standard device driver conventions and allows to collect

only events the user is interested in

University of Kansas

Group Scheduling

• Unified scheduling model used to control scheduling and
execution semantics of different computational components

• Computational components are processes, hardirqs, softirqs,
tasklets and bottom halves

• Components represented in a hierarchic decision structure
• Groups – nodes in scheduling hierarchy that direct the

decision path
• Each group has a name and scheduler associated with it
• Groups contain members which are computational

components or other groups
• Associated scheduler determines scheduling semantics

imposed by a group on its members

University of Kansas

Group Scheduling

• Scheduler associated with root group is invoked, which
recursively invokes schedulers of member groups, if any

• Decisions of member groups propagated to the root of the
hierarchy which decides the member to be scheduled next

• Can be used to achieve customized scheduling and execution
semantics for computational components

• Framework defines function pointer hooks to scheduling and
execution routines of different computational components, that
map to Vanilla Linux semantics by default

• Define custom routines that map on to these function pointers
to have custom semantics

• Used in defining TDM Model

University of Kansas

Group Scheduling

• Vanilla Linux Softirq semantics
• Linux 2.4.20 kernel has following softirqs:

– HI_SOFTIRQ – Handle high priority tasklets and bottom halves

– NET_TX_SOFTIRQ – Process transmission of network packets

– NET_RX_SOFTIRQ – Process reception of network packets

– TASKLET_SOFTIRQ – Handle low priority tasklets

• Maintains pending softirq flags for each CPU

• A snapshot of pending softirqs is taken and are executed in
decreasing order of priority

• Invokes a kernel thread to perform the processing in case of large
number of softirqs

University of Kansas

Group Scheduling

• Linux Softirq model under Group Scheduling
• Top group with the 4 softirqs as its members
• Softirqs added in decreasing order of priority
• Members are selected sequentially
• If the pending bit of the selected softirq is enabled, the

member is selected for execution

University of Kansas

Time Synchronization in a Distributed Network

• Time synchronization among nodes needed to gather real-
time data in a distributed network

• Modified Network Time Protocol (NTP) support under
KURT-Linux offers synchronization on order of
microseconds

• Precision is about ± 5 µs on an average and ± 16µs in the
worst case

• Provides time synchronization for supporting TDM

University of Kansas

Linux Network Stack

• Data structures : Socket buffer (sk_buff) and Socket (sock)
• sk_buff represents a packet in the network stack and contains

pointers to different headers of the protocol stack
• Processing of a packet in a layer is manipulation of the

corresponding header in the socket buffer structure
• Movement of a packet between layers is achieved by simply

passing a pointer to socket buffer
• Sock is created when a socket is created in user space

• Sock maintains state of a TCP or a virtual UDP socket
connection

University of Kansas

Linux Network Stack – Packet Transmission

• Packet Transmission
• Starts from the application in process context

• Packet gets queued in the net-device layer

• If device is free packet transmission occurs in process
context

• If not, NET_TX_SOFTIRQ is enabled to carry out
transmission in Softirq context

University of Kansas

Linux Network Stack – Packet Transmission

University of Kansas

Linux Network Stack – Packet Reception

• Packet Reception
• Has two flows of execution
• Application layer to Transport Layer

– Process blocks for incoming packets
– Execution carried out in process context

• Physical layer to Transport layer
– Packet received from network is sent up to the queue

in transport layer
– Execution carried out in both hardirq and softirq

contexts

University of Kansas

Linux Network Stack – Packet Reception

University of Kansas

NetSpec

• Tool used to automate schedule of experiments
involving several machines in a distributed network

• Daemons run in machines that are part of
experiment

• NetSpec controller passes experiment schedules to
the daemons, which carry out the experiment

• Experiments specified in script file
• Supports transfer of configuration files and

collection of output files

University of Kansas

Implementation

• Kernel Modifications
• Reduce latency in packet transmission

• Packet transmission in softirq context

• TDM Model under Group Scheduling

• TDM Scheduler

• User Interface
• TDM Master-Slave configuration

• User space programs to configure TDM

University of Kansas

Reducing Latency in Transmission

• Perform only transmission during time-slot, delay all non-
critical operations

• NET_TX_SOFTIRQ handling routine first frees socket
buffers of packets that have been transmitted and then starts
packet transmission

• Handling routine modified to just perform packet
transmission

• Create new low-priority NET_KFREE_SKB_SOFTIRQ that
performs the garbage collection

University of Kansas

Packet transmission in Softirq Context

• Transmission can occur in both Process or Softirq context

• Time-triggered transmissions require control over
computation performing the transmission

• Force transmissions to occur in softirq context beyond the net
device layer

• Packet is added to queue and NET_TX_SOFTIRQ is enabled
to transmit the packet

University of Kansas

Packet transmission in Softirq Context

Normal Execution Flow
Transmission in softirq context

University of Kansas

TDM Model under Group Scheduling

• Time related updates must be provided to the machine’s
clock immediately.

• Transmission must take place at scheduled intervals of time
when TDM is enabled - higher priority for
NET_TX_SOFTIRQ

• When TDM is not enabled NET_TX_SOFTIRQ has default
priority

• NET_KFREE_SKB_SOFTIRQ to have the lowest priority

University of Kansas

TDM Model under Group Scheduling

University of Kansas

Time Division Multiplexing Scheduler

• Creates a privileged UTIME kernel timer
• time_to_transmit flag denotes the transmission slot
• Two timer handling routines for the start and end of

transmission intervals
• Timer handling routine for start of time slot

• Sets time_to_transmit to true
• Sets kernel timer to expire for the end of time-slot

• Timer handling routine for end of time slot
• Sets time_to_transmit to false
• Sets kernel timer to expire for the start of time-slot
• calculates start and end expirations for next cycle

University of Kansas

TDM Scheduling Decision Function

University of Kansas

TDM Master –Slave Configuration

• Any machine can be configured as TDM Master
• TDM Daemon started in remaining machines which act as

slaves
• Determine number of machines in setup – initial handshake

between the master and slaves
• Broadcasts a ‘hello’ message to all machines in LAN

segment
• Slave machines part of TDM reply for the broadcast message

• Master computes the schedule for each machine
• Each slave machine is provided with its TDM schedule

through a new connection
• Slaves submit schedule to the kernel to start TDM

University of Kansas

Calculating Transmission Schedules

• Total Transmission Period = T

• Number of Machines = N

• Ideal Time Slot size = TS ideal-size = T/N

• Buffer Period between timeslots = B

• For a machine of ordinality ‘n’
• Time slot Begin time

TS begin = ((n-1) * TS ideal-size) + (B/2)

• Time slot End time
TS end = (n * TS ideal-size) - (B/2)

University of Kansas

User Space Commands

• Interface through standard device driver conventions
• To submit TDM schedule

• tdm master <broadcast address> <minutes> <seconds> <total
transmission cycle>

Where
<broadcast address> - broadcast address of LAN segment where
TDM is to be enabled
<minutes> - time in minutes from now when TDM is to be started
<seconds> - time in seconds from now when TDM is to be started
<total transmission cycle> - time in nanoseconds including the
transmission time-slots of all the machines in the TDM network

• To stop TDM schedule
• tdm stop

University of Kansas

Evaluation

• Determine the transmission times of packets of
varying sizes

• Selection of a suitable buffer period based on the
time synchronization achieved

• Setting up TDM schedule based on the transmission
time and buffer period determined

• Testing TDM schedules for collisions for packet
transmissions of various sizes

University of Kansas

Determining Packet Transmission Time

• Total Theoretical Transmission Time

T total = T convert bits into signals + T Propagation delay where

T convert bits into signals = M / L and

T Propagation delay = D / C where

• M – Message size in bits

• L – Link Capacity in Mbps

• D – length of physical link in meters

• C – Speed of light in the physical medium in m/s

• Propagation delay is negligible as D is small

• Therefore T ≈ T convert bits into signals

University of Kansas

Determining Packet Transmission Time

• Two 500 MHz machines running KURT-Linux
without any TDM modifications

• Measure time intervals between successive reception
of packets using DSKI histograms

• A stream of about 400,000 packets were transmitted
from a UDP application

• The transmission times were recorded for varying
message sizes.

• Tests performed for both 10 and 100 Mbps Ethernet

University of Kansas

Determining Packet Transmission Time

University of Kansas

Determining Packet Transmission Time

University of Kansas

Buffer Period between time-slots

• Precision of time synchronization from NTP modification
scheme is ±5 µs on average and ±16 µs in worst case

• Machines can be as far apart as 32 µs

• We settle on a value of 40 µs for buffer period

University of Kansas

Setting up TDM Ethernet

• Four 500Mhz machines
with TDM modifications on
KURT-Linux

• Achieving time
synchronization
• Clock Calibration
• Clock Synchronization

• Time Server sends updates
every 5 minutes

• Start TDM Daemons and
submit schedule from the
TDM Master

University of Kansas

Two Sources and a Sink

• TCP application
transferring about 10,000
packets from both
sources to the sink

• Time slot of 1300µs for
1500 bytes of data on
10Mbps

• Number of collisions
observed to be zero

• DSKI events were
collected on Sink

University of Kansas

Visualization of Transmission Time-slots in TDM Ethernet

Interval denoting transmission time-slot

Event denoting start of transmission time-slot

Event denoting end of transmission time-slot

University of Kansas

TDM Schedules for varying packet sizes

• Multiple UDP transmissions
generating over a million packets

• Transmission times measured for
data of 64, 256 and 1472 bytes

• Tested with 100Mbps Hub
• MTU was varied based on the

different packet sizes
• Suitable time-slots obtained

when there were no collisions or
packet loss

University of Kansas

Conclusion

• Time Division Multiplexing can be employed to achieve
collision-free deterministic transmission on Ethernet

• Suitable time-slots for transmission for different packet sizes
have been measured for 100Mbps Ethernet

• Accomplished with minimal modifications to network stack
• It is a software solution, will support any common Ethernet

Hardware
• Suitable for Industrial Automation applications requiring

periodic transmission
• Can be used even on Switched Ethernet to avoid packet loss

and queuing latency

University of Kansas

Future work

• Port to Linux 2.6 kernel

• Has 2 additional softirqs

• Delayed Timer bottom half handling is a softirq

• Modification to TDM Group Scheduling hierarchy

• Creation of a TDM Schedule Server

• Creates TDM schedules taking more constraints into
account

• Machine with larger volume of data is given a larger time
slot for transmission

University of Kansas

Thank You

