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Abstract

Traditional Ethernet with its inevitable problems of collisions and exponential back-
off is unsuitable to provide deterministic transmission. Currently available solutions
are not able to support the Quality of Service requirements expected by the real-time
applications without employing specialized hardware and software. The thesis aims
to achieve determinism on Ethernet by employing Time Division Multiplexing with
minimal modifications to the existing KURT-Linux kernel code.
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Chapter 1

Introduction

Ethernet remains one of the dominant technologies for setting up local area networks

that provide access to data and other resources in the office environment. However,

with the growing requirement to support services like video conferencing and stream-

ing media, it becomes necessary that Ethernet be capable of providing Quality of Ser-

vice(QoS) to such applications. With its low cost and ease of installation, it appears as

an ideal technology for industrial automation, where applications requiring time con-

strained QoS need to be supported. This is possible only if it can offer the determinism

required to support real-time applications.

1.1 The CSMA/CD Protocol

Ethernet is based on CSMA/CD (Carrier Sensing Multiple Access / Collison Detec-

tion) which is a contention-based protocol used to control access to the shared media.

’Carrier Sensing’ means all the nodes in the network listen to the common channel

to see if it is clear before attempting to transmit. ’Multiple Access’ means that all the

nodes in the network have access to the same cable. ’Collision Detection’ is the means

by which the nodes in the network find out that a collison has occured.

In this scheme, a node which wants to transmit a packet uses the carrier sensing

signal to see if any other node is transmitting at that time. If it finds the channel to be

free, it goes ahead and starts transmitting the packet. However if the carrier-sensing
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signal detects another workstation’s transmittal, this node waits before broadcasting.

This scheme works as long as the network traffic is not heavy and the LAN cables

are not longer than their ratings. When two nodes try to transmit data at the same

time, a collsion occurs. In case of a collision, the two nodes involved choose a random

interval after which they try to retransmit. They use an exponential backoff algorithm

allowing upto 16 trials to retransmit after which both the nodes have to wait and give

other nodes a chance to transmit.

Thus we can see that the CSMA/CD protocol is not designed to prevent occur-

rence of collisions, but it just tries to minimise the time that collisions waste. Due to

this uncertainity in transmission, Ethernet cannot provide the determinism required to

support real-time applications.

1.2 Existing Approaches

The issue of avoiding collisions in Ethernet and making it more deterministic has been

tackled both from the hardware and software point of view. In the hardware perspec-

tive, switches offer a solution of splitting the collision domains into smaller regions,

thereby reducing the probability of occurrence of collisions. But it does not completely

solve the problem of determinism, as it is possible that a number of machines in a LAN

can try sending messages to a particular machine and these messages can queue up in

the switch causing unknown delays in transmission.

It is also possible to consider other alternative LAN technologies such as Token

bus and Token ring architectures, as a means for solving this problem. Though these

technologies completely avoid collisions and can offer deterministic transmission of

messages, the need for specialized equipment and software for their installation makes

them an economically infeasible solution.

Shared memory networks can be used as a means for obtaining deterministic and

fast transfer of data. SCRAMNet [6] is one such implementation of a shared memory

network where each node in a network has a network card sharing a common memory

with all other nodes in the network. A transfer is as simple as writing to this shared
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memory. The underlying protocol takes care of synchronising the data stored in the

memory of the network cards. But this technology is more suitable for applications

requiring small and frequent transmission of data.

Software approaches to solve the problem require real-time support in the underly-

ing operating systems of the machines forming the LAN. One such approach is RTnet

[10], a hard real-time network protocol stack for Linux/RTAI (Real-Time Application

Interface). RTnet avoids collisions in the Ethernet by means of an additional layer

called RTmac, which is used to control the media access by using time division multi-

plexing.

Though RTnet does achieve a collision free Ethernet, its implementation is quite

complex. Based on RTAI, its real-time support is external to the Linux kernel and

the interface is through a Hardware Abstraction Layer. The normal Linux is run as a

best effort, non-real-time task of the Real-Time kernel. Due to this dual OS approach,

the entire network stack has been re-implemented to support the real-time processes.

Furthermore, a tunneling mechanism is required to support non-real-time traffic on

top of RTmac.

1.3 Proposed Solution

Our solution is to implement Ethernet Time Division Multiplexing within KURT-Linux.

Unlike Linux/RTAI, KURT-Linux is a single-OS real-time system, where the modifica-

tions to support real-time are made to the Linux kernel itself. The UTIME [7] subsys-

tem provides the fine grain resolution (on order of microseconds) needed to support

real-time processes under KURT-Linux. The Datastreams Kernel Interface (DSKI) [5]

provides a means for recording and analysing performance data relating to the func-

tioning of the operating system. It is a useful tool to identify control points in kernel.

In addition, KURT-Linux has Group Scheduling [8], a unified scheduling model

which can be used to schedule OS computational components such as hardirqs, softirqs

and bottom halves in addition to the normal processes and threads. This provides an

effective framework for manipulating the control points that affect the transmission of
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packets and to associate the packet transmission with an explicit schedule that would

ensure transmission only during specific intervals of time. This approach does not

have the overhead of re-implementing the network stack and also can support the

different network and transmission protocols with only minor modifications .

Modifications done to NTP [17] provide the time synchronization necessary among

machines, for setting up a TDM schedule. NetSpec [9] [12] helps to automate schedul-

ing of experiments in a distributed network.

The rest of the report is organized as follows. In Chapter 2 we discuss the different

approaches and techniques that are currently available to solve the problem and their

limitations. Chapter 3 provides the background on UTIME, DSKI, the Group Schedul-

ing framework, time synchronization using modified NTP, control flow through the

kernel code for transmission and reception of a packet, and NetSpec. Chapter 4 dis-

cusses the steps in implementing the proposed solution using the framework provided

by KURT-Linux. Chapter 5 presents the experimental results demonstrating how the

Time Division Multiplexing scheme can provide determinism to Ethernet, and finally

Chapter 6 presents conclusions and discusses future work.
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Chapter 2

Related Work

With the advent of new services like Voice over IP, Video conferencing, remote monitor-

ing and streaming media it has become necessary that the underlying networks must

be capable of providing Quality of Service requirements as needed by these services.

Ethernet being the primary technology used in access networks, needs development

of efficient QoS control mechanisms in order to support such real-time applications.

Each of the different real-time applications will have a different set of requirements

to be satisfied. Here we are concentrating on applications relating to abstract industrial

automation, which have the call/response communication pattern. Here we compare

and contrast approaches for other problems to our approcach.

The need to achieve real-time support on Ethernet has led to development of nu-

merous methods and techniques. These techniques can be broadly classified as Hard-

ware approaches and Software approaches. It is to be noted here that some hardware

approaches may also require some software support in order to provide their necessary

solutions. The following is a discussion on some of these approaches.

2.1 Hardware Approaches

The Hardware approaches primarily involve the use of an alternate technology for con-

trolling access to the transmission media, or propose the use of specialized equipment

that can handle the network media access for existing Ethernet based networks.
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2.1.1 Token Bus and Token Ring

The source of non-determinism on Ethernet is due to its use of the contention based

CSMA/CD (Carrier Sensing Multiple Access with Collision Detection) protocol. This

is responsible for the possibility of collisions and unbounded transmission times. An

ideal solution would be a scheme that would arbitrate the transmission of packets and

control the access provided to the transmission media while providing acceptable per-

formance at an acceptable cost.

Token bus and token ring networks are two media access control techniques other

than Ethernet used in Local Area Networks. Both use a token-passing mechanism for

transmitting in the network and only differ in the network topology, where the end

points of a token bus do not form a physical ring.

Token-passing networks circulate a special frame called as ’token’ around the net-

work. The possession of the token grants a node the permission to transmit. Each node

can hold the token only for a finite amount of time. Nodes which do not have infor-

mation to transmit simply pass on the token to the next node. Any node which needs

to transmit, waits until it acquires the token, alters it as an information frame, appends

data to be transmitted and sends it to the next node in the ring. Since the token is no

longer available in the network, no other node can transmit at this time. When the

transmitted frame reaches the destination node, the information is copied for further

processing. The frame continues until it reaches the sending station, which checks if

the information was delivered. It then releases the token to the next node in the net-

work. This method of providing access to the media based on a token is deterministic,

as it is possible to determine the maximum amount of time that will pass before any

node will be capable of transmitting. This relability and determinism makes token ring

networks ideal for applications requiring predictable delay and fault tolerance.

Though these networks provide deterministic and collision free transmission, the

need for specialized hardware and software for their installation make these an eco-

nomically infeasible solution for many applications, including many industrial au-

tomation scenarios. In addition these token-passing schemes suffer from the draw-

backs of the protocol overhead and inability to transmit due to token loss.
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2.1.2 Switched Ethernet

Switches are specialized hardware, widely used as a means to improve the perfor-

mance of the shared Ethernet. Traditional Ethernet based LANs comprised of nodes

connected to each other using hubs, which provided access to the common transmis-

sion media. Unlike hubs which have a single collision domain, switches provide a

private collision domain for the destination machines on each of its ports. When a

message is transmitted by a node, it is received by the switch and is added to the

queue for the port where the destination machine is connected. If several messages are

received by one port, the messages are queued and transmitted sequentially. Priority

based scheduling schemes are also available to transmit packets buffered in a port.

However, the mere addition of a switch to an Ethernet LAN does not provide real-

time capabilities to the underlying network. In the absence of collisions the queuing

mechanism in the switches cause additional latency. Also the deterministic nature of

the Ethernet is maintained only under controlled loads. The buffer capacity for queu-

ing packets may be limited in some switches which can lead to packet loss under heavy

load conditions. For hard real-time traffic appropriate admission control policies must

be added.

2.1.3 Shared Memory Networks

Shared Common Random Access Memory Network (SCRAMNet) [6] is a replicated

shared memory network, where each card stores its own copy of the network’s shared

memory set. The host machine using the SCRAMNet card accesses the shared network

memory as if it were its own. Any time a memory cell changes in one of the SCRAM-

Net’s memory, the network protocol immediately broadcasts the changes to all other

nodes in the network. Its transmission speed and a unidirectional ring topology reduce

the data latency and provides network determinism.

The speed of transmission is due to the fact that it acts like a hardware commu-

nications link. Once the network node is properly configured there is no need for

additional software like real-time drivers. There is no protocol overhead involved for

packing, queuing, transmitting, dequeuing and unpacking it, as all of this is supported
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in hardware. The ring transmission methodology automatically sends all updates to

every node on the network, and all SCRAMNet nodes can write to the network simul-

taneously. This eliminates overhead such as node addressing and network arbitration

protocols, and reduces system latency.

Real-Time Channel based Reflective Memory (RT-CRM) [16] tries to overcome some

of the drawbacks of the SCRAMNet approach. In SCRAMNet, any data sent to one

machine is received by all the machines in the network. This method would waste the

available bandwidth in a scenario where a machine may want to communicate only

with a subset of the exisiting machines. RT-CRM suggests a producer-consumer ap-

proach, using a ’write-push’ data reflection model. A virtual channel is established

between the writer’s memory and the reader’s memory on two different nodes in a

network with a set of protocols for memory channel establishment and data update

transfer. The data produced remotely in the writer is actively pushed through the net-

work and written into the reader’s memory without the reader explicitly requesting

the data at run time.

The shared memory technology is ideally suited for applications having critical

control loop timing requirements, like flight and missile simulation systems where the

data transmitted are usually small and frequent. This scheme may be unsuitable in a

network providing access to a large media file repository.

2.2 Software Approaches

Software approaches to achieve determinism on Ethernet involve either modification

to the existing Medium Access Control (MAC) layer or addition of a new protocol

layer above the Ethernet layer to control the transmission. The primary advantage

of the software approaches over the hardware ones is that they can be used with the

existing networking hardware.

Modifications to the Ethernet MAC layer protocol try to achieve a bounded access

time to the transmission media. The major drawback with this approach is that it

requires modification to the firmware in the network interfaces and hence does not
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provide the economy of using commonly available Ethernet hardware. Moreover the

modifications do not avoid the occurrence of collisions, instead they try to achieve

a bounded time for transmission in the event of a collision. This results in under-

utilization of the available bandwidth.

Approaches which involve addition of a new transmission control layer above the

Ethernet try to achieve determinism by eliminating the possibility of occurrence of

collisions. Several different transmission control schemes are available, namely, Time

Division Multiple Access (TDMA), Token-passing protocols, Traffic shaping and Mas-

ter/Slave protocols. Some of the implementations based on these schemes are dis-

cussed below.

2.2.1 RTnet - Hard Real Time Networking for Linux/RTAI

RTnet [10] is an Open source hard real-time network protocol stack for Linux/RTAI

(Real-Time Application Interface). RTAI is a real-time extension to the Linux kernel.

RTnet avoids collisions on the Ethernet by means of an additional protocol layer called

RTmac, which controls media access. RTmac employs a Time Division Multiplexing

Access (TDMA) scheme to control the access to the transmission media. In TDMA,

nodes transmit at pre-determined disjoint intervals in time in a periodic fashion. This

is a suitable method for controlling access to the physical media as it is not contention

based and does not have the overhead present in token-based protocols. Due to these

features TDM is employed as our solution for achieving determinism on Ethernet.

RTAI involves modifications to the interrupt handling and scheduling policies in

order to make the standard Linux kernel suitable to support real-time applications.

It primarily consists of an interrupt dispatcher which traps the peripheral interrupts

and if necessary reroutes them to Linux. It uses the concept of a Hardware Abstraction

Layer (HAL) to get information from Linux and trap some fundamental functions. The

normal Linux is run as a process when there are no real-time processes to be scheduled.

RTnet provides a separate network stack for processing real-time applications. As

TCP by nature is not deterministic, RTnet only supports UDP over IP traffic. RTnet

defines its own data structures analogous to the network device and socket buffer data
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structures in Linux, in order to support real-time applications. A real-time Ethernet

driver is used to control the off-the-shelf network adapter. In order to support non-

real-time process and other legacy applications the RTnet framework defines a Virtual

Network Interface Card (VNIC) device, which tunnels the non-real-time traffic through

the real-time network driver. It provides an API library which is to be used by real-time

applications in order to make use of the real-time capabilities offered by RTnet.

RTnet also provides independent buffer pools for real-time processes. Separate

buffer management for the real-time socket buffers, NICs and VNICs is available. The

socket buffers are used to hold the packets of information transferred in the network.

Unlike the socket buffers in the normal Linux stack, the real-time buffers have to be

allocatable in a deterministic way. For this purpose the real-time socket buffers are

kept pre-allocated in multiple pools, one for each producer or consumer of packets.

Though with these modifications RTnet is able to achieve a collision free Ethernet,

its implementation is quite complex. With its two kernel approach it requires a sep-

arate protocol stack to support the real-time applications and a tunneling mechanism

to support non-real-time and TCP traffic over the underlying real-time network driver.

Each network adapter must require a driver that is capable of interfacing with the real-

time semantics of RTnet.

In contrast our approach also employs TDM to achieve determinism to support

real-time applications but with minimal changes. Both the real-time and non-real-time

processes can be supported by the same networking stack. With no modifications done

to the MAC layer, our solution can be supported by any common Ethernet hardware.

2.2.2 RETHER protocol

RETHER [19] is a software based timed-token protocol that provides real-time perfor-

mance guarantees to multimedia applications without requiring any modifications to

the existing Ethernet hardware. It allows applications to reserve bandwidth and re-

serves the bandwidth over the lifetime of the application. It adopts a hybrid scheme in

which the network operates using a timed-token bus protocol when real-time sessions

exist and using the original Ethernet protocol during all other times.
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The network operates using CSMA/CD until a request for a real-time session ar-

rives. When this happens it switches to the token bus mode. In this mode the real-time

data is assumed to be periodic (like streaming audio and video) and the time is divided

into cycles of one period. For example, to support transmission of 30 video frames per

second, the period is set to 33.33 ms. For every cycle, the access to the transmission

media for both real-time and non-real-time applications is controlled by a token. The

real-time traffic is scheduled to be sent out first in each cycle and the non-real-time

traffic may use the remaining time if available.

This approach assumes the real-time traffic to be periodic in nature and hence is

not suitable for real-time sporadic traffic. Also it involves a high protocol overhead

in maintaining the state of the network and in switching between the two modes of

operation.

2.2.3 Traffic Shaping

This approach is based on the statistical relationship between the network utilization

and collision probability. By keeping the bus utilization below a given threshold it is

possible to obtain a desired collision probability. [11] presents an implementation of

this technique. In this implementation two adaptive traffic smoothers are designed,

one at the kernel level and the other at the user level. The kernel-level traffic smoother

is installed between the IP layer and the Ethernet MAC layer for better performance,

and the user-level traffic smoother is installed on top of the transport layer for better

portability.

The kernel-level traffic smoother first gives Real-Time (RT) packets priority over

non-RT packets in order to eliminate contention within the local node. Second, it

smoothes non-RT traffic so as to reduce collision with RT packets from the other nodes.

This traffic smoothing can dramatically decrease the packet-collision probability on

the network. The traffic smoother, installed at each node, regulates the node’s outgo-

ing non-RT traffic to maintain a certain rate. In order to provide a reasonable non-RT

throughput while providing probabilistic delay guarantees for RT traffic, the non-RT

traffic-generation rate is allowed to adapt itself to the underlying network load condi-
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tion.

This approach controls the transmission of a packet in the Linux Traffic Control

layer [3] in the Linux kernel. It is very similar to our approach except for the algorithm

which controls the packet transmission. In this case the packets are transmitted based

on the network utilization, while in our approach the packets are transmitted at specific

intervals in time. As this approach provides statistical guarantees, it is suitable only

for soft real-time traffic.

2.2.4 Master/Slave Protocols

The Master/Slave protocols try to achieve determinism by employing a model in which

a node can transmit messages only upon receiving an explicit control message from

a particular node called the Master. This guarantees deterministic transmission of a

packet and completely avoids collisions.

The Flexible Time Triggered (FTT) Ethernet protocol [13] is one such Master/Slave

protocol. The protocol tries to achieve flexibility, timeliness and efficiency by relying on

two main features: centralized scheduling and master/multi-slave transmission con-

trol. The former feature allows having both the communication requirements as well

as the message scheduling and dispatching policy localized in one single node called

the Master, facilitating on-line changes to both. As a result, a high level of flexibility is

achieved. On the other hand, such centralization also facilitates the implementation of

on-line admission control in the Master node to guarantee the traffic timeliness upon

requests for changes in the communication requirements. The master-slave transmis-

sion control enforces traffic timeliness, which is the time when a node gets to transmit

in the network. Since the master explicitly tells each slave when to transmit, traffic

timeliness is strictly enforced and it is possible to achieve high bandwidth utilization

with this scheme. This approach is also efficient due to the fact that, instead of using a

master-slave transmission control in a per message basis, the same master message is

used to trigger several messages in several slaves, thus reducing the number of control

messages and consequently improving the bandwidth utilization.

A key concept in the protocol is the Elementary Cycle (EC) which is a fixed dura-
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tion time-slot, used for allocating traffic on the bus. The bus time is then organized as

an infinite succession of ECs. Within each EC there can exist several windows reserved

to different types of messages. Particularly, two windows are considered, synchronous

and asynchronous, dedicated to time-triggered and event-triggered traffic respectively.

The former type of traffic, synchronous, is subject to admission control and thus its

timeliness is guaranteed, i.e. real-time traffic. The latter type, asynchronous, is based

on a best effort paradigm and aims at supporting event-triggered traffic. In each EC,

the synchronous window only takes the duration required to convey the synchronous

messages that are scheduled for that and the remaining time is absorbed by the asyn-

chronous window. Consequently, limiting the maximum bandwidth available for the

synchronous traffic implicitly causes a minimum bandwidth that is guaranteed to be

available for the asynchronous traffic.

Though these protocols can maintain precise timeliness, they are beset with the

considerable protocol overhead this imposes on their functionality, and the need to

address issues such as fault tolerence when the Master machine goes down. If they

do support an option of having backup masters, then issues relating to presence of

multiple masters need to be addressed. Also these protocols are inefficient in handling

event-triggered traffic.
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Chapter 3

Background

This section gives some background information on the different components of KURT-

Linux that have been used to implement Time Division Multiplexing on Ethernet. Sec-

tion 3.1 talks about the role of UTIME [7] in supporting the real-time applications on

KURT-Linux. Section 3.2 talks about the Datastreams Kernel Interface (DSKI) [5] that

was used to instrument the Linux Networking code. Section 3.3 explains about the

Group Scheduling framework [8] in achieving the desired execution semantics for the

various computational components in obtaining the time based transmission charac-

teristics required by TDM. The scheme for achieving time synchronisation using mod-

ifications to NTP [17] is presented in Section 3.4. Section 3.5 presents the control flow

of a packet through the Linux kernel during transmission and reception. Finally, an

overview of NetSpec [9] [12], a tool to conduct distributed experiments is discussed in

Section 3.6.

3.1 UTIME - High Resolution Timers

The standard Linux kernel makes use of a Programmable Interval Timer chip to main-

tain the notion of time. This timer chip is programmed by the kernel to interrupt 100

times in a second, which provides a timing resolution of 10ms. Though this is in suf-

ficient granularity for a majority of applications to employ in interval timers, some

real-time applications do require much finer resolutions. Also since the invocation of
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the timer handling routines is done by the bottom halves that may be executed a long

time after they have been activated, it is not possible for the kernel to ensure that timer

routines will start precisely at their expiration times. For these reasons standard Linux

timers are inappropriate to support real-time applications, which require strict adher-

ence to execution of computations at scheduled times.

UTIME [7] is a modification to the Linux kernel that supports timing resolution on

the order of tens of microseconds. In addition UTIME provides offset timers, which

offer accurate expiration times required to support real-time processes. The UTIME

kernel patch adds two fields to the existing timer list data structure : subexpires

and flags. The subexpires field is used to specify expiration time at the subjiffy

resolution provided by UTIME, which is typically in microseconds. The expiresfield

specifies expiration time in units of jiffies. The flags field allows for specifying the

type of timers supported by UTIME.

The UTIME offset timers, specified by setting the UTIME OFFSET flag bit, take into

account the overhead of the timer interrupt, which is the offset value, and are pro-

grammed to expire early. The offset is determined by using the UTIME calibration

utilities. Once the timer interrupt for the event is triggered, the kernel performs its

standard timer handling work and locates the current timer. When it finds that it is

an UTIME offset timer it busy waits until the exact time at which the timer was origi-

nally supposed to occur. Thus at an expense of a small overhead it is able to support

accurately scheduled timer events.

UTIME also provides for a privileged timer, specified by setting the UTIME PRIV

flag bit, which allows timer handling routines to be executed in interrupt context,

rather than being handled by the bottom halves. These modifications allow for support

of real-time applications on Linux.

3.2 Datastreams Kernel Interface

The DataStreams Kernel Interface (DSKI) [5] is a method for gathering data relating to

the operating system’s status and performance. It is used to log and time-stamp events
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as they happen inside the kernel. The collected data is then presented to the user in a

standard format. The event data can be post-processed to determine how much time

is spent in the different parts of the kernel. DSKI also supports visualization of events,

that have been gathered on different machines in a distributed network, on a global

timescale.

Data sources are defined in various places in the kernel and an event is generated

when the thread of execution control crosses the data source in the code. The data

generated can be either time-stamped event records or in the form of counters and

histograms. One of the important features offered by DSKI is the ability to associate a

32-bit field called as the ’Tag’ to store information relating to a particular event. This

feature is extremely useful in post-processing where the collected events can be further

analysed based on the values in the Tag field. For example, the Tag field can be used

to store the port numbers associated with a network packet. The Tag value can then be

used to trace the flow of the packet through the network stack in the kernel.

In addition to the Tag field, the DSKI also allows for specifying extra data for every

event source, which can be used to store more descriptive information. Analysis of the

data collected from the Tag and extra data field of the events can be done by employing

post-processing filters on these values.

The DSKI is accessed using the standard device driver conventions by the utility

programs which can be configured to collect only those events in which the user is

interested. DSKI can also act as a very good debugging utility, as it can be used to trace

the flow of control sequence through the kernel. Thus it can be used to investigate a

wide range of interactions between the operating system and the software layer using

its services. However, its effective use depends upon identifying points of execution in

the code that influence the state and performance of the system.

3.3 Group Scheduling

Group Scheduling [8] is a framework in which the different computational components

of a system can be configured into a hierarchic decision structure that is responsible for
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deciding which computation should be executed on a particular CPU. Each compu-

tation is represented as a part of a decision structure and the scheduling semantics

associated with the decision structure is responsible for deciding when the different

computations must be executed.

Groups are represented by nodes within the scheduling hierarchy and are respon-

sible for directing the decision path that is taken through the scheduling hierarchy.

Each group has a name and a scheduler associated with it. The group is comprised

of members which can be computational components or other groups. The associated

scheduler determines the scheduling semantics that the group will impose on its mem-

bers.

3.3.1 Execution Context

The Linux kernel consists of many kinds of computational components, each of which

has a unique set of scheduling and execution semantics. The primary factor influenc-

ing the scheduling and execution of these components is their context. The context of

a computation is comprised of an address space, kernel stack, user stack (if the com-

putation needs to execute in user space) and the register set.

The code in the Linux kernel runs in one of the three contexts : Process, Bottom-

half and Interrupt. User level processes execute in the Process context. Even system

calls made by a process are executed in the Process context. For multi-threaded user

programs the context contains of independent stacks but a shared address space. Inter-

rupt service routines are simply executed in the context they were when the interrupt

occurred. Softirqs, tasklets and bottom-halves [20] are executed in Bottom-half context.

3.3.2 Computational Components

Below we discuss some of the computational components that can be brought under

the Group Scheduling control :

Processes : Processes are scheduled based on a dynamic priority policy. Each process

is assigned a priority value specified by the user, which along with other factors is
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used as a metric for selection by the scheduler. The scheduler picks a process that has

a highest ’goodness’ value for execution.

Hardirqs : These are basically hardware interrupt service routines that need to be ex-

ecuted as soon as possible. The interrupts are usually disabled during this context and

critical operations such as transfer of data from the interrupting device to the kernel

memory are carried out in this context.

Softirqs : Softirqs are a means of delayed execution of non-critical computations as-

sociated with interrupt processing. These are process intensive computations that can-

not be carried out with interrupts disabled. A softirq is designated for execution by

setting the corresponding bit in a bit field structure used to store the pending softirqs.

The pending bit field is surveyed for softirqs that have been set and a routine that pro-

cesses these softirqs is invoked. This routine takes a snapshot of the pending bits and

executes the softirqs in ascending bit field order. Thus the priority of a softirq is de-

termined by its position in the bit field. After one iteration through the snapsot, it is

again compared with the pending bit field, if any softirqs have been marked that have

not been executed in the earlier iteration, then the snapshot is updated and the softirq

execution is repeated. After the second pass through the bit field, in case any softirqs

are pending, a kernel thread called as ksoftirqd that executes softirqs in the same

manner is marked as runnable and may be selected by the process scheduler. The bit

field can be used to support a maximum of 32 softirqs. The 2.4.20 Vanilla Linux ker-

nel defines 4 softirqs (in decreasing order of priority): HI SOFTIRQ,NET TX SOFTIRQ,

NET RX SOFTIRQ and TASKLET SOFTIRQ.

Tasklets : Tasklets are also a means of performing delayed execution in the Linux

kernel. They differ from softirqs in the following ways : tasklets can be dynamically al-

located and a tasklet can run on only one CPU at a time. However, it is possible that dif-

ferent tasklets can run simultaneously on different CPUs. The tasklet scheduling and

execution is implemented as a softirq. The kernel provides two interfaces for execut-

ing the tasklets. Normally the device drivers can make use of the tasklet schedule
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interface to assign a tasklet for execution. In this case the tasklet is executed when the

scheduler chooses to execute the TASKLET SOFTIRQ. In case the tasklets need to exe-

cute some low latency tasks immediately, then the tasklet hi schedule interface

is to be used. This interface executes the tasklets when HI SOFTIRQ is executed by the

scheduler.

Bottom Halves : Bottom halves are a deprecated type of deferrable function whose

scheduling and execution are carried out as a softirq. Although they are considered

obsolete, they are still being used for some integral kernel tasks. Bottom halves need

to be completely serialised as only one bottom half can be executed, at a time, even on

a SMP machine.

3.3.3 Scheduling Hierarchy

The Group Scheduling hierarchy is composed of a set of computational components

and special entities called ’Groups’. The scheduler associated with the group is used

to determine which of the child nodes must be chosen, if any. The child nodes in turn

may be comprised of groups or computations. The hierarchy is traversed when the

scheduler of the parent node invokes the scheduler of the child node.

The scheduling hierarchy is employed by first calling the scheduler associated with

the group at the root of the hierarchy. This in turn may invoke the scheduler associated

with any of the groups that are members of the root group. Each of these children

groups may also call the schedulers associated with their constituent groups. Each

parent group’s scheduler may incorporate the decision of its member groups into its

own decision making process. Finally the decision of the root group is returned to the

calling function, which is then responsible for executing the computation chosen by

the hierarchy.

3.3.4 Scheduling Model

A scheduling model is composed of a hierarchic decision structure and an associated

set of schedulers used to control the scheduling and execution of the member compu-
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tational components. The Group Scheduling framework offers the flexibility to define

one’s own scheduling model in which only the computational components of inter-

est are controlled with customised scheduling decisions. The components which are

not part of the hierarchy are handled by the default Vanilla Linux semantics. This

is achieved by means of function pointer hooks specified by the Group Scheduling

framework.

The framework defines function pointer hooks for the various routines relating to

the scheduling and execution of the different computational components. By default

these hooks refer to the regular scheduling and execution routines specified with the

Vanilla Linux semantics. When a new model is defined the user has the option of ei-

ther using the default semantics or of specifying a customised schedule and execution

routine for each of the computational components.

Thus the default model provided by the Group Scheduling framework does not

have any hierarchic decision structure and the scheduling hooks refer to the default

Linux handling routines.

3.3.5 Linux Softirq Model under Group Scheduling

The Linux Softirq Model uses the flexibility provided by the Group Scheduling frame-

work to define customised scheduling and execution handling of the different softirqs.

The Group Scheduling framework provides hooks to the following softirq handling

functions: open softirq - used when a new softirq is added, do softirq - used

for executing the softirqs and wakeup softirqd - used to enable/disable the kernel

thread that executes the softirqs.

In the default Linux do softirq routine, first a snapshot of the pending softirqs

is taken and the pending flags are reset. The snapshot is then checked for the enabled

softirqs, which are then executed sequentially in decreasing order of their priorities.

When a large number of softirqs are pending to be processed, usually a kernel thread

is scheduled to do the processing so that the user programs get a chance to run.

Figure 3.1 gives the scheduling hierarchy implementing this model. It is composed

of a top group at the root of the hierarchy which in turn consists of the 4 softirqs:
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Figure 3.1: Vanilla Linux Softirq Model under Group Scheduling

HI SOFTIRQ, NET TX SOFTIRQ, NET RX SOFTIRQ and TASKLET SOFTIRQ added in

order of their priority of execution. The top group is associated with a sequential sched-

uler which sequentially picks the members of the top group and uses the decision func-

tion to see if they need to be scheduled for execution.

The function pointer hooks provided by the Group Scheduling framework are used

to specify the custom softirq handling routine and to turn off the kernel ksoftirqd

thread. This custom routine invokes the group scheduler, which sequentially returns

the members of the top group. The routine then checks if the member returned hap-

pens to be a softirq whose pending flag bit is set, if so the routine then executes that

particular softirq.

Thus the Linux Softirq Model demonstrates the flexibility provided by the Group

Scheduling framework in changing the scheduling and execution semantics of the dif-

ferent computational components and in customizing them to suit our needs.

3.4 Time Synchronisation with modifications to NTP

In order to conduct and gather performance data of real-time applications over a dis-

tributed network, it is necessary that the nodes in the distributed system are time syn-

chronised. The precision offered by the time synchronisation scheme should allow for

gathering of data relating to real-time events that occur on the order of microseconds.

The Network Time Protocol (NTP) [2] is a popular internet protocol used to synchro-
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nize the clocks of computers to a time reference. NTP was originally developed by

Professor David L. Mills at the University of Delaware. It offers a precision of about

a few milliseconds for nodes in a LAN. However, this precision is not sufficient for

conducting distributed experiments and gathering data about real-time events.

[17] presents a scheme to achieve time synchronizaton on the order of tens of mi-

croseconds by making modifications to NTP. NTP calculates time offsets of a machine

with respect to a time server based on the timestamps it records in the NTP pack-

ets. NTP contains timestamps taken when a packet is sent from a node, received by

the time server, sent by the time server and then received back by the node. As these

timestamps are taken at the application layer, the offset determined based on these val-

ues cannot provide precision in the order of microseconds. [17] improves the precision

by taking timestamps at a layer more closer to when the packet is actually transmitted.

This modification provides time synchronisation of about +/- 5 � s on an average for

machines in a LAN.

The above scheme, which is used for gathering real-time performance data over

a distributed network, is employed in our solution to achieve time synchronisation

among nodes in a LAN to support a global transmission schedule based on TDM.

3.5 Linux Network Stack

This section covers some important data structures used in the networking code of the

Linux kernel and the path taken by a packet as it traverses the network protocol stack

through the Linux kernel. First the data structures are discussed followed by the packet

transmission and then finally packet reception. The names of functions and their lo-

cation in the kernel code are presented in the following format : function name

[file name]. All the file names specified are relative to the base installation direc-

tory of Linux.
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3.5.1 Important Data Structures in Networking Code

The networking part of the linux kernel code primarily makes use of two data struc-

tures : socket buffers denoted as sk buff and sockets denoted as sock.

The socket buffer (sk buff) data structure is defined in include/linux/skbuff-

.h. When a packet is processed by the kernel, coming either from the user space or

from the network card, one of these data structures is created. Changing a field in

a packet is achieved by updating a field of this data structure. This structure contains

pointers to the headers of the different protocol layers. Processing of a packet in a layer

is done by manipulating the header in the socket buffer for that corresponding layer.

Thus passage of a network packet through the different layers is achieved by passing

a pointer to this structure to the handling routines in the different protocol layers.

The socket (sock) data structure is used to maintain the status of a connection. The

sk buff structure also contains a pointer to the sock structure denoting the socket

that owns the packet. It should be noted that when a packet is received from the net-

work, the socket owner for that packet will be known only at a later stage. The sock

data structure keeps data about the state of a TCP connection or a virtual UDP con-

nection. This structure is created when a socket is created in the user space. The sock

structure also contains protocol specific information, which store the state information

of each layer.

3.5.2 Packet Transmission in Linux Network Stack

Packet transmission from the application starts in the process context. It continues in

the same context until the net device layer, where the packet gets queued. The network

device is checked to see if it is available for transmission. If the device is available, the

packet is transmitted in the process context, otherwise the packet is requeued and the

transmission is carried out in softirq context. Figure 3.2 gives the control flow through

the different layers when a packet is transmitted. The following section describes the

different steps in transmission.
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Figure 3.2: Packet Transmission in the Linux Network Stack
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Application Layer

Step 1: The journey of a network packet starts from the application layer where a

user program may write to a socket using a system call. There many system calls that

can be used to write or send message from a socket. Some of these are send, sendto,

sendmsg, write and writev(). Here the execution of the system calls occur in the

process context.

Step 2: It is worth mentioning that irrespective of the type of system call used, the

control finally ends up in thesock sendmsg [net/socket.c] function, which is used

for sending messages. This function checks if the user buffer space is readable, if so it

gets the sock structure using the file descriptor available from the user program. It

then creates a message header based on the message to be transmitted and a socket

control message containing information like the uid, pid and gid of the process. These

operations are also carried out in the process context.

Step 3: The control then moves on to the layer implementing the socket interface.

This is normally the INET layer which maps the socket layer on to the underlying

transport layer. This INET layer extracts the socket pointer from the sock structure

and verifies if the sock structure is functional. It then verifies the lower layer proto-

col pointer and invokes the appropriate protocol. This function is carried out in the

inet sendmsg [net/ipv4/af inet.c] function.

Transport Layer (TCP/UDP)

Step 4 : In the transport layer depending on the protocol being used, i.e., either TCP

or UDP the appropriate functions are invoked. These functions are also executed in

the process context.

In case of TCP, the control flows to the tcp sendmsg [net/ipv4/tcp.c] routine.

Here the socket buffer sk buff structure is created to store the messages to be trans-

mitted. First the status of the TCP connection is checked and the control waits until
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the connection is complete, if not completed previously. The previously created socket

buffer is checked to see if it has any tail space remaining to fit in the current data. If

available, the current data is appended to the previous socket buffer, otherwise a new

socket buffer is created to store the data. The data from the user space is copied to the

appropriate socket buffer and the checksum of the packet is calculated.

In case of UDP the control flows to the udp sendmsg [net/ipv4/udp.c] routine.

The routine checks the packet length, flags and the protocol used and builds the UDP

header. It verifies the status of the socket connection. If it is a connected socket, the

system sends the packet directly to the lower layer, else it does a route lookup based

on the IP address and then passes the packet to the lower layers.

Step 5 : For a TCP packet the tcp transmit skb [net/ipv4/tcp output.c] rou-

tine is invoked which builds the TCP header and adds it to the socket buffer structure.

The checksum is counted and added to the header. Along with the ACK and SYN

bits, the status of the connection, the IP address and port numbers of the source and

destination machines are verified in the TCP header.

For a UDP packet, the udp getfrag[net/ipv4/udp.c] routine is invoked which

copies the data from the user space to the kernel space and calculates the checksum.

This function is called from the IP Layer, where the socket buffer for the packet is

initialized.

These functions are also executed in the process context.

Network Layer (IP)

Step 6 : The packet sent from the transport layer is received in the network layer

which is the IP layer. The IP layer receives the packet, builds the IP header for it and

calculates the checksum.

For a TCP connection, based on the destination IP address, it does a route lookup

to find out the output route the packet has to take. This is done in the user context in

the routine ip queue xmit [net/ipv4/ip output.c].

In case of a UDP connection, the IP layer creates a socket buffer structure to store
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the packet. It then calls the udp getfrag() function mentioned above, to copy the

data from the user space to the kernel. Once this is done it directly goes to the link

layer without getting into the next step of fragmentation. These operations are done in

the ip build xmit [net/ipv4/ip output.c] routine.

Step 7 : In case of a TCP packet the ip queue xmit2 [net/ipv4/ip output.c]

routine checks to see if fragmentation is required in case the packet size is greater than

the permitted size. If fragmentation is needed, then the packets are fragmented and

sent to the link layer. This routine is executed in process context and is not required by

the UDP packets.

Link Layer

Step 8 : From the link layer there is no difference in the nature of processing between

a TCP and a UDP packet. The link layer recieves the packet through the dev queue -

xmit [net/core/dev.c] routine. This completes the checksum calculation if it is not

already done in the above layers or if the output device supports a different type of

checksum calculation. It checks if the output device has a queue and enqueues the

packet in the output device. It also initiates the scheduler associated with the queuing

discipline to dequeue the packet and send it out. In this step the execution is carried

out in the process context.

Step 9 : The dev queue xmit routine invokes the qdisc run [include/net/-

pkt sched.h] routine which checks the device queue to see if there are any packets

to be sent out. If present, it initiates the sending of a packet. This function runs in the

process context the first time it comes through this flow of control, however if the de-

vice is not free or if the process is not able to send the packet out for some other reason,

this function is executed again in a softirq context.

Step 10 : The qdisc run routine invokes the qdisc restart [net/sched/sch -

generic.c] function to check if the device is free to transmit. If so, the packet is sent
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out to be transmitted through the driver specific routines.

Step 11 : In case the network device is not free to transmit the packet, the packet

is requeued again for processing at a further time. The scheduler calls the netif -

schedule [include/linux/netdevice.h] function which raises theNET TX SOFT-

IRQ, which would take care of the packet processing at the earliest available time.

Network Device Driver Layer

Step 12 : The hard start xmit [drivers/net/device.c] function is an inter-

face to the device driver specific implementation used to prepare a packet for trans-

mission and send it out.

Step 13 : The device specific routines are then invoked to do the transmission. The

packet is sent out to the output medium by calling the I/O instructions to copy the

packet to the hardware and start the transmission. Once the packet is transmitted, it

also frees the socket buffer space occupied by the packet and records the time when

the transmission took place.

Step 14 : Once the device finishes sending the packet out it raises an interrupt to

inform the system that it has finished sending the packet. If the socket buffer is not free

at this point in time, then it is freed. It then calls the netif wake queue [include/-

linux/netdevice.h], which is basically to inform the system that the device is free

for sending further packets. This function in turn invokes netif schedule to raise

the transmit softirq to schedule the transmission of the next packet.

3.5.3 Packet Reception in the Linux Network Stack

The control flow for receiving a packet from the network stack follows two flows of

execution. One from the user program in the application layer to the transport layer,

where the process blocks waiting to read from the queue of incoming packets. The ex-

ecution in this flow is carried out in the process context. The other is the flow from the
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arrival of a packet in the physical layer up to the transport layer, where the received

packets are put into the queue of the blocked process. This is carried out in a combi-

nation of hardirq and softirq contexts. Figure 3.3 gives the control flow of the different

steps in the reception of a packet which are discussed below.

Application Layer

Step 1 : The user process reads data from a socket using the read or the variants of

the socket’s receive API calls like (recv and recvfrom). These functions are mapped

onto the sock read, sock readv, sys recvfrom and sys recvfrom system calls

which are defined in the net/socket.c file.

Step 2 : The system calls set up the message headers and call the sock recvmsg

[net/socket.c] function, which calls the receive function for the specific socket type.

In case of the INET socket type the inet recvmsg [net/ipv4/af inet.c] function

is called.

Step 3 : The inet recvmsg checks if the socket is accepting data and calls the cor-

responding protocol’s receiver function depending on the transport protocol used by

the socket. For TCP it is tcp recvmsg [net/ipv4/tcp.c] and for UDP it is udp -

recvmsg [net/ipv4/udp.c].

Transport Layer (TCP/UDP)

Step 4 : The TCP receive message routine checks for errors in the socket connection

and waits until there is at least one packet available in the socket queue. It cleans up

the socket if the connection is closed. It calls memcpy toiovec [net/core/iovec.c]

to copy the payload from the socket buffer into the user space.

Step 5 : The UDP receive message routine gets the UDP packet from the queue by

calling skb recv datagram [net/core/datagram.c]. It calls theskb copy data-

gram iovec routine to move the payload from the socket buffer into the user space.
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Figure 3.3: Packet Reception in the Linux Network Stack
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It also updates the socket timestamp, fills in the source information in the message

header and frees the packet memory.

This control flow from the application layer is blocked until data is available to

be read by the user process. The following section gives the flow of control from the

arrival of a packet in the network interface card up to the transport layer in the network

stack, where the user process is blocked waiting for data.

Step 6 : A packet arriving through the medium to the network interface card is checked

and stored in its memory. It then transfers the packet to the kernel memory using

DMA. The kernel maintains a receive ring-buffer rx ring which contains packet de-

scriptors pointing to locations where the received packets can be stored. The network

interface card then interrupts the CPU to inform about the received packets. The CPU

stops its current operation and calls the core interrupt handler to handle the interrupt.

The interrupt handling occurs in two phases : hardirq and softirq. The hardirq

context performs the critical functions which need to be performed when an interrupt

occurs. The core interrupt handler invokes the hardirq handler of the network device

driver.

Net Device Layer

Step 7 : This interrupt handling routine, which is device dependent, creates a socket

buffer structure to store the received data. The interrupt handler then calls the netif -

rx schedule [include/linux/netdevice.h] routine, which puts a reference to

the device in a queue attached to the interrupted CPU known as the poll list and

marks that further processing of the packet needs to be done as a softirq by calling

the cpu raise softirq [kernel/softirq.c] function to set the NET RX SOFTIRQ

flag. The control then returns from the interrupt handling routine in the Hardirq con-

text.

In case of kernels which do not support NAPI [15] (for kernels before 2.4.20), the

interrupt handler calls the netif rx [net/core/dev.c] function which appends the
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socket buffer structure to the backlog queue and marks that further processing of the

packet has to be done as a softirq by enabling the NET RX SOFTIRQ. If the backlog

queue is full the packet is dropped. For network drivers that do not make use of the

NAPI interface the backlog queue is still used by the 2.4.20 kernel for backward com-

patibility.

Step 8 : When the NET RX SOFTIRQ is scheduled, it executes its registered handler

net rx action [net/core/dev.c]. Here the CPU polls the devices present in its

poll list to get all the received packets from their rx ring or from the backlog

queue, if present. Further interruptions are disabled until all the received packets

present in the rx ring are handled by the softirq. The process backlog [net/-

core/dev.c] function is assigned as the poll method of each CPU’s socket queue’s

backlog device. The backlog device is added to the poll list (if not already present)

whenever netif rx is called. This routine is called from within the net rx action

receive softirq routine, and in turn dequeues packets and passes them for further pro-

cessing to netif receive skb [net/core/dev.c].

For kernel version prior to 2.4.20, net rx action polls all the packets in the back-

log queue and calls the ip rcv procedure for each of the data packets. For other types

of packets (ARP, BOOTP, etc.), the corresponding ip xx routine is called.

Step 9 : The main network device receive routine is netif receive skb [net/-

core/dev.c] which is called from within NET RX SOFTIRQ softirq handler. It checks

the payload type, and calls any handler(s) registered for that type. For IP traffic, the

registered handler is ip rcv. This gets executed in Softirq context.

Network Layer (IP)

Step 10 : The main IP receive routine is ip rcv [net/ipv4/ip input.c] which is

called from netif receive skb when an IP packet is received on an interface. This

function examines the packet for errors, removes padding and defragments the packet
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if necessary. The packet then passes through a pre-routing netfilter hook and then

reaches ip rcv finish which obtains the route for the packet.

Step 11 : If it is to be locally delivered then the packet is given to ip local deliver

[net/ipv4/ip input.c] function which in turn calls theip local deliver finish

[net/ipv4/ip input.c] function to send the packet to the appropriate transport

layer function (tcp v4 rcv in case of TCP and udp rcv in case of UDP). If the packet

is not for local delivery then the routine to complete packet routing is invoked.

Transport Layer (TCP/UDP)

Step 12 : Thetcp v4 rcv [net/ipv4/tcp ipv4.c] function is called from the ip -

local deliver function in case the packet received is destined for a TCP process on

the same host. This function in turn calls other TCP related functions depending on

the TCP state of the connection. If the connection is established it calls the tcp rcv -

established [net/ipv4/tcp input.c] function which checks the connection sta-

tus and handles the acknowledgements for the received packets. It in turn invokes

the tcp data queue [net/ipv4/tcp input.c] function which queues the packet

in the socket receive queue after validating if the packet is in sequence. This also up-

dates the connection status and wakes the socket by calling the sock def readable

[net/core/sock.c] function. The tcp recvmsg copies the packet from the socket

receive queue to the user space.

Step 13 : The udp rcv [net/ipv4/udp.c] function is called from the ip local -

deliver routine, if the packet is destined to an UDP process in the same machine.

This function validates the received UDP packet by checking its header, trimming

the packet and verifying the checksum if required. It calls udp v4 lookup [net/-

ipv4/udp.c] to obtain the socket to which the packet is destined. If no socket is

present it sends an ICMP error message and stops, else it invokes the udp queue -

rcv skb [net/ipv4/udp.c] function which updates the UDP status and invokes

sock queue rcv skb [include/net/sock.h] to put the packet in the socket re-
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ceive queue. It signals the process that data is available to be read by calling sock -

def readable [net/core/sock.c]. Theudp recvmsg copies packet from the socket

queue to the user space.

3.6 NetSpec

NetSpec [9] [12] is a software tool developed by researchers at the University of Kansas

for the ACTS ATM Internetwork (AAI) project. It is used to automate the schedule of

experiments consisting of several machines over a distributed network.

NetSpec was originally intended to be a traffic generation tool for large-scale data

communication network tests with a variety of traffic source types and modes. It pro-

vides a simple block structured language for specifying experimental parameters and

support for controlling experiments containing an arbitrary number of connections

across a LAN or WAN.

Experiments to be carried out are specified as commands in a script file. One of

the nodes in the network acts as the NetSpec Controller which has the schedule of

experiments to be carried out. Daemon processes are initiated in the other nodes which

get the experiment schedule from the NetSpec Controller and perform the operations

specified in the script.

The single point of control and the ease of automating the experiments make Net-

Spec a valuable tool for conducting distributed experiments. It also supports transfer

of files both to and from the NetSpec controller machine. This feature is used to trans-

fer configuration files for carrying out the experiment and for collecting the results at

the end of the experiment. The tests discussed in the Chapter 5 were carried out under

NetSpec control.
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Chapter 4

Implementation

In order to transmit packets with a deterministic schedule it becomes necessary to iden-

tify the possible sources of delay within the kernel and to find out schemes to avoid

such delays during the transmission of a packet. One such scenario is in the handling

of the NET TX SOFTIRQ where the memory allocated for the packets that have com-

pleted transmission is freed before actually going on to process the transmission of the

next packet. Section 4.1 presents a scheme for removing this latency and its variance.

Section 3.5.2 discussed the control flow of the code performing packet transmission.

Its execution can occur in process context when the network device is free or can be set

to be carried out in the softirq context in case the network device is not available. In

order to control the packet transmissions it becomes necessary that we have the section

of code which handles packet transmissions to be executed only in the softirq context.

Section 4.2 discusses the modifications done to handle all packet transmissions in the

softirq context.

Controlling packet transmissions at specific instants of time requires scheduling

of the softirq, that handles packet transmission as and when it is required. This is

achieved by creating a new scheduling hierarchy using the Group Scheduling frame-

work. Section 4.3 discusses the new Group Scheduling model required to support

Time Division Multiplexing and Section 4.4 describes about the scheduler required to

perform packet transmissions at specific instants of time.

Section 4.5 discusses the user level programs which are used to interact with the
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kernel in creating the global transmission schedule and the command line utilities

available for controlling the TDM schedule.

4.1 Reducing Latency in Packet Transmission

In a Time Division Multiplexing scheme, each machine is provided with a specific time

slot for transmission. During the time slot, the machine must be involved only in

transmitting packets as much as possible. Any other non-critical operations are to be

delayed to a later time.

The handling routine for NET TX SOFTIRQ is net tx action [net/core/dev.c].

This routine is invoked whenever the NET TX SOFTIRQ is set and the do softirq

routine is invoked to service the pending softirqs. The net tx action routine goes

through the list of completion queues associated with the network devices, which con-

tain socket buffers of packets that have been transmitted. The routine frees the memory

allocated for these socket buffers. Once this is done, the next packet to be transmitted is

dequeued from the queuing discipline associated with the network device, from which

the packet is to be transmitted. If the device is free, it invokes the transmitting routine

of the Ethernet driver to transmit the packet. In case the device is not available for

transmission, the packet is requeued and the NET TX SOFTIRQ is set to transmit the

packet next time this softirq is scheduled.

In this routine, clearly the initial step of freeing the memory allocated for transmit-

ted packets can be delayed until a time, when it is not the time slot for transmission.

This will reduce the latency caused in packet transmission.

To achieve this, the handling routine of the NET TX SOFTIRQ is accordingly mod-

ified so as not to carry out this garbage collection process. Instead, we define a new

softirq called as NET KFREE SKB SOFTIRQ, which is used to free the socket buffers of

the transmitted packets. This is appended to the list of softirqs defined in the kernel.

(Softirqs are defined as an enumerated list in the include/linux/interrupt.h

file). Being the last softirq in the list, it is scheduled with the lowest priority, but func-

tions effectively without affecting the packet transmission.
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4.2 Packet Transmission in Softirq Context

In Section 3.5.2, we had seen the control flow in transmission of a packet through the

network stack in the kernel. The transmission of a packet starts from the application

layer where the process initiates sending of a packet. The packet transmission contin-

ues through the protcol stack until the network device layer, in process context, where

the packet gets enqueued in the Traffic Control layer queue.

Beyond this point, the execution can take place in either of the two contexts :

process context or softirq context. First the kernel starts to transmit the packet in

process context. In case the network device is not free to transmit the packet, the

NET TX SOFTIRQ is raised to handle the transmission. This carries out the transmis-

sion in softirq context. Figure 4.1 gives the control flow for the transmission of a packet

in the Vanilla Linux kernel.

Since we need to perform packet transmissions only at specified time instants, it

becomes necessary to control the computation that performs the transmission. Instead

of controlling the processes that need to transmit, modifications can be done in the

kernel so that packet transmissions are always carried out in softirq context from the

net device layer.

In order to achieve this, the control flow after enqueuing the packet is modified,

such that, thedev queue xmit routine invokesnetif schedule through the send -

packet interface. The netif schedule routine enables NET TX SOFTIRQ, which is

then used to handle packet transmissions.

With the packet transmission being handled only by the softirq, the flexibility of-

fered by the Group Scheduling framework to control the scheduling and execution of

softirqs can be used to have time triggered transmission of packets. Figure 4.2 gives

the modified control flow for packet transmission using TDM.

This modification can cause a slight delay in packet transmissions, as now the pack-

ets have to wait till the NET TX SOFTIRQ is scheduled for execution. However, the

ability to control the packet transmissions gained by this modification, offsets the small

delay incurred in its processing.

37



Figure 4.1: Network Packet Transmission in Vanilla Linux
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Figure 4.2: Modified Network Packet Transmission for TDM
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4.3 The TDM Model under Group Scheduling

The Group Scheduling model supported by KURT-Linux provides a generic frame-

work which can be used to customise the way the interrupt servicing is handled. With

the flexibility to control the execution of hardirqs, softirqs, bottom-halves and pro-

cesses, this framework allows the designer to specify a model with customised routines

for handling the execution of the different computational components.

Section 3.3.5 discussed the Vanilla Linux Softirq model which was used to mimic

the scheduling and execution semantics of softirqs in the Vanilla Linux kernel. This

section discusses the Group Scheduling model that would be required to support time-

triggered transmission of packets implementing a Time Division Multiplexing scheme.

The scheduling hierarchy for the TDM model, shown in Figure 4.3, is comprised

of a Top group associated with a sequential scheduler. Under the Time Division Mul-

tiplexing scheme the transmission of packets is to be controlled based on time. For

this, the clocks on all the machines which are part of the TDM setup, need to be syn-

chronized. This synchronization is achieved by using the modifications done to the

Network Time Protocol [17]. In order to maintain the time synchronization between

the machines and achieve a global schedule for transmission, it is necessary that time

related updates provided to each machine is reflected immediately by the machine’s

clock. The updates to the system time are carried out in the timer bottom half. Nor-

mally the timer bottom half is executed as a softirq by setting the HI SOFTIRQ bit. As

the accuracy of following a schedule within a machine is a prerequisite for handling

time triggered transmissions, we first need to have the timer bottom half executed be-

fore scheduling the transmit softirq. For this purpose, we have the timer bottom-half

added as the first member of the Top group.

As packet transmissions need to occur at specific instants of time, it is clear that the

transmit softirq NET TX SOFTIRQ must be provided with a higher priority for execu-

tion. For this purpose we define a new group called as the ’Transmit group’ and add it

as the second member of the Top group. This group is associated with a special TDM

scheduler. The NET TX SOFTIRQ is added to this Transmit group and is invoked based

on the decision made by the TDM scheduler.
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Next, we need to process the remaining softirqs. For this, we create a new group

called as ’Softirq group’ which is associated with a sequential scheduler. The softirqs

defined in the kernel are added in order of their priority. So, the HI SOFTIRQ , NET -

TX SOFTIRQ,NET RX SOFTIRQ and the TASKLET SOFTIRQ are added in sequence. In

addition, the softirq which we created to free the socket buffers, namely NET KFREE -

SKB SOFTIRQ, is added as the fifth softirq in this group.

We have the NET TX SOFTIRQ present in two groups in this scheduling hierarchy.

When TDM is enabled, the packet transmission is carried out by the NET TX SOFTIRQ

member present in the Transmit group. When TDM is disabled, the transmission is

handled by the NET TX SOFTIRQmember present in the Softirq group.

Figure 4.3: TDM Model Scheduling Hierarchy

A global state variable named tdm status is used to maintain the status of the

TDM schedule in the kernel. Initially, when the kernel is booted, the tdm status
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is initialised to TDM DISABLED. When the TDM schedule is submitted to the TDM

scheduler, the status is changed to TDM SCHEDULE SET. This reflects a state wherein a

TDM schedule is provided, but the TDM has not yet started on the machine. Once the

timer denoting the beginning of the transmission time-slot expires for the first time,

the TDM status is changed to TDM ENABLED.

4.4 The Time Division Multiplexing Scheduler

The Transmit group in the TDM model hierarchy is associated with a TDM sched-

uler, which is used to select the instants of time when the NET TX SOFTIRQ has to be

scheduled for transmitting the packets. In order to schedule packet transmissions at

periodic intervals in time, the kernel has to know the transmission start time, stop time

and interval period. Section 4.5 discusses how these values are provided to the kernel

from the user space. Once the start time is provided to the TDM scheduler, it creates a

UTIME kernel timer which is made to expire at the specified time. The UTIME timer

is made to operate in a privileged mode by setting the UTIME PRIV flag. This ensures

that the timer bottom-half is executed in the hardirq context.

The set transmit bit routine is the handling function when the timer expira-

tion is used to denote the start of the transmission slot. When this routine is invoked for

the first timer expiration, it checks if the value of tdm status is TDM SET SCHEDULE,

if so it sets the state to TDM ENABLED, denoting the start of the TDM schedule. Then

this routine sets a local flag variable called as time to transmit to TRUE, which

allows the scheduler to schedule the softirq for transmission. The routine also sets

another kernel timer to expire when the transmission slot is supposed to end. The

reset transmit bit routine is used as the handler function for these timers de-

noting the end of a transmission slot. Program 4.1 gives the pseudo-code for the

set transmit bit handling routine.

The reset transmit bit routine as the name implies sets the time to trans-

mit flag to FALSE, denoting the end of the transmission slot. This routine then cal-

culates the expiration values for the beginning and the end of the time slots for the
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Program 4.1 Pseudo-Code for the Timer handling routine invoked at the start of a
transmission slot

1 void set_transmit_bit(data)
2 {
3 if(tdm_status == TDM_SCHEDULE_SET){
4 tdm_status = TDM_ENABLED;
5 }
6 time_to_transmit = TRUE;
7 kernel_timer.expiration_jiffy = end_time_jiffies;
8 kernel_timer.expiration_subjiffy = end_time_subjiffies;
9 kernel_timer.handling_function = reset_transmit_bit;
10 set_kernel_timer(kernel_timer);
11 }

next transmission cycle. This is done by simply adding the transmission cycle jiffy

values to the current time-slot’s begin and end time values. It then sets up the kernel

timer to expire at the start time of the next interval. Now the set transmit bit rou-

tine is set as the timer handling routine. Program 4.2 gives the pseudo-code for the

reset transmit bit handling routine.

The TDM scheduler follows a simple policy of sequentially selecting its members

for execution. In this model the NET TX SOFTIRQ is the only member belonging to the

Transmit group. When the TDM Scheduler is invoked by the Top Group’s scheduler, it

selects the NET TX SOFTIRQ and performs the following checks. First, it checks if TDM

is enabled. If so, it checks if it is the time-slot for transmission. If that also happens to

be true, it verifies if there are any packets to be transmitted by checking the NET TX -

SOFTIRQ bit in the pending softirq flag field. Only when this condition evaluates to

true, does the TDM scheduler return the NET TX SOFTIRQmember to be scheduled. If

the either of these conditions fail, the scheduler returns a global pass member, denoting

that it doesn’t have any member to be scheduled. Program 4.3 gives the pseudo code

for the Scheduling Decision Function associated with the TDM scheduler.
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Program 4.2 Pseudo-Code for the Timer handling routine invoked at the end of a trans-
mission slot

1 void reset_transmit_bit(data)
2 {
3 time_to_transmit = FALSE;
4
5 begin_time_jiffies += period_jiffies;
6 begin_time_subjiffies += period_subjiffies;
7 while (begin_time_subjiffies >= subjiffies_per_jiffy) {
8 begin_time_jiffies++;
9 begin_time_subjiffies -= subjiffies_per_jiffy;
10 }
11
12 end_time_jiffies += period_jiffies;
13 end_time_subjiffies += period_subjiffies;
14 while (end_time_subjiffies >= subjiffies_per_jiffy) {
15 end_time_jiffies++;
16 end_time_subjiffies -= subjiffies_per_jiffy;
17 }
18
19 kernel_timer.expires = begin_time_jiffies;
20 kernel_timer.subexpires = begin_time_subjiffies;
21 kernel_timer.function = set_transmit_bit;
22 set_kernel_timer(kernel_timer);
23 }

Program 4.3 Pseudo-Code for the TDM Scheduling Decision Function

1 group_member tdm_scheduler (previous_task_struct, this_cpu,
2 group_member)
3 {
4 group_member = get_member_from_member_list();
5 if(group_member == NET_TX_SOFTIRQ){
6 if(tdm_status == TDM_ENABLED){
7 if(time_to_transmit == TRUE){
8 if(net_tx_softirq_is_pending){
9 return group_member;
10 }
11 }
12 }
13 }
14 return global_pass_member;
15 }
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4.5 User Interface

A pseudo-device driver based approach is provided for the user space programs to

interact with the kernel. Section 4.5.1 presents the TDM controller pseudo device and

its associated driver, used for passing TDM schedule parameters to the kernel space.

Section 4.5.2 discusses the master-slave configuration for setting up the global TDM

schedule. The functionality of the TDM Slave Daemon and the TDM Master process are

discussed in Sections 4.5.3 and 4.5.4 respectively. The operations involved in starting

and stopping TDM are discussed in Sections 4.5.5 and 4.5.6.

4.5.1 The /dev/tdm controller Device

A pseudo device called /dev/tdm controller is created to provide interactions

with the kernel. A device driver built as a loadable kernel module interfaces this de-

vice with the user program. The device driver defines a set of I/O controls to the

tdm controller device. The I/O controls include options to submit a TDM sched-

ule to the kernel and to stop the schedule. Special data structures are defined to pass

the parameters from the user space to the kernel.

4.5.2 TDM Master-Slave configuration

The network setup in which TDM is configured, is comprised of a TDM Master ma-

chine, which is used to form the global schedule and pass each slave machine its sched-

ule for transmission. The slave machines in the network use this schedule provided

by the master for transmitting packets. One of the major hurdles in forming the global

schedule is that the number of machines that are going to be a part of the setup must be

known before-hand so that the transmission times for each machine can be determined.

This issue of determining the machine count can be achieved by either hardwiring a set

of machines to act as a part of the network or by using a configuration file to store the

list of machines that are to be a part of the TDM setup. These schemes have drawbacks

with addition and removal of machines from the TDM network. The selected approach

is to dynamically determine the number of machines before TDM schedule is formed.

45



This is achieved by having an initial handshake between the daemon processes in the

slave machines and the master program. The following sections describe in detail the

operation of the TDM Slave Daemon and the TDM Master process.

4.5.3 The TDM Slave Daemon

The TDM slave daemon process, tdmd, is started in the machines that are part of the

TDM Ethernet. The daemon process opens a socket connection and listens for a request

from the TDM Master. The machine which is acting as the TDM Master is provided

with the values regarding the TDM start time and the total transmission cycle, which

includes the transmission time-slots of all the machines in the setup.

The time-slot available for each machine in the Ethernet depends upon the number

of machines present in the network. Hence, before deciding upon the time-slot, it is

necessary that the TDM Master machine is aware of this number. In order to do this an

initial handshake is used between the TDM Master and the slave machines.

The daemon program sets up a UDP socket on a predefined port number listening

for the initial request from the TDM Master. Once it receives the first handshake from

the master, it responds back by sending its hostname. Once this is done, the UDP

socket is closed and a TCP socket is opened on a predefined port by the daemon. This

TCP connection then waits until it receives the schedule for that machine from the

TDM Master. The schedule is presented to the slave machines as a set of property-

value pairs which are then written into a configuration file, called tdm config. Once

this file is created, the daemon process uses the values present in the file to start the

TDM schedule. It invokes the ioctl call of the tdm controller device to submit the

schedule to the kernel.

4.5.4 The TDM Master

The TDM Master program is initiated in a machine which is to act as the master ma-

chine that forms the global TDM schedule. Any machine can be configured to act as

the TDM Master. The syntax for starting the TDM Master process is as follows :
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tdm master <broadcast address> <minutes> <seconds> <total trans-

mission cycle> where

� <broadcast address> is the broadcast address of the LAN segment where

TDM is to be configured

� <minutes> is the time in minutes from now when TDM is to be started

� <seconds> is the time in seconds from now when TDM is to be started

� <total transmission cycle> is the time in nanoseconds which includes

the transmission time-slots of all machines in the TDM network.

The first requirement of the master process is to determine the number of slave ma-

chines that are going to be a part of this TDM setup. This is achieved as a part of the

initial handshake between the master and the slave machines. The Master program

starts by creating a UDP socket and sends out a broadcast message to all the machines

in the network. The broadcast address used is the one specified in the command line,

when starting the TDM Master. The master then waits for a reply from the other ma-

chines in the network to respond to the broadcast message. Each of the machine that

has the TDM daemon running will reply to this broadcast message with their respec-

tive hostname. A reply period of 5 seconds is assumed for the client machines to reply

back. The replies received during that period decides the set of machines that will be a

part of the TDM setup.

Once the number of machines is determined, the master program forms the TDM

schedule. The total transmission cycle specified on the command line is used to cal-

culate the individual time-slots available for each machine to transmit. Ideally the

time-slot size for each machine can be obtained by dividing the total transmission cy-

cle by the total number of machines in the TDM setup. But in reality we need to take

into account the precision offered by the time synchronisation scheme in calculating

the transmission period within the time-slot. With unsynchronised clocks the trans-

mission time-slots of two machines can overlap, which may result in collisions due to

the simultaneous transmissions. In order to avoid this we would need to provide some
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safety separation between the transmission time-slots of the machines. This inter-time-

slot gap can be defined as the ’buffer period’. The size of the gap will approximately

be twice the precision offered by the time synchronisation scheme employed. Section

5.2 discusses about the identification of an appropriate buffer period. When forming

the schedule, half of the buffer period value is removed from the start and end of a

transmission time-slot. This will provide disjoint intervals of transmission for each of

the machines in the network.

Each machine is provided information about when TDM is to be started in the

network, along with the expiration times for the start and end of the transmission slot

in that machine. This information is conveyed to the machines by means of a set of

property-value pairs defined as follows :

� TDM START SEC - Wall clock time in seconds when the TDM schedule must start.

� TDM START NSEC - Wall clock time in nanoseconds when the TDM schedule

must start.

� TDM BEGIN SEC - Time in seconds when the time slot for transmission must start

relative to the start of cycle.

� TDM BEGIN NSEC - Time in nanoseconds when the time slot for transmission

must start relative to the start of cycle.

� TDM END SEC - Time in seconds when the time slot for transmission must stop

relative to the start of cycle.

� TDM END NSEC - Time in nanoseconds when the time slot for transmission must

stop relative to start of cycle.

� TDM PERIOD SEC - Total time period in seconds for each transmission cycle.

� TDM PERIOD NSEC - Total time period in nanoseconds for each transmission cy-

cle.

In order to obtain the actual start time values for TDM START SEC and TDM START -

NSEC, the master process first uses the gettimeofday system call to obtain the cur-
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rent time in seconds and nanoseconds. The minute and second value provided in

the command line for starting the TDM Master are converted in order of seconds and

nanoseconds and added to the values obtained from the gettimeofday call. These

values denote when TDM is to be started in the network.

Depending upon the ordinality of the replies of the initial handshake received from

the slave machines, the time-slot’s begin and end times can be calculated. For this, first

the ideal time-slot size
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�
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Taking into account the buffer period � the effective time-slot size
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So for a machine with ordinality ’3 ’, where 3 varies between 1 and � , the time-slot

begin time would be
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. Half of the buffer period mentioned earlier

is included both in the beginning and the end of a time-slot. This correction is applied

to obtain the actual time-slot begin time
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Next the value for the time period after which the global transmission schedule repeats

is to be given to the machines. This will be the value of the total transmission cycle

specified in the command line when invoking the TDM Master process.

The master process ends after sending the schedule to all the machines. The slave

process on receiving the property-value pairs from the master, writes it to a configura-

tion file called as tdm config.
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4.5.5 Starting the TDM schedule

When the kernel is loaded with the TDM module, initially the TDM status, denoted

by the global variable tdm status is set to TDM DISABLED. Once the schedule is ob-

tained by the daemon process it invokes an ioctl call through the device driver to sub-

mit the schedule to the TDM model in the kernel. The kernel timer which is to be

programmed needs to be provided with the expiration values for the beginning and

end of the time-slot. The TDM model validates the start time specified and submits

the expiration values and the transmission cycle period to the TDM scheduler, which

handles setting the timers. Once the schedule is submitted to the TDM scheduler, the

TDM status is changed to TDM SCHEDULED SET. This is an intermediate state denoting

that the schedule is provided and that TDM will be started depending on the start time

value specified in the command line.

Inside the TDM scheduler, the expiration times obtained in terms of seconds and

nanoseconds are converted into jiffies and subjiffies. Then the scheduler sets up a

UTIME kernel timer with the expiration values provided. On the expiration of this

timer the set transmit bit handling routine is invoked which sets the TDM status

to TDM ENABLED and thereby starts packet transmission using TDM.

4.5.6 Stopping the TDM schedule

The tdm user level program can be used to stop the TDM schedule using the stop

option. The syntax is as follows:

tdm stop

This is used to stop the TDM schedule in a particular machine. This option uses

the ioctl of the device driver to inform the kernel that TDM needs to be stopped. On

receiving this message the TDM model sets the TDM status to TDM DISABLED and

informs the TDM scheduler which removes the kernel timer.
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Chapter 5

Evaluation

This chapter discusses the tests performed to evaluate our claim that, with Time Divi-

sion Multiplexing it is possible to support real-time networking on Ethernet. The tests

carried out here are used to demonstrate that, by using Time Division as a scheme to

control access to the transmission medium, it is possible to make Ethernet deterministic

and achieve collision free packet transmission.

In order to employ TDM, it is required to select a transmission time slot for each

machine in the network. To do this, first we need to know the time taken to transmit

packets from a machine. Section 5.1 discusses the tests carried out to determine the

time taken for packet transmissions and its dependency on the packet size. The pre-

cision offered by the synchronising mechanism must also be taken into account while

forming the TDM schedule for each machine. Section 5.2 discusses the selection of

a suitable buffer period between two successive transmissions. The results obtained

from the above two sections are used in forming the TDM schedule for a set of ma-

chines in the network. Section 5.3 describes the steps in synchronizing the machines

and setting up the TDM Ethernet. The schedules formed are tested to show that colli-

sion free transmission is supported by TDM. Section 5.4 discusses these tests, for TDM

schedules of 3 different packet sizes. Finally, Section 5.5 presents a summary of the

results obtained. DSKI events and histograms where used to collect the data for the

tests and NetSpec was used to carry out the distributed tests.
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5.1 Determining Packet Transmission Time

In order to decide upon the time-slot for transmission, we first need to determine the

time taken for transmitting a packet from a machine to another in an Ethernet. This

transmission time largely depends on the size � , of the packet being transmitted and

the link capacity � , provided by the transmission medium. It is also affected by the

length � of the physical link, which connects the two machines and the speed of light
�

in that medium. Theoretically the total time taken for packet transmissions,
� #��?#;	��

,

based on the above factors can be calculated as follows :

�L#��?#;	 �(���(!���@�%�����# 
(<G��#$�$
:#�� 
���� >"@�	���� H �	�
�����:	 >�	
#�����@L
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(5.1)

where

��!���@1%�����#�
L<G��#$� 
L#�� 
�����>"@9	 �-� � � � � (5.2)

and

���������L	 > 	?#�����@:
 �G�'��	�
 � � � �
(5.3)

In most cases the distance between machines in a LAN is about a few meters and

hence the propagation delay is on the order of tens of nanoseconds, which is negligible

in this context. Thus the major factor determining the time for transmission is the time

taken to convert the message bits to signals in the physical medium.

For Ethernet, common link capacities are 10Mbps and 100 Mbps. The size of an

Ethernet frame can vary between 64 to 1518 bytes. The minimum size of an Ethernet

frame is 64 bytes including the Ethernet header and trailer of 18 bytes. Thus the min-

imum data payload supported by the Ethernet frame is 46 bytes. Payloads of smaller

size are padded up to get this minimum value. Of the 46 bytes, 20 bytes is taken by the

IPv4 header. Depending on the transport protocol used, TCP header takes a minimum

of 20 bytes and UDP takes 8 bytes. The remaining is the size of the actual data. The
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maximum data payload size for the Ethernet frame is 1500 bytes.

For the experiment, we consider packet transmissions from a UDP based appli-

cation. The minimum data size for a UDP application will be 46 - 20(IPv4 header) -

8 (UDP header) = 18 bytes. Similarly the maximum data size will be 1500 - 20 - 8 =

1472 bytes. Table 5.1 gives the theoretical transmission times for an UDP application

of varying data sizes over 10Mbps and 100Mbps Ethernet.

Size of Data Total Packet Size 10Mbps Ethernet 100Mbps Ethernet
(in bytes) (in bytes) (in � s) (in � s)
upto 18 64 51.2 5.12

64 110 88 8.8
128 174 139.2 13.92
256 302 241.6 24.16
512 558 446.4 44.64

1024 1070 856 85.6
1472 1518 1214.4 121.44

Table 5.1: Theoretical Transmission times for 10Mbps and 100Mbps Ethernet

The experiment setup consisted of two 500MHz machines running the KURT-Linux

kernel, without any modifications to the network stack. The machines were connected

through a hub. In order to determine the transmission time, DSKI instrumentation

was used to collect histograms, measuring the time difference between two successive

reception of packets in the destination machine. A stream of about 400,000 packets

from an UDP application was transmitted from the source machine to the destination

machine. The experiment was carried out for both 10Mbps and 100Mbps Ethernet

with varying message sizes. The average transmission times measured for the varying

message sizes are presented as histograms.

Figures 5.1, 5.3 and 5.5 display the histograms for the packet transmission times

in a 10Mbps Ethernet. Figures 5.2, 5.4 and 5.6 display the histograms for the packet

transmission times in a 100Mbps Ethernet.

From the results shown in Table 5.2, it can be seen that the observed average trans-

mission times for packets in a 10Mbps Ethernet are in agreement with the theoretical

values. In case of the 100 Mbps Ethernet, it can be seen that the average transmission
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Figure 5.1: Transmission time for packets
with 64 bytes of data in 10Mbps Ethernet
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Figure 5.2: Transmission time for packets
with 64 bytes of data in 100Mbps Ethernet
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Figure 5.3: Transmission time for packets
with 256 bytes of data in 10Mbps Ethernet
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Figure 5.4: Transmission time for packets
with 256 bytes of data in 100Mbps Ethernet
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Size of Data Total Packet Size 10Mbps Ethernet 100Mbps Ethernet
(in bytes) (in bytes) (in � s) (in � s)
upto 18 64 100.05 95.17

64 110 100.49 94.94
128 174 140.11 96.31
256 302 274.95 96.01
512 558 450.03 98.87

1024 1070 850.04 99.64
1472 1518 1275.14 122.51

Table 5.2: Observed Average Transmission times for 10Mbps and 100Mbps Ethernet

time is almost same for the smaller sized packets and increases for larger sizes. It can

be inferred that there is a minimum threshold limit on the time required for processing

a packet, which is independent of its size. This causes a more noticeable effect in case

of 100Mbps Ethernet than the 10Mbps. This is because the variation in transmission

times due to the packet size in case of 10Mbps Ethernet is more than the variation in

case of 100Mbps. So the fixed processing times influence the transmission times in case

of 100Mbps Ethernet, while the variable time to transfer bits into the media based on

the message size influences the transmission times in case of 10Mbps.

5.2 Time interval between successive packet transmissions

In order to have a global schedule with each machine transferring at a given point of

time, it is necessary that the machines in the network be synchronized with respect

to a common Time reference. Without synchronization, the transmission interval of

machines may overlap, resulting in collisions. The time synchronization scheme pre-

sented in [17] is used to achieve sychronization between machines in the Ethernet.

The precision offered by this clock synchronisation scheme is used to determine the

time interval between two consecutive transmissions so that the transmission time-

slots of the machines do not overlap. The clock synchronisation scheme provides a

synchronisation of about 5 � s difference from the global time for an average case and

about 16 � s in the worst case. With a precision of +/- 5 � s it is possible that two
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Figure 5.5: Transmission time for packets
with 1472 bytes of data in 10Mbps Ethernet
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Figure 5.6: Transmission time for packets
with 1472 bytes of data in 100Mbps Ethernet

machines can be apart by 10 � s. So for an average case, the buffer period between two

consecutive time-slots must be atleast 10 � s and in the worst case it may have to be as

high as 32 � s. Following a cautious approach we settle on a value of 40 � s for the buffer

period.

Figure 5.7 gives the formation of the global schedule for transmissions with the time

slots for transmissions of individual machines separated by the 40 � s buffer period.

5.3 Setting up the TDM based Ethernet

The first step in setting up a TDM based Ethernet is to synchronize the clocks in the

machines forming the LAN. The time synchronization scheme presented in [17] is used

achieve synchronization between the machines. This is done in two steps : clock cal-

ibration and then clock synchronization. Each machine which is to be a part of the

TDM based Ethernet, is first calibrated to determine its clock tick rate. Then, one of the

machines in the network is configured as the Time Server. All other machines in the

network are synchronized with respect to this machine. The modified NTP daemon
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Figure 5.7: Global TDM Transmission Schedule with Buffer Period

is started in the Time Server and time synchronisation daemons are run in the other

machines in the network. Synchronization updates are sent every 5 minutes to keep

the machines synchronized.

Once the time synchronisation is achieved, the user programs discussed in Section

4.5 are used to set up the TDM schedule. The tdmd daemon is initiated in all the

slave machines and the tdm utility is used to create the global schedule in the TDM

Master machine. The TDM Master sends each slave its transmission schedule. The

TDM schedule to be formed depends upon the number of machines in the Ethernet,

the transmission time for each machine and the buffer period discussed in Section 5.2.

Figure 5.8 gives our TDM setup composed of four 500MHz machines(A-D) con-

nected by a 10Mbps Hub. Machine D was configured to act as the Time Server and

also as the TDM Master in this network. However, it is to be noted that any machine in

the Ethernet can act as the TDM Master. Based on the measured average transmission

times from Section 5.1, the time-slot for transmitting packets with a payload of 1500

bytes was chosen to be 1300 � s. The TDM schedule hence formed consisted of 4 such

time slots separated by a 40 � s buffer period.

The above setup was tested as follows. Two of the slave machines acted as Data

sources and third one as a Data sink. The parameters influencing the system are the
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Figure 5.8: Ethernet with TDM

transmission queue length and the Maximum Transfer Unit (MTU) size of the network

interface. The transmission queue length was set to one to allow only one packet to be

transferred during a time slot. The MTU was left unaltered at 1500 bytes. The number

of collisions in each network interface is the metric to be measured. This is obtained

by using the ifconfig utility. A stream of 10,000 packets was generated from TCP

applications in both the Source machines to the Sink. This being a TCP application the

Sink machine transmits acknowledgement packets to both the Sources during its time

slot. Figure 5.9 gives the setup for this test.

After the test the network interfaces were found to have recorded no collisions

during the testing period. DSKI was used to collect packet reception events in the Sink

machine. The Tag field in the DSKI events was used to record the port number of the

packets received. From the DSKI events recorded on the Sink machine it was observed

that the Source machines transmitted packets alternatively in accordance with their

time slots. From the above experiment it was observed that with TDM it was possible

to achieve collision free transmissions on Ethernet.
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Figure 5.9: Experiment setup with two sources and a sink

Based on the framework provided by [17] it was possible to collect events on dif-

ferent machines in the LAN and merge these based on a global timeline. DSKI instru-

mentation was used to collect the events denoting the start and end of the transmission

time slots in each of the machines in the TDM setup. The Datastreams postprocessing

was employed to merge these events on a global timeline and obtain intervals between

these events.

Figure 5.10 gives a screenshot of the transmission intervals for the three machines in

the TDM based Ethernet obtained from the Datastreams postprocessing visualization

having a time-slot of 220 � s and a buffer period of 40 � s. The lines above the interval

regions denote the start and stop events for the corresponding time-slot.

5.4 TDM schedules for varying packet sizes

As the transmission time varies with respect to the packet sizes it is possible to setup

TDM schedules suitable to the nature of the packet size being transmitted in the net-
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Figure 5.10: Visualization of Transmission slots in TDM Ethernet

work. In this section we setup and evaluate TDM schedules for packets with payload

sizes of 64, 256 and 1500 bytes. The average transmission times give us a good starting

point in forming these time-slots. Our goal is to find time-slots suitable for transmitting

packets of the above mentioned sizes.

The first two sections determined the average time for transmission of a packet and

the buffer period to be used to take into account the precision offered by the time syn-

chronisation scheme. Now based on these values we have the necessary information

to set up a TDM schedule and test its functionality.

The setup involves four 500MHz machines connected by 100Mbps hub, configured

to support TDM on Ethernet as described above. The parameters that affect the system

performance here include the transmission queue length and the MTU of the network

device. The transmission queue length is set to 1 so that only one packet is transmitted

during a given time-slot and the MTU size is set to a value which includes the sum

of the IP header, UDP header and the payload sizes. Multiple UDP applications of

varying load are run simultaneously to generate about a million packets. The test was

automated and run under NetSpec control. The number of collisions would indicate

how suitable the TDM schedule was to support transmission at high loads for a specific

packet size. Figure 5.11 gives the experiment setup.
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Figure 5.11: Collision Test Experiment setup
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The tests were repeated with varying timeslots until collision free transmission was

achieved. The following table lists the suitable time-slot values for transmission of

UDP packets of the given sizes.

Size of Data Total Packet Size Time slot in 100Mbps Ethernet
(in bytes) (in bytes) (in � s)

64 110 220
256 302 260

1472 1518 440

Table 5.3: Transmission time-slots for 100Mbps Ethernet

5.5 Summary

We have shown that by employing Time Division Multiplexing scheme it is possible

to achieve determinism in Ethernet by having collision free transmisssions. We have

studied the transmission times for packets of various sizes for both 10Mbps and 100

Mbps Ethernet and have determined suitable time-slots for transmission for the differ-

ent packet sizes in 100 Mbps Ethernet.

We have been able to achieve this with minimal modifciations to the existing KURT-

Linux code. Unlike [10], no modifications were done to the network stack to support

real-time applications. Time Division is an effective scheme for achieving contention

free access to the transmission media. The requirement to maintain time synchroniza-

tion among the machines has often been the drawback for this scheme. However,

with the modified NTP Daemon [17] we have been able to achieve synchronization

within few tenths of microseconds which is suitable to support Time Division. Also

the modifications done are entirely in software and will be suitable to be used in any

Commercial-of-the-shelf Ethernet hardware.

Switches have replaced hubs offering double the bandwidth with no collisions. But

they do have issues of transmission latency due to the queuing in the output ports and

packet loss under high load. Our modifications can be applied for switched Ethernet

in order to avoid the queuing latency and packet loss.
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Chapter 6

Conclusions and Future Work

Traditional Ethernet with its inevitable collisions and exponential backoff is not capa-

ble of supporting real-time applications present in industrial automation. Currently

available methods are not able to support the Quality of Service requirements of such

applications without employing special hardware and software. The requirement is to

provide a deterministic framework which can used to support the Quality of Service

requirements of the real-time applications on Ethernet.

The solution presented here is to employ Time Division Multiplexing on Ethernet.

With each machine in the LAN being given a disjoint time interval for transmission,

the possiblity of collisions is avoided. With no collisions, the random delay in packet

transmission due to the exponential backoff is also avoided and packet transmission

becomes deterministic. This provides a suitable framework for supporting real-time

applications over the Ethernet.

The solution is achieved entirely in software, with minimal changes to the existing

KURT-Linux kernel. There are no modifications to the network or transmission pro-

tocols, so the existing programs will continue to work as such. Both the real-time and

non real-time applications are supported by the same network stack, unlike [10] where

separate network stacks were required to support the two. This being a software so-

lution, can be applied to any common Ethernet hardware and is suitable for real-time

applications used in industrial automation.

The modifications done here will provide deterministic access to the medium for
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each of the machines in the network. With this deterministic access, it is possible to

develope Quality of Service schemes to be provided for the real-time applications.

With Linux 2.6 kernel, the timer bottom half handling is done as a Softirq. This

would require modifications to the existing Group Scheduling model for TDM in which

it is handled as a Bottom Half. In this case the modified Group Scheduling hierarchy

would consist of the TIMER SOFTIRQ as the first member instead of the TIMER BH.

Currently the schedules formed provide each machine in the network the same

fixed time for transmission. It is possible to construct a TDM schedule server which

would take into account many other constraints and form the schedule based on that.

For example, a machine which has larger volume of data to be transferred can be pro-

vided a longer time-slot for transmission. Thus the schedule formed will depend on

the QoS requirements for each of the machines in the network.
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