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Viotivation

* Modern world IS awash In iInformation
=« Coming from multiple sources
= Around the clock

= Lately much of the information is delivered visually by
means of video

* Usefulness of this information is limited by the
lack of adeguate means of accessing It

« Particularly in video news
= Numerous television stations broadcast continuously

= Much of the news is irrelevant the viewer

= In order to see everything that is interesting he or she
would need to view the entire broadcast



Problem

. L ack of adeguate methods ofi accessing video content

« \/ideo Information; Retrieval
= Is the broad research addressing this problem
= Provide users with effective and intuitive access to video content
relevant to their information needs
« Story Tracking in Video News Broadcasts
= [s one of the main tasks of Video Information Retrieval

= Consists in detecting and reporting to the user portions of the
news broadcast relevant to the news story the user is interested
In

= [This work addresses the problem of story tracking in video news
broadcasts



Proposed Solution

« Observation

= News stations reuse video footage in order to
provide visual clues for the viewers.

« Thesis

= Accurate detection of repeated video footage
can be used to effectively track stories In live
video news broadcasts.



Presentation Outline

« Story tracking stages
= [lemporal Video Segmentation
= Repeated Video Sequence Detection
= Story tracking

« Conclusions
« Future Work

« Questions and Discussion



llemporal Video
Segmentation



Problem Definition

« Recover the basic structure of video
= Detect Shots and Transitions

« Shot

= SEequence of consecutive frames
= Single camera working continuously

* Ifransition

= Seqguence of frames combining two shots

= \Wide variety of transition effects are used
(cuts, fades, dissolves, wipes, etc.)



Irransition Examples




lfemporal Segmentation
for Story: Trracking

« Effective story tracking

= Requires accurate identification of short shots
* Repeated video clips are often only a few seconds in length

=« Emphasizes accurate dissolve detection
* Repeated shots are frequently introduced using dissolves

* Additional Challenges
= On-screen captions
= Picture-in-picture



Principles; oii Tiransition Detection

* Observation
= Frame content changes radically during transition

* Detect changes in frame content

= Compare pixels
«. Sensitive to Noise
« Computationally intensive

=« Compare image features
« Reflect changes in image content
* Address the problems above

* Variety of features available
= Color histogram, Texture, Motion, Color Moments



Related Work

« Researchiin Temporal Segmentation is well established

« Different image features have been used to detect cuts
* Gargi, Lienhart, Truong use intensity histogram,
« |[Luptani, Shahraray use inter-frame motion,
« Zabih utilizes edge pixels.

=« Image variance characteristics have been employed in fade and
dissolve detection by Lienhart, Alattar, and Truong.

= Zabih proposed gradual edge strength changes for recognition of
fades and dissolves.
Lienhart introduced a neural network pattern recognition method

* Good performance, but very slow
« Best results reported by Truong



Color Mioments

* |n this work we use first three moments of the
basic Image components: red, green, and blue
« Mean M(t,c)
= Standard Deviation S(t,c)
= Skew K(t,c)

M(t,c) = %Zl(x, y,t,c) WS(t,c)? = iZ[J(x, y,t,c)—M(t,c)]
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Our Approeaches to
Tfemporal Segmentation

« Basic Algorithm

= Analyzes color mement diiferences (cross-
diiference) over a certain window of frames

» Detects transitions Ifi the difference exceeds a
predetermined threshold

* Trransition Model Pattern Detection

= |ldentifies patterns in color moment time series
which are typical of individual transition types



Croess:Difference Algorithm

* Cross-Difference

(o w { 1 ifi<torj=>t

CrossDiff = Z Zaijdl.j where a, =

P— —1 otherwise

= d;is the average color moment difference between frames / and j
= tIsthe frame at which transition potentially occurred
= W is a predefined size of a frame window

* Fast and simple

* Inadequate performance
= Differences in moments may result from motion

= [T'he algorithm is unable to distinguish well between effects of
motion and gradual transitions



Viathematical Models of

T'ransition Effects
« Cut

= Direct concatenation of two shots not involving any transitional
frames, and so the transition sequence is empty

« Fade

= IS a sequence of frames I(x, y, ¢, t) of duration: T resulting from
scaling pixel intensities of the sequence /.(x, y, ¢, t) by a
temporally monotone function f(t)

I(x,y,c,t)= f(t) - I,(x,y,c,t), te][0,T]

* Dissolve

= IS asequence I(x, y, ¢, t) of duration T resulting from combining
two video sequences I.(x, y, ¢, t) and /,(x, y, ¢, t), where the first
sequence Is fading out while the second is fading in

[()C,y,C,f) =f1(t)-11(x,y,c,t)+f2(t)-12(x,y,c,t), tE[O,T]



Viodel-based Detection Methods

« . Implications of the transition models
« Characteristic patterns in image feature time series

= [Iransitions may be detected by recognizing patterns typical of
each transition type

« Cut Detection
= |dentify abrupt changes in the time series

« Fade Detection

= Find monotonically increasing or decreasing image variance
sequences which start or end on a monochrome frame

« Dissolve Detection

= Recognize parabolic sequences in the time series of image
variance



Cut Reflected in Color Mean




Fade-out and Fade-In
Reflected in Color Standard Deviation
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Dissolve Reflected

N Color Standard Deviation
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Performance Evaluation

number of correctly reported transitions x
recall. = R* = "umber of correctly reported transitions x
number of all transitions x

number of correctly reported transitions x

precision, = P" = —
number of all reported transitions x

« Correctly reported transitions

= Reported transitions which overlap some actual transitions of the
same type

« Missed transitions
= Actual transitions which did not overlap any detected transitions

* False alarms
= Detected transitions which did not overlap any actual transitions



Expernimentall Data

* \/ideo

s 60 minutes of a CNIN News broadcast from
Nov 11, 2003

= Recorded using Windows Media Encoder
= Format: 160x120 pixels, approx. 30 fps

« Ground' Truth

= Established manually — tedious!

s 618 Cuts, 89 Fades, 189 Dissolves, 70
Special Effects



Transition Annotation GUI
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Cut Detection

* Detect differences In color moments
between consecutive frames

= Declare a cut Ifi difference exceeds an
adaptive threshold

= ['hreshold: Weighted sum of mean and
standard deviation of moment difference over

a window: of frames



Cut Detection Performance
utility = o - recall + (1— ) - precision with o =0.5
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Fade Detection

« Similar to algorithms existing in literature
« Algoerithm

= Detect monochrome frame sequences

= Detect potential fade sequences around them
« Search for peaks in a smoothed first derivative

= lest for the following criteria
* Slope minimum and maximum
« Slope dominance threshold

« Performance is very high and equivalent to other
available methods



Fade Detection Performance




Dissolve Detection

* Detect parapolic shape In variance curve

* Problems
« Parabolic shape may be highly distorted

= Similar patterns are caused by motion and camera
pans

« Solution
= Detect minimum of the variance curve
=« Apply additional conditions to Improve precision
* Truong proposes a set of four conditions on
variance
= Performance: recall and precision ~65%



Dissolve Detection

0

Q
S~ o0
D~ D D
P E P E

H O O A0 D N > A\ LD D 0
S o N N N &

D b O DN XA QDD O DAY ADAD N XA DD PO D
LRI A S SR S S S SR S S SR S SIS AN AN I S S St S S )
FPERPEPRERREPRELPRRERERPRERREPEEPPEDRE P




Dissolve Detection
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Our Approach

« Observation

= Color mean should change linearly during
dissolve

« Method

= Remove one of the conditions on variance
= Added a condition on mean

« Result
= Increased precision



Dissolve Detection Performance




lemporall Video Segmentation
Conclusions

* Overall performance
= Cut detection: recall 90%, precision 95%
= [Fade detection: recall 93%, precision 98%
= Dissolve detection: recall 83%, precision 78%

« Future work

= Dissolve detection leaves room for
Improvement

= Special effect detection should be explored



Repeated Video
Seguence Detection



Problem Definition

« Goal

= Detect repetitions ofi video footage for purposes of
story tracking

* Challenges

= Sequence Matching
* Handle partially matching sequences

s [Repetition Detection
* There are over 20,000 shots in typical a 24-hour broadcast
« All pairs of shots need to be considered
* The process must be completed in real-time



Video Sequence Vatehing

* Develop Similarity Metrics corresponding
to visual similarity
= Frame similarity metric
« Complete sequence similarity
« Partial sequence similarity

« Establish similarity levels required for
seguences to be considered matching



Related Work

« Semantic Video Retrieval

Determine ifi two video sequences have conceptually similar
content

Cognitive gap — machines are currently unable to identify high
level concepts

* \/ideo Co-Derivative Detection

Determine if two video sequences have been derived from the
same source

Received less attention in research community

Hoad and Zobel propose three methods of measuring co-
derivative similarity: cut pattern, centroid position pattern, intra-
frame color change

Cheung develops video signature based on random vectors in
image feature space

Partial seguence similarity has not been explored



Frame Similarity Metric

Ve =(M* (), M* (2, M*(tb),S"(t,r),S*(t.8), S* (1,b), K* (t,r), K" (1,2), K*(1,]))

FrmSim\f“, f* )|=1— FrameAvgMomentDiff\ f*, "

FrameAvgMomentDiff ( o f ) — %

= f" < FrmSim\f°, f* )= frameMatchThreshold




Color Moments as Frame

[Representation




Complete Seqguence Similarity
Vletrics

ClipSim(Sa,Sb) %MatchmgmeeCaunt(S S Z fmmeMatch(f ) )

1 if fr e

0 Otherwise

fmmeMatch( 1, fl.b ) = {

S =5, < ClipSim(Sa , Sb)Z clipMatchThreshold



Color Mements as Seqguence
[Representation
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Partiall Seguence Similarity Metric

cips

PartialClipSim(S., S, )= max(VSS., SS, : ClipSim(SS., SS, ))
where SS =<fjx,fjﬁl,...,fjﬁk> and1< j< j+k<N,_

and k+1>L

* [ 1s the significant length threshold

= Prevents accidental matching of very short
subsequences



RPartial Sequence atehing

« Optimal threshold values
» rameMatechThreshold = 3.0

= L =30 frames
= clipMatehThreshold = 0.50

« Determined experimentally

= Using a 24-hour CNN News broadcast

= Selected values producing best recall and
precision



Other Observations

« Other metrics considered
= Normalized color moment metric
= Color moment difference metric

» Unsuitable for video news broadcasts

= Work well for sequences with substantial
motion

= [Do not work for static sequences, such as
anchor persons, studios, interviews



[REpPELition Detection

« Develop methods of detecting repeated
seguences In a live video broadcast

« Related Work

= Gauchideveloped commercial detection
system using color moments as frame feature

= PUa used color moment hashing and filtering
{o detect repeated video sequences

s Our research extended their work to handle
partial repetition detection



Detection Methods

. Exhaustive sequence matching
= Choose every pair of subsequences in the broadcast
= Compute similarity metric value, i.e. compare frame by frame

* Exhaustive shot matching
= Choose every pair of shots in the broadcast
= Compute partial similarity metric
« Align the shots in every way for which the overlap is at least AL
* Compare overlapping sequences frame by frame
* Filtered shot matching
« Determine which shots have a potential to match

= Compute partial similarity metric only for the potentially matching
shots



ime Complexity

et

= 1 be the number of frames in the broadcast
* In 24-hour broadcast at 30fps ni= 2.9 million
= ¢ be the number of shots in the broadcast
* |n 24-hour broadcast ¢ is approx. 20,000, c is proportional to n
= p be the average shot length
* p Is independent of n, p=n/c ~ 150 frames
= [be the fraction of potentially matching shots

Exhaustive Sequence Matching
= O(n%)

. Exhaustive Shot Matching

= O(c?* p) = 0O(n?/p)

* Filtered Shot Matching

= O(c*c*f*p)=0O(fn?p)
= I'he only viable alternative for real-time detection



Filtered Shot Matehing Algorithm

« Moment Quantization

= Assign each frame to a hyper-cube of color
moment space

= Unifermly quantize color moments
« gV, = floor(V./ gStep)
* gStep = 6.0
* Frame Hashing
= Compute hash value for every frame
= Place each frame in a hash table

9
hy = Hi -(¢V. +1) mod hashTableSize

i=1



Filtered Shot Matehing Algorithm

«. Shot Filtering
= Foragiven shot s find potentially matching shots
=« Consider every frame in s
= Find all other frames with the same quantized moments
* Retrieve from hash table

= Compute g-similarity for every shot v

* Number of frames in v.and in s whose quantized moments are
equal

= Chose shots with g-similarity > gSimThreshold
* gSimThresh = 10 frames

« Shot Matching

= Compute partial similarity metrics for every pair of potentially.
matching shots



Shot Matching Performance

* Performance equivalent to exhaustive shot matching
* Substantially faster



Shot Matching Execution Time

=&—Direct Shot Matching =>¥=Filtered Shot Matching
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shot Vatching Demo
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Repeated Sequence Detection

Conclusions

« Results

= Successiully detected partially repeated video
seguences in live news broadcast

« Recall 88%, Precision 65%
= Adapted shot filtering to partial matching

* Euture Work

= Development of similarity metrics which can handle
« Changes in brightness
* Slow motion repetitions
= Creation of automatic methods for
* Detection of picture-in-picture mode
« Removal of on-screen captions






Story firacking

« Goal

= Given information about user’s interest in a certain
news story, follow and report the development of the
story over time.

* Related Work

= Story tracking was first proposed as a problem of
textual information retrieval

= Became one of the tasks of the Topic Detection and
Tracking

= Ploneering work was done by Allan et al.
* Visual story tracking is a novel approach



Ovenrview.

« Visuall Story Tracking

= News Story: event or set of events which are
reported in the news

= Story: a set ofi all shots in a video broadcast
which are relevant to the news story of
Interest

= [[ask: Given a set of query shots relevant to a
news story, detect the story



Approach

« Approach
= Define the story core as the set of query shots
= Detect occurrences of the core shots
= Build story segments around them

= |dentity other relevant shots and add them to

the core
* As the story evolves and new footage becomes

available its subsequent repetitions are detected
by the algorithm



Stonry liracking Algorithm

> Single Iteration




Important Phases

« Segment Building

= Define story segment as a sequence of shots around
the core shot

= Seguence lengthiis determined by the neighborhood
Size (w) given in minutes
* Core Expansion

« Every modified segment is checked for potential new
core shots

= A shot is added to the core if it occurs at least a given
number of times in the segments of the story

= Required number of occurrences is determined by the
co-occurrence threshold (fc)



Graphical Story Representation
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Fermal Stery Representation

Story Core Partition induced on 2 by
Story Board Subset of 2 containing shots the shot matching
whose repetitions are detected equivalence relation

SB, =(%,Q,P(2),5,y

Set of shots Co-Occurrence Function Shot Classification
belonging to the assigns no-zero values Function
story to shots in the same labels shots as anchors,
segment commercials, etc.

N By - _




Expernimentall Data

* \/ideo Source

18-hour broadcast of CNN News channel

Recorded on Nov 4, 2003

Format: Windows Media Video, 160x120 pixels, 30 fps
Size: ~30GB

Story

Regarding Michael Jackson'’s arrest in connection with child
abuse charges

16 segments of various lengths
* From 30 seconds to almost 10 minutes
17 repeating shots

The entire broadcast was viewed by a human observer, and all
segments of the story were manually detected to establish the
ground truth



Ground Tiruth for Stery: Tirracking
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EXxperiments

« Queries
= Three queries corresponding to three segments of the story
= Different duration and number of query shots
« Parameters
=« Range of neighborhood sizes
= Range of co-occurrence thresholds

Segment Query Size
Segment No. Duration (shots)
0:35 L
0:21 3

4:22 6
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Precision
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Utility

100.00%

Substantial
90.00% improvement over the
starting point
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Story Tracking Demo
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Periermance Analysis

« Segment Building

=« Segments built by the algorithm are often extended
past the end of actual segments

* Core Expansion

« Commercials
« Repeat frequently throughout the broadcast
« Are often erroneously added to the core
« Cause the story to grow out of control

= Anchor persons

* Detected as matching by the shot matching algorithm

* If included in the core, produce the same effect as
commercials



Story: Trracking
Conclusions

* Overall Performance
=« Recall and Precision approx. 75%
= Small' number ofi iterations is optimal

= Story tracking works well'even for very small
gueries

« Future Work

= News shot classification techniques can
Improve performance

* Commercial detection
* Anchor person shot identification




Conclusion

Story: tracking in news video
broadcasts can be effectively
periormed based on detection of
repeated video footage.



Primanry Contribution

« Development of cut, fade, and dissolve detection
lechnigue using coler mements

= Compact representation

= Performance equivalent to other methods

= Substantiall improvement (15%) of dissolve detection
performance for news video

* Creation ofi method for partial video sequence
repetition detection in live broadcasts
« Partial sequence similarity metric

= Adaptation of shot filtering methods for partial
matching

* Invention of a novel story tracking technique



Euture Work

. Temporal Segmentation
« Further improvement of dissolve detection methods
= Exploration of technigues for identification of computer effects

« Repeated Sequence Detection

= Similarity metrics capable of dealing with global sequence
changes

= Detection methods for picture-in-picture content
= Automatic on-screen caption removal

« Story Tracking
= Automated new shot classification methods

= Multimodal story tracking techniques

* Textual and visual story tracking methods could be combined to
fully realize the merits of both means of conveying information
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