Story Tracking in Video News Broadcasts

Ph.D. Dissertation Jedrzej Miadowicz June 4, 2004

Acknowledgements

Motivation

Modern world is awash in information

- Coming from multiple sources
- Around the clock
- Lately much of the information is delivered visually by means of video
- Usefulness of this information is limited by the lack of adequate means of accessing it
- Particularly in video news
 - Numerous television stations broadcast continuously
 - Much of the news is irrelevant the viewer
 - In order to see everything that is interesting he or she would need to view the entire broadcast

Problem

Lack of adequate methods of accessing video content

Video Information Retrieval

- Is the broad research addressing this problem
- Provide users with effective and intuitive access to video content relevant to their information needs

Story Tracking in Video News Broadcasts

- Is one of the main tasks of Video Information Retrieval
- Consists in detecting and reporting to the user portions of the news broadcast relevant to the news story the user is interested in
- This work addresses the problem of story tracking in video news broadcasts

Proposed Solution

Observation

News stations reuse video footage in order to provide visual clues for the viewers.

Thesis

 Accurate detection of repeated video footage can be used to effectively track stories in live video news broadcasts.

Presentation Outline

Story tracking stages Temporal Video Segmentation Repeated Video Sequence Detection Story tracking Conclusions Future Work Questions and Discussion

Temporal Video Segmentation

Problem Definition

Recover the basic structure of video Detect Shots and Transitions Shot Sequence of consecutive frames Single camera working continuously Transition Sequence of frames combining two shots Wide variety of transition effects are used (cuts, fades, dissolves, wipes, etc.)

Transition Examples

Fade-out

Dissolve

Temporal Segmentation for Story Tracking

Effective story tracking

- Requires accurate identification of short shots

 Repeated video clips are often only a few seconds in length
 Emphasizes accurate dissolve detection

 Repeated shots are frequently introduced using dissolves

 Additional Challenges

 On-screen captions
 - Picture-in-picture

Principles of Transition Detection

Observation

Frame content changes radically during transition Detect changes in frame content Compare pixels Sensitive to Noise Computationally intensive Compare image features Reflect changes in image content Address the problems above Variety of features available Color histogram, Texture, Motion, Color Moments

Related Work

Research in Temporal Segmentation is well established

- Different image features have been used to detect cuts
 - Gargi, Lienhart, Truong use intensity histogram,
 - Luptani, Shahraray use inter-frame motion,
 - Zabih utilizes edge pixels.
- Image variance characteristics have been employed in fade and dissolve detection by Lienhart, Alattar, and Truong.
- Zabih proposed gradual edge strength changes for recognition of fades and dissolves.
- Lienhart introduced a neural network pattern recognition method
 - Good performance, but very slow
- Best results reported by Truong

Color Moments

In this work we use first three moments of the basic image components: red, green, and blue
 Mean M(t,c)
 Standard Deviation S(t,c)
 Skew K(t,c)

 $M(t,c) = \frac{1}{N} \sum_{xy} I(x, y, t, c) \qquad S(t,c)^2 = \frac{1}{N} \sum_{xy} \left[I(x, y, t, c) - M(t, c) \right]^2$

$$K(t,c)^{3} = \frac{1}{N} \sum_{xy} \left[I(x,y,t,c) - M(t,c) \right]^{3}$$

Color Moment as Histogram Approximation

Our Approaches to Temporal Segmentation

Basic Algorithm

- Analyzes color moment differences (crossdifference) over a certain window of frames
- Detects transitions if the difference exceeds a predetermined threshold
- Transition Model Pattern Detection

 Identifies patterns in color moment time series which are typical of individual transition types

Cross-Difference Algorithm

Cross-Difference

$$CrossDiff = \sum_{i=t-w}^{t+w} \sum_{j=i+1}^{t+w} a_{ij}d_{ij} \quad where \quad a_{ij} = \begin{cases} 1 & if \ i < t \ or \ j \ge t \\ -1 & otherwise \end{cases}$$

- d_{ii} is the average color moment difference between frames *i* and *j*
- t is the frame at which transition potentially occurred
- w is a predefined size of a frame window
- Fast and simple
- Inadequate performance
 - Differences in moments may result from motion
 - The algorithm is unable to distinguish well between effects of motion and gradual transitions

Mathematical Models of Transition Effects

Out

 Direct concatenation of two shots not involving any transitional frames, and so the transition sequence is empty

Fade

 is a sequence of frames *I(x, y, c, t)* of duration *T* resulting from scaling pixel intensities of the sequence *I₁(x, y, c, t)* by a temporally monotone function *f(t)*

$I(x, y, c, t) = f(t) \cdot I_1(x, y, c, t), \quad t \in [0, T]$

Dissolve

 is a sequence *I(x, y, c, t)* of duration *T* resulting from combining two video sequences *I₁(x, y, c, t)* and *I₂(x, y, c, t)*, where the first sequence is fading out while the second is fading in

 $I(x, y, c, t) = f_1(t) \cdot I_1(x, y, c, t) + f_2(t) \cdot I_2(x, y, c, t), \quad t \in [0, T]$

Model-based Detection Methods

Implications of the transition models

- Characteristic patterns in image feature time series
- Transitions may be detected by recognizing patterns typical of each transition type
- Cut Detection
 - Identify abrupt changes in the time series
- Fade Detection
 - Find monotonically increasing or decreasing image variance sequences which start or end on a monochrome frame
- Dissolve Detection
 - Recognize parabolic sequences in the time series of image variance

Cut Reflected in Color Mean

Fade-out and Fade-in Reflected in Color Standard Deviation

Dissolve Reflected in Color Standard Deviation

Performance Evaluation

$$recall_{x} = R^{x} = \frac{number \ of \ correctly \ reported \ transitions \ x}{number \ of \ all \ transitions \ x}$$

 $precision_{x} = P^{x} = \frac{number \ of \ correctly \ reported \ transitions \ x}{number \ of \ all \ reported \ transitions \ x}$

Correctly reported transitions

- Reported transitions which overlap some actual transitions of the same type
- Missed transitions
 - Actual transitions which did not overlap any detected transitions
- False alarms
 - Detected transitions which did not overlap any actual transitions

Experimental Data

Video

60 minutes of a CNN News broadcast from Nov 11, 2003 Recorded using Windows Media Encoder Format: 160x120 pixels, approx. 30 fps Ground Truth Established manually – tedious! 618 Cuts, 89 Fades, 189 Dissolves, 70 **Special Effects**

Transition Annotation GUI

Preview 🔀	🛃 TransitionEdi	tor		- • ×
LIVE			>> Start >>	
I AN MEARY AN	<u>T</u> ransitions			Lype • Generic
	HardCut HardCut	00:02:59.3490000 00:03:01.5850000	00:02:59.3820000	C Eade
CON	HardCut HardCut HardCut	00:03:05.7550000 00:03:08.3580000 00:03:10.2270000	00:03:05.7890000 00:03:08.3910000 00:03:10.2600000	
Today's News	Fade Fade	00:03:10.6280000 00:03:11.1940000 00:03:12.3960000 00:03:12.8960000	00:03:10.6610000 00:03:11.4950000 00:03:12.6290000 00:03:13.1290000	<u>Uther</u>
	Fade Fade	00:03:17.5010000 00:03:17.9010000 00:03:17.9010000	00:03:17.7680000 00:03:18.1340000	Add Insert
	HardCut HardCut	00:03:19:0690000 00:03:21:3040000 00:03:24:8080000	00:03:21.3380000 00:03:24.8410000	
	Fade HardCut HardCut	00:03:27.6110000 00:03:27.9120000 00:03:28.6780000	00:03:27.8780000 00:03:27.9490000 00:03:28.7120000	Play transition
	HardCut HardCut HardCut	00:03:29.3130000 00:03:30.1140000 00:03:31.0140000	00:03:29.3460000 00:03:30.1470000 00:03:31.0470000	may next segment
j342340001 	HardCut	00:03:31.9490000	00:03:31.9820000	Load <u>S</u> ave

Cut Detection

 Detect differences in color moments between consecutive frames
 Declare a cut if difference exceeds an adaptive threshold
 Threshold: Weighted sum of mean and standard deviation of moment difference over a window of frames

Cut Detection Performance

utility = $\alpha \cdot recall + (1 - \alpha) \cdot precision$ with $\alpha = 0.5$

Standard Deviation Coefficient

Mean Coefficient	%	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
	0.5	50.39	49.84	49.39	49.26	48.97	47.76	46.26	2.91	0.00	0.00
	1.0	51.05	51.99	53.86	59.98	76.12	90.58	84.29	0.00	0.00	0.00
	1.5	62.62	71.51	81.91	90.12	92.09	87.80	58.87	0.00	0.00	0.00
	2.0	81.18	87.19	90.98	92.20	88.90	78.98	51.45	0.00	0.00	0.00
	2.5	88.74	90.99	91.37	89.56	83.97	71.42	0.00	0.00	0.00	0.00
	3.0	90.94	91.24	89.88	85.80	78.29	62.97	0.00	0.00	0.00	0.00
	3.5	91.01	89.73	86.87	81.90	73.37	58.45	0.00	0.00	0.00	0.00
	4.0	89.63	88.01	83.53	78.11	68.52	55.12	0.00	0.00	0.00	0.00
	4.5	88.47	85.51	80.48	74.57	63.65	53.07	0.00	0.00	0.00	0.00
	5.0	86.42	82.39	78.35	71.84	60.32	51.88	0.00	0.00	0.00	0.00

Fade Detection

- Similar to algorithms existing in literature
 Algorithm
- Detect monochrome frame sequences
 Detect potential fade sequences around them

 Search for peaks in a smoothed first derivative

 Test for the following criteria

 Slope minimum and maximum
 Slope dominance threshold

 Performance is very high and equivalent to other available methods

Fade Detection Performance

Minimal Slope	Recall	Precision	Utility
0.0	92.9%	97.5%	95.18%
0.5	92.9%	97.5%	95.18%
1.0	90.5%	98.7%	94.59%
1.5	82.1%	98.6%	90.36%
2.0	71.4%	98.4%	84.89%
2.5	67.9%	98.3%	83.07%
3.0	64.3%	98.2%	81.23%
3.5	58.3%	100.0%	79.17%
4.0	57.1%	100.0%	78.57%
4.5	51.2%	100.0%	75.60%
5.0	47.6%	100.0%	73.81%

Dissolve Detection

- Detect parabolic shape in variance curve
- Problems
 - Parabolic shape may be highly distorted
 - Similar patterns are caused by motion and camera pans
- Solution
 - Detect minimum of the variance curve
 Apply additional conditions to improve precision
- Truong proposes a set of four conditions on variance
 - Performance: recall and precision ~65%

Dissolve Detection

Dissolve Detection

Our Approach

- Observation
 - Color mean should change linearly during dissolve
- Method

Remove one of the conditions on variance
 Added a condition on mean
 Result
 Increased precision

Dissolve Detection Performance

Condition	Match	False Alarm	Missed	Recall	Precision	Utility
Minimum Variance	186	5786	3	98.4%	3.1%	50.76%
Minimum Length	185	3410	4	97.9%	5.1%	51.51%
Min Bottom Variance	184	3345	5	97.4%	5.2%	51.28%
Start/End Variance Diff	170	194	19	89.9%	46.7%	68.33%
Average Variance Diff	164	95	25	86.8%	63.3%	75.05%
Center Mean	158	45	31	83.6%	77.8%	80.72%

15% improvement

Temporal Video Segmentation Conclusions

Overall performance Cut detection: recall 90%, precision 95% Fade detection: recall 93%, precision 98% Dissolve detection: recall 83%, precision 78% Future work Dissolve detection leaves room for improvement Special effect detection should be explored

Repeated Video Sequence Detection

Problem Definition

Goal

 Detect repetitions of video footage for purposes of story tracking

Challenges

Sequence Matching

Handle partially matching sequences

Repetition Detection

There are over 20,000 shots in typical a 24-hour broadcast

All pairs of shots need to be considered

The process must be completed in real-time
Video Sequence Matching

Develop Similarity Metrics corresponding to visual similarity Frame similarity metric Complete sequence similarity Partial sequence similarity Establish similarity levels required for sequences to be considered matching

Related Work

Semantic Video Retrieval

- Determine if two video sequences have conceptually similar content
- Cognitive gap machines are currently unable to identify high level concepts

Video Co-Derivative Detection

- Determine if two video sequences have been derived from the same source
- Received less attention in research community
- Hoad and Zobel propose three methods of measuring coderivative similarity: cut pattern, centroid position pattern, intraframe color change
- Cheung develops video signature based on random vectors in image feature space
- Partial sequence similarity has not been explored

Frame Similarity Metric

 $V^{x} = \left\langle M^{x}(t,r), M^{x}(t,g), M^{x}(t,b), S^{x}(t,r), S^{x}(t,g), S^{x}(t,b), K^{x}(t,r), K^{x}(t,g), K^{x}(t,b) \right\rangle$

$$FrmSim(f^{a}, f^{b}) = 1 - FrameAvgMomentDiff(f^{a}, f^{b})$$

FrameAvgMomentDiff
$$(f^{a}, f^{b}) = \frac{1}{9} \left(\sum_{i=1}^{9} L_{p}(V_{i}^{a}, V_{i}^{b}) \right)$$

$$L_p(V_i^a, V_j^b) = \left[\left(V_i^a(t, c) - V_i^b(t, c) \right)^p \right]^{\frac{1}{p}}$$

$$f^{a} \approx f^{b} \Leftrightarrow FrmSim(f^{a}, f^{b}) \geq frameMatchThreshold$$

Color Moments as Frame Representation

Complete Sequence Similarity Metrics

$$S_{a} = \left\langle f_{1}^{a}, f_{2}^{a}, ..., f_{N}^{a} \right\rangle \quad and \quad S_{b} = \left\langle f_{1}^{b}, f_{2}^{b}, ..., f_{N}^{b} \right\rangle$$

$$ClipSim(S_a, S_b) = \frac{1}{N} MatchingFrameCount(S_a, S_b) = \frac{1}{N} \sum_{i=1}^{N} frameMatch(f_i^a, f_i^b)$$

$$frameMatch(f_i^a, f_i^b) = \begin{cases} 1 & if \quad f_i^a \approx f_i^b \\ 0 & Otherwise \end{cases}$$

 $S_a \approx S_b \Leftrightarrow ClipSim(S_a, S_b) \geq clipMatchThreshold$

Color Moments as Sequence Representation

Partial Sequence Similarity Metric

$$\begin{aligned} PartialClipSim(S_a, S_b) &= \max(\forall SS_a, SS_b : ClipSim(SS_a, SS_b)) \\ where \quad SS_x &= \left\langle f_j^x, f_{j+1}^x, \dots, f_{j+k}^x \right\rangle and \ 1 \leq j < j+k \leq N_x \\ and \quad k+1 \geq L \end{aligned}$$

L is the significant length threshold
 Prevents accidental matching of very short subsequences

Partial Sequence Matching

Optimal threshold values frameMatchThreshold = 3.0 • L = 30 frames clipMatchThreshold = 0.50 Determined experimentally Using a 24-hour CNN News broadcast Selected values producing best recall and precision

Other Observations

Other metrics considered Normalized color moment metric Color moment difference metric Unsuitable for video news broadcasts Work well for sequences with substantial motion Do not work for static sequences, such as

anchor persons, studios, interviews

Repetition Detection

 Develop methods of detecting repeated sequences in a live video broadcast
 Related Work

- Gauch developed commercial detection system using color moments as frame feature
 Pua used color moment hashing and filtering to detect repeated video sequences
- Our research extended their work to handle partial repetition detection

Detection Methods

Exhaustive sequence matching

- Choose every pair of subsequences in the broadcast
- Compute similarity metric value, i.e. compare frame by frame

Exhaustive shot matching

- Choose every pair of shots in the broadcast
- Compute partial similarity metric
 - Align the shots in every way for which the overlap is at least ΔL
 - Compare overlapping sequences frame by frame
- Filtered shot matching
 - Determine which shots have a potential to match
 - Compute partial similarity metric only for the potentially matching shots

Time Complexity

Let

- n be the number of frames in the broadcast
 - In 24-hour broadcast at 30fps n = 2.9 million
- *c* be the number of shots in the broadcast
 - In 24-hour broadcast c is approx. 20,000, c is proportional to n
- p be the average shot length
 - *p* is independent of *n*, $p=n/c \sim 150$ frames
- f be the fraction of potentially matching shots
- Exhaustive Sequence Matching
 - O(n⁴)
- Exhaustive Shot Matching
 - O(c² * p) = O(n²/p)
- Filtered Shot Matching
 - O(c * c * f * p) = O(fn²/p)
 - The only viable alternative for real-time detection

Filtered Shot Matching Algorithm

Moment Quantization

- Assign each frame to a hyper-cube of color moment space
- Uniformly quantize color moments
 - $qV_i = floor(V_i / qStep)$
 - qStep = 6.0

Frame Hashing

- Compute hash value for every frame
- Place each frame in a hash table

$$hv = \prod_{i=1}^{9} i \cdot (qV_i + 1) \mod hashTableSize$$

Filtered Shot Matching Algorithm

Shot Filtering

- For a given shot s find potentially matching shots
- Consider every frame in s
- Find all other frames with the same quantized moments
 - Retrieve from hash table
- Compute q-similarity for every shot v
 - Number of frames in v and in s whose quantized moments are equal
- Chose shots with q-similarity > qSimThreshold
 - qSimThresh = 10 frames
- Shot Matching
 - Compute partial similarity metrics for every pair of potentially matching shots

Shot Matching Performance

Shot No.	No. of Frames	True Matches	Detected Matches	True Positives	False Positives	False Negatives	Recall	Precision
5925	553	2	2	2	0	0	100%	100%
7611	266	6	8	5	3	1	83%	63%
7612	360	6	7	6	1	0	100%	86%
7613	1017	3	4	2	2	1	67%	50%
9509	457	5	5	5	0	0	100%	100%
9514	76	-3	2	2	0	1	67%	100%
9524	167	4	4	4	0	0	100%	100%
11490	321	6	5	5	0	1	83%	100%
18323	309	3	3	3	0	0	100%	100%
19750	776	4	6	3	3	1	75%	50%
Overall							86%	91%

Performance equivalent to exhaustive shot matching
 Substantially faster

Shot Matching Execution Time

Shot Matching Demo

Stage	Status	Duration	Liose
Load moments	Completed	00:01:11.4026720	Run
Load clips	Completed	00:00:00.6309072	
Load clip matches	Completed	00:00:01.3719728	Run Script
Refine clip matches	Completed	00:00:00.0500720	
Litack story version A		00.00 00 000000	
	in progres	00:00:01.5922896	Reset Clear frames Options
	in progres	00.00.01.5922896	Reset Clear frames Options Edit Script Generate Script
	in progres	00.00.01.5922896	Reset Clear frames Options Edit Script Generate Script Consolidate

Preview 🔀	🖳 RepeatedClipPla	iyer						
	Clin	Original Id	Original Start	Original End	Beneat Id	Beneat Start	Beneat End	Load Clins
	Clip 0	5564	05:59:56.4880000	06:00:07.3330000	5564	05:59:56.4880000	06:00:07.3330000	
	Clip 1	5564	05:59:56.4880000	06:00:07.3330000	5570	06:00:51.0440000	06:01:32.7530000	Load Clip Matches
	Clip 2	5565	06:00:07.3660000	06:00:13.1050000	5565	06:00:07.3660000	06:00:13.1050000	
	🗖 Clip 3	5565	06:00:07.3660000	06:00:13.1050000	5568	06:00:44.1030000	06:00:47.0050000	Load Lip Repeats
	Clip 4	5566	06:00:13.1380000	06:00:15.5740000	5566	06:00:13.1380000	06:00:15.5740000	Load Marga Matches
	Clip 5	5567	06:00:15.6070000	06:00:44.0700000	5567	06:00:15.6070000	06:00:44.0700000	Load merge matches
And I THINK IN AN AN AN AN AN	Clip 6	5567	06:00:15.6070000	06:00:44.0700000	5579	06:02:04.2170000	06:02:20.5340000	Load Episodes
CNN MCKSON ASRAIGHMENT	Clip 7	5567	06:00:15.6070000	06:00:44.0700000	5583	06:02:30.1770000	06:02:48.5620000	2000 20100000
OF THE SAFEST BIG CITIES IN THE NATION IN AN ANNUAL S	Clip 8	5568	06:00:44.1030000	06:00:47.0050000	5565	06:00:07.3660000	06:00:13.1050000	
	Clip 9	5568	06:00:44.1030000	06:00:47.0050000	5568	06:00:44.1030000	06:00:47.0050000	
	Clip 10	5569	06:00:47.0390000	06:00:51.0090000	5569	06:00:47.0390000	06:00:51.0090000	
	Clip 11	5570	06:00:51.0440000	06:01:32.7530000	5564	05:59:56.4880000	06:00:07.3330000	
 A second as a second as a second as 	Clip 12	5570	06:00:51.0440000	06:01:32.7530000	5570	06:00:51.0440000	06:01:32.7530000	
	Clip 13	5571	06:01:32.7860000	06:01:45.7980000	5571	06:01:32.7860000	06:01:45.7980000	
	Clip 14	5572	06:01:45.8320000	06:01:48.0010000	5572	06:01:45.8320000	06:01:48.0010000	
▶ ■ 4	Clip 15	5573	06:01:48.0350000	06:01:51.4380000	5573	06:01:48.0350000	06:01:51.4380000	Play Original Clip
	Clip 16	5573	06:01:48.0350000	06:01:51.4380000	5574	06:01:51.4710000	06:01:55.4750000	
	Clip 17	5574	06:01:51.4710000	06:01:55.4750000	5573	06:01:48.0350000	06:01:51.4380000	Play Repeated Clip
10 - 39 - 17 - 536 -	Clip 18	5574	06:01:51.4710000	06:01:55.4750000	5574	06:01:51.4710000	06:01:55.4750000	
2025752(0000 *	Clip 19	5575	06:01:55.5080000	06:02:00.1130000	5575	06:01:55.5080000	06:02:00.1130000	Close
383575360000								0000

Repeated Sequence Detection Conclusions

Results

Successfully detected partially repeated video sequences in live news broadcast Recall 88%, Precision 85% Adapted shot filtering to partial matching Future Work Development of similarity metrics which can handle Changes in brightness Slow motion repetitions Creation of automatic methods for Detection of picture-in-picture mode Removal of on-screen captions

Story Tracking

Story Tracking

Goal

 Given information about user's interest in a certain news story, follow and report the development of the story over time.

Related Work

- Story tracking was first proposed as a problem of textual information retrieval
- Became one of the tasks of the Topic Detection and Tracking
- Pioneering work was done by Allan et al.
- Visual story tracking is a novel approach

Visual Story Tracking

 News Story: event or set of events which are reported in the news
 Story: a set of all shots in a video broadcast which are relevant to the *news story* of interest

 Task: Given a set of query shots relevant to a news story, detect the story

Approach

Approach

Define the story core as the set of query shots

- Detect occurrences of the core shots
- Build story segments around them
- Identify other relevant shots and add them to the core

As the story evolves and new footage becomes available its subsequent repetitions are detected by the algorithm

Story Tracking Algorithm

Single Iteration

Important Phases

Segment Building

- Define story segment as a sequence of shots around the core shot
- Sequence length is determined by the neighborhood size (w) given in minutes

Core Expansion

- Every modified segment is checked for potential new core shots
- A shot is added to the core if it occurs at least a given number of times in the segments of the story
- Required number of occurrences is determined by the co-occurrence threshold (tc)

Graphical Story Representation

Formal Story Representation

Story Board

Story Core Subset of Σ containing shots whose repetitions are detected Partition induced on Σ by the shot matching equivalence relation

 $SB_{\Phi} = \langle \Sigma, \Omega, P(\Sigma), \delta, \gamma \rangle$

Set of shots belonging to the story Co-Occurrence Function assigns no-zero values to shots in the same segment Shot Classification Function labels shots as anchors, commercials, etc.

Experimental Data

Video Source

- 18-hour broadcast of CNN News channel
- Recorded on Nov 4, 2003
- Format: Windows Media Video, 160x120 pixels, 30 fps
- Size: ~30GB

Story

- Regarding Michael Jackson's arrest in connection with child abuse charges
- 16 segments of various lengths
 - From 30 seconds to almost 10 minutes
- 17 repeating shots
- The entire broadcast was viewed by a human observer, and all segments of the story were manually detected to establish the ground truth

Ground Truth for Story Tracking

Queries

- Three queries corresponding to three segments of the story
- Different duration and number of query shots

Parameters

- Range of neighborhood sizes
- Range of co-occurrence thresholds

Segment No.	Segment Duration	Query Size (shots)
3	0:35	1
5	0:21	3
6	4:22	6

Precision

Story Tracking Demo

Stage	Status	Duration	
oad moments	Completed	00:01:11.4026720	Run
oad clips	Completed	00:00:00.6309072	
ad clip matches	Completed	00:00:01.3719728	Run Script
ack story version A	In progres	00:00:01.5922896	Reset
			Clear frames
			Options
			Options Edit Script
			Options Edit Script Generate Script
			Options Edit Script Generate Script Consolidate
			Dptions Edit Script Generate Script Consolidate

Performance Analysis

Segment Building

 Segments built by the algorithm are often extended past the end of actual segments

Core Expansion

- Commercials
 - Repeat frequently throughout the broadcast
 - Are often erroneously added to the core
 - Cause the story to grow out of control
- Anchor persons
 - Detected as matching by the shot matching algorithm
 - If included in the core, produce the same effect as commercials

Story Tracking Conclusions

Overall Performance Recall and Precision approx. 75% Small number of iterations is optimal Story tracking works well even for very small queries Future Work News shot classification techniques can improve performance Commercial detection Anchor person shot identification

Conclusion

Story tracking in news video broadcasts can be effectively performed based on detection of repeated video footage.
Primary Contribution

Development of cut, fade, and dissolve detection technique using color moments

- Compact representation
- Performance equivalent to other methods
- Substantial improvement (15%) of dissolve detection performance for news video
- Creation of method for partial video sequence repetition detection in live broadcasts
 - Partial sequence similarity metric
 - Adaptation of shot filtering methods for partial matching

Invention of a novel story tracking technique

Future Work

Temporal Segmentation

- Further improvement of dissolve detection methods
- Exploration of techniques for identification of computer effects

Repeated Sequence Detection

- Similarity metrics capable of dealing with global sequence changes
- Detection methods for picture-in-picture content
- Automatic on-screen caption removal
- Story Tracking
 - Automated new shot classification methods
 - Multimodal story tracking techniques
 - Textual and visual story tracking methods could be combined to fully realize the merits of both means of conveying information

Thank You

Questions

