
University of Kansas

An Ambient Computing System

Jesse Davis

jdavis@ittc.ku.edu

February 1, 2002

University of Kansas

Introduction

• What is an Ambient Computing System?
• Software framework that coordinates variety of computing and

network-enabled devices to ease their use in home/business
environments

• Diverse set of computing, network and software resources can then be
managed by one seamless, customizable interface

• By easing use, system becomes pervasive (invisible to user)

University of Kansas

Introduction

• Why Create Such a System?
• Traditional device control systems do not provide type of

infrastructure needed

• Enabling technologies have become commonplace in home and
business

– Wireless networks, cheap PCs, computer-enabled appliances,
voice control, PDAs, cheap home control devices

• Other projects have tried, none have delivered complete experience yet

University of Kansas

This Approach

• Software-based, flexible easy to
use computing/networking
environment compatible with
current and future devices

• Uses idea of MetaOS™
• Applies traditional definition of

OS to software system not
dependent on hardware

• Enables many new services by
providing common way to
integrate and coordinate devices
and applications

• Naturally incorporates ideas of:

– Personalization

– Presence

– Permissions

University of Kansas

Background

• Supporting Technologies
• LDAP – directory service

• Speech Recognition – very natural interface

• IEEE 802.11b

• Bluetooth –may play roles in PDAs and mobile phones

• X10 – residential environmental control

• HomeRF – wireless home networking

• SOAP (Simple Object Access Protocol) – XML protocol for RPC calls

• SLP (Service Location Protocol)

• UPnP (Universal Plug and Play) – service discovery protocol,
distributed architecture

University of Kansas

Background

• Other Projects/Products
• Home Automation

– Not enough intelligence, but can be easily used as pieces in other systems

• Ninja (Berkeley)

– Primarily service architecture, doesn’t address user interaction

• Oxygen (MIT)

• .NET (Microsoft)

– Not many details on underlying architecture yet

– UPnP part of architecture would be useful for ambient computing systems

• Other ambient computing systems

– Steve Pennington’s

– purely event driven, need for interfaces, devices to send actions
directly

– ACE

University of Kansas

Architecture

• MetaOS™ is a meta operating system
• Like traditional definition of OS, but not dependent on low-level

hardware architecture details

• Properties:

– Input and output control

– Operations and job control

– Scheduling

– Security and multi-user support (permissions, ACLs, user
identification)

– Separation of mechanism vs. policy at device level (device driver
model)

– Distributed – not multiple processes, but distributed inputs,
outputs, states integrated into single domain

University of Kansas

Architecture

• Requirements
• Preferences/Personalization

– User can set preferences to determine behavior of system

– Once tailored enough, system becomes a part of environment to
user, “invisible”

• Presence

– System must be context-sensitive, events and commands will have
different behavior dependent on current environment

– Can enable this by using user’s location as input

• Permissions

– System must protect privacy of multiple users

– Permissions, ACLs can control usage of devices, data

– User can personalize to create levels of trust

University of Kansas

Architecture

• Requirements
• Transport Technologies

– Must use TCP/IP
– Physical/Data Layer: Ethernet, 802.11b, HomeRF, Bluetooth
– X10
– Must incorporate application-layer encryption where applicable:

SSL, VPNs, Kerberos
• Interfaces

– XML -RPC or SOAP – allows for easy integration, .NET important
– SLP, UPnP for service discovery
– Abstract database interface for different DBs on backend (like

JDBC)
– LDAP first choice, quick reads, integration with Active

Directory
– More data: Oracle, etc.

University of Kansas

Architecture

• Features of MetaOS
• Must function on standard PC hardware, embedded system next

• Must send messages over TCP/IP

• Messages must be XML and sent as text

• Common interface required, device-specific logic in device, core logic
in system

• All data structures, device capabilities, user profiles must be
dynamically learned

• Must be event driven

• Must be very customizable, storage for user, device, other info
necessary

• Must identify/manage multiple users

• Must protect user info and communicate over secure channels

University of Kansas

Architecture

• Architecture Model
• Client-server model
• Server, or hub – “kernel” of

MetaOS, most core logic and
services here

• Client, or edge – manages
sending of messages from
devices to hub

• Devices send messages to hub
to perform operations on
system, hub sends back info
necessary for device to
complete task

• Ambient domain = set of
edgescontrolled by one hub

University of Kansas

Architecture

• Devices
• Division between MetaOS software and hardware that interacts with

physical environment

• Handle any number of physical inputs

• Physical input mapped to message, message sent to system, correct
response based on reply then taken

• Edge
• “conduit” between devices and hub, sets up stream to hub

• Responsible for instantiating devices

University of Kansas

Architecture

• Hub
• Routes all messages
• Responsible for:

– Receiving messages from devices through edges and from other hubs
– Controlling permissions on devices, events and actions
– Maintaining state on all devices
– Managing connection to DB
– Performing events and actions according to requests from devices
– Sending messages back to devices and other hubs

• Addressing
• Each device, edge, hub has globally unique address
• Hierarchical, represent routing levels
• Used like DNS entries
• Interdomain not done yet

University of Kansas

Architecture

• Messages – XML
• Registration – devices, events, actions, “todo” items, routing info

• Event – when event has occurred

• Action – tells device to execute given action

• Information – query, response, add, delete, modify, device and action
listing

• Miscellaneous – ACK, NAK

University of Kansas

Architecture

• User Management
• User identification takes place at input points (web login, speech

recognizer, other biometrics such as fingerprint readers)

• Permissions control access, profile accessible from other domains

• Preference Management
• Preferences stored for each user, device

• Events, actions use preferences as arguments

• Macros used to chain actions

• Permissions
• Every device, event, action has identity and ACL

• Modeled after Unix permissions

University of Kansas

Implementation

• Languages: Java 2 1.3.1, Perl 5.6.1
• Hub – receives and sends messages

• For each connection to listen socket,
starts network interface thread for
that edge and add routing info

• Starts event handler thread

• Event handler thread – controls most
of logic in hub
• Sits in loop, waits for messages in

event queue
• For each message, traverses device

tree, reads or modifies based on
permissions, sends response back
using hub routing table

University of Kansas

Implementation

• Network Interface Threads
• Manage bidirectional stream

between edge and hub

• Written to remove blocking

– Java has no select()

• 2 helper threads (read/write)
block while reading or writing
to stream or queue

• send() places messages in
write queue, edge or hub then
just wait on read queue

University of Kansas

Implementation

• Messages
• XML – easily transformed, more structured than regular text
• Common elements - <identity>, <acl>
• Registration messages – register objects in device tree

– register_device, register_event, register_action, todolistitem,
HEInit

• Event message – signals hub that event occurred
• Action message – instructs hub to execute given action with given data
• Informational messages – read and modify info in DB

– type attribute specifies whether operating on user or device entry
– query, response, add, delete (value or attribute), modify
– list – queries device tree for devices and actions

• Miscellaneous messages
– ACK, NAK, deviceID for SOAP interface

University of Kansas

Implementation

• Edge – message conduit
• Starts network interface

thread, start each device in
config file

• Then just waits for messages
from hub, sends to correct
device

• Devices – separate mechanism
and policy
• Device-specific logic

implements detection of
stimuli and execution of
commands for response

• All devices derived from base
class

University of Kansas

Implementation

• Devices
• X10Device

– Sends commands to X10 modules

• X10Monitor

– Monitors log file, sends events to X10Device to send commands

• VoiceRecognizer (mechanism)

– Transforms spoken words into text

• VoicePrefs (policy)

– Executes commands based on text received

• Framegrabber

– Controls TV capture card, writes frames as JPGs to directory

• MP3Player

– Plays specified file or stream, performs common audio operations

University of Kansas

Implementation

• Database/Directory Service
• LDAP used for fast reads – OpenLDAP 2.0.11 used

• MetaOS LDAP directory contains 2 sections: users and devices

• User ID is mail address (globally unique)

• Wrapper API for JNDI written for MetaOS

• API base of other classes for managing data in MetaOS

– User(), UserAdmin() – both can be used by “wizards”

• Preferences

– User and device preferences stored in AmbientComputingPrefs attribute

– Multi -valued, sorted like Xresources preferences

AmbientComputingPrefs: xmms.client.linux=/usr/bin/xmms

AmbientComputingPrefs: xmms.client.window=c:\bin\xmms.exe

AmbientComputingPrefs: xmms.volume=90%

University of Kansas

Implementation

• XML -RPC/SOAP Interface
• Allows other systems/clients to

send XML messages to emulate
devices

– Easy integration with other
systems

– Easy to write other APIs for
communication with
MetaOS

• SOAPServer – multithreaded
“gateway” device

• Perl API module created using
SOAP::Lite toolkit

– Can use module in CGI
scripts for web interfaces,
etc.

University of Kansas

Results

• Hardware/Software Requirements
• Pentium II 233 Mhz and above

• 128 MB RAM and above

• Linux 2.4 series kernel or Windows 98/2000

• Sun Java 2 SDK, version 1.3.1

• Ethernet or 802.11b interface

• Optional (dependent on edge configuration)

– IBM ViaVoice™ software (text speech and recognizer)

– MP3 players (mpg123, Winamp)

– Sound card

– X10 modules

University of Kansas

Results

• Examples of messages and device setup in thesis

• Demo
• Audio (MP3Player)

• Video capture (FrameGrabber)

• Home control demonstration (X10Device and X10Monitor)

• Interfaces

– Voice interface (VoiceRecognizer and VoicePrefs)

– Web interface (using SOAPServer)

– WML interface (cell phones)

University of Kansas

Conclusions and Future Work

• List of Accomplishments
• Designed new architecture that incorporated ideas of personalization,

presence and permissions

• Defined events, actions, devices and macros

• Defined XML messages DTD

• Wrote new message transport architecture to relieve blocking, scale
further

• Improved database interface

• Improved personalization interface

• Wrote SOAP/XML-RPC interface to MetaOS

• Wrote Perl API module for XML-RPC interface

University of Kansas

Conclusions and Future Work

• Conclusions
• Application of MetaOS idea seemed a natural fit

– Events, actions modeled as in traditional operating systems

– Devices easier to write after adoption of device driver model

• Message transmission architecture caused no blocking, scales well in
terms of memory and load

• Preferences architecture adequate for all objects

• SOAP interface and Perl module proved to be useful

• ACLs based on Unix permissions adequate

University of Kansas

Conclusions and Future Work

• Future Work
• SLP interface

• Secure protocol and mechanism for hub-hub communication necessary
to expand to multiple domains and for replication

• SSL connections for network interface threads and LDAP interface

• Extended ACLs to provide finer-grain control

• Universal Plug and Play interface, if .NET takes off

• JINI™ interface for MetaOS for use in Java enterprise-level
environments

