Bistatic/Monostatic Synthetic Aperture Radar for Ice Sheet Measurements

John Paden MS Thesis Defense April 18, 2003

Committee Chairperson: Dr. Chris Allen Committee Members: Dr. Prasad Gogineni Dr. Glenn Prescott

Topics

- Overview
- EM Model
- Sensor Geometry
- Antenna Array
- Position Errors
- Sandbox Tests

Overview – Motivation

- Global sea level rise threatens coastal regions
- Contributions from an ice sheet are measured by finding the mass balance of the ice sheet.
- Create ice flow model to predict mass balance
- Basal conditions needed for ice flow model
- We can drill boreholes in a few places, but not all over the Arctic and Antarctic regions à RADAR.

Overview – Basal Scattering

- The bedrock is thought to be smooth with respect to wavelength.
- Therefore it looks like a mirror at our frequencies of operation.

Data Collection Geometries

• Monostatic Arrangement

Data Collection Geometries

Bistatic Arrangement ${\color{black}\bullet}$

- Used when the *surface is smooth* • and exhibits specular (mirrorlike) characteristics
- New variable: separation ٠ distance between transmitter and receiver

- Modes of operation: monostatic and bistatic
- Broadband operation: nearly three octaves

EM Model

• Magnitude of Transfer Function

- TEM Horn Antenna Measurements
- Radar System Transfer Function
- Spherical Spreading

$$P_{R} = P_{T}H_{T}\eta_{Teff}D_{T}\frac{\sigma_{bs}}{4\pi R_{T}^{2}}\frac{A_{R}}{4\pi R_{R}^{2}}\eta_{\text{Re}\,ff}|H_{R}|$$

- Phase of Transfer Function
 - TEM Horn Antenna Measurements
 - Radar System Transfer Function
 - Path length, phase velocity, and refraction

Radar System Transfer Function

• Calibration and Amp/Cable

Dielectric Half-space Model

• Three-dimensional geometry of refracted ray can be projected onto the plane of incidence (two-dimensional)

Sensor Geometry

• Find the optimal transmitter position that minimizes the cross-track aperture size, R.

Backscatter Characteristics

• Bistatic forward scattering characteristics are approximated with our knowledge of backscatter characteristics.

TX/RX

Ice

- As the transmitter moves away from the swath, the ice surface illuminated by the forward scatter cones grows.
- In turn, the minimum required receiver movement decreases (i.e. B < A).

Disadvantages of Separation

- As the transmitter-receiver separation is increased, the angular resolution decreases.
- The bedrock surface subtended also increases for the same angular resolution.

Plot of Receiver Array Size

- The minimum receive aperture occurs when the transmitter position is 1580 m from the center of the swath.
- The minimum receive aperture is 47 m.

Across-track resolution: 100 m Ice thickness: 3 km Frequency: 150 MHz Swatch Width: 1 km Backscatter: 7.5 deg

Results for 3000 m thick ice

Frequency (MHz)	Max forward- scatter angle (deg)	Tx Position (m)	Min. Receiver Aperture (m)	Min. Monostatic Aperture (m)
60	5	2831	1323	799
60	10	2435	538	535
60	15	1710	121	273
60	20	0	66	32
150	5	2831	1125	762
150	10	2435	371	498
150	15	1610	47	234
150	20	0	26	13
350	5	2831	1049	748
350	10	2435	307	484
350	15	1580	20	219
350	20	0	11	6

Information and Telecommunication = Technology Center

Monostatic Mode

- For comparison.
- Using a cross-track spatially sampled monostatic array.

Information and

Telecommunication

Technology Center

Results

- This plot shows the maximum
 SAR resolution attainable versus aperture size.
- One tenth of a wavelength variation across the aperture was tolerated.

Position Errors

- The Radar will derive its position using the global positioning system (GPS).
- GPS's have errors that are a significant fraction of a wavelength
- Need to answer the question: How do positioning errors effect the performance of the SAR processor?

Position Errors

- Gaussian random process
- Correlated errors created by low pass filtering
- Topcon GPS system:
 - 0.1 m standard deviation in latitude
 - 0.1 m standard deviation in longitude
 - 0.2 m standard deviation in elevation

Results for $\sigma = 0.1$ m (fixed aperture)

Sandbox Laboratory

- Test the EM model
- Test the SAR processing algorithm
 - Ability to determine the position of a target
 - Ability to accurately determine the target's reflectance

A-Scopes

Left side: measured dataset Right side: simulated dataset

SAR Processed

Left side: measured dataset after SAR processing Right side: simulated dataset after SAR processing

Table of Results

Target #	Diameter	Metal/Air	Signal Power	Position Error
1	12.5 cm	Metal	-35 dB	2 cm
2	10 cm	Metal	-38 dB	5 cm
3	12.5 cm	Metal	-35 dB	2 cm
4	10 cm	Metal	-42 dB	1.41 cm
5	10 cm	Metal	-40 dB	2.24 cm
б	10 cm	Metal	-42 dB	3.16 cm
7	11.5 cm	Air-filled	-53 dB	2.24 cm
8	15 cm	Air-filled	-49 dB	6.08 cm
9	11.5 cm	Air-filled	-52 dB	1 cm
10	15 cm	Air-filled	-49 dB	1 cm

- Max sidelobe is –49 dB
- Signal to sidelobe is at least 4 dB within the region of the target

Conclusions

- Transmitter Location (Sensor Geometry)
 - The transmitter position has a very large effect on the size of the bistatic array.
 - Depending on the type of scattering and thickness of the ice, the bistatic mode may or may not be faster than the monostatic mode.
 - The bistatic transmitter position that minimizes the receiver cross-track movement was found.

• Along-track Antenna Array

- Along-track antenna array could be helpful in expediting the bistatic measurements.
- For high-precision measurements (e.g. 10 m) its usefulness is limited unless each element can be controlled individually.

Conclusions

• Position Errors

- Position errors can be very severe at higher frequencies. Increasing aperture length does not help position errors.
- GPS errors need to be characterized in terms of magnitude of relative error and error correlation over time and space.
- Sandbox lab tests showed:
 - First-order EM Model gives results consistent with the measured results
 - Ability to position targets to within a few centimeters
 - Ability to distinguish targets with different reflectivities (with similar targets giving consistent reflectivities)

Information and Telecommunication Technology Center