
Hardware/Software Co-
design of Schedulers for

Real Time Systems

Jorge Ortiz

Committee
David Andrews, Chair

Douglas Niehaus
Perry Alexander

Presentation Outline
Background

Prior work in hybrid co-design
FPGA hardware/software co-design
Scheduling

RTFPGA Project Overview
Design approach & functionality
Design implementation plan

Scheduler Implementation
Hybrid co-design for KURT-Linux event scheduler
System properties

Testing and Analysis
Functionality validation of design
Data Stream testing
Conclusions and future work

Contributions

Design
Mitchell Trope, Sweatha Rao
Implementation
Sweatha Rao, Jorge Ortiz
Testing
Mitchell Trope, Sweatha Rao, Jorge
Ortiz

Background

Prior Work in Hybrid Co-
design

Average-case enhancements
Worst-case scenarios
Platform architectures for real time
systems
Systems that support real-time
constraints

System Co-Design
Parallel systems

Multi-processor, FPGA, System-on-Chip, ASIC,
Reconfigurable systems

Hybrid systems
Exploit recursive patterns
Increase quality of service
Meet real-time constraints

Real time operating systems
Hardware support for the operating system
OS function migration

FPGA Hardware/Software
Co-design

Desired system properties
Timeliness, concurrency, liveness,
interfaces, heterogeneity, reliability,
reactivity, predictability and safety
Average-case, worst case scenarios

System flexibility and performance
Reconfigurable
No loss in performance

Scheduling

How to allocate which resources to
whom and for how long
Handling real-time events
Desire for finer granularity for
servicing interrupts
Overhead costs due to interrupt
handling and event scheduling
Design trade-offs

RTFPGA Project Overview

Project Motivation

Provide higher resolution and finer
granularity for event handling
Minimize overhead processing
Migrating key functions into hardware
Time keeping hardware support
Hardware/software co-design of event
scheduler for real-time hybrid operating
system

Design Approach
Migrate shadow timer into FPGA
Implement scheduler bookkeeping
operations
Provide processing for enqueuing and
dequeuing events
Allow entering, sorting and deletion of
events
Enable access to all queued events
Move scheduling algorithm into the
hardware

Design Functionality

FPGA stores event information in
local queue
Run scheduling algorithm
Identify the next event to run
Sends event time to a match
register
Free-counting hardware clock
provides interrupt generation

Design Implementation Plan
Interface ported KURT-Linux to FPGA
components
Create FPGA-mapped registers
Create basic event queue storage,
interface and functionality
Implement event scheduler
Deliver FIQ interrupts to CPU
Solve concurrency issues of hardware-
based implementation

Scheduler Implementation

Hybrid Co-design for Kurt-
Linux Event Scheduler

Forward event requests from OS to
hardware through command register
Identify request type and event
information:execution time and
reference pointer
Service request on event scheduler
Raise interrupt flag upon execution
time
KURT-Linux runs appropriate ISR with
retrieved event information

Data Flow Chart in the
RTFPGA Scheduler

Request to FPGA
Send request to
scheduler
Identify request
Add or delete in
Block RAM storage
Schedule events in
parallel
Queue expired
events for CPU to
read

RTFPGA Scheduler Modules

RTFPGA Scheduler Modules

Register Mapper
Interface to all registers
Interface to internal functionality in
the FPGA board
Modular and portable
Two operational blocks - read and
write
Timing, event information, scheduler
commands, debugging information.

RTFPGA Scheduler Modules

Memory Manager
Control storage and handling of
Block RAM-implemented event
queue
Block RAM Address generation for
event addition
Service Scheduler requests
Dirty bits indicate usage of Block
RAM addresses

RTFPGA Scheduler Modules

Block RAM
Dual-read/write port synchronous
Block RAM FPGA storage memory
First port for Memory Manager
requests
Second port for continuously polling
information in BRAM addresses for
scheduling and searching purposes

RTFPGA Scheduler Modules

Utime
Shadow of KURT Utime clock
implementation
Set for microsecond resolution
Provide match register for next
scheduled event time
Create FIQ interrupts to CPU

RTFPGA Scheduler Modules
Queue Minimum

Earliest Deadline
First algorithm
Reads event
values output by
Block RAM
Output information
for next event to
be scheduled
Send appropriate
control signals

EDF pseudo-code

START
SET next_event = max value
LOOP
IF last deleted value = next_event

GOTO START
IF last expired event = next_event

GOTO START
IF no elements in queue THEN GOTO START
ELSE

READ new data from BRam event queue
IF data = event (dirty bit is set)

READ scheduled time
IF scheduled time < next_event

next_event = scheduled time
END IF

END IF
END IF
GOTO LOOP

RTFPGA Scheduler Modules

Queue Delete
Continuously receive polled
information from Block RAM
Perform a deletion using linear
search & comparison
Found or lost signal sent back to
Memory Manager
Check for concurrency with interrupt
generation and event queue popping

RTFPGA Scheduler Modules

FIFO Block RAM
FIFO queue for expired events that
have not been read yet by CPU
Keep track of number of expired
events
De-queue until empty

Inter-Module Interfaces

System Properties

High interdependency of modules
Concurrency of deletions and
interrupts solved by linear approach
Highly cohesive scheduling
algorithm
Tight coupling due to system
requirements

Testing and Analysis

Functionality validation of
design

Initial setup bootstraps FPGA timer
shadow
Check for:

Event addition
Event deletion
Event scheduling

Event Addition Timing
Diagram

Event Deletion Timing
Diagram

Event
Scheduling
Timing
Diagram

Integrated Scheduler Test
1. Initial Set up
2. Add Event1, Add Event2,

Add Event3, Add Event4,
Add Event5

3. Find Minimum
4. Delete Event2, Delete

Event3
5. Find Minimum
6. Read current time from

FPGA timer registers
(jiffy, jiffy_u)

7. Write event_time = jiffy
+ offset

8. Write ref_ptr = loop
variable

9. Repeat the above three
steps for loop variable =
0 to 2

10. Wait on jiffy + large
offset

11. WHILE fifo_ref_ptr !=
x"00000000" (queue not
empty)

12. Read fifo_ref_ptr
(confirm all the three
timers expired)

13. END WHILE
14. Read jiffy & jiffy_u

Data Stream Kernel
Interface Tests

0

1000

2000

3000

4000

5000

0 2 4 6 8 10 12 14 16 18 20 22

Execution time delay (us)

N
um

be
r o

f e
ve

nt
s

With Hardw are Components

Without

Timer Execution Delay for Software RTOS and Hardware/Software RTOS

Data Stream Kernel
Interface Tests
The Software-based RTOS showed
expected better performance

Lag between CPU and FPGA timers
of 2-4 microseconds
FIQ handler schedules an IRQ,
downgrading the interrupt priority

Data Stream Kernel
Interface Tests
[root@george dski]$./dskihists -i 900 -f 4 -h 1 -n 100
Waiting for 900 seconds...
Name of the histogram: HIST_TIMER_EXEC_DELAY
Number of events logged: 10000
Minimum Value: 0
Maximum Value: 7137329
Lower Bound: 0
Upper Bound: 100

Num of Buckets: 102

Stability and Bounded
Execution Time

Maximum execution delay for a software-
based timer was in the range of millions
of microseconds
In the hardware version, all events in all
tests were executed within the time delay
range of 23 microseconds
Hardware delay attributed to startup
delays, worst case scenario checking,
interrupt servicing, communication costs
across ports

Event handling under
different loads

Increase of 6.4% for
events handled with a
zero microsecond
delay
1.7% increase for all
events handled within
one microsecond
12.6% increase after
the serial port polling
delay between 10-12
microseconds

FPGA Event handling

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25

Time in microseconds

%
 o

f E
ve

nt
s

H
an

dl
ed

10K events
100 K Events

Device Utilization (V2P)

EDF scheduling function
Logic utilization: 11% SLICES, 17% of
LUT, 22% Block RAM, Gate Count of
405,637
Device utilization: 24% SLICES

Total FPGA SLICE Utilization
83% or
2510 out of 3008

Conclusions and Future Work

System behavior
With Hardw are Components Aggregate

performance
characteristics of
both systems are
comparable
Robust base for
hardware based
event scheduler
correctness,
behavior and
performance

0

2000

4000

6000

8000

10000

12000

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

Execution Delay (us)

N
u

m
b

e
r

o
f

E
v

e
n

ts

Without

System characteristics

Modular and Portable, IP
encapsulated
Flexible and reconfigurable
COTS Linux environment
Tested in different architectures,
ADI Engineering's 80200EVB and
the Xilinx Virtex-II Pro

Future Work

Thread Scheduling
Hardware-based Threads
Hybrid Threads
Smarter scheduler functionality
Only necessary interruptions to CPU

Questions

	Hardware/Software Co-design of Schedulers for Real Time Systems
	Presentation Outline
	Contributions
	Background
	Prior Work in Hybrid Co-design
	System Co-Design
	FPGA Hardware/Software Co-design
	Scheduling
	RTFPGA Project Overview
	Project Motivation
	Design Approach
	Design Functionality
	Design Implementation Plan
	Scheduler Implementation
	Hybrid Co-design for Kurt-Linux Event Scheduler
	Data Flow Chart in the RTFPGA Scheduler
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	Inter-Module Interfaces
	System Properties
	Testing and Analysis
	Functionality validation of design
	Event Addition Timing Diagram
	Event Deletion Timing Diagram
	EventSchedulingTimingDiagram
	Integrated Scheduler Test
	Data Stream Kernel Interface Tests
	Data Stream Kernel Interface Tests
	Data Stream Kernel Interface Tests
	Stability and Bounded Execution Time
	Event handling under different loads
	Device Utilization (V2P)
	Conclusions and Future Work
	System behavior
	System characteristics
	Future Work
	Questions

