Hardware/Software Co-
design of Schedulers for
Real Time Systems

Jorge Ortiz

Committee

David Andrews, Chair
Douglas Niehaus
Perry Alexander

Presentation Outline

Background
m Prior work in hybrid co-design
m FPGA hardware/software co-design
m Scheduling
RTFPGA Project Overview
m Design approach & functionality
m Design implementation plan
Scheduler Implementation
m Hybrid co-design for KURT-Linux event scheduler
m System properties
Testing and Analysis
m Functionality validation of design
m Data Stream testing
m Conclusions and future work

Contributions

m Design
Mitchell Trope, Sweatha Rao

m Implementation
Sweatha Rao, Jorge Ortiz

m [esting
Mitchell Trope, Sweatha Rao, Jorge
Ortiz

Background

Prior Work in Hybrid Co-
design

m Average-case enhancements
m Worst-case scenarios

m Platform architectures for real time
systems

m Systems that support real-time
constraints

System Co-Design

Parallel systems

s Multi-processor, FPGA, System-on-Chip, ASIC,
Reconfigurable systems

Hybrid systems
m Exploit recursive patterns
m Increase quality of service
s Meet real-time constraints

Real time operating systems
= Hardware support for the operating system
m OS function migration

FPGA Hardware/Software
Co-design

Desired system properties

m Timeliness, concurrency, liveness,
interfaces, heterogeneity, reliability,
reactivity, predictability and safety

O Average-case, worst case scenarios
System flexibility and performance

m Reconfigurable
m No loss in performance

Scheduling

m How to allocate which resources to
whom and for how long

m Handling real-time events

m Desire for finer granularity for
servicing interrupts

m Overhead costs due to interrupt
handling and event scheduling

m Design trade-offs

RTFPGA Project Overview

Project Motivation

m Provide higher resolution and finer
granularity for event handling

m Minimize overhead processing
m Migrating key functions into hardware
m Time keeping hardware support

m Hardware/software co-design of event
scheduler for real-time hybrid operating
system

Design Approach

m Migrate shadow timer into FPGA

m Implement scheduler bookkeeping
operations

m Provide processing for enqueuing and
dequeuing events

m Allow entering, sorting and deletion of
events

m Enable access to all queued events

m Move scheduling algorithm into the
hardware

Design Functionality

m FPGA stores event information in
local queue

m Run scheduling algorithm
m [dentify the next event to run

m Sends event time to a match
register

m Free-counting hardware clock
provides interrupt generation

Design Implementation Plan

m Interface ported KURT-Linux to FPGA
components

m Create FPGA-mapped registers

m Create basic event queue storage,
interface and functionality

B Implement event scheduler
m Deliver FIQ interrupts to CPU

m Solve concurrency issues of hardware-
based implementation

Scheduler Implementation

Hybrid Co-design for Kurt-
Linux Event Scheduler

m Forward event requests from OS to
hardware through command register

m Identify request type and event
information:execution time and
reference pointer

m Service request on event scheduler

m Raise interrupt flag upon execution
time

m KURT-Linux runs appropriate ISR with
retrieved event information

Data Flow Chart in the
RTFPGA Scheduler

m Request to FPGA

m Send request to
scheduler

m Identify request

m Add or delete in
Block RAM storage

m Schedule events in
parallel

m Queue expired
events for CPU to
read

Begister Read

Scheduled Ewent Storage
(FIFO Block FAN)

L J
{ TeCPUO)

Start
FPG 4 Reguest _ _
(Register IMapper) Register Write
Ewent Chueue Beguest
Scheduler Interface ;E:f'ent-tutfdelete
{ Mlernory Ianager) HETALOn
Event Search

5dd Frrent {Ouene Delete)
Control Signals

(=

Eseent Scheduling
(Cmene Mlinirora)

Timer Clack
{(Ttime)

D lete Event
cheduler Storage Control Signals
(Block FAI)

RTFPGA Scheduler Modules

Event Info In Register Memo Block
L
Mapper Manager RAM
Event Info Ot Ervent titme 4 ddress
h Interfaceto [Frent pointer *| Event Queue Frvent Dataln | Event
FPGA-bhased o Sttucture o Infortmation]
Fegisters and [Jusus command Controller Storage
Ewent Queue »]
Scheduled i
Event Info Errent DataChat

FIFO
Block
RAM

Exent Delete

i

Esrent Diindranrn

Store
Temporary Signal
Storage of
=cheduled

(popped) Events

[] Gueue implementation and storage B Queue Scheduling and Functinnal ity [] Start of Scheduler

RTFPGA Scheduler Modules

Register Mapper
m Interface to all registers

m Interface to internal functionality in
the FPGA board

m Modular and portable

m Two operational blocks - read and
write

m Timing, event information, scheduler
commands, debugging information.

RTFPGA Scheduler Modules

Memory Manager

m Control storage and handling of
Block RAM-implemented event
queue

m Block RAM Address generation for
event addition

m Service Scheduler requests

m Dirty bits indicate usage of Block
RAM addresses

RTFPGA Scheduler Modules

Block RAM

m Dual-read/write port synchronous
Block RAM FPGA storage memory

m First port for Memory Manager
requests

m Second port for continuously polling
information in BRAM addresses for
scheduling and searching purposes

RTFPGA Scheduler Modules

Utime

m Shadow of KURT Utime clock
implementation

m Set for microsecond resolution

m Provide match register for next
scheduled event time

m Create FIQ interrupts to CPU

RTFPGA Scheduler Modules

Queue Minimum

m Earliest Deadline
First algorithm

m Reads event
values output by
Block RAM

m Output information
for next event to
be scheduled

m Send appropriate
control signals

EDF pseudo-code

START
SET next event = max value
LOOP
IF last deleted value = next event
GOTO START
I3 B Sl exppEed feganii Il Be<E [efrenr
GOTO START
ITF no elements in queue THEN GOTO START
ELSE
READ new data from BRam event queue
IF data = event (dirty bit is set)
READ scheduled time
IF scheduled time < next event
next event = scheduled time
END IF
END IF
END IF
GOTO LOOP

RTFPGA Scheduler Modules

Queue Delete

m Continuously receive polled
information from Block RAM

m Perform a deletion using linear
search & comparison

m Found or lost signal sent back to
Memory Manager

m Check for concurrency with interrupt
generation and event queue popping

RTFPGA Scheduler Modules

FIFO Block RAM

m FIFO queue for expired events that
have not been read yet by CPU

m Keep track of number of expired
events

m De-queue until empty

Inter-Module Interfaces

Frrent Info In

i
i

Erwent Info Ot

e

o

i
i

Expoired
Esrent Info

31

Register
Mapper

Ewxent tirne
i

Ewvent poimnter ';g
i

o

7
(Jueue cornmatd

i
3

FIFO
Block

=
=

Store

2
I

ﬂ'

Memory
Manager

Lddress 51
i

Block

=
=

Errent Data'fIn
;

7
Scheduled Frent

T

Erent DiataCat

2

L

Event:ﬁelete

System Properties

m High interdependency of modules

m Concurrency of deletions and
interrupts solved by linear approach

m Highly cohesive scheduling
algorithm

m Tight coupling due to system
requirements

Testing and Analysis

Functionality validation of
design

m Initial setup bootstraps FPGA timer
shadow

m Check for:
m Event addition
m Event deletion
m Event scheduling

Event Addition Timing
Diagram

aevent _tims

ref erence_polinter

bram_command

bram_w_an_out

eventtlime_out 2Bram

ref_ptr_outZBram

bram_addr_portl

evant count

just _added_svent

dirty_bit@bram_addr_portl

T oarar s

éventtime

T oaras s

MODULE

Regl st er

N/

g raf_ptr

Mapper

Regl st er

N/

Z o an
N

Mapper

vanttimea

ref_prr

axt_fraa

hram

TiRN
el

i

T+

(

L

Regl st er
Mapper

Memory
Manager

Block
R ADM

Block
R ADM

Block
R AM

Memory
Manager

Memory
Manager

Memory
Manager

Event Deletion Timing
Diagram

bram_command

del et e

aventtime MemMan out 2del

Minimum Mode

found_address

delete addreses

event count

dirty_kbit@deleteaddress

lost _address

delete_address

M ararasach

A

TN

}

Aanttime

(|

MODULE

Reglster
Mapper

Memory
Manager

Queues

nlin

m N/

Delaete

Dualue

W?v

dalate

ddreags

|

asvantoou

I

Delete,
Minimum

| Dusus
Delete

Memory
Manager

Memory
Manager

Memory

1] ([

=l aal

f

i

Manager

Quanes
Delata

Memory
Manager

"yt "ot " MODULE

min_event time | aventtipe WEEEED min_evnttime Quens
ML 0l mam

min_event_ref_ptr_ ref _poinfer WEEEE) min_ewent _ref ptr Quens
M 0l mum

min_event addr — | _/addrese Wy nir_afldress Quens
M 0l mam

Jiffy & jiffy u éventtima} Utine

Utime

timer off /

E V e I l t FIQ_interrupt
=
FIFC@huffer_tail /ref_poi ter \ FIFO

N\ Block RAM

x - baffer tail /ﬁuffer_tai
I I ! J Memory
Manager

=

D I a ra I I I dirtybit@nin_event addr Memory
Manager

avent _gount /eventcou:\ Memory
1/

W)

CPU

—
w
hay

Quens
M 0l mam

il

w3

Command_Code,

[

-

Manager
mi ni mum_mode, / B 100 AL Memory
\ Manager
refpointer from fifo_bram rof_poinferl ref_pointer? Register
@buffer_head \ Mapper
Jequnens_req_fronRegMapper \ FIFO
Block RAM

buf fer_head / tuffarhegds+ | Quens

M nl mam

Integrated Scheduler Test

Initial Set up

Add Eventl, Add Event2,
Add Event3, Add Event4,
Add Event5

Find Minimum

Delete Event2, Delete
Event3

Find Minimum

Read current time from
FPGA timer registers
(jiffy, jiffy_u)

Write event_time = jiffy
+ offset

8.

g.

10.

11.

12.

13.
14.

Write ref_ptr = loop
variable

Repeat the above three
steps for loop variable =
0to?2

Wait on jiffy + large
offset

WHILE fifo_ref_ptr 1=
x"00000000" (queue not
empty)

Read fifo_ref_ ptr

(confirm all the three
timers expired)

END WHILE
Read jiffy & jiffy_u

Data Stream Kernel
Interface Tests

@ With Hardw are Components
m Without

5000

4000 -

3000 -}

2000 -}

Number of events

1000 -

0*' \D_\\\\\\\\\

~— = ™ @

Execution time delay (us)

Timer Execution Delay for Software RTOS and Hardware/Software RTOS

Data Stream Kernel
Interface Tests

The Software-based RTOS showed
expected better performance

m Lag between CPU and FPGA timers
of 2-4 microseconds

m FIQ handler schedules an IRQ),
downgrading the interrupt priority

Data Stream Kernel
Interface Tests

[root@george dski]$./dskihists -i 900 -f 4 -h 1 -n 100
Waiting for 900 seconds...

Name of the histogram: HIST TIMER EXEC DELAY

Number of events logged: 10000

Minimum Value: O

Maximum Value: 7137329

Lower Bound: 0

Upper Bound: 100

Num of Buckets: 102

Stability and Bounded
Execution Time

@ Maximum execution delay for a software-
based timer was in the range of millions
of microseconds

m In the hardware version, all events in all
tests were executed within the time delay
range of 23 microseconds

m Hardware delay attributed to startup
delays, worst case scenario checking,
interrupt servicing, communication costs
across ports

Event handling under

different loads

% of Events Handled

3

3

o

8 & 8 8

FPGA Event handling

— 10K events
—— 100 K Bvents

— M IO MO — M LU NMN~NO®

rn T ¥ T T

21
23 |
25

m Increase of 6.4% for
events handled with a
Zero microsecond
delay

m 1.7% increase for all
events handled within
one microsecond

m 12.6% increase after
the serial port polling
delay between 10-12
microseconds

Device Utilization (V2P)

m EDF scheduling function

m Logic utilization: 11% SLICES, 17% of
LUT, 22% Block RAM, Gate Count of
405,637

m Device utilization: 24% SLICES

m Total FPGA SLICE Utilization
m 83% or
m 2510 out of 3008

Conclusions and Future Work

System behavior

Number of Events

12000 -

—— Without

10000

g

8000
6000

4000
2000

o

FFFFF

m Aggregate
performance
characteristics of
both systems are
comparable

m Robust base for
hardware based
event scheduler
correctness,
behavior and
performance

System characteristics

m Modular and Portable, IP
encapsulated

m Flexible and reconfigurable
m COTS Linux environment

m [ested in different architectures,
ADI Engineering's 80200EVB and
the Xilinx Virtex-II Pro

Future Work

m Thread Scheduling

m Hardware-based Threads

m Hybrid Threads

m Smarter scheduler functionality

m Only necessary interruptions to CPU

Questions

	Hardware/Software Co-design of Schedulers for Real Time Systems
	Presentation Outline
	Contributions
	Background
	Prior Work in Hybrid Co-design
	System Co-Design
	FPGA Hardware/Software Co-design
	Scheduling
	RTFPGA Project Overview
	Project Motivation
	Design Approach
	Design Functionality
	Design Implementation Plan
	Scheduler Implementation
	Hybrid Co-design for Kurt-Linux Event Scheduler
	Data Flow Chart in the RTFPGA Scheduler
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	RTFPGA Scheduler Modules
	Inter-Module Interfaces
	System Properties
	Testing and Analysis
	Functionality validation of design
	Event Addition Timing Diagram
	Event Deletion Timing Diagram
	EventSchedulingTimingDiagram
	Integrated Scheduler Test
	Data Stream Kernel Interface Tests
	Data Stream Kernel Interface Tests
	Data Stream Kernel Interface Tests
	Stability and Bounded Execution Time
	Event handling under different loads
	Device Utilization (V2P)
	Conclusions and Future Work
	System behavior
	System characteristics
	Future Work
	Questions

