GENISYS: A Component Inversion Engine

by

Kalpesh Zinjuwadia

B.E., Electronics Engineering. Faculty of Technology and Engineering

Maharaja Sayajirao University of Baroda. Baroda, India.

Submitted to the Department of Electrical Engineering and Computer Science
and the Faculty of the Graduate School of the University of Kansas in partial

fulfillment of the requirements for the degree of Master of Science.

Dr.Perry Alexander (Chair Person)

Dr.David Andrews (Member)

Dr.Arvin Agah (Member)

Date Accepted

(©) Copyright 2005 by Kalpesh Zinjuwadia

All Rights Reserved

i

Acknowledgments

I would like to express my gratitude to my advisor and committee chairman,
Dr. Perry Alexander, for his continuous guidance and motivation throughout this
project. I am thankful for his immense support, and useful suggestions whenever
I needed them. I also thank him for making my thesis work full of fun. It has
been an unforgettable experience working for him. He is more than a mentor to
me. [would like to thank Dr. David Andrews and Dr. Arvin Agah for consenting
to be on my committee.

I wish to thank Krishna Ranganathan, EDAptive Computing Inc., for his
insightful suggestions during the course of my research work. Discussions with
him really helped in making my thesis a success. I would also like to thank all
my colleagues and members of the SLDG group: Garrin Kimmell, Ed Komp,
Cindy Kong, Brandon Morel, Murthy Kakarlamudi, Jesse Stanley, Justin Ward,
and Jennifer Streb for making my research experience enjoyable and less stressful.
[am thankful to EDAptive Computing Inc. for sponsoring this research project.

Thanks to all my friends who have made my stay in Lawrence a memorable one.
Also, thanks to the professors, students, and staff members at the Information and
Telecommunication Technology Center and at the University of Kansas for making
my two year stay a wonderful experience.

Finally, this work wouldn’t be complete without the continuous support and
inspiration I got from my family. They have given me so much love and encour-

agement to which I am overwhelmingly thankful. T owe them a lot.

il

Abstract

A structural component can be represented as a black-box system having inner-
components dependent on each other. This inter-dependence results into depen-
dence hierarchy in the system. If a Component Under Test (CUT) is part of such
a system, the relation between CUT and the system input has to be determined
to test it. One of the techniques is to invert all the components between CUT
and the system input and derive the system input that will generate the desired
input for CUT. Component inversion allows the tester to retrieve the initial state
the component was in before the forward execution. A component may perform
various operations that manipulate the input parameters and generate the output
parameters. Component inversion inverts all the operations in order from last
to first to determine the input parameters. This thesis presents a component in-
version engine - GENISYS: Automated Test GENeration in Intelligent SYStem -
that inverts a component to determine input parameters for known output values.
GENISYS inverts all the inner-components along the data-paths and retrieves the
system input of the structural component. There are two phases involved in this
process. First phase determines the component dependence hierarchy. During the
second phase, GENISYS inverts the components along the hierarchy and gen-
erates the system vectors. zChaff SAT solver is used to invert expressions in a
given component. Various XML files comprise the output of the GENISYS tool.
These files contain information about the component dependence hierarchy and

the interface parameters of the structural component.

v

to my family

Contents

Acknowledgments
Abstract

1 Introduction
1.1 Motivation L
1.2 Problem Statement
1.3 Proposed Solution

1.4 Organization of Thesis

2 Background
2.1 Rosetta Specification Language
2.2 Extensible Markup Language
2.2.1 An Introduction to XML 0L
222 DOM. ...
2.2.3 XML Schemao oo

2.3 Introduction to Program Inversion.

vi

ii

iv

3 Data-Path Generator
3.1 Concept of Level in GENISYS
3.2 Data path Determination
3.3 Component Dependence Hierarchy
3.4 Feedback Loops
3.4.1 Types of Feedback Loops
3.4.2 Loop Considerations

3.5 Non-Determinacy in Hierarchy

4 Component Inversion Engine

4.1 Component Inversion Phase of GENISYS

4.2 Algorithm for Component Inversion Engine

4.3 Algorithm to Identify Invertible Components

4.4 Algorithm to Invert a Component

4.5 Algorithm to Invert Boolean Expressions
4.5.1 Conjunctive Normal Form
4.5.2 Boolean Satisfiability (SAT)
4.5.3 Introduction to SAT Solvers
454 zChaft SAT Solver L.
4.5.5 zChaft CNF File Format
4.5.6 Algorithm to Convert Boolean Expressions to CNF

4.6 Algorithm to Invert If-then-else Expression

4.7 Component Inversion and SAT Solver

Vil

20

21

23

23

26

27

30

31

33

33

35

35

36

37

37

39

39

40

40

42

5 GENISYS Internals

5.1

5.2

5.3

5.4

3.5

5.6

CompMap - Database
ParaMap - Database
XML Parsero
ROM Parser o
GENISYS Tool Usage
GENISYS Output XML fileso
5.6.1 Driving Component Hierarchy
5.6.2 Driven Component Hierarchy

5.6.3 GENISYS System Vectors

6 Testing and Examples

6.1

6.2

Rosetta Specification for various Components
6.1.1 Trigger-based Circuit
6.1.2 Negative Trigger Circuit
6.1.3 OR Gate Circuit
6.1.4 Inverter Circuit
6.1.5 Positive Trigger Circuit
6.1.6 Multiplexer Circuit
6.1.7 Rosetta Specification for the Structural Component
Test Scenarios
6.2.1 Test Scenario-1 Lo

6.2.2 Test Scenario-2

48

48

49

50

51

52

33

54

56

38

60

60

61

62

63

63

64

64

6.2.3 Test Scenario-3 71
Related Work 77
Conclusions and Future Work 80
8.1 Conclusions 30
.2 Tuture Work S1

X

List of Figures

1.1 Functional Block Diagram of GENISYS 7
2.1 Rosetta Specification for Schmidt Trigger Circuit 12
2.2 Domain Hierarchy in Rosetta 13
2.3 XML Representation 0oL 15
2.4 AND/OR Tree Model for Forward and Inverse Computation . . . 18
3.1 Level in GENISYS 21
3.2 Expanded Level in GENISYS 23
3.3 Data-Path Generator 24
3.4 Component Dependence Hierarchy 24
3.5 Driving Component Dependence Hierarchy 25
3.6 Driven Component Dependence Hierarchy 25
3.7 Facet Signatures illustrating Facet Dependence Link 26
3.8 Facet Signatures illustrating Infinite Feedback Loop 27
3.9 Self Feedback Loopo 28
3.10 Facet Signature illustrating Self Feedback Loop 28

3.11

3.12

3.13

3.14

3.15

3.16

4.1

5.1

5.2

5.3

5.4

3.5

6.1

6.2

6.3

6.4

Primary Feedback Loop
Facet Signatures illustrating Primary Feedback Loop
Secondary Feedback Loop
Facet Signatures illustrating Secondary Feedback Loop
Non-Determinacy in Hierarchy

Facet Signatures illustrating Non-Determinacy in Hierarchy

Component Inversion Engine

Command-line argument of the GENISYS tool
Top Dependence Hierarchy in XML
Top Dependence Hierarchy
Bottom Dependence Hierarchy in XML

Bottom Dependence Hierarchy

Driving Component Dependence Hierarchy for Test Scenario-1 . .
Driven Component Dependence Hierarchy for Test Scenario-1
Driving Component Dependence Hierarchy for Test Scenario-2 . .

Driven Component Dependence Hierarchy for Test Scenario-2

xi

32

34

33

54

35

56

57

68

68

70

70

Chapter 1

Introduction

Testing is among the most important phases in the software product development
cycle. The importance of software testing and its implications with respect to
software quality is boundless [29] and is a critical factor in software quality as-
surance. It represents the final review of a system specification, design and code
generation [26]. Software is employed in most of the contemporary applications
such as maintaining accounts in a local branch of some firm; electronic banking;
and controlling valuable machinery. Testing accounts for as much as two-thirds
of the total cost of software product development [25]. Well planned and thor-
ough testing is critical given the costs associated with software failures and the
importance of software as a system element. At times, software failures can be
disastrous and may lead to unexpected situations. Cosidering these facts, it is
critical that software being deployed is thoroughly tested.

The major goal of a tester is to find errors in the software product. It is impor-

tant that the tester finds as many errors in the software as possible by executing
various test cases over the software. A good test case has a high probability of
finding an error. The more likely a test case is to find errors, the more it reduces
testing efforts. Hence, efficient testing reduces the testing effort and cost.

There are various forms of testing [16]. Structural testing is carried out using
implementation-based testing techniques. Since this type of testing technique
deals with the interals of the Implementation Under Test (IUT), it is also known
as white-box testing. Functional testing 1s based upon systems level requirements.
It is used to find whether valid inputs are accepted and the obtained outputs
conform to the requirements. This testing technique is also called black-box testing
as it is performed at a higher level of abstraction without worrying about inner
details of the system.

The major drawback of implementation-based testing technique is that while
it may help verify the implementation is correct, it does not ensure that the correct
system has been implemented. This can be overcome by using specification-based
testing techniques [26, 30, 16]. Such techniques use conventional testing meth-
ods where the TUT is repeatedly stimulated and outputs generated are compared
against expected values derived from specifications. In specification-based test-
ing, the test cases are derived from the specifications. Various advantages of

specification-based testing include:

o [t not only tests the functionality of the IUT, but also the intended behavior

of IUT. It makes sure that correct system has been implemented.

o [t exposes any inconsistencies or ambiguities in the specifications. Specification-

based testing reveals any glitches in the specification before the implemen-
tation begins and hence saves the time and effort required in revisiting the

specifications after the implementation is complete.

o Test cases can be designed as soon as the specifications are complete. This

speeds up the development process of the software product.

e Modifications in the specifications can be done with respect to user interface.

1.1 Motivation

Various technologies for testing include, conformance testing, functional testing,
load testing, performance testing, regression testing, unit testing, and stress test-
ing. Various tools have been developed to perform each specific type of testing.
Tools like, test case generators, are available to aid the testing process in general.
However, the execution cannot be reversed or undone. Inverting, or undoing,
a program or a statement in the program allows the user to execute a particu-
lar statement multiple times. This feature is helpful while debugging a software
program and speeds up the testing process.

A debugger helps in detecting errors in the product through controlled exe-
cution of the program. Many contemporary programming languages have their
debuggers. Conventional debuggers include: GNU Project Debugger, or GDB [10],

for C, C4++, Pascal, Objective-C, and many other languages, Java Debugger, or

JDB [8], for Java programming language, and [Insight [7], a GUI-based GDB,
written in Tecl/Tk.

Conventional debuggers offer various features to help the testing process.
These features include [19]: allowing the user to set breakpoints; setting watch-
points; setting control parameters; and examining variable values. At times, the
debugger over-steps a statement in the program where the error occurs. It would
be useful if it were possible to go back and examine the program states at previous
statements that have already been executed. Unfortunately, this is not possible
in conventional debuggers [19]. They cannot restore execution state to a pre-
vious point. The only option the user has is to restart the program execution.
For small-sized program this is not a major drawback. However, for large and
computation-intensive programs, it is costly to restart the execution after a long
debugging session. To be able to invert program statements and retrieve the initial
state is very useful while debugging a program. Program inversion would allows
the user to analyze the initial state of the program and makes the debugging
process more efficient and faster.

These examples suggest interesting yet challenging notion of statement inver-
ston. Statement inversion is the process of determining the possible state of the
system that will produce the given state after executing the statement. Semanti-
cally, the inversion of a statement is equivalent to the construction of the weakest
precondition of a statement from the strongest postcondition [20]. Should state-

ment inversion be possible, the debugger only needs to invert the previous state-

ments to reach the faulty statement rather than re-executing the whole process.
Program inversion is the process of inverting all the statements in a program in
order from the last statement to the first statement resulting into the state before
the program execution. This ability to restore the initial state of a system makes
program inversion important and an integral part of testing. Program inversion

makes the testing process complete and more robust.

1.2 Problem Statement

Program inversion is an important aspect of debugging that not only speeds up
the testing process, but also makes it more effective. A software product can
be represented as a structural model that takes some input and generates corre-
sponding output. This component may contain a group of inter-dependent inner
components, where each inner component drives some other inner component. If
the tester wishes to test one of the inner components of the system, they need
information regarding the input values to the inner Test Component (TC). The
structural component is a black-box system for the tester, that hides the inner
details of the system. In such a case, the tester needs to figure out the inner
components driving and driven by the TC. Given the input and output parame-
ter values of the TC, the tester needs to traverse through the list of driving and
driven components and invert them to determine the system input and output
that generates these values. When fed to the structural component, these sys-

tem inputs should produce the same system output as obtained initially. This

thesis is an effort to solve the problem of component inversion in component

inter-dependence scenarios.

1.3 Proposed Solution

GENISYS, a component inversion engine, is a tool developed to solve the problem
of component inversion. We assume that a system is represented as an assembly
of components. Given this, the component inversion process is divided into two
phases by GENISYS: the data path determination phase, and the component in-
version phase. In the first phase, paths to the components driving and driven by
the test component are determined. This results in an hierarchy of components
called the component dependence hierarchy. Fach path in this hierarchy forms
a component dependence link. A link connects driving and driven components in
the hierarchy. The component dependence hierarchy is an input to the component
inversion phase along with the Rosetta specifications of the structural and the test
component. The component inversion engine performs the component inversion
process over the components in the hierarchy and generates the system vectors.
Figure 1.1 shows a functional block diagram of GENISYS.

As shown in figure 1.1, there are two inputs to GENISYS: Rosetta specification
of the structural component and that of the test component. The two engines used
in GENISYS are, data-path generator and component inversion engine. The for-
mer generates the component dependence hierarchy. Two component dependence

hierarchies are formed for a given component inter-dependence scenario. This

Data-Path
Generator

|_Component l

Dependence

| Hierarchy |
in XML

1 Test
+ Component
Details |

Component
Inversion
Engine

........

H
s GENISYS Inputs

r_ System
Inputs

Outputs O GENISYS Engines
L — — 4

Figure 1.1: Functional Block Diagram of GENISYS

hierarchy gives information about the driving and the driven inner-components
in the structural component. Data-path generator also resolves the issues involv-
ing scenarios with infinite feedback loop and non-determinacy in the component
dependence hierarchy. The component inversion engine is provided with the hi-
erarchies generated in the first phase along with the Rosetta specifications. This
phase first identifies the invertible components from the component dependence
hierarchies. This process is performed to ensure that only invertible components
are processed. Inverting components along both the hierarchies will produce sys-
tem input and output parameters. The final output of GENISYS includes these
parameters in form of system vectors. Each vector contains system output of the
structural component and the corresponding system input which generates this
output. The GENISYS output is stored in XML format because of its platform-

neutrality and inherent flexibility.

1.4 Organization of Thesis

Chapter 2, Background and Related Work, gives an introduction to Rosetta [18],
a System Level Design Language [17]. It highlights various features of Rosetta
including, facets, packages, and domains. It also gives an introduction to XML.
Additionally, different features of XML used in this thesis are discussed later in
this chapter. DOM [3] is an XML parser used in this thesis. XML Schema [13], a
feature of XML, is the template that defines the markup for XML. An introduction
to program inversion can be found at the end of this chapter.

Chapter 3, Data-Path Generator, gives an overview of the first half of the
technical solution. It outlines the data path determination process to form a
component dependence hierarchy. An overview of various algorithms used to
generate this hierarchy is presented. Vvarious issues including, infinite feedback
loops and non-determinacy are tackled by the data path generator towards the
end of this chapter.

Chapter 4, Component Inversion FEngine, describes the second half of the tech-
nical solution. The functional block diagram of the component inversion engine is
discussed in this chapter. It is followed by an overview of various algorithms used
by this engine. Discussion of the conjunctive normal form, boolean SAT solvers,
and the zChaff SAT solver [15] employed in this thesis are found here.

In Chapter 5, Internals of GENISYYS, internal details of GENISYS are ex-
plained. Two major databases, CompMap and ParaMap, used to store informa-

tion during the data path determination and component inversion process, are

explained in this chapter. It is followed by discussion of the XML and Rosetta
Object Model (ROM) parser, and the GENISYS tool usage. The two component
dependence hierarchies, top and bottom dependence hierarchy, and the GENISYS
system vectors are discussed here.

Chapter 6, Testing and Framples, presents various test scenarios with valid
and invalid Rosetta specifications used to test the GENISYS tool. For each valid
specification, the GENISYS output XML files are described and for invalid spec-
ifications it is shown how GENISYS handles such scenarios.

Chapter 7, Related Work, discusses work done by other researchers in the fields
of component-based testing and program inversion. Chapter 9, Conclusions and

Future Work, summarizes this thesis work and proposes future work possible in

this field.

Chapter 2

Background

This chapter provides an introduction to Rosetta, a System Level Design Lan-
guage. Various constructs in Rosetta including, facet, domain, and package are
described and an example illustrating Rosetta specification is used to explain the
language. Later in the chapter, an introduction to XML [14] is provided. A brief
overview of XML is illustrated with a simple example and various advantages
and real world applications of XML are provided. It is followed by discussions of
various features of XML including, DOM, and XML Schema. An introduction to

program inversion ends this chapter.

2.1 Rosetta Specification Language

Rosetta [18] is a System Level Design Language [17] used to design a system
at higher levels of abstraction. With increase in the complexity of a system an

abstract language such as Rosetta is very helpful to specify its behavior. Charac-

10

teristics of Rosetta that make it suitable to use even with incomplete information

about a system include [16]:

o the ability to integrate information from multiple heterogeneous sources

o declarative modeling

e support for model composition.

The basic unit of specification in Rosetta is called a facet. Each facet pro-
vides information about a particular aspect of a component or a system. Each
facet in Rosetta may use a different model to provide domain-specific vocabulary
and semantics in order to support the notion of heterogeneity in designs. A facet
is parameterized over the interface of a component and it encapsulates all the
Rosetta definitions from basic unit specifications through components and sys-
tems. The facet keyword marks the beginning of a Rosetta specification. It is
followed by a list of interface parameters identifying the component input and
output parameters.

A package provides a convenient way of aggregating similar Rosetta structures
like facet. Fach such structure in a package should have a unique label identifier.
A structure is visible only with the package that contains it. Structures in different
packages may have same label identifier since their scopes don’t overlap.

Figure 2.1 illustrates a simple example of Rosetta specification for a schmidt
trigger circuit [27]. This specification defines a package, schidt_trigger pkg,
that contains a facet, schmidt_trigger fct. The facet has interface parameters,

11

package schmidt_trigger_pkg :: static is
/* package body begins here */
facet schmidt_trigger_fct

(
/* interface parameters declared */
input_voltage :: input real;
output_value :: output bit
) :: state_based is
/* locally declared variablex*/
b :: bit;
/* facet body begins here */
begin

prel: (input_voltage > 0.0) and (input_voltage < 5.0);
postl: if (input_voltage < 1.0)

then (b’ = 0)

else if (input_voltage > 4.0)

then (b’ = 1)
else (b’ = b)
end if

end if;
post2: (output_value’ = b’);
end facet schmidt_trigger_fct;
end package schmidt_trigger_pkg;

Figure 2.1: Rosetta Specification for Schmidt Trigger Circuit

input_voltage of mode input and type real and output_value of mode output
and type bit. All Rosetta parameters are declared using the notation z:: 7T, where
x is the parameter name and 7' is the type of the parameter. The scope of the
parameters extends throughout the facet. Domain used in the specification is
declared after these parameters. A domain in Rosetta extends the base definition
semantics by adding new definitions specific to a design domain. Existing domains
include, static, state_based, discrete time, continuous time, frequency, and finite
state. Figure 2.2 shows hierarchical representation of various domains existing in

Rosetta.

12

Static

A 4

IState_based|

/\

font inuouf Discrete
Continuous| Frequency Discrete Finite
Time Time State

Figure 2.2: Domain Hierarchy in Rosetta

In the schmidt trigger example, the package uses the static domain and the
facet uses the state based domain. Declaration of local variables is optional and
if stated follows the keyword is. In the schmidt trigger specification, b is the
locally declared variable of type bit and is visible over the entire facet.

The body of the facet starts with the keyword begin. It contains a set of
expressions called terms. All terms in the specification are boolean expressions.
They define the behavior modeled by the facet. The general format of representing
a term is L:Fxpression, where L is the label associated with the Fxpression. Labels
are used to represent the expression specified in a given term. A semicolon “;”

marks the end of a term. The body ends with two end clauses, which mark the

termination of the facet and the enclosing package.

2.2 Extensible Markup Language

XML, or Extensible Markup Language [14], is a W3C-endorsed standard for doc-

ument markup. This section provides a brief introduction to XML and its features

13

used in this thesis. Component dependence hierarchies and system vectors, dis-
cussed later in this thesis, are represented in XML format. Also the abstract test

vectors, used as one of the inputs to the component inversion engine, are generated

in XML format.

2.2.1 An Introduction to XML

Because of its inherent flexibility and data-neutrality, XML is widely used as
a standard means for data storage and representation. Data is stored in XML
documents as strings of text, surrounded by user-defined tags. A particular unit
of data and markup is called an element. The XML specification defines various
rules for representing data in the tags, placing the tags, defining attributes for a
particular tag and so on. As mentioned earlier, the tags in XML are user-defined.
This helps the users to define their own custom tags based on their application.
For instance, a botanist can use tags to describe stem, root, leaf, and other parts
of a plant, while a pharmacist can use tags to describe various drugs. XML is
similar to HTML, or Hyper Text Markup Language [6]. XML is more flexible
than HTML in terms of the tag names, however it is strict in the sense that each
and every opening tag has to have a closing tag, which is not the case in HTML.

Figure 2.3 shows a simple example of XML document. <contact_info> is
the root element of the XML tree. <address>, and <phone> are its two chil-
dren elements, that themselves have children. So <block>, <street>, <city>

are children of the <address> element and grandchildren of root element. Sim-

14

<contact_info>
<address>
<block>M</block>
<street>main</street>
<city>lawrence</city>
</address>
<phone>
<home>7858888888</home>
<office>7858648888</office>
</phone>
</contact_info>

Figure 2.3: XML Representation

ilarly, <home> and <office> are children of <phone> element and grandchildren
of <contact_info> element. In this example, <contact_info>, <address>, and
<phone> are complex elements, while the grandchildren of root element are simple
elements. An element is complex if it has one or more child element. If an element

has only data stored between the opening and closing tags, it is simple.

2.2.2 DOM

DOM, or Document Object Model [3], is a parser for XML documents. It provides
a standard programming interface to the applications and is used to access all the
building blocks of an XML document. DOM provides Application Programming
Interfaces (APIs) for parsing XML documents in many languages and is designed
to work with any operating system. The XML document should be loaded in the
memory before it can be parsed. It is stored in form of a tree in the memory.
The top level element in the XML document becomes the root of the tree and

its child elements become children of the root in the tree. Depending on the

15

element hierarchy in the XML document, the child nodes in the tree may or may
not have siblings. The tree terminates with leaf nodes that do not have any
children. After loading the XML document in the memory the information is
accessed and modified using APIs provided by DOM. Using them a developer can
achieve various tasks like, creating new elements, nodes, and attributes, deleting

the elements, and modifying their values.

2.2.3 XML Schema

XML schema [13] are used to define the legal building blocks of an XML document.
XML schema itself is represented in XML format. It defines all the elements that
appear in the XML document. Schema includes all the child elements of a given
node and also the order that they may appear. It also provides information
regarding the attributes, if any, a particular node has. This information includes,
name, type, and use of the attribute. With schema tools can determine whether a
given element is empty or not. Since XML schema supports data types, it is easier
to describe permissible document content. A schema itself is an XML document
and can be parsed using any XML parser. Being extensible in nature, a schema
can be reused in other schemas and multiple schemas can be referenced from the

same document.

16

2.3 Introduction to Program Inversion

Program inversion, as a programming technique, has been used in several ap-
plications [31, 32, 19]. Inversion is a fundamental concept in mathematics and
theoretical computer science [31]. Program inversion refers to the computational
process, which determines the input values a program needs in order to gener-
ate a given set of output values [31]. A program inverse itself is a program that
computes the inverse computation of another program. Function inversion is the
process of deriving for some one-to-one function f:X — Y the inverse function
f7' Y — X such that f~'(f(z)) = 2. For example, let f(z) = 2* and f~' = \/z.
So we get,
) = Va? = +a

Program inversion is similar to function inversion. A conventional view of
computation is for a program to first read some initial input values, perform some
computation, and produce output values as a solution for the given input. Given a
final set of output values of a forward-directed program, an inverted computation
derives the input values that the program would use to compute the output. In
the example given above, given an input value, say m, to f, the inverse function,
f~1, is one that takes the squared value of m and returns its square root, say n.
Thus,

n = \/W = +m.
This example shows an important fact about program inversion - the output

of a program may be produced by many possible inputs. Thus, if the forward-

17

directed computation is many-to-one, the computational inverse is modelled by
a relation over multiple sets of input and output values. Figure 2.4 shows the

AND/OR tree model [24] for a many-to-one forward computation [31].

il_é ilé_

j —> i2 o<—

Py T \ SN \
i3.7 i3~ 2
i4—>%—>/\01 i4eee/\?ol
i5—>%—>—>/ i%—ee—e—/
16_99_9_9_9 02 166666_6_02

Figure 2.4: AND/OR Tree Model for Forward and Inverse Computation

The forward-directed computation starts at one of a number of initial input
states (i1, ..., i6) on the left tree. The state changes deterministically until a final
state of 0y or o0y is reached. Since all the state transition paths are deterministic,
the AND/OR tree derivation for each computation takes the form of a single
branching tree with only AND nodes. The right tree shows the inverse of the
forward computation on the left tree. In this tree, there are nondeterministic
choice of paths to take when inverting many computation steps. The AND/OR
tree model ascribes OR nodes to such nondeterministic choice of paths. In the
figure 2.4, these nodes are labelled with “77.

The computability of inverse of a forward-directed computation is affected by

the following [31]:

o Erpression Invertability: All mathematical primitives must have supplied for
them effective means of computing their inverses. To invert an expression, an

18

adequate definition of its component primitive operators and the availability

of data arguments is needed.

Control: Inversion of a computation greatly depends on the type of control
structure it has. Inverting the iterative structure of iterative loops requires
that the least fizpoints of the loops are computed. Non-terminating loops

cannot be inverted.

Algorithm Properties: The properties of an algorithm drive the inversion
process. These properties decide whether a given algorithm can be inverted
or not. They may even allow an algorithm to have a tractable inversion.
Since these properties may not be common among all the algorithms, a

decision procedure for general inversions does not exist.

19

Chapter 3

Data-Path Generator

This chapter outlines the data-path determination process in a component depen-
dence hierarchy. An overview of algorithms to tackle various issues like, infinite
feedback loop and non-determinacy is presented here. In this thesis, the terms
component and facet are used interchangeably, as each and every component in
the component dependence hierarchy has a corresponding facet declared in the
Rosetta specification. The only difference between them is that a given compo-
nent in the hierarchy can instantiate only one facet in the specification, while a
given facet can be instantiated by many components. In other words, given the
component we can always find the corresponding facet but not the other way

round.

20

3.1 Concept of Level in GENISYS

In GENISYS, there is a concept of level that is used during component inversion
phase. All components at the same depth in the component dependence hierarchy
are grouped in the same level. This concept of level is used to distinguish the
extend of inter-dependence between a given component and the test component
(TC). There might also be inter-dependence links among components in the same

level.

Level 2L Level 1L
comp_4 N ﬂ comp_1
comp 5 / comp_2 TC
comp_6 P comp 3

Figure 3.1: Level in GENISYS

In figure 3.1, components compy, comp,, and comps belong to level 11.. Com-
ponents, compy, comps, and compg belong to level 2. There are also inter-
dependence links among components in the same level. Components comp, and

comps also belong to level 2L due to following inter-dependence links.

compy — compy — TC

comps — compy; — TC

21

Components comps, compy, and compg belong to level 31 as a result of the

following links.

comps — compy — comp; — TC
compy — compy — comp; — TC

compg — comps — compy — TC

Component compg belongs to level 41, due to the link:

compg — comps — compy — comp; — TC

In specifications, a component may belong to several levels simultaneously.
During component inversion such a component is grouped in the highest numbered
level it belongs to. This is due to the fact that during component inversion, we
traverse through the components hierarchy in a fashion that ensures that the
output parameters are known before inverting a given component. Due to the
inter-dependence links among various component in the same level, it is inevitable
to separate the level they belong to. Otherwise, trying to invert a component with
some of the output parameters unknown will make the component non-invertible.
Applying this concept to the example given in figure 3.1 gives result shown in
figure 3.2.

As shown in the figure 3.2, the components are grouped in level as far away
from TC as possible. This ensures that before inverting a given component all of

its output parameters are known.

22

I
| |
Level 4L, Level 3L | Level 2L, Level 1L
I
I

comp_4 comp_ 2

comp_6

| I comp_1 [—Hp TC

| | |
;l’» comp_3 comp_5

Figure 3.2: Expanded Level in GENISYS

3.2 Data path Determination

Figure 3.3 shows a block diagram representation of the GENISYS data-path deter-
mination phase. The data-path generator takes in two inputs: Rosetta specifica-
tions of various components in the component dependence hierarchy; and the test
component. The output of this phase comprises of two component dependence
hierarchies traversing up and down from the test component. The data-path gen-
erator tackles various issues such as, infinite feedback loop and non-determinacy

in a given component dependence hierarchy.

3.3 Component Dependence Hierarchy

The component dependence hierarchies are produced as part of the output of the
data-path determination phase of GENISYS. Figure 3.4 illustrates the component
dependence hierarchy. As explained earlier, each component belongs to a unique
level. The level a component belongs to is an indication of the extend of inter-

dependence between the component and the test component. The closer the level

23

L] L] L]
L] L] L]
Rosett 1] Test]

osetta | : onen
'Specifications! : Component '
' i '
L] L] L]

Details

Data-Path
Generator

r_IComponentI
Dependence
| Hierarchy |
in XML
L — —

Figure 3.3: Data-Path Generator

is to the test component, the more inter-dependence is present. In a given scenario,
a component may belong to several levels simultaneously. This issue is resolved

using the technique described earlier.

Level 2L Level 1L Level 1R Level 2R
--- comp_1i \ , comp_1 comp_p P comp_s ---
== comp_j / x comp_m TC —p» comp_g P comp_t -
--- comp_k P comp_n comp_r 1P comp_u ---

Figure 3.4: Component Dependence Hierarchy

The two component dependence hierarhies are generated in XML format. One

traverses from the test component up to the top of the hierarchy as depicted in

24

figure 3.4. This hierarchy is called driving component dependence hierarchy. The

general format of this hierarchy is shown in figure 3.5.

<COMPONENT_HIERARCHY file = "STRUCTURAL_COMPONENT_SPECS_FILE">
<TEST_COMPONENT component_name = "TEST_COMPONENT_NAME">
<DRIVING_COMPONENT component_name = "DRIVING_COMPONENT_1"
driving_variable = "DRIVING_PARA_1">
<DRIVING_COMPONENT component_name = "DRIVING_COMPONENT_2"
driving_variable = "DRIVING_PARA_2">
</DRIVING_COMPONENT>
</DRIVING_COMPONENT>

</TEST_COMPONENT>
</COMPONENT_HIERARCHY>

Figure 3.5: Driving Component Dependence Hierarchy

The second hierarchy traverses from the test component down to the bottom of
the component dependence hierarchy. This hierarchy is called driven component
dependence hierarchy. Figure 3.6 shows the general format of driven component

dependence hierarchy. Examples for both the hierarchies are given in chapter 6.

<COMPONENT_HIERARCHY file = "STRUCTURAL_COMPONENT_SPECS_FILE">
<TEST_COMPONENT component_name = "TEST_COMPONENT_NAME">
<DRIVEN_COMPONENT component_name = "DRIVEN_COMPONENT_1"
driving_variable = "DRIVEN_PARA_1">
<DRIVEN_COMPONENT component_name = "DRIVEN_COMPONENT_2"
driving_variable = "DRIVEN_PARA_2">
</DRIVEN_COMPONENT>
</DRIVEN_COMPONENT>

</TEST_COMPONENT>
</COMPONENT_HIERARCHY>

Figure 3.6: Driven Component Dependence Hierarchy

25

3.4 Feedback Loops

A facet fet_driven depends on another facet fet_driving if one or more input pa-
rameters to fct_driven are directly or indirectly driven by fct_driving. A parameter
is said to be driven by a facet if it is an output parameter of that facet. Consider

the facet signatures given in figure 3.7.

facet fct_driving(A :: input bit; B :: output real) :: logic is
end facet fct_driving;
facet fct_driven(B :: input real; C :: output real) :: logic is

end facet fct_driven;

Figure 3.7: Facet Signatures illustrating Facet Dependence Link

In figure 3.7, the facet fct_driven depends on the facet fct_driving through
the parameter B. In other words, facet fct_driving provides input to facet fct_driven
through B. Facet fct_driving might be driven by a facet, that depends on some
other facet. This results in a facet dependence hierarchy. At times, this hierarchy
contains loops, wherein the driven facet directly or indirectly drives the driving
facet. This loop is termed as a feedback loop. In such cases, tracing the facet
dependence hierarchy results in looping infinitely along the hierarchy. Hence it
is also called an infinite feedback loop. Figure 3.8 illustrates a simple example of
infinite feedback loop.

Facet fct_fdbk_1 drives facet fct fdbk 2 through the parameter, B, while

the facet fct_fdbk 2 drives facet fct fdbk 2 through the parameter, A. Infinite

26

facet fct_fdbk_1(A :: input bit; B :: output real) :: logic is
end facet fct_fdbk_1;
facet fct_fdbk_2(B :: input real; A :: output bit) :: logic is

end facet fct_fdbk_2;

Figure 3.8: Facet Signatures illustrating Infinite Feedback Loop

feedback loop needs to be broken. In this section, first different types of feedback
loops are described with examples and later on various issues to be kept in mind

while breaking a feedback loop are discussed.

3.4.1 Types of Feedback Loops

Feedback loops are formed due to inter-dependence between one or more facets in
the hierarchy. Feedback loops are grouped into the following categories depending

on the number of facets involved in the loop.

Self Feedback Loop

Self feedback loops are direct feedback loops involving a single facet. They are
formed when the facet drives itself. Specifically, when a facet has one parameter
common in its input and output parameter lists, a self feedback loop is formed.
Figure 3.9 gives an example of this scenario illustrated in figure 3.10 as a Rosetta
specification.

As shown above, facet selfFB drives back itself through the parameter A

resulting into a self feedback.

27

%

selfFB

Figure 3.9: Self Feedback Loop

facet selfFB(A :: input real; B :: output real;
A :: output real) :: logic is

end facet selfFB;

Figure 3.10: Facet Signature illustrating Self Feedback Loop
Primary Feedback Loop
Feedback loops formed in scenarios with exactly two facets involved in the loop

are called primary feedback loops. Figure 3.11 illustrates this scenario while a

Rosetta specification illustrating primary feedback loop is given in figure 3.12.

Figure 3.11: Primary Feedback Loop

As shown in these figures, facet priFB_1 drives facet priFB_2 through the

28

facet priFB_1(A :: input real; B :: output real) :: logic is
end facet priFB_1;
facet priFB_2(B :: input real; A :: output real) :: logic is

end facet priFB_2;
Figure 3.12: Facet Signatures illustrating Primary Feedback Loop

parameter B, while the facet priFB_2 drives facet priFB_1 through the parameter

A forming a primary feedback loop.

Secondary Feedback Loop

Secondary feedback loops, or indirect feedback loops, are formed in scenarios where
more than two facets are involved in the loop formation. Figure 3.13 illustrates

this scenario and figure 3.14 gives Rosetta specification illustrating a secondary

feedback loop.

v

secFB_1

B
secFB_2

c |_’
secFB_3 [

Figure 3.13: Secondary Feedback Loop

In these figures, facet secFB_1 drives facet secFB_2 through the parameter B,

facet secFB_2 drives facet secFB_3 through the parameter C, and facet secFB_3

29

drives facet secFB_1 through the parameter A completing the secondary feedback

loop.

facet secFB_1(A :: input real; B :: output real) :: logic is
éﬁ& facet secFB_1;
facet secFB_2(B :: input real; C :: output real) :: logic is
éﬁ& facet secFB_2;
facet secFB_3(C :: input real; A :: output real) :: logic is

end facet secFB_3;

Figure 3.14: Facet Signatures illustrating Secondary Feedback Loop

3.4.2 Loop Considerations

When a feedback loop is detected, it has to be broken to avoid infinite looping
while traversing the facet dependence hierarchy. Deciding which link involved in
the feedback loop is to be broken involves various considerations. The simple and
efficient solution to this problem is to break the link that results into the feedback
loop. In other words, break the last link found after which the feedback loop is
detected. The feedback loop is not detected until all the links forming it are found.
So breaking the last link, which completes the feedback loop, gives a simple yet
fast remedy to cure the infinite feedback loop problem. The decision depends on

the following criteria.

e Number of input and output parameters to the facets involved in the feed-

30

back loop.

e Position in the facet dependence hierarchy. If the facet is generating system

outputs, its link is less likely to be broken.

e Role played by the facet in the facet dependence hierarchy. The more im-
portant a facet is in the hierarchy, the less probable is its link to be broken.
A facet is important in the hierarchy if breaking its link causes the hierar-
chy to be non-contiguous because component inversion is not possible if the

hierarchy is non-contiguous.

3.5 Non-Determinacy in Hierarchy

Non-determinacy represents a situation where a parameter is driven by more than
one facet. Such a situation occurs when output parameter lists of two or more
facets have atleast one parameter in common. When two or more facets have
same output parameter, the value of that parameter cannot be determined deter-
ministically. This non-determinism is caused due to the fact that the parameter
is driven by more than one facet and since there is no sequential ordering between
these facets its value is ambiguous.

Figure 3.15 illustrates a scenario of non-determinacy found in the component
dependence hierarchy and the corresponding Rosetta specification is given in fig-
ure 3.16. As shown in these figures, facets nonDeter_1 and nonDeter_2 both drive

facet nonDeter_3 through the parameter B, which results into non-determinacy in

31

v y
nonDeter 1 nonDeter_ 2
IB ¢ BI
nonDeter_3

#D

Figure 3.15: Non-Determinacy in Hierarchy

the hierarchy.

facet nonDeter_1(A :: input real; B :: output real) :: logic is
éﬁ& facet nonDeter_1;
facet nonDeter_2(C :: input real; B :: output real) :: logic is
éﬁ& facet nonDeter_2;
facet nonDeter_3(B :: input real; D :: output real) :: logic is

end facet nonDeter_3;

Figure 3.16: Facet Signatures illustrating Non-Determinacy in Hierarchy

32

Chapter 4

Component Inversion Engine

This chapter describes the inversion phase of GENISYS and forms a major portion
of this thesis work. An overview of the component inversion phase is given in
the first section. Various algorithms used during this phase are explained here.
Two major algorithms described are, algorithm to invert boolean and if-then-
else expressions. Brief introductions to conjunctive normal form (CNF'), Boolean

Satisfiability (SAT), and SAT solvers are also presented in this chapter.

4.1 Component Inversion Phase of GENISYS

Figure 4.1 represents a functional block diagram of the component inversion en-
gine. As shown in the figure, the engine takes a Rosetta specifications of various
components, test component details, and the component dependence hierarchy as
inputs. The hierarchy is the output of the data-path generator described earlier.

The component inversion engine produces the system vectors as the output.

33

E I_Component |

: : .
! Rosetta Dependence : o Test i
‘Specifications] | Hierarchy | : 82%2??2 :

' '

] , in XML

Component
Inversion
Engine

I_ System
Inputs |

Outputs
— — d

Figure 4.1: Component Inversion Engine

These system vectors comprise system inputs and outputs of the structural com-

ponent representing test vectors. The format of these vectors is shown below.

<TestData>
<Config>
<DataConfig>
<Name>ipt_para_name</Name>
<Index>ipt_para_index</Index>
<InputType/>
</DataConfig>

</Config>
<TestSet>
<TestVector>
<Input>
<Name>ipt_para_name</Name>
<Value>ipt_para_value</Value>
</Input>

</TestVector>

<TestSet>
</TestData>

34

4.2 Algorithm for Component Inversion Engine

The component inversion engine follows the following algorithm.

e Identify invertible components from the component dependence hierarchy.
If all the output parameters of a component are known, it is invertible.
Components with unknown output parameters and components not in the

component dependence hierarchy are non-invertible.
o Assign each component to a given level.

e Parse the abstract test vectors for the test component and perform the
component inversion for each test vectors found in the abstract test vectors.
Component inversion will generate values for input parameters for each test

vector.

o Invert components starting from Level 1L up to last level on left-side of
the test component. This will ensure that all the output parameters of a

component are known before inverting it.

o Invert all invertible components in the given level using the algorithm de-

scribed later in this chapter.

4.3 Algorithm to Identify Invertible Components

An algorithm to determine invertible components is required to ensure that only

invertible components are processed. A component is said to be invertible if it

35

belongs to the component dependence hierarchies generated during the data-path
determination phase of GENISYS. If a component belongs to any of these hierar-
chies, it is directly or indirectly related to the test component. If a component does
not belong to any of these hierarchies, it is independent of the test component.
The component inversion engine inverts the components directly or indirectly
driving the test component to generate the system inputs. This engine can never
reach components independent of the test component. Hence these components
can not be inverted. Such independent components are marked as non-invertible

components.

4.4 Algorithm to Invert a Component

An algorithm is used to invert a component. This algorithm is invoked while
inverting all the component in a given level for all the level in a given component

dependence hierarchy. This algorithm follows the following steps.

e Populate the local information storage specific to the given component from

the global information storage.

o Make sure that all the output parameters of the given component are known.

If any output parameter is unknown, the component cannot be inverted.

e Invert all the expressions of the component in order from last to first. Ex-
pressions currently supported are boolean/bit and if-then-else expressions.
Apply corresponding algorithm to invert these expressions. It is assumed

36

that a given expression contains all the parameters of the same type. In

other words, a boolean expression has all its parameters of type boolean.

e Populate the local information storage with the values computed after an

expression is inverted.

o After all the expressions are inverted, populate the global information stor-
age from the local information storage with the input parameter values com-

puted for the given component.

e Print the system vector corresponding to the given test vector in the XML

format.

4.5 Algorithm to Invert Boolean Expressions

A boolean expression is an expression that involves computation over boolean or
bit parameters. In this section, the algorithm used to invert a boolean expression
is described. A brief overview of conjunctive normal form, Boolean Satisfiability

(SAT), and various SAT solvers is given towards the starting of this section.

4.5.1 Conjunctive Normal Form

CNF, or Conjunctive Normal Form, is a common form of representing boolean
expressions. For our purposes, Boolean satisfiability problems are represented in
CNF format and fed as input to the SAT solver. This form consists of the logical
AND of one or more clauses, that consist of the logical OR of one or more literals.

37

In other words, CNF comprises of conjunction of disjunctions of literals. The
literal comprises the fundamental logical unit in the expression, being merely an
instance of a variable or its complement. Complement is represented by —. The
general format of CNF is given below, where, clausey, clausesy, ..., clause, are
clauses of the CNF format.

clause; N clauses ... A clause,

Each clause is disjunction of literals. The general format of a clause is given
below.

vary V vary ... V vary,

The CNF expression shown above is the same as the product of sum form
in boolean algebra. The advantage of CNF is that in this form, for an entire
expression to be satisfied (sat) all of its clauses must also be sat, since they are
logically AND-ed. An example of CNF expression is given below.

f=(AVBV-C ABVD A (A

A, B, and C are literals, each of which is a variable or the negation of a
variable. (A V B V = C) is a clause, which is disjunction of literals. Each clause
is a requirement which must be satisfied for £ to be sat. Any boolean expression
can be converted into CNF expression. An algorithm to convert a given boolean

expression into CNF is discussed later in this chapter.

38

4.5.2 Boolean Satisfiability (SAT)

Boolean satisfiability is one of the most studied of the combinational optimization
problems [28]. Significant effort has been spent trying to provide practical solu-
tions to the satisfiability problem. This problem has been found in a vast variety
of applications ranging from Electronic Design Automation to Artificial Intelli-
gence. The SAT problem consists of determining a satisfying variable assignment,
V., for a Boolean function, f, or determining that no such V exists. SAT is one of
the central NP-complete problems. Because SAT lies at the core of many practical
application domains, the subject of practical SAT solvers has received consider-
able research attention, and numerous solver algorithms have been proposed and

implemented.

4.5.3 Introduction to SAT Solvers

Various SAT solvers have been developed by researchers working in this field.
Some of the SAT solvers include, Chaff [28], GRASP [5], SATO [9], and Walk-
SAT [12]. Chaff SAT solver, employed in this thesis, has an efficient implementa-
tion of the Boolean Constraint Propagation (BCP). GRASP, or Generic seaRch
Algorithm for the Satisfiability Problem, is a propositional satisfiability (SAT)
solver. Most of these SAT solvers employ combination of two main strategies:
Davis-Putnam backtrack search [22] and heuristic local search. The former tech-
nique is more complete than the latter in the sense that the latter technique does

not guarantee to find a satisfying assignment if one exists or prove unsatisfiability.

39

Hence DP search algorithm is mostly used in complete SAT solvers like Chaff.

4.5.4 zChaff SAT Solver

Chaff [28], is a complete SAT solver employing the DP search algorithm. It
achieves significant gain in performance by carefully engineering all aspects of the
search algorithm. The developers of Chaff have especially optimized the imple-
mentation of Boolean Constraint Propagation (BCP). Chaff has been successful
in achieving one to two orders of magnitude performance improvement on even
difficult SAT benchmarks in comparison with other SAT solvers like GRASP and
SATO.

zChaff [15], an implementation of the Chaff SAT Solver, is maintained by
Zhaohui Fu [4]. The latest version of zChaff has been used in this thesis for
inverting boolean and bit-value expressions. zChaff is designed with performance
and capacity in mind. zChaff can be compiled into a linkable library for integration
purpose so that the users do not need to export instances into intermediate files

to use zChalff.

4.5.5 zChaff CNF File Format

zChaff accepts a specific format of the CNF expression. A file containing the
expression in this format is passed to the SAT solver. The format of the CNF file

has the following rules [33]:

o CNF file name should end with .enf extension.

40

e A line in the CNF file starting with the character ’¢’ contains comments
and hence is ignored by the SAT solver. This feature can be used to provide
additional information like, the boolean expression whose CNF form this file

contains.

e The prelude of the CNF file contains information regarding number of vari-
ables and clauses in the CNF expression. The format of a typical prelude
is given below. N, is the number of variables used in the expression and

Neauses 18 the number of clauses used in the expression.

P cnf Nvars Nclauses

o Variables in the CNF file are expressed as numbers from 1 to Nyqs.

e A literal can either be a variable or its complement.

e The complement of a variable is expressed as the negation of the number
representing the variable. For instance, if 6 corresponds to variable 6, -6

will represent —z6.

o A clause in the CNF file is a line of literals separated by spaces. It terminates

with a 0. For example, consider the following conversion.

((x1) V (=x3) V (—x1) V (x10) V (—x2)) — (1 -3 -1 10 -2 0)

A line with a single 0 denote end of the CNF file.

Below is an example of a CNF file:

41

c CNF form of the bitvalue expression:

¢ ((x1 and not(x2)) or (x3 and x4) or (not(x5) and x6))
p cnf 6 3

1 -2 0

3 4 0

-5 6 0

0]

4.5.6 Algorithm to Convert Boolean Expressions to CNF

An algorithm to convert any given boolean expression into an equivalent Con-
junctive Normal Form, or CNF, is used to prepare inputs for SAT solver. This

algorithm is quite common [1, 2]. The steps involved are:

e Eliminate the arrows using definitions.

(A= B)=-AVB

e Drive the negations in using De Morgan’s Laws.

~(AVB)=-AA B

~(AAB)=-AV -B

o Distribute OR over AND.

(AV(BAC)=(AVB)A(AVO)

Additional rules used to simplify a given expression in CNF are:

42

e An empty clause is false, since no options are there to be satisfied.

e A sentence with no clauses is true, as there are no requirements.

e A sentence containing an empty clause is false because it is impossible to

satisfy this clause.

Following are the steps involved in coverting the expression (A V B) — (C'V

D) to conjunctive normal form.

e Eliminate arrows: =(A V B) v (C v D)

e Drive in negations: (-A A =B) v (C vV D)

e Distribute: (FAV CV D)A (=-BV CV D)

After a given boolean expression is converted to its equivalent conjunctive
normal form, the CNF file is created following the rules stated earlier. This file is
passed to the zChaff SAT solver to solve the given boolean expression. The output
of the SAT solver will either be, valid assignments to the parameters involved in
the boolean expression, or an error in case the expression can not be satisfied.
Constraints, if any, can also be passed to the SAT solver along with the CNF
equivalent of the boolean expression. For example, if in the above expression
value of A is restricted to 0, a clause: -x 0 can be added to the CNF file, where
x is the number associated with the parameter A. This clause will force the SAT
solver to generate valid assignments, if possible, for all the parameters such that
value of A is 0.

43

4.6 Algorithm to Invert If-then-else Expression

In Rosetta, every term is a boolean expression. Thus, an if-then-else expres-
sion is also boolean rather than a control statement. Any if-then-else expression
can be flattened into an equivalent boolean expression. Consider the if-then-else

expression given below.

if(x)
then (y) else (z)

end if;

This expression can be flattened into an boolean expression: (x A y) V (—x
A 2)

Rosetta supports both simple and nested if-then-else expressions. Since any
if-then-else expression can be expressed in an boolean form, conceivably the SAT
solver can be used to solve the boolean equivalent of the if-then-else expression.

The following are the steps involved in inverting a given if-then-else expression.

e Ensure that the if-then-else expression is in a valid format. In other words,
check the validity of all the sub-expressions. Make sure that the if condition

returns a boolean.
e Traverse the expression until the inner most if-then-else expression is reached.

e Transform the if-then-else expression into a boolean form as explained ear-

lier.

e Recursively convert the if-then-else expressions into their boolean equivalent
and pass them to their parent expression, if any.

44

o After generating the equivalent boolean expression of a given if-then-else
expression, invert it using the SAT solver. Pass constraints over the boolean

expressions to the SAT solver.

o The SAT solver will produce valid assignments for all the sub-expressions,
if possible. Otherwise, it will generate an error stating that the expression

can not be satisfied.

o In case of valid output generated by the SAT solver, utilize the output to

assign values to all the parameters involved in the if-then-else expression.

An example of a complex if-then-else expression in Rosetta is given below.

if(Ysignal)
then if(}sigNum’)

then (opt’ = sigVal’) else (opt’ = not(sigVal’))
end if

else if (not(}sigStr’))

then (opt’ = sigStr’) else (opt’ = not(sigStr’))
end if

end if;

A simplified version of the if-then-else expression given above is:

if(A)

then if(B)
then (C) else (D)
end if

else if(E)
then (F) else (G)
end if

end if;

In the above expression A, B,...,G are boolean. Applying the algorithm to

the above mentioned if-then-else expression will produce the following results.

45

o if(B) then (C) else (D) transforms into (B A C) V (=B A D).
o if(E) then (F) else (G) transforms into (E A F) V (=E A G).

e The entire if-then-else expression transforms into:

(AAN((BACV (BAD)))V (AN EANF)V (-EA G)))

A simplified boolean form of this expression is given below. It is the disjunctive
normal form, DNF, of the boolean expression generated above.

(AANBACV (AAN-BAD V((-AANEAF) V (A A-EAG)

Performing boolean expression inversion over the above mentioned boolean
expression will generate valid assignments for all the sub-expressions (A, B,...,
G). Value of 1 implies that the corresponding sub-expression is true and should
be inverted to compute the unknown parameters. Value of 0 implies that the
corresponding sub-expression is false and should only be inverted if it does not
clash with existing known parameters. The parameters in a true sub-expression
play an important role in deciding the flow of the expression, while those in
a false sub-expression have little or no influence over the flow. The approach
employed first inverts all the true sub-expressions. Later, the false sub-expressions

are inverted to compute the values of parameters that are still unknown.

4.7 Component Inversion and SAT Solver

As described earlier, a SAT solver can be used to derive values of unknown param-
eters in an expression. This expression can be a function F' over some parameter

46

X where the value of the output parameter Y is known to be V. Thus, the SAT
solver will try to find the value of X that satisfies the following equation. If
SAT solver is able to derive some value W for X that satisfies this equation, the
expression is sat. Otherwise, it is not sat.
F(X)=V

In Rosetta every term is boolean and a boolean expression can be converted
into its equivalent conjunctive normal form (CNF). This concept is used in the
component inversion phase of GENISYS. A component is inverted by inverting all
its expressions in order from last to first. While inverting an expression, GENISYS
utilizes the fact that an expression can be converted into its equivalent CNF
format and the SAT solver can be used to process the expression. As shown in
the example above, the SAT solver tries to derive values for the unknown variables
in the expressions if the expression is satisfiable. These unknown variables are the
input parameters and locally declared variables in the component. Inverting all
the satisfiable expressions in a component using the SAT solver generates the
input parameters of the component. These input, or driving, parameters of a
component are output, or driven, parameters of another component. Inverting all

the inner-component will generate the system inputs of the structural component.

47

Chapter 5

GENISYS Internals

This chapter outlines the internals of the GENISYS tool. Various databases used
to store information related to the component dependence hierarchy are described
in this chapter. It is followed by discussion of the two parsers used in this thesis:
XML and ROM parser. The GENISYS tool usage is also described in this chapter.
Later, GENISYS output XML files containing, the two component dependence
hierarchies, top and bottom dependence hierarchy and the system wvectors, are

explained.

5.1 CompMap - Database

In GENISYS, a database is used to store various information regarding a com-
ponent. A data structure called GenisysCompMap is used for this purpose. This

database stores the following information regarding a given component.

48

e Facet Object: A mapping from the component to the corresponding facet

object is required to perform component inversion.

e Inversion Type: Information regarding whether the component is invert-
ible or not is required to make sure that only invertible components are

processed.

o Level: Information regarding the level to which a component belongs is

required while performing component inversion.

o Interface Parameters: Information regarding the interface parameters of

the component is required to form component dependence hierarchy.

This database is populated by the data-path generator while determining the
component dependence hierarchy and is used by the component inversion engine

during second phase of GENISYS.

5.2 ParaMap - Database

A parameter in the Rosetta specification may be a facet interface parameter or a
locally declared variable. GenisysParaMap is a data structure that stores following

information related to a given parameter.

e Parameter Name: Name assigned to the parameter to uniquely identify

it in the component it belongs to.

49

e Parameter Type: Type of the parameter. It can be any of the possible

valid types defined in Rosetta.

o Parameter Value: Value assigned to the parameter depending on the type.

¢ Driven Component List: A list of components driven by the parameter.

These components take this parameter as one of the input.

e Driving Component: Component driving the parameter. There can
be only one driving component for a given parameter. If more than one
component tries to drive a given parameter, the parameter value is non-

deterministic.

5.3 XML Parser

The abstract test vectors of the test component generated by the Design Verifi-
cation Test Generation tool (DVTG) [26, 16, 30, 34] are in XML format. Each
vector contains a set of input values and a corresponding set of expected output
values. These vectors are parsed using an XML parser in order to retrieve the
input parameter values. These vectors are fed to the GENISYS engine for com-
ponent inversion. They provide information about the input and desired output
parameters of the test component. Shown below is the format of these test vectors

generated by the VectorGen [11].

<TestData>
<Config>
<DataConfig>

50

<Name>ipt_para_name</Name>
<Index>ipt_para_index</Index>
<InputType/>
</DataConfig>
</Config>
<TestSet>
<TestVector>
<Input>
<Name>ipt_para_name</Name>
<Value>ipt_para_value</Value>
</Input>
</TestVector>
</TestSet>
</TestData>

Document Object Model (DOM) [3] is the XML parser used in this thesis.
It forms an hierarchical tree structure with the top level XML element as the
root of the tree. The entire tree is parsed in hierarchical order retrieving desired

information. Leafl nodes mark end of the tree.

54 ROM Parser

A Rosetta Object Model (ROM) is built to store the information regarding the
Rosetta specification. ROM is populated while parsing the specifications. GENISY'S
needs information stored in ROM during the data-path determination and the
component inversion phase. To retrieve this information a ROM parser is used.
It parses the ROM and stores the required data. This data is utilized while per-
forming various other operations. Various issues including, infinite feedback loop,

and non-determinacy are resolved by the parser while traversing the ROM. If any

51

invalid specification is found, the parsing process terminates with an appropriate

€rror message.

5.5 GENISYS Tool Usage

The GENISYS tool performs two operations: data-path determination for compo-
nent dependence hierarchy; and component inversion using the information from
the hierarchy with a single command. This implies that the command-line ar-
gument should have enough information to perform both the operations without

any further user intervention. The command-line argument must have:

e the information about the Rosetta specification file containing the structural

facet.
o the information regarding the test component.

o the information about the file containing the abstract test vectors for the

test component.

Figure 5.1 shows the command-line argument of the GENISYS tool. The path
to the file containing abstract test vectors in XML format is optional. If the path
is not specified, the default location of this file is in the directory containing the

Rosetta specification file.

52

genisys [OPTION] [VECTORS.xml_filepath] <Rosetta_filepath>
<Test_Component_Name>

OPTION:
-d : debug On (debug is Off by default)

Example : genisys -d “/test_VECTORS.xml ../test.sld ADDER

where, genisys - executable script
test_VECTORS.xml - VECTORS.xml File
test.sld - Rosetta Specification File
-d - Enables the Debug Option
ADDER - Test Component

Figure 5.1: Command-line argument of the GENISYS tool

5.6 GENISYS Output XML files

There are various files generated as part of the output of the GENISYS tool. Two
files are generated during the data path determination phase. These files con-
tain information about the component dependence hierarchy. In an hierarchical
fashion, they show which components drive the test component and which com-
ponents are driven by the test component. Each layer in the hierarchy contains
information about which parameter caused the component dependence link in
that layer. One file contains the hierarchy of all the components driving the test
component, while other contains the hierarchy of all the components driven by
the test component. The root of the hierarchy in both the XML files is the test
component. GENISYS tool also generates a file that contains information about
system vectors containing the input and output parameters of the structural com-

ponent. This file stores the values of system output and input parameters for all

33

the test vectors in the abstract test vectors file.

5.6.1 Driving Component Hierarchy

The driving component hierarchy contains information about all the components
directly or indirectly driving the test component and the corresponding driving
parameters in an XML hierarchical fashion. This hierarchy is also referred to as
top dependence hierarchy as it contains hierarchy from the test component to the
top-most components in the component dependence hierarchy. Figure 5.2 shows

a sample XML file containing the driving component hierarchy.

<COMPONENT_HIERARCHY file="test/testgenisys'>
<TEST_COMPONENT component_name="COMP1">
<DRIVING_COMPONENT component_name='"COMP2"

driving_variable = "E">
<DRIVING_COMPONENT component_name="COMP3"
driving_variable = "S">

</DRIVING_COMPONENT>
<DRIVING_COMPONENT component_name='"COMP4"

driving_variable = "D">
<DRIVING_COMPONENT component_name='"COMP5"
driving_variable = "H">

</DRIVING_COMPONENT>
</DRIVING_COMPONENT>
</DRIVING_COMPONENT>
</TEST_COMPONENT>
</COMPONENT_HIERARCHY>

Figure 5.2: Top Dependence Hierarchy in XML

The root of the top dependence hierarchy in XML is <COMPONENT HIERARCHY>
element. It marks the beginning of the hierarchy. It has an attribute, file, whose

value is the name of the Rosetta specification file. The root has one child element,

54

<TEST_COMPONENT>. This tag contains information about the test component.
The attribute of this element, component name, contains the name of the test
component, COM P, in this example. The <TEST_COMPONENT> element can have
zero or more children. If it has no children, no other component drives the test
component.

<DRIVING_COMPONENT> element of the XML hierarchy specifies the compo-
nents directly or indirectly driving the test component. This element has two
attributes: component name contains the name of the driving component and
driving variable indicates the name of the parameter forming this component
dependence link. A component driving the test component may itself be driven by
one or more components. This scenario is depicted in Figure 5.2 where component
COMP, and COM Py drive the test component and are driven by components
COMP; and COM Ps5 respectively. Block diagram representation of the scenario

shown in figure 5.2 is given in figure 5.3.

COMP_5

COMP_3 COMP_4

S l D
COMP_2 [d—
2y

CoMP_1

Figure 5.3: Top Dependence Hierarchy

35

5.6.2 Driven Component Hierarchy

Driven component hierarchy contains the components directly or indirectly driven
by the test component along with the parameters driven by the test component. It
is also referred to as bottom dependence hierarchy as it contains hierarchy from the
test component to the bottom of the component dependence hierarchy. Figure 5.4

shows a sample XML file containing the bottom dependence hierarchy.

<COMPONENT_HIERARCHY file="test/testgenisys">
<TEST_COMPONENT component_name="COMP1">
<DRIVEN_COMPONENT component_name="COMP6'" driven_variable="K">
<DRIVEN_COMPONENT component_name="COMP7" driven_variable="J">
</DRIVEN_COMPONENT>
<DRIVEN_COMPONENT component_name="COMP8" driven_variable="L">
<DRIVEN_COMPONENT component_name="COMP9"
driven_variable="M">
</DRIVEN_COMPONENT>
</DRIVEN_COMPONENT>
</DRIVEN_COMPONENT>
</TEST_COMPONENT>
</COMPONENT_HIERARCHY>

Figure 5.4: Bottom Dependence Hierarchy in XML

The bottom dependence hierarchy starts with <COMPONENT HIERARCHY> ele-
ment as the root. Like the top dependence hierarchy, it has an attribute, file,
whose value is the name of the Rosetta specification file. The root has one child
element, <TEST_COMPONENT>, which contains information about the test compo-
nent. The attribute of this element, component name, contains the name of
the test component, COMP; in this example. As in the top dependence hi-

erarchy, the <TEST_COMPONENT> element can have zero or more children. If it

56

has no children, no other component depends on the test component. Com-
ponents directly or indirectly driving the test component are specified in the
<DRIVEN_COMPONENT> element of the XML hierarchy. This element has two at-
tributes: component name contains the name of the component driven by the test
component; and driven_variable contains the name of the parameter driven by

the test component.

COMP_1

COMP_6
J , L
A 4

COMP_ 7 COMP_ 8

COMP_9 |¢—

Figure 5.5: Bottom Dependence Hierarchy

A component driven by the test component may itself drive one or more com-
ponents. Figures 5.4 and 5.5 show one such scenario both using the XML hi-
erarchy and block diagram representation. As shown in the figures, component
COM Pgs, driven by the test component, drives components COM P; and COM Fs.

Component COM Py further drives component COM Ps.

57

5.6.3 GENISYS System Vectors

The GENISYS tool generates system vectors that contain the input and output
values of the structural component in XML format. The system vectors are gen-
erated for each test vector in the abstract test vectors for the test component.
For each vector, the input values are the values obtained by inverting all the
inner-components along the component dependence hierarchy in the structural
component. Shown below is an example of system vectors produced by the com-

ponent inversion engine.

<TestData>
<Config>
<DataConfig>
<Name>input_state</Name>
<Index>1</Index>
<InputType/>
</DataConfig>

</Config>
<TestSet>
<TestVector>
<Input>
<Name>input_state</Name>
<Value>0</Value>
</Input>
</TestVector>

<TestSet>
</TestData>

The root element of the system vectors is <TestData>. It has two children:
<Config> and <TestSet>. The former child contains all the interface param-
eters of the structural component. It has one or more instances of element
<DataConfig>. This element contains name, index, and interface type of a given

interface parameter. <Name> and <Index> respectively contain the name and

38

the index of the parameter; whereas the interface type is represented by either,
<InputType>, <LocalVar>, or <OutputType> element. The <TestSet> element
contains <TestVector>. Each <TestVector> contains three elements: <Input>,
<LocalVar>, and <0utput>. Each element contains <Name> and <Value>. They
respectively contain the name and value of all the interface parameters. If the

value of a given interface parameter is unknown, it is represented using “-”.

59

Chapter 6

Testing and Examples

Thus far, the design and implementation of the GENISYS tool has been discussed
exclusively. In this chapter, examples are used to illustrate the operation of the
tool. Various components used in testing are explained with Rosetta specification
in this chapter. Several scenarios used to test GENISYS are described. For each
scenario, the outputs of the GENISYS tool - component dependence hierarchies

and the system vectors - are discussed.

6.1 Rosetta Specification for various Components

This section will describe the inner-components that form the structural compo-
nent. Fach inner-component is a circuit performing a particular operations. These
circuits include, a trigger-based circuit, an inverter, a positive trigger circuit, a
negative trigger circuit, an OR gate, and a multiplexer. The Rosetta specification

for these circuits is given in the following subsections.

60

6.1.1 Trigger-based Circuit

The Rosetta specification below describes a trigger-based circuit. The interface
parameter list includes two input trigger bits, eight input parameters and eight

output parameters. The two trigger bits drive the eight output parameters.

package TRIGGER_CIRCUIT :: static is
/* package body begins here */
facet TRIGGER_CIRCUIT

(/* interface parameters declared */

cntl_bitl :: input bit; cntl_bit2 :: input bit;
ipt_sigl :: input bit; ipt_sig2 :: input bit;
ipt_sig3 :: input bit; ipt_sig4 :: input bit;
ipt_statel :: input bit; ipt_state2 :: input bit;
ipt_state3 :: input bit; ipt_state4 :: input bit;
opt_sig4 :: output bit; opt_sig3 :: output bit;
opt_sig2 :: output bit; opt_state4 :: output bit;
opt_state3 :: output bit; opt_state2 :: output bit;
opt_statel :: output bit; opt_sigl :: output bit
) :: state_based is

/* facet body begins here */
begin
reql: if (Ycntl_bit1l)
then (opt_state4 = ipt_state4) and
(opt_state3 = ipt_state3) and
(opt_state2 = ipt_state2) and
(opt_statel = ipt_statel)
else (opt_state4 = 1) and
(opt_state3 = 1) and
(opt_state2 = 1) and
(opt_statel = 1)
end if;

req2: if (not(%cntl_bit2))

then (opt_sig4 = ipt_sig4) and

(opt_sig3 = ipt_sig3) and
(opt_sig2 = ipt_sig2) and
(opt_sigl = ipt_sigl)

else (opt_sig4 = 1) and (opt_sig3 = 1) and

61

(opt_sig2 = 1) and (opt_sigl = 1)
end if;
end facet TRIGGER_CIRCUIT;
end package TRIGGER_CIRCUIT,

6.1.2 Negative Trigger Circuit

The Rosetta specification given below describes a negative trigger circuit. There
are two input parameters: a trigger bit and a input parameter value. Depending
on the value of the trigger bit the output parameter is either assigned the input
parameter value or it is set to 1.

package NEGATIVE_TRIGGER :: static is
/* package body begins here */
facet NEGATIVE_TRIGGER

(/* interface parameters declared */

ipt_val :: input bit; trigger :: input bit;
opt_val :: output bit
) :: state_based is

/* facet body begins here */

begin

reql: if (not(/trigger))
then (opt_val = ipt_val)
else (opt_val = 1)

end if;
end facet NEGATIVE_TRIGGER;
end package NEGATIVE_TRIGGER;

62

6.1.3 OR Gate Circuit

The Rosetta specification given below describes a simple OR gate. The two input

parameters are logically OR-ed and the result is assigned to the output parameter.

package OR_GATE :: static is
/* package body begins here */
facet OR_GATE

(/* interface parameters declared */

IO :: input bit; Il :: input bit;
OUT_PORT :: output bit
) :: state_based is

/* facet body begins here */
begin
reql: OUT_PORT = (IO or Il);
end facet OR_GATE;
end package OR_GATE;

6.1.4 Inverter Circuit

Given below is the Rosetta specification for an inverter circuit. The input param-

eter value is toggled and assigned to the output parameter.

package INVERTER :: static is
/* package body begins here */
facet INVERTER
(/* interface parameters declared */
in_port :: input bit; out_port :: output bit
) :: state_based is
/* facet body begins here */
begin
reql: out_port = not(in_port);
end facet INVERTER;
end package INVERTER;

63

6.1.5 Positive Trigger Circuit

The Rosetta specification given below shows a positive trigger circuit. It has three
interface parameters: two input and one output parameter. The output parameter
is either assigned the input parameter value or 1 depending on the value of the
input trigger bit.

package POSITIVE_TRIGGER :: static is
/* package body begins here */
facet POSITIVE_TRIGGER
(/* interface parameters declared */
ipt_val :: input bit; trigger :: input bit;
opt_val :: output bit
) :: state_based is

/* facet body begins here */

begin

reql: if (ftrigger)
then (opt_val = ipt_val)
else (opt_val = 1)

end if;
end facet POSITIVE_TRIGGER;
end package POSITIVE_TRIGGER;

6.1.6 Multiplexer Circuit

Shown below is the Rosetta specification of a quadra 2 X 1 multiplexer circuit.
Depending on the value of the input signal bit, the four output parameters are
assigned four of the eight input parameters

package QUAD_MUX2X1 :: static is
/* package body begins here */
facet QUAD_MUX2X1

64

(/* interface p
Signal
ipt_sigl
ipt_valO
ipt_stateO ::
ipt_porti
opt_state
opt_port

) :: state_based

/* facet body beg

begin
reql: if ()Signal)
then (opt_
(opt_
(opt_
(opt_
else (opt_
(opt_
(opt_
(opt_
end if;
end facet QUAD_MUX2X1
end package QUAD_MUX2X1;

6.1.7 Rosetta Specification for the Structural Component

In the specification, all the inner-components are instantiated by supplying appro-
priate interface parameters to them. This results into one of a number of possible
inter-dependence patterns between them. This inter-dependence results into the
component dependence hierarchy. This specification illustrates a linear compo-
nent dependence hierarchy where, COMPONENT _1 drives COMPONENT_2, COMPONENT _2

drives COMPONENT 3, and so on. However, GENISYS tool can resolve any possible

arameters declared */

:: input bit; ipt_sig0
:: input bit; ipt_statel ::
:: input bit; ipt_vall

input bit; ipt_portO

:: input bit; opt_sig
:: output bit; opt_val
:: output bit

is

ins here */

sig = ipt_sig0) and
state = ipt_state0) and
val = ipt_valO) and
port = ipt_portO)

sig = ipt_sigl) and
state = ipt_statel) and
val = ipt_vall) and
port = ipt_portl)

b

65

:: input bit;

input bit;
:: input bit;
:: input bit;
:: output bit;
:: output bit;

component dependence hierarchy formed in the structural component

package STRUCT_COMPONENT :: logic is
/* package body begins here */
/* use the Rosetta Specification of inner components */
use INVERTER, POSITIVE_TRIGGER, NEGATIVE_TRIGGER, QUAD_MUX2X1,
OR_GATE, TRIGGER_CIRCUIT ;
facet STRUCT_COMPONENT

(/* interface parameters declared */

a :: input bit; B :: input bit; d :: input bit;
h :: input bit; G :: input bit; x :: input bit;
Z :: input bit; W :: input bit; u :: input bit;

Aa :: output bit; BB :: output bit; eE :: output bit;
Ff :: output bit; DD :: output bit; Gg :: output bit;
E :: input bit; Y :: input bit; V :: input bit;
HH :: output bit; CC :: output bit; zZ:: output bit

) :: state_based is

/* locally declared variables */

C, F, I, J, K, L, M :: bit;

/* facet body begins here */

begin

COMPONENT_1 : INVERTER(A, C);
COMPONENT_2 : POSITIVE_TRIGGER(C, B, F);
COMPONENT_3 : NEGATIVE_TRIGGER(F, D, I);
COMPONENT_4 : OR_GATE(I, F, ZZ);

COMPONENT_5 : QUAD_MUX2X1(A, B, C, D, E, F, G,
H, I, J, XK, L, M);
COMPONENT_6 : TRIGGER_CIRCUIT(U, V, W, X, Y, Z,

J, K, L, M, AA, BB,
cC, DD, EE, FF, gg, HH);
end facet STRUCT_COMPONENT;
end package STRUCT_COMPONENT;

66

6.2 Test Scenarios

Given the Rosetta specification for various components in the previous section,
several scenarios were used to test GENISYS. The output of GENISYS hugely
depends on the test component and its position in the component dependence
hierarchy. This section describes how various scenarios influence the GENISYS

tool output and how GENISYS handles various invalid specifications.

6.2.1 Test Scenario-1

If TRIGGER.CIRCUIT is chosen as the test component, all inner-components di-
rectly or indirectly drive the test component. The two component dependence
hierarchies formed as part of data-path determination phase are shown in the fig-
ures given below. Figure 6.1 shows the top component dependence hierarchy and
figure 6.2 shows the bottom component dependence hierarchy.

As expected, the driving/top component dependence hierarchy contains all the
component dependence links formed along with the interface parameters, while
the driven/bottom component dependence hierarchy is empty, as the test compo-
nent drives no other inner-component. Shown below is a snippet of the system
vectors generated by GENISYS. In the system vectors given below, the value of
the output parameter ZZ is unknown due to the fact that it is independent of
the test component TRIGGER_CIRCUIT. The value of an unknown parameter is

w_»

represented by a in the system vectors.

<TestData>

67

<COMPONENT_HIERARCHY file="STRUCT_COMPONENT" >
<TEST_COMPONENT component_name="COMPONENT_&" >
<DRIVING_COMPONENT component_name="COMPONENT_5"
driving_variable="J" >
<DRIVING_COMPONENT component_name="COMPONENT_1"
driving_variable="C" >
</DRIVING_COMPONENT>
<DRIVING_COMPONENT component_name="COMPONENT_2"
driving_variable="F" >
<DRIVING_COMPONENT component_name='"COMPONENT_1"
driving_variable="C" >
</DRIVING_COMPONENT>
</DRIVING_COMPONENT>

</DRIVING_COMPONENT>
</DRIVING_COMPONENT>
</TEST_COMPONENT>
</COMPONENT_HIERARCHY>

Figure 6.1: Driving Component Dependence Hierarchy for Test Scenario-1

<COMPONENT_HIERARCHY file="STRUCT_COMPONENT" >
<TEST_COMPONENT component_name="COMPONENT_6">
</TEST_COMPONENT>

</COMPONENT_HIERARCHY>

Figure 6.2: Driven Component Dependence Hierarchy for Test Scenario-1

<Config>
<DataConfig>
<Name>A</Name>
<Index>1</Index>
<InputType/>
</DataConfig>

</Config>
<TestSet>
<TestVector>
<Input>
<Name>A</Name>
<Value>0</Value>

68

</Input>

<LocalVar>
<Name>C</Name>
<Value>0</Value>

</LocalVar>

<Output>
<Name>ZZ</Name>
<Value>-</Value>
</Output>
</TestVector>

</TestSet>

</TestData>

6.2.2 Test Scenario-2

If INVERTER is chosen as the test component, all other inner-components are driven
directly or indirectly by it. The component dependence hierarchies are shown in
the figures given below. Figure 6.3 shows the driving component dependence hi-
erarchy, which is empty as no other inner-component drives the test component.
In figure 6.4, the driven component dependence hierarchy is shown. This hierar-
chy contains all the component dependence links as all the inner-components are
driven by the test component.

A snippet of the system vectors generated by GENISYS for the test scenarios-2
are shown below. Since the test component is the top-most component in the com-

ponent dependence hierarchy, it depends on no other inner-components. Hence

69

<COMPONENT_HIERARCHY file="testgenisys_all" >
<TEST_COMPONENT component_name="COMPONENT_1" >
</TEST_COMPONENT>

</COMPONENT_HIERARCHY>

Figure 6.3: Driving Component Dependence Hierarchy for Test Scenario-2

<COMPONENT_HIERARCHY file="testgenisys_all" >
<TEST_COMPONENT component_name="COMPONENT_1" >
<DRIVEN_COMPONENT component_name='"COMPONENT_5"
driven_variable="C" >
<DRIVEN_COMPONENT component_name='"COMPONENT_6"
driven_variable="J" >
</DRIVEN_COMPONENT>
<DRIVEN_COMPONENT component_name='"COMPONENT_6"
driven_variable="K" >
</DRIVEN_COMPONENT>
<DRIVEN_COMPONENT component_name='"COMPONENT_6"
driven_variable="L" >
</DRIVEN_COMPONENT>
<DRIVEN_COMPONENT component_name='"COMPONENT_6"
driven_variable="M" >
</DRIVEN_COMPONENT>
</DRIVEN_COMPONENT>

</TEST_COMPONENT>
</COMPONENT_HIERARCHY>

Figure 6.4: Driven Component Dependence Hierarchy for Test Scenario-2

the GENISYS component inversion engine does not invert any inner-component.
This is apparent from the system vectors shown below, where the only known pa-
rameters are the interface parameters of the test component - A and C. All other

parameters are unknown.

<TestData>
<Config>
<DataConfig>
<Name>A</Name>
<Index>1</Index>

70

<InputType/>
</DataConfig>

</Config>
<TestSet>
<TestVector>
<Input>
<Name>A</Name>
<Value>0</Value>
</Input>
<Input>
<Name>B</Name>
<Value>-</Value>
</Input>

<LocalVar>
<Name>C</Name>
<Value>1</Value>

</LocalVar>

<Output>
<Name>ZZ</Name>
<Value>-</Value>
</Output>
</TestVector>

</TestSet>
</TestData>

6.2.3 Test Scenario-3

In the discussion thus far, scenarios with valid component dependence hierarchy
have been considered. In this subsection, scenarios with invalid component depen-

dence hierarchy are analyzed. The following discussion describes various invalid

71

specifications and how GENISYS handles such situations. Various issues includ-
ing, non-determinacy, infinite feedback loop, and invalid interface parameters are

discussed in this subsection.

Non-Determinacy in Hierarchy

As shown in the Rosetta specification below, the interface parameter F is driven
by components, COMPONENT 2 and COMPONENT 4 simultaneously. This should re-
sult into termination of the component inversion process with appropriate error

message.

package INVALID_CDH_1 :: logic is
/* package body begins here */
/* use the Rosetta Specification of inner components */
use INVERTER, POSITIVE_TRIGGER, NEGATIVE_TRIGGER, OR_GATE;
facet INVALID_CDH_1

(/* interface parameters declared */

A :: input Dbit; B :: input bit;
D :: input bit; OPT :: output bit
) :: state_based is

/* locally declared variables */
C, F, I :: bit;
/* facet body begins here */
begin
COMPONENT_1 : INVERTER(A, C);
COMPONENT_2 : POSITIVE_TRIGGER(C, B, F);
COMPONENT_3 : NEGATIVE_TRIGGER(F, D, I);
/* Non-Determinacy over the parameter F */
COMPONENT_4 : OR_GATE(I, D, F);
COMPONENT_6 : INVERTER(F, OPT);
end facet INVALID_CDH_1;
end package INVALID_CDH_1;

Executing the GENISYS tool over the structural component given above, will
terminate the process with the following error message as expected.

72

Invalid Specification! Non Determinacy found over:
VARIABLE : F
COMPONENT : COMPONENT_2 AND COMPONENT_4

Infinite Feedback Loop in Hierarchy

Consider the Rosetta specification for a structural component given below. As
shown in the specification, an infinite feedback loop exists between the compo-
nents, COMPONENT_2, COMPONENT_3, and COMPONENT 4.

package INVALID_CDH_2 :: logic is
/* package body begins here */
/* use the Rosetta Specification of inner components */
use INVERTER, POSITIVE_TRIGGER, NEGATIVE_TRIGGER, OR_GATE;
facet INVALID_CDH_2

(/* interface parameters declared */

A :: input Dbit; B :: input bit;
D :: input bit; OPT :: output bit
) :: state_based is

/* locally declared variables */

C, F, I :: bit;

/* facet body begins here */

begin

COMPONENT_1 : INVERTER(A, C);

COMPONENT_2 : POSITIVE_TRIGGER(C, B, F);

COMPONENT_3 : INVERTER(F, I);

/* Infinite Feedback loop over components
* COMPONENT_2, COMPONENT_3, & COMPONENT_4
*/

COMPONENT_4 : NEGATIVE_TRIGGER(I, D, B);
COMPONENT_5 : OR_GATE(I, D, opt);

end facet INVALID_CDH_2;
end package INVALID_CDH_2;

73

The GENISYS tool handle the feedback loop by breaking the last link that
completes the loop, as shown in the output below.

Infinite Feedback Loop Found! Loop exists between following components:
COMPONENT_2

COMPONENT_3

COMPONENT_4

Ignoring the following Link:

COMPONENT_3 drives COMPONENT_4 through parameter "I"

Invalid Interface Parameter

In the Rosetta specification given below, the component COMPONENT 2 takes the
system output parameter, OPT, as one of its inputs.

package INVALID_CDH_3 :: logic is
/* package body begins here */
/* use the Rosetta Specification of inner components */
use INVERTER, POSITIVE_TRIGGER, NEGATIVE_TRIGGER, OR_GATE;
facet INVALID_CDH_3

(/* interface parameters declared */

A :: input Dbit; B :: input bit;
D :: input bit; OPT :: output bit
) :: state_based is

/* locally declared variables */

C, F, I :: bit;

/* facet body begins here */

begin

COMPONENT_1 : INVERTER(A, C);

/* System output parameter can’t be inner
* component’s input parameter
*/

COMPONENT_2 : POSITIVE_TRIGGER(opt, B, F);

COMPONENT_3 : INVERTER(F, I);

COMPONENT_4 : NEGATIVE_TRIGGER(I, D, OPT);

74

end facet INVALID_CDH_3;
end package INVALID_CDH_3;

This results into termination of the component inversion process with an error
message given below.

Execution of GENISYS tool terminated
Error: System Output: OPT cannot be input to Component: COMPONENT_2.

In addition to the above mentioned invalid specifications, GENISYS generates

an error message when:

the command-line argument is invalid or incomplete.

an output parameter of a component to be inverted is unknown.

the input files do not exist or are empty.

e an error occurs while parsing the ROM or the XML file.

e a parameter is not found, or has invalid interface mode.

The test scenarios described in this chapter cover various cases and show how
GENISYS operates in these situations. Cases ranging from the one where the sys-
tem has valid configurations and the sytem vectors are generated as expected to
the one where system configuration is invalid and causes the GENISYS process to
terminate with appropriate error message are described. One of the test scenarios
had a system output parameter as an input to one of the inner-component. This
resulted into termination of the component inversion process and generated an

error message stating that system output cannot be input to an inner-component

75

as expected. Other scenarios include, infinite feedback loop and non-determinacy
in the component dependence hierarchy. While processing the component depen-
dence hierarchy, if an infinite feedback loop is detected, the loop is broken by
removing the link among the two inner-components that forms the loop and the
component inversion process is resumed. Non-determinacy occurs in the hierar-
chy if two inner-components drive the same parameter. This scenarios cannot be
resolved by GENISYS and hence results into termination of the process with an

€rror message.

76

Chapter 7

Related Work

Component inversion, or program inversion as it is widely known, has been men-
tioned at various places as a programming technique. Program inversion first
appeared in [23]. An informal argument is presented explaining how the inverted
program undoes the effect of the forward program, thus restoring all the old val-
ues. In other word, program inversion means for a given forward-directed program
S constructing a program S~! that works like the reverse of S. In this chapter,
various work done in the field of program inversion are highlighed.

In the paper, Running Programs Backwards: The Logical Inversion of Imper-
ative Computation [31], the author explores the feasibility of inverting imperative
computations using logic programming technology. The declarative semantics of
program relations implicitly denote both forward and inverse computations. This
view of computation has practical applications when logic programming technol-

ogy is considered. An imperative program has a logic program derived for it which

77

abductively describes its inverted behavior. The paper shows how a number of
nontrivial imperative computations can be inverted with minimal logic program-
ming tools. The advantage of this approach is that non-deterministic inversions
are possible, which permits sets of inputs to be computed for a particular output.

The paper, A formal approach to program inversion [21], introduces a formal
approach to inverting programs. The usefulness of this formal approach in pro-
gramming is demonstrated by applying it to develop an in-place algorithm for the
LU-multiplication, which in other case might be hard to find.

Author of the paper, Program inversion in the refinement calculus [32], presents
a calculational method for inverting programs by inverting the components sepa-
rately by using assertions as commands and by permitting constructs that exhibit
angelic nondeterminism. The author also gives examples to illustrate this method.
The paper also contains rules to transform inverted program so that the angelic
constructs are removed.

In the paper, Program Inversion [20], the author presents a method for produc-
ing the inversion of a program. In this paper, it is shown that inversion establishes
a natural relationship between various well known programs like, sorting and per-
mutation generation programs. The author introduces basic concept of automata,
program, function, and relation. The paper initially shows methods for inversion
of statements like, if statements, and while loops. Later on, inversion of entire
programs like, sorting, and permutation generation is described. The author has

used Pascal language to illustrate examples throughout the paper.

78

The paper, Reverse Fzecution of Programs [19], describe situations where in-
verse of a statement is very useful while debugging a program. The authors then
introduce a new concept of a debugger called BDb, or Bi-directional Debugger,
that supports statement inversion. BDb provides an option to the user to execute
the program in either forward or backward direction. This debugger is devel-
oped for programs in C language, however similar effect can be obtained in other
programming languages too. Inversion of various types of statements including,
assignment, selection, iterative and unstructured statements have been described

with examples in this paper.

79

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have developed a tool named GENISYS that performs the pro-
cess of component inversion in a component dependence hierarchy. This process
is performed with respect to a given test component (TC) in the hierarchy. The
process is divided into two sub-processes: the data-path generation; and the com-
ponent inversion. The data-path determination phase generates the data-paths
along the component dependence hierarchy. This phase produces two component
dependence hierarchies traversing up and down from TC. The component inver-
sion phase performs component inversion over the invertible components along
the hierarchy and generates system vectors containing the inputs and outputs of
the structural component. GENISYS takes in the Rosetta specifications of all

the components involved in the hierarchy, abstract test vectors generated for TC,

80

and the TC as inputs and performs the component inversion. The output of the
GENISYS tool is stored in XML format, since XML is getting widely deployed in
the industry as standard way for data representation. All these files store data in
XML format.

This thesis presents the first version of the GENISYS tool. GENISYS has
been successfully tested over various test scenarios described in chapter 7. Sce-
narios with both, valid and invalid Rosetta specifications were used. GENISYS
produced valid system test vectors for system with valid specifications and re-
ported the invalid specifications with appropriate error messages. Each system
test vector generated by GENISYS contains a set of system inputs. These inputs
will generate the desired system outputs after forward execution of the program.
Thus, using the Rosetta specification of the structural and inner-components and
the test vectors of TC, GENISYS is able to generate valid system inputs. These
inputs describe the initial state the system has to be in to reach the current state.
Although being still in its development stage, GENISYS seems to be a promising

tool for complex component inversions.

8.2 Future Work

This is the first version of the GENISYS tool. This version does not implement
all the features of the Rosetta. There are several enhancements possible to this

tool. Here is a listing of some of the features that can be added to GENISYS.

81

. Allowing each inner component in the structural component to be a struc-

tural component in itself will increase the usability of the tool.

. Currently all the inner components are not defined in the structural com-
ponent. Supporting the definition of a inner component in the structural

component will make the specifications more readable.

. Function inversion is not currently supported. Allowing functions in the

specification and performing function inversion is a future goal.

. The algorithm used to invert a component can be made more sophisticated.
For example, the SAT solver produces one of a number of valid assignments
possible to an unknown parameter. Later on, this assignment may result into
an unsatisfiable expression. Such a situation can be avoided by maintaining
a pointer to location where an assumption was made regarding the value of
a given parameter and whenever an unsatisfiable expression is found, the
control should roll back to the location where the assumption was made and
a new assumption should be made for the parameter. The down-side of this
new approach is that it is computation-intensive as every time the control
rolls back the component inversion process will restart from the location

where the assumption was made.

82

Bibliography

[1] Conjunctive Normal Form(CNF). World Wide Web:

http://www.enm.bris.ac.uk/research /aigroup/enjl/logic/sld005.htm.

[2] Convert Sentence to Conjunctive Normal Form. World Wide Web:

http://www.cs.yale.edu/homes/cc392/node5 html.
3] DOM - XML Parser. World Wide Web: http://www.w3schools.com /dom.
[4] Fu, Zhaohui. World Wide Web: http://ee.princeton.edu/ zfu/.
[5] GRASP SAT Solver. World Wide Web: http://sat.inesc-id.pt/ jpms/grasp.
[6] HTML Tutorial. World Wide Web: http://www.w3schools.com /html/.
7] Insight Debugger. World Wide Web: http://sources.redhat.com /insight /.

[8] JDB - The Java Debugger. World Wide Web:

http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/jdb.html.

[9] SATO SAT Solver. World Wide Web:

http://www.cs.uiowa.edu/hzhang/sato.html.

83

[10] The GNU Project Debugger. World Wide Web:

http://sources.redhat.com/gdh/.

[11] VectorGen - Automated Test Generation, EDAptive Computing, Inc. World

Wide Web: http://www.edaptive.com/products/vectorgen/index.htm.

[12] Walksat SAT Solver. World Wide Web:

http://www.cs.washington.edu/homes/kautz/walksat.

[13] XML Schema Tutorial. World Wide Web:

http://www.w3schools.com /schema/default.asp.

[14] XML Specifications. World Wide Web: http://www.w3schools.com /xml.

[15] zChaff SAT Solver. World Wide Web:

http://www.ee.princeton.edu/ chaff/zchaff.php.

[16] Srinivas Akkipeddi. Advanced test vector generation from rosetta. Master’s

thesis, University of Kansas, 2001.

[17] Perry Alexander. Details of Rosetta. World Wide Web:

http://www.sldl.org.

[18] Perry Alexander, David Barton, Cindy Kong, and Catherine Menon. The

rosetta strawman. Technical report, The University of Kansas, 2002.

[19] Bitan Biswas and R. Mall. Reverse execution of programs. SIGPLAN Not.,

34(4):61-69, 1999.

84

[20] Rommert Casimir. Program Inversion. World Wide Web:

citeseer.nj.nec.com/casimir80program.html.

[21] Wei Chen. A formal approach to program inversion. In Proceedings of the
1990 ACM annual conference on Cooperation, pages 398-403. ACM Press,

1990.

[22] Martin Davis and Hilary Putnam. A computing procedure for

quantification theory. J. ACM, 7(3):201-215, 1960.

[23] Edsger W. Dijkstra. Program Inversion. Selected Writings on Computing:

A Personal Perspective, pages 351-354, 1982.

[24] David Harel. And/Or Programs: A New Approach to Structured

Programming. ACM Trans. Program. Lang. Syst., 2(1):1-17, 1980.

[25] M. Harrold, D. Liang, and S. Sinha. An approach to analyzing and testing

component-based systems, 1999.

[26] Murthy Kakarlamudi. Automatic Test Vector Generation in XML from

Rosetta Specifications. Master’s thesis, University of Kansas, 2002.

[27] Trish LeBlanc. Schmidt Trigger Circuit. World Wide Web:

http://www.saintjohn.nbce.nb.ca/ dei/SCHMTTR.HTM.

[28] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings
of the 38th Design Automation Conference (DAC’01), 2001.

85

[29]

R. Pressman. Software Engineering: A Practicioner’s Approach. McGraw

Hill, New York, NY, third edition, 1992.

Krishna Ranganathan. DVTG, Design Verification Test Generation from

Rosetta Specifications. Master’s thesis, University of Cincinnati, 2001.

Brian J. Ross. Running Programs Backwards: The Logical Inversion of

Imperative Computation. Formal Aspects of Computing, 9(3):331-348, 1997.

Joakim von Wright. Program Inversion in the Refinement Calculus.

Information Processing Letters, 37(2):95-100, 1991.

Yinlei Yu. How to Use/Hack zChaff SAT Solver? Lecture Notes.

Kalpesh Zinjuwadia and Perry Alexander. DVTG and Test Harnessing
using Rosetta Specifications. In Proceedings of the 11th IEEFE International

Conference and Workshop on the Engineering of Computer-based Systems

ECBS’04, pages 136-144, Brno, Czech Republic, May 24-27 2004.

86

