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Abstract 
 

The increase in the transmission speeds of the current day computer networks has 

increased the interest in the performance issues of TCP on these High Bandwidth 

Delay Product (HBDP) networks. TCP congestion control algorithms, which were 

originally implemented to improve the performance of TCP, have some limitations on 

the HBDP networks. Many of the widely used distributed applications like, FTP do 

not take total advantage of these high-speed networks. This is not because of the 

improperly designed applications, but because of the default parameters of TCP, 

which were designed to sacrifice optimal throughput in exchange for fair sharing of 

bandwidth on congested networks. To overcome this limitation of TCP, research 

work is conducted to properly tune the TCP parameters to improve its performance. 

Current approaches include using the optimal socket buffer sizes and using number of 

parallel streams. These parameters are different for different networks and vary over 

time. These techniques have to continuously adapt these parameters to suit the 

network conditions. This task, which requires network expertise, is difficult. The 

Enable service makes this task easier. Also to overcome the limitations of TCP 

congestion control, modifications were made to the TCP stack so that an application 

can turn off congestion control. Previous research has shown that this improves 

performance. But it is not ideal to turn off the congestion control at all times. So we 

need a mechanism, which determines when it is appropriate to change the congestion 

control state in TCP. In this thesis, we implemented a mechanism to monitor the 

network state and control the congestion control state. The proposed methodology is 

tested for a widely used application, FTP. It is shown that the performance, i.e., time 

to transfer a file is improved for large transfers.  
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Chapter 1 
 
 

Introduction 
 
The Transmission Control Protocol (TCP) [20] is the most widely used transport 

protocol in today’s computer networks. With the considerable increase in the speed of 

Internet backbone networks, a lot of attention is being paid to the TCP performance 

issues to make it better suited for such high-speed networks. Most of the current 

Internet applications like FTP [22] and HTTP use TCP as their transport protocol. 

Unfortunately these distributed applications do not take full advantage of the 

currently available high-speed networks. This is not because of any problems with the 

design of these applications, but because of the inherent limitations of TCP on these 

High Bandwidth Delay Product (HBDP) networks. TCP parameters have been 

designed to sacrifice the throughput to share the network bandwidth fairly in the face 

of a congested network. This makes the performance of TCP on low latency links 

good. But on HBDP networks a proper tuning of TCP parameters is required to take 

maximum advantage of the very high bandwidth available. TCP also uses a set of 

congestion algorithms to control the rate at which a sender transfers the data. Even 

though these algorithms are important for preventing the congestion in the network, 

they have a negative impact on the performance of TCP on the long Round Trip Time 

(RTT) links [7]. Lot of work is being done on tuning TCP parameters to improve the 

TCP throughput on such HBDP networks. But application developers require certain 

level of network expertise to use these mechanisms to achieve better TCP 

throughputs. This thesis proposes a new mechanism, which distributed application 

developers can use without much difficulty to maximize their TCP throughput on 

HBDP networks, especially for long file transfers. It also demonstrates the usefulness 

of this mechanism.  
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1.1. Overview of TCP  
 
TCP provides a reliable, connection-oriented, in-order delivery of a stream of bytes. It 

is a full-duplex protocol, meaning that each TCP connection supports a pair of byte 

streams, one in each direction. It also includes a flow-control mechanism for each of 

these byte streams that allows the receiver to limit how much data the sender can 

transmit at a given time. TCP also supports a demultiplexing mechanism that allows 

multiple application programs on any given host to simultaneously carry on a 

conversation with their peers. In addition to the above features, TCP also implements 

a highly tuned congestion-control mechanism. The idea of this mechanism is to 

throttle how fast TCP sends data, not for the sake of keeping the sender from 

overrunning the receiver, but so as to keep the sender from overloading the network. 

 

TCP uses sliding window algorithm to provide reliable, in order delivery of data. It is 

also used to enforce flow control between the sender and the receiver. TCP on the 

sending side maintains a send buffer. This buffer is used to store data that has been 

sent but not yet acknowledged, as well as data that has been written by the sending 

application, but not transmitted. On the receiving side, TCP maintains a receive 

buffer. This buffer holds data that arrives out of order, as well as data that is in the 

correct order, but that the application process has not yet had the chance to read. The 

way the sliding window algorithm works is as follows. First the sender transmits a 

segment and waits for the acknowledgement before sending any other data. Once the 

acknowledgement for the first segment arrives, it sends two segments and when the 

acknowledgement for these two segments arrive, it sends four segments and this 

process continues. But there is a limit to the number of segments that a sender can 

transmit. The receiver advertises a window size to the sender using the Advertised 

Window field [1] in the TCP header. The sender is then limited to having no more 

than a value of Advertised Window bytes of unacknowledged data at any given time. 

The receiver selects a suitable value for Advertised Window based on the amount of 
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memory allocated to the connection for the purpose of buffering data. The Effective 

Window used to determine this limit on the maximum number of unacknowledged 

bytes is calculated as follows [19]: 

   

              Effective Window = Advertised Window - (LastByteSent - LastByteAcked)  

 

Thus the flow control is implemented in TCP. There is another window value called 

Congestion Window (CWND) [1], which is used to implement the congestion 

control, which is explained in the next section. 

 

1.2. TCP Congestion Control 
 
TCP congestion control [1] was introduced into the Internet in the late 1980s by Van 

Jacobson. Before there was congestion control in TCP, the Internet used to suffer 

from Congestion Collapse [5]. Congestion collapse is a network state in which the 

hosts would send their packets into the Internet as fast as the advertised window 

would allow, congestion would occur at a router, causing the packets to be dropped, 

and the hosts would timeout and retransmit the packets, further increasing the 

congestion in the network. Congestion Collapse occurs when packets arrive at a 

router in the network at a rate higher than it can handle.  

 

Congestion control is implemented in TCP using four algorithms namely, Slow Start, 

Congestion Avoidance, Fast Retransmit and Fast Recovery [1]. TCP maintains a new 

state variable for each connection, called Congestion Window (CWND), which is 

used by the source to limit how much data is allowed to have in transit at a given 

time. The congestion window is congestion control's counterpart to the flow control's 

advertised window. The maximum number of bytes of unacknowledged data would 

now be the minimum of the congestion window and the advertised window. This is 

shown by the following equations [19]. 
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 Max. Window = MIN (Congestion Window, Advertised Window) 

 Effective Window = Max. Window - (LastByteSent - LastByteAcked) 

 

Note that Max.Window replaces Advertised Window in the calculation of Effective 

Window. Hence a TCP source is allowed to send no faster than the slowest 

component, network or the destination host, could allow. 

 

1.2.1. TCP Slow Start and Congestion Avoidance  
 
TCP uses Slow Start and Congestion Avoidance algorithms [1] to control the amount 

of outstanding data injected into the network. Apart from the two variables, 

Congestion Window and Advertised Window defined above, TCP uses another 

variable called the slow start threshold (sstresh) to determine whether to use Slow 

Start or Congestion Avoidance to control the data transmission. 

 

TCP uses Slow Start mechanism to increase the CWND at the start of a TCP 

connection and also when a timeout occurs because of a lost packet. During the Slow 

Start, the source starts out by setting the CWND value to one packet. When the ACK 

for this packet arrives, it increases the CWND value by 1 and then sends two packets. 

When the ACKs for these two segments arrive, it increases the CWND value by 2, 

one for each ACK and sends four segments. This in effect increases the CWND 

exponentially. The CWND increases this way until a loss is observed or it reaches the 

value of sstresh. TCP will be in the Slow Start state when CWND < sstresh. Initially 

sstresh is set to the value of receiver advertised window. Whenever a loss is observed 

by a timeout, the sstresh is set to half the value of the CWND and the CWND is set to 

1 packet. The CWND will increase exponentially until it reaches the value of sstresh 

(if there are no drops), at which point it goes into the Congestion Avoidance phase. 
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Congestion Avoidance is the phase in which TCP increases the CWND linearly 

instead of exponentially as observed in the Slow Start phase. TCP will be in this 

phase when CWND > sstresh. During this phase TCP increases the CWND by one 

whenever the ACKs are received for all the packets in the CWND. This is a 

conservative approach to increase the CWND.  

 

1.2.2. Fast Retransmit and Fast Recovery  
 
Fast Retransmit and Fast Recovery mechanisms [1] are proposed to reduce the long 

idle periods of time during which the TCP on the sending host waits for a timeout to 

occur. Fast Retransmit is a mechanism that sometimes triggers the retransmission of a 

dropped packet sooner than the regular timeout mechanism. The fast retransmit 

mechanism does not replace regular timeouts; it just enhances that facility. 

 

The idea of fast retransmit is straightforward. Every time a data packet arrives at the 

receiving side, the receiver responds with an acknowledgement, even if this sequence 

number has already been acknowledged. Thus, when a packet arrives out of order, 

TCP resends the same acknowledgement it sent the last time. This second 

transmission of the same acknowledgement is called a duplicate ACK. When the 

sending side sees a duplicate ACK, it knows that the other side must have received a 

packet out of order, which suggests that an earlier packet might have been lost. Since 

it is also possible that the earlier packet has only been delayed rather than lost, the 

sender waits until it sees three duplicate ACKs and then retransmits the missing 

packet. 

 

The Fast Recovery mechanism removes the slow start phase that happens between 

when fast retransmission detects a lost packet and additive increase begins. That is 

when the fast retransmit mechanism signals congestion, rather than drop the 

congestion window all the way back to one packet and run slow start, it simply cuts 
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the congestion window in half and resumes additive increase. This makes TCP to use 

slow start only at the beginning of a connection and whenever a timeout occurs.  

 

1.3. Motivation for the Thesis 
 
TCP uses Congestion Window (CWND) to determine the number of packets that it 

can transmit at any time before it receives an acknowledgment from the receiver. The 

larger the CWND value, the higher the TCP throughput. TCP Slow Start and the 

Congestion Avoidance algorithms as described above determine the size of the 

Congestion Window. The maximum Congestion Window size is related to the 

amount of buffer space allocated to each socket by the kernel. There is a default 

buffer size value allocated to each socket which can be changed by the system call, 

setsockopt () [8]. 

 

TCP performs well on the low-latency links, but on high-rate, large roundtrip time 

links it fails to take advantage of the high bandwidth available [7]. This can be 

attributed to the improper TCP parameters, including the limitations introduced in the 

kernel by the sizes of socket buffers. As the network throughput speeds have 

increased recently, the operating systems have changed the default buffer sizes from 

the common values of 8 kilobytes to 64 kilobytes. But these socket buffer sizes are 

still not enough [8] for the current high-speed networks. TCP requires very high 

buffer sizes to get maximum benefit from these networks. But we can not just use the 

maximum buffer size values for all the connections, as it wastes the operating system 

resources and also under certain circumstances overly large TCP buffers can have bad 

effect on the TCP performance. To solve this problem several approaches have been 

proposed, tuning of TCP buffer sizes [8,9,12] and use of parallel sockets came into 

picture [13]. But in order to use these mechanisms application developers need some 

sort of network expertise. ENABLE (Enhancement of Network Aware Applications 

and Bottleneck Elimination) project aims to make this task of determining the correct 

TCP tuning parameters easy to the application developers apart from the large 
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number of tasks it does. The details of the ENABLE project are given in the next 

section.  

 

TCP Congestion Control algorithms are very important for the proper functioning of 

the networks but they can also have a negative impact on the TCP performance on the 

high latency links [7]. To overcome this limitation, a mechanism has been proposed, 

implemented and tested, which enables an application to turn off the congestion 

control in the TCP based on the network state. This mechanism also shows some 

promising results [2]. But we cannot turn off the congestion control in TCP totally 

because it causes congestion collapse in the network. Hence we need a mechanism by 

which we can be able to determine when it is appropriate to turn off CC in TCP. 

Enable Advisory Server (AS) tries to achieve this task of determining when to change 

congestion control state in TCP.  

 

This thesis proposes a new mechanism by which an application can turn CC in TCP 

dynamically during the course of a TCP connection as a function of network state. 

This mechanism is especially aimed at improving the performance of applications 

with large file transfers. The advantages and disadvantages of this mechanism are 

also discussed as well as the results of its implementation with a popular application, 

FTP.  

 

1.4. ENABLE Overview 
 
ENABLE stands for Enhancing of Network-aware Applications and BottLeneck 

Elimination. This project is a Department of Energy (DOE) research project to build 

an adaptive monitoring infrastructure, a monitor data publishing mechanism, and 

monitor data analysis tools. They are developing a "Grid" service that will provide 

both of these capabilities. The overall goal of this Enable project is to provide 

manageability, reliability, and adaptability for high performance applications running 

over wide-area networks. A main component of Enable project is the Enable network 
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advice server [3]. An Enable server can be installed on any data server host (e.g.: an 

FTP server), and configured to monitor the network paths from that host to a set of 

client hosts. The Enable server monitors the state of the network continuously and can 

be queried by client applications to get the network tuning parameters to use. These 

parameters include the optimal TCP buffer size to use for a given path.  These 

network-tuning parameters are different for different network paths and vary over 

time. The application become aware of the network by constantly contacting the 

Enable advice server and obtaining the information needed to adapt to the current 

network conditions.  

 

Presently, the archival tools and the monitoring tools to store per session data in the 

database are being put together. The Enable service with limited capability is also 

implemented. The work in this thesis is a sample implementation of the actual 

application of the Enable service. A new capability of the Enable service is proposed, 

implemented and evaluated here. This capability helps the Enable service to give 

input on whether to use the congestion control mechanism in TCP or not based on the 

network conditions. Once the infrastructure is in place this mechanism can be tested 

in the real environment.  

 

 

1.5. Organization of the Thesis 
 
The rest of this thesis is organized into the following chapters. Chapter 2 describes 

the TCP Extensions for the High Bandwidth Delay Product Networks and also the 

background work on the TCP tuning and the work done on dynamically adjusting the 

state of the congestion control in TCP. Chapter 3 gives on overview of the ENABLE 

Architecture with an emphasis on the implementation of the Advisory Server. Chapter 

4 describes the FTP in general along with its implementation and the modifications 

did to it to implement our mechanism. Chapter 5 shows the various test scenarios 

used to test our mechanism along with the tests to see its advantages and 
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disadvantages. It also shows the tests, which are done to see how certain factors 

influence the mechanism. Chapter 6 gives a summary of the accomplishments of this 

thesis and the possible future work that can be done in this area. 
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Chapter 2 
 
 

Related Work 
 

2.1. TCP Extensions for High Performance  
 
The TCP protocol was designed to operate reliably over almost any transmission 

medium regardless of transmission rate, delay, corruption, duplication, or reordering 

of segments. The basic TCP implementation works well for the low latency networks, 

but it is not suitable for today's high-speed and high-delay networks. Hence several 

extensions were proposed [6] to the basic implementation to enhance the performance 

of TCP on such networks.  All these extensions are implemented as TCP options so 

that hosts can still communicate using TCP even if they do not implement these 

options. Hosts that do implement the optional extensions, however, can take 

advantage of them. 

 

TCP performance does not depend on the transmission rate alone; it depends on the 

product of the transmission rate and the round-trip delay. This "Bandwidth Delay 

Product"(BDP) measures the amount of data that would fill the network path. It is the 

buffer space required at sender and receiver to obtain maximum throughput on the 

TCP connection over the path, i.e., the amount of unacknowledged data that TCP 

must handle in order to keep the network path full. TCP performance problems arise 

when the bandwidth*delay product is large. We refer to an Internet path operating in 

this region as a "long, fat pipe" and a network containing this path as an "LFN". The 

three fundamental problems that arise with TCP over such LFN paths are the Window 

size limits, recovery from losses and the round-trip time measurements. To over come 

these problems, Van Jacobson, Bob Braden, Dave Borman suggested the following 
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extensions to TCP [6], to improve its performance over the high bandwidth-delay 

product networks. 

 

??TCP Window Scale extension to enable using large windows for accommodating 

the large BDP values of the current high speed and high delay networks. 

??TCP Timestamps for more precise estimation of the round-trip times 

??Protect Against Wrapped Sequence Numbers (PAWS), for preventing the 

accidental reuse of TCP sequence numbers because of the sequence number wrap-

around caused by high bandwidths. 

 

We will go over the first proposed extension, which deals with the TCP window 

sizes. 

 

2.1.1. TCP Large Window extension  
 
The TCP Advertised Window field in the TCP header, which is of 16 bits limits the 

size of the TCP window to 2^16 = 64KBytes. Without the Large Window extensions, 

the maximum throughput of a TCP connection is limited by the round trip time as 

given in the following relation. 

 

         Max.TCP Throughput  = Receiver Buffer Size/Round Trip time. 

 

On a typical cross-country WAN link with a round trip time of 60ms, the maximum 

throughput of the TCP connection is limited to  

 

         Max.TCP Throughput  = 64KBytes/60ms = 8.74Mbps. 

 

This is the limit on the TCP throughput no matter what the transmission rate of the 

Internet path is. In order to overcome these throughput limitations, the TCP large 

window extensions were proposed. 
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Large Window extension is implemented in TCP using the TCP Window Scale option 

[6]. The window scale extension increases the size of the TCP advertised window to 

32 bits and then uses a scale factor to carry this 32-bit value in the 16-bit window 

field of the TCP header. The scale factor is carried in a new TCP option, Window 

Scale. This option is sent only in a SYN segment and hence the window scale is fixed 

in each direction when a new connection is opened. The maximum receive window 

and hence the scale factor is determined by the size of maximum receiver buffer 

space. This maximum buffer space is set by default but it can be changed by a system 

call before a connection is opened. The Window Scale option, sent in a SYN 

segment, indicates the willingness of the TCP sender to do both the send and receive 

window scaling. It is also used to send the scale factor to apply to its receive window. 

Both the sender and receiver must send the Window Scale option in their SYN 

segments to enable window scaling in either direction. This option is sent in the initial 

SYN segment. It is also sent in a <SYN, ACK> segment, but only if a Window Scale 

option was received in the initial SYN segment. A Window Scale option in a segment 

without a SYN bit is ignored. When the TCP window scaling is enabled, the effective 

send and receive window sizes are calculated by left shifting the window sizes by 

scale factor times. The scale factor is limited to a value of 14 to make sure that the 

maximum window size is 2^30. 

    

2.2. TCP tuning for performance enhancement  
 
TCP uses Congestion Window to determine how many packets can be sent at one 

time. The larger the congestion window size, the higher the throughput. The TCP 

slow start and congestion avoidance algorithms [1] determine the size of this 

congestion window. The maximum congestion window is related to the amount of 

buffer space the kernel allocates for each socket [8]. For each socket, there is a 

default value for the buffer size, which can be changed by the program using a system 

library call just before opening the socket. There is also a kernel enforced maximum 
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buffer size, which can also be changed. The socket buffer size must be adjusted at 

both the sender and receiver sides.  

 

To get maximal throughput it is always important to use the optimal TCP send and 

receive buffers for the link being used [8]. If the buffers are too small, the TCP 

congestion window will never fully open up and if the buffers are too large, the 

sender can overrun the receiver and the TCP window will shut down. There exists a 

large body of work showing that good performance can be achieved using the proper 

tuning techniques. However, determining the correct tuning parameters can be quite 

difficult, especially for users or developers who are not networking experts. There are 

several tools that help determine these values, but none of these include a client API 

and all require some level of network expertise to use. So we need a mechanism, 

which is easy to use, to determine the optimal buffer sizes to use for the link we are 

using.  

 

The optimal buffer size is twice the bandwidth*delay product of the link [8]. 

     buffer size = 2 * bandwidth * delay = bandwidth * RTT  

where bandwidth is the bottleneck bandwidth for a particular path and RTT is the 

Round Trip Time on that path. 

 

We need to have some network expertise to determine these optimal parameters and 

most of the distributed application developers find it difficult to deal with this 

network tuning. Also these optimal buffer sizes are different for different networks 

and vary over the time. Several research efforts are being conducted to make this task 

of tuning the network parameters easier for the distributed application developers so 

that they can concentrate on the application design instead of worrying about the 

network performance. These research efforts include Net100 [10], Web100 [11] 

among the others. 
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The Web100 project aims at providing the software and tools necessary for end-hosts 

to automatically and transparently achieve high bandwidth data rates over the high 

performance research networks. This project plans to achieve the TCP performance 

tuning transparency by embedding the appropriate diagnostics and automatic controls 

in the end system operating system at a level invisible to the user.  Initially the 

software and tools are being developed for the Linux operating system, but the work 

is being done in a standard, open manner so that they can easily be ported to other 

operating systems. 

 

The Net100 project is based on Web100 and NetLogger [32] and it proposes to 

develop a model for network-aware operating systems using Web100 as the means 

for incorporating network information and its analysis into host operating systems to 

improve performance. The modified operating systems will respond dynamically to 

network conditions and make adjustments in network transfers, sending data as fast as 

the network will allow.  

 

Recently, the Linux 2.4 kernel [12] also included TCP buffer tuning algorithms. For 

applications that have not explicitly set the TCP send and receive buffer sizes, the 

kernel will attempt to grow the window sizes to match the available bandwidth (up to 

the receiver's default window). Autotuning is controlled by new kernel variables 

net.ipv4.tcp_rmem/wmem and the amount of kernel memory available. 

 

 

2.3. Experimental modifications to TCP  
 
Congestion Control algorithms of TCP were implemented to prevent the frequently 

occurring condition of congestion collapse in the Internet. It succeeded in doing that, 

but it has a performance bottleneck on the high-speed and high delay networks. The 

most important parameter on which the throughput of TCP for a particular connection 

depends is the product of the bandwidth of the link and the delay on that link. When 
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the RTT of a link is very high, the time TCP spends in the slow start phase is high and 

so effectively TCP doesn't yield good throughput results in that phase. For a protocol 

like HTTP which uses TCP as the transport protocol and which has very short 

duration flows, the response times because of TCP's slow start phase is disastrous 

over a high RTT link. For HTTP flows, the entire duration of the flow is 

predominated by TCP's slow start behavior and this has bad effects on the response 

time of the web server. Also whenever there is some random loss of a packet in a 

connection, the TCP Congestion Control algorithms slow down the sender by 

entering into the slow start phase, even though there is not much congestion in the 

network. However the TCP Fast Retransmission and Fast Recovery algorithms [1] 

minimize this effect to some extent, but still the sender will be slowed down. To 

overcome these limitations for certain applications, experimental modifications were 

made in TCP, which enable an application to turn off the congestion control 

mechanism in TCP from the application level [2]. This modification where there is no 

congestion control in TCP is referred as NOCC (No Congestion Control). 

 

2.3.1. Implementation of NOCC in TCP  
 
The interface that is provided for the application to turn off the congestion control 

mechanism in TCP is by means of a setsockopt( ) system call. The application can 

turn OFF and turn ON the congestion control in TCP whenever needed. The way this 

NOCC is implemented in TCP is by controlling the growth of the TCP congestion 

window, since this is the parameter which the congestion control algorithms use to 

control the rate of transmission of a host. Once the congestion control is turned off, 

the TCP control block will be unaware of the Congestion Window parameter and the 

receiver's advertised window becomes the sender's limit on the number of bytes it can 

transmit before receiving an acknowledgement. This makes sure that the flow control 

is still enforced. The study with the experimental modifications to TCP stack [2] 

gives the details of the implementation of this NOCC mechanism and the advantages 

and disadvantages of using this mechanism. 
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The implementation of NOCC mechanism in TCP helps us to control the congestion 

control state in TCP, but we can not turn off the congestion control in TCP totally 

because this might again lead to the problem of congestion collapse in the network. 

To avoid this problem and at the same time take advantage of this provision in the 

TCP stack, we proposed to develop a new service called Enable service, which 

dynamically adjusts the state of the congestion control in TCP depending on the 

network state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 17

 

Chapter 3 
 
 

ENABLE Architecture 
 

3.1. Introduction 
 
Enable service [3] provides its clients with the correct TCP tuning parameters for a 

given network path so that applications can optimize their use of the network and 

achieve the highest possible throughput. The Enable service works as follows: An 

Enable server is co-located on every system that is serving large data files to the 

wide-area network (e.g.: an FTP or HTTP server). The Enable service is then 

configured to monitor the network links to a set of client hosts from the perspective of 

that data server. Network monitoring results are stored in a database, and can be 

queried by network-aware distributed components at any time. The Enable service 

runs the network tests on some pre-configured time interval. The Enable service API 

makes it very easy for application or middleware developers to determine the optimal 

network parameters. To take advantage of the Enable tuning service, distributed 

applications must be modified to support network tuning such as the ability to set the 

TCP buffer size [8] or the ability to create and use multiple data streams to transfer 

data in parallel [13]. The network tuning parameters that the Enable service is initially 

concentrating on are those required by large bulk data transfer applications, such as 

the various “Data Grid” [30] projects.  

 

3.2. The Enable Service 

 

The Enable service [3] has three distinct components. First, there is the Enable 

Server, which keeps an up-to-date record of network parameters between itself and 
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other hosts. The second component is a protocol for clients to communicate with the 

servers. Finally, there is a simple API that makes querying the Enable Servers trivial 

for application developers. The primary design goal for the Enable service is the ease 

of installation, configuration, and use. The architecture of Enable is shown in Figure 

2 below. An Enable Server is installed on every data server host, such as an FTP or 

HTTP server, and that Enable server is responsible only for determining the optimal 

network parameters between clients and itself. The following section describes the 

functionality and implementation of the Enable Service.  

 

 

Figure 1: ENABLE Architecture, from [3] 
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3.2.1. Functionality of the Enable Server 

 

The Enable Server will periodically run network monitoring tests between itself and a 

number of client hosts. These client hosts could be read at start-up from a 

configuration file, manually added using an API or command-line utility, or 

automatically added by monitoring log files from the data server, such as HTTP or 

FTP logs. The results of the network tests will be stored in a database. The selection 

and scheduling of tests for each client is dynamically configurable. Clients can query 

the Enable server, which is listening on a well-known port, for network parameters, 

also called “network advice”. The protocol for doing this is XML-RPC [31], a 

standard XML-based protocol that performs remote procedure calls over HTTP. The 

standard protocol is used so that interfacing with Enable is made easier without using 

the Enable API or libraries. 

 

Here is a sample API that clients can use to query the Enable Server. For example: 

 

tcp_buffer_size = EnableGetBufferSize(ftp_hostname) 

returns the optimal buffer size between itself and the FTP server host, and: 

 

net_info = EnableGetNetInfo(ftp_hostname) 

returns the result of all network tests for that network path.  

 

Currently the Enable server supported network tests are ping, pipechar [25], pchar 

[33], and Iperf [17], but only ping and pipechar are run by default.  
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3.2.2. Implementation of the Enable Service 

 
 The ENABLE framework is not completely in place and our work is based on a 

simple look-alike of the Enable service. For this thesis, the Enable server code is 

written totally independent to the actual Enable server, but it includes all the concepts 

of the actual enable server. It maintains a database of the network conditions, which 

include the available bandwidth on the network path to the client at different times of 

a day. It uses this data to advise the client about the tuning parameters. The data 

collected is the available bandwidth variation data on a router interface. The Enable 

server does not run any network tests to the set of client hosts. It instead bases its 

advice on the traffic data from the router. Also modifications are made to the 

ProFTPD daemon [15], which is one of the target applications when the actual 

ENABLE architecture is in place. Whenever an FTP client tries to download a file 

from the FTP server, the FTP server contacts the Advisory Server (AS, also called the 

Enable Server) for advice on the network parameters (TCP congestion control state 

(CC State) input in this case) to use. The advisory server gives input on the CC state 

of TCP and also the time at which it has to be contacted again. Based on the input it 

receives from the AS, the ProFTPD daemon turns the CC State in TCP and begins 

transferring the requested file to the client host. When the next advise time, as 

suggested by the AS nears, the FTP server contacts the AS again to see if there is any 

change in the state of network and hence in the network parameters to use for the 

client host. If so it changes the network parameters (TCP CC State). This process 

continues till the transfer is complete.  

 

The way our work differs from the actual ENABLE framework is that the Enable 

server does not run any network tests to determine the state of the network. Instead it 

determines the current state of the network based on the traffic data that is collected 

before hand. The other change is, since the data is collected only for a single router, it 

can give useful input only to hosts on the router path. Also the inputs that the Enable 
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server gives and the way those inputs are derived are different from that of the actual 

Enable server. But with little changes we can make this very similar to the actual 

ENABLE architecture.  

 

3.3. Algorithm used to implement the Advisory Server 
 
The purpose of the Advisory Server (AS) is to give the applications the inputs on the 

network parameters to use. To achieve this, we model the changes in available 

bandwidth on a network path and use the result to give inputs on the network tuning 

parameters. The following description is based on [4]. We use FTP as the target 

application, which uses this Advisory Server (AS) to reduce the transfer time of large 

files. One of the parameters the AS gives is the optimal TCP buffer size to use for a 

connection. The optimal TCP buffer size can be calculated by the following formula 

[8]: 

 

Optimal TCP buffer = RTT * (bandwidth of bottleneck link) 

 

Another parameter that we deal with is, if there is no congestion in the link, we can 

turn off congestion control in TCP. So the AS gives the input of whether to use CC in 

TCP or not. Turning CC OFF can improve the performance of a TCP flow at the 

expense of the background flows [2]. For relatively short file transfers, bandwidth can 

be assumed to be constant; but for very large files, we need to build a model to 

predict when to adjust these network parameters. We also monitor the Congestion 

State of the link from server to client. The architecture of the system considered is 

shown in Figure 2. 
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Figure 2: System architecture, from [4] 

 

 

The following is from [4]. Here we model the changes in available bandwidth on a 

network path. In this model, we regard the available bandwidth as being composed of 

two parts: one is deterministic; another is random to reflect the burstiness of network 

traffic, it can be taken as noise. For the first part, a linear regression method is used to 

model the traffic for short time intervals; that is, at any time we assume a linear 

relationship between time and available bandwidth over a short period of time. For 

example, when the advice server receives request at 2:00 am, it calculates the mean 

available bandwidth and bandwidth rate of change at 2:00 am according to historical 

data. 

 

Assume the relationship between available bandwidth and time is linear, 

???
10

??b  

b represents available bandwidth 

? represents time relative to the request time 

0? will be the available bandwidth at the time of the request, 1? will be rate of change 

of the available bandwidth, it may be negative. 
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Figure 3: Illustration of linear model, from [4] 

 

In Figure 3, the advice request arrives at time 0t . The linear regression is done for 

data between 0t and 1t ( 011 ttt ???  is a configured constant). 0? will be the available 

bandwidth at 0t , 1?  is the slope, representing the rate of change in available 

bandwidth. If we require that the change in available bandwidth will not exceed ?? , 

then the next advice time will be at . 

 

The database in the advice server will contain a series of observed pairs 

,,1),,( niiib ???  from which the estimators of the coefficients 0? , 1?  can be 

calculated, that is [4], 

2)(2

))((

1
ˆ

??

???

?

?
?

ii
n

iibiibn

??

??
?  

n
ii

b ?? ?
?

??
? 1

ˆ

0
ˆ  



 24

 

The measurement contains noise so that the model becomes 

iiib ???? ??? 10  

We assume that: 

?? i? is a Gaussian random variable 

?? Mean value of i? is 0, i.e., 0)( ?iE ?  

?? Variance of i?  is constant. (Therefore, )2,0(~ ?? Ni ) 

?? Correlation of i? and j? ( ji ? ) is 0 

?? Correlation of i? and ib is 0 

 

Under these assumptions: 

 

?? 1?̂ is an unbiased estimator of 1?  

?? 0?̂ is an unbiased estimator of 0?  

?? The goodness of fitness is measured by 
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3.3.1. Implementation of Advice Server 

 

The network data is present at the Advice Server host in a database as a sequence of 

records of ),,,( cbip ? . Where ip is the IP address of each hop along the path to the 

client (only one hop for our case), ?  is test time, b is measured available bandwidth 

at the time ? ,  c is a Boolean that indicates whether congestion is occurring (TRUE) 

or not (FALSE) at this time ? . This value is determined based on the available 

bandwidth at this time. If the available bandwidth is less than the threshold (defined 
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based on the % of used traffic), we turn the CC ON and if the available bandwidth is 

more than the threshold, we turn the CC OFF.  

 

When the data server receives a file transfer request from client, it sends a request to 

the advice server. The request includes the following parameters: 

?? IP address of client 

?? file length or remaining file length to be transferred 

 

When the advice server receives the request, it determines the following parameters 

to send back to the data server: 

?? Flag to indicate whether to use congestion control or not in TCP 

?? RTT from server to client. 

?? Current available bandwidth 

?? Next advice time 

 

RTT can be tested when the advice request arrives at the advice server, either ICMP 

programming or ping can be used to obtain the result. To get the congestion control 

flag, the advice server searches for the most recent observation of this destination 

from database. The result is a series of stored information in the form of 

 ),,,( 111 cbip ?  

 …… 

),,,( nnn cbip ?  

Here, iip s are IP addresses of hops from the server to the destination, ib s are 

available bandwidth of corresponding hops, ic s are flags of congestion states. If the 

most recent test time t  is not close enough to current time, the congestion control flag 

is set to inform the data server use congestion control during transmission. If the 

nearest test time t  is close enough to current time, the congestion control flag is 

determined by congestion flags. If anyone of them is TRUE, which means congestion 
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happened in this hop, the congestion control flag will be turned on; if none of them is 

true, the congestion control flag will be turned off. 

 

The available bandwidth and next advice time will be calculated according to 

historical data of the minimum bandwidth hop. When an advice request comes, the 

first step is to calculate the available bandwidth and rate of change of available 

bandwidth for each previous day with test data.  

day 1 day 2

?t1

0 t0 t1

? t1
0 t0 t1  

Figure 4: Illustration of calculation, from [4] 

 

The advice request comes at time 0t  in current day. For each previous day, we do 

linear regression for history data from 0t  to 101 ttt ??? ; then we get available 

bandwidth )(0 i? and rate of change in available bandwidth )(1 i? , i  is the index of the 

previous test days.  

 

Current available bandwidth will be estimated as the mean value of series )(0 i?  

 ?
?

?
N

i

i
N 1

00 )(
1

??  

This value will be sent back to the data server. 

  

For the rate of change in available bandwidth )(1 i? , we calculate the mean value 1?  

and standard deviation 
1?? , then the rate of change in available bandwidth will be 

bounded by 
11 ??? zt? and

11 ??? zt?  ( zt is determined by confident level requirement 

of normal distribution. According to theory, )(1 i?  is student-t distribution, hence 
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)(1 i?  can be approximated by normal distribution. For example, 2?zt  is for 95% 

confidence).  

Denote ),max(
11 11 ?? ???? zz ttS ??? , S will be the maximum rate of change in 

available bandwidth. That is, from 0t , after a certain time interval ? , the change in 

available bandwidth will be ??S . 

 

The upper bound of change in available can be determined either by absolute value or 

percent of estimated bandwidth 0? , denote it as ?? . Then 

 SS /???? ??????  

which gives the next advice time ??? 0tta . 

 

The Advisory Server (AS) that is implemented in this manner will be co-located with 

the data server, for example an FTP server. The FTP server interacts with this AS and 

uses the network tuning parameters as suggested by the AS for all the data transfers to 

the FTP clients. Thus the AS helps in reducing the transfer times of large file transfers 

in FTP. The next chapter describes the modifications that are made to an FTP server 

in order to interact with the AS. 
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Chapter 4 
 

 

Modifications to the FTP server 
 
This chapter gives an overview of the File Transfer Protocol (FTP), the details of the 

implementation of ProFTPD, an FTP server daemon, and the changes that are made 

to ProFTPD so that it interacts with the Enable server while transferring large files to 

FTP clients. 

 

4.1. Overview of File Transfer Protocol  

 

File Transfer Protocol (FTP) [22] is an application protocol with TCP as its transport 

protocol.  As the name suggests, its main purpose is to transfer files between the 

computers. FTP is implemented based on two connections, namely, control 

connection and data connection. The control connection is the communication path 

between the FTP client and the server to exchange the commands and replies. It 

follows the Telnet protocol [23]. The data connection is a full duplex connection over 

which data is transferred, in a specified mode and type. The FTP server listens on the 

standard port, 20. This is the port to which the FTP client connects in order to 

establish a control connection with the FTP server. The port number used on the FTP 

client side for the data connection is 21 and this is also standard. FTP client sends this 

data port among the other parameters to the FTP server in the initial set of commands. 

The FTP server establishes a connection based on the connection parameters sent by 

the client and starts the data transfer. 

 

The communication channel from the client to the server process is established as a 

TCP connection from the client to the standard server port (20). The client sends the 
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FTP commands and interprets the replies received. The server interprets the 

commands, sends the replies to the client, establishes the data connection and 

transfers the data. There are different kinds of commands that a client sends to the 

server. 

 

??Access control commands: These commands are used to control the access of  

     the FTP server by the client. 

??Transfer parameter commands: These commands specify to the server, the 

parameters to use for the current data transfer. These commands must precede 

the FTP service request. 

??FTP service commands: These are the actual service requests from the clients. 

They define the file transfer or the file system function requested by the client. 

 

 4.2. Details of modifications to ProFTPD 

 

For this thesis, ProFTPD [15] is selected as the target FTP server since it is a highly 

secure and configurable FTP server. Modifications are made to the ProFTPD daemon 

to make it interact with the Enable service. The design of ProFTPD daemon is 

derived from that of Apache web server and it can be run as a standalone server or it 

can run under “inetd”. 

 

4.2.1. Implementation of ProFTPD  

 

ProFTPD is an FTP server modeled around the Apache HTTP server, with a similar 

configuration file syntax and modular structure. The implementation details given in 

this section are based on [24]. ProFTPD handles the commands in a series of simple 

steps as follows: 
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??Preprocessing the command 

??Processing the command 

??Postprocessing the command 

??Logging the command 

 

These phases are handled by looking at each of the module, looking to see if it has a 

handler for the phase, and attempting to invoke it if there is one. The handler does one 

of the three things 

??Handle the command and let the processing engine know that the command has 

been handled and it can proceed with its processing. 

??Decline to handle the command and let the processing engine know that it should 

proceed its processing as if it has never called that handler. 

??Signal an error by returning one of the FTP error codes [22]. This terminates the 

normal handling of the request; the command may be logged. 

 

Most phases are terminated by the first module that handles them. The handlers are 

functions of one argument (a cmd_rec structure), which returns a MODRET (a 

modret_struc typdefed to MODRET) [Appendix C]. 

 

4.2.2. Module structure 
 
The details of all the modules and data structures are based on [24]. Each module 

declares the command handlers for the commands issued by the client, that it is 

interested in handling. The modules can also contain the code to handle the 

configuration commands. To handle these configuration directives the modules have 

the configuration directive handlers. These configuration directive handlers perform 

such checks as whether the configuration directive is in an appropriate context, 

whether the arguments are correct, etc. Each module has a command handler table, 

which links the client-issued commands with the interested handlers and a 
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configuration command hander table, which declares the configuration directives, 

and the corresponding configuration directive handlers. 

 
Some of the data structures, which are used very often in these command handlers, 

are as follows: a pool is a pointer to a resource pool structure. These are used by the 

server to keep track of the memory which has been allocated, files opened, etc., either 

to service a particular request, or to handle the process of configuration itself. This is 

maintained so that when the request is over, the memory can be freed, and the files 

closed, en masse, instead of tracking them all down and disposing them. 

 

The sole argument to handlers is a cmd_rec structure. This structure describes a 

particular command, which has been made to the server, on behalf of a client. Each 

connection by a client generates multiple cmd_rec structures, starting with the USER 

command. The cmd_rec contains pointers to a resource pool, which will be cleared 

when the server is finished handling the command, to structures containing per-server 

information, and most importantly, information on the command itself. There are also 

pointers to private data a handler has built in the course of servicing the command, 

and to a server_rec, which contains per (virtual) server configuration data. When the 

processing engine reads an FTP command from a client, it builds the corresponding 

cmd_rec structure by filling its fields. The filled-in cmd_rec is then handed off to the 

command handlers that have registered an interest in handling that particular FTP 

command.  

 

4.2.3. Command Responses 
 
Each handler, when invoked to handle a particular cmd_rec, returns a MODRET to 

indicate what happened. That can be one of:  

?? HANDLED -- the command was handled successfully. This may or may not 

terminate the phase.  
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?? DECLINED -- no erroneous condition exists, but the module declines to 

handle the phase; the server tries to find another.  

?? ERROR -- an error has occurred while processing the command, which aborts 

its handling.  

 

Each module handles the configuration directives by looking in its configuration 

table. As stated previously, this table contains information on what directives the 

module handles and the corresponding configuration handler. It takes only one 

argument, a cmd_rec pointer. That structure contains a bunch of arguments, including 

a resource pool, and the (virtual) server being configured, from which the module's 

per-server configuration data can be obtained if required. The module's configuration 

table has entries for all the directives it handles.  

 

The entries in these tables are:  

?? the name of the configuration directive  

?? the function which handles it  

?? a pointer which is set to the "owning" module when the module code is 

compiled; It is always set to NULL 

 

Once all the configuration directives are handled by the appropriate handlers the 

module goes on to execute the command issued by the client. This it does by looking 

into the command handler table to see the command handler to call for the particular 

command issued by the client. Even the command handlers take a single argument of 

type cmd_rec. 

 

ProFTPD daemon was modified so that all the download requests from the clients are 

handled by interacting with the Advisory Server. The modifications were made to the 

command handler, cmd_retr, which handles the download commands from the 

clients.  Just before the server starts transferring the file, it contacts the Advisory 
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Server by sending it the client’s IP address, the length of the file it has to still transfer 

in a ADVISING_REQUEST structure. Now the AS determines the correct network 

parameters (the CC State to use in TCP) to use for that particular client and sends 

them to the FTP server in an ADVISING_REPLY structure. In this structure, it also 

sends the time after which it has to contact it again to check if there is any change in 

the network path. Based on the response from the AS, we turn the CC State in TCP 

by using the setsockopt( ) system call interface provided to control the CC State in 

TCP [2] as shown below. 

 

   if (REP.ccstate == CONGEST_CTRL_OFF) 

  { 

    param = 1; 

   setsockopt(session.d->outf->fd,IPPROTO_TCP,15,(char*)&param,sizeof(param)); 

   } 

 

Based on the next advice time given by the AS the FTP server contacts the AS again 

and it changes the CC State in TCP if necessary. Thus a mechanism is provided to 

dynamically change the CC State of TCP to accommodate the changes in the network 

for large FTP transfers. 

 

The next chapter describes the tests that are done to evaluate the usefulness of the AS 

in reducing the reducing the FTP transfer times. It also describes the test environment 

used to do our tests and how that test environment is created. 
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Chapter 5 
 

 

Evaluation of the Dynamic TCP Congestion 

Control Scheme  
 
5.1. Introduction 

 
In this chapter we evaluate how the Dynamic TCP Congestion Control Scheme in the 

Enable service effects the performance of the FTP server (ProFTPD in our case). 

Primarily we need to find out if this scheme is functioning properly and then to see if 

it really provides performance gains in the FTP transfers. Next we would like to 

determine how the Dynamic TCP Congestion Control scheme effects background 

traffic. Finally we would also like to see how the history data used by the Enable 

service effects its decision making process. To achieve all the above-mentioned tasks 

we performed the following tests. 

 

?? Tests to evaluate the performance of FTP with the Enable service 

For these tests we identified different times of a day, which represent the network 

states with different load in a day, and performed the large file transfers with 

different FTP implementations at these times. The different FTP implementations 

that we have tested here are the standard FTP, FTP with NOCC for the entire file 

transfer and FTP interacting with AS during the file transfer. We have done the 

tests with different FTP implementations for networks with different levels of 

congestion to see how the performance of FTP with Advisory Server (AS) varies 

with different levels of congestion in the network. 
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?? Tests to see the effect on the background flows 

To determine the effect on the background traffic, we performed large file 

transfers by running FTP and a background flow simultaneously. From these tests 

we observed how the throughput of the background traffic is effected. We also 

performed tests with multiple background flows to have a better understanding of 

the effect on the background traffic. 

  

?? Tests with different history databases 

We did tests with different history data sets to determine how the history data 

effects the decision process of AS. For this we used three different history data 

sets. First set is the whole database of network data. Second set is network data of 

one week, immediately preceding the test day. This is chosen to see if using only 

the recent trends in the network behavior has any better effect on the decision 

process of the AS. The final set is the network data of all the test days (e.g., 

Fridays) as the history data.  

 

To do all our tests, mentioned above, we have considered using the following three 

network environments.  

 

Real Network  

We can test the mechanism on a real High Bandwidth Delay Product network. This is 

the ideal case since it allows us to see the performance gain of the FTP transfers 

involving the real protocols in the target environment. For this we need to have access 

to an FTP server to which we can make the required modifications. In this case we do 

not have much control on how the network behaves. Also the tests in a real 

environment are not reproducible and make it difficult to identify any problems that 

occur. We have considered using this approach for our tests. But considering the 

problems mentioned above we did not use this approach. 
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Simulated Network 

We could use a simulated network to do our tests. This involves rewriting the FTP 

code and the TCP code with necessary modifications for use in a simulation. This 

implementation for the simulation may differ from the real implementation. Also the 

simulated environment may not represent the real environment exactly. Also in all 

our tests, we used large files (16GBytes), which will take a long time to transfer using 

a simulator. Doing these tests with a software simulator is not practical, and hence did 

not use a simulated environment. 

 

Emulated Network 

An emulated network is an environment in which we emulate the conditions of a 

WAN in a lab-environment network. It is a controlled, reproducible environment for 

running real code. By using an emulated environment we will be dealing with the real 

protocols and will produce valid estimation of the performance of the transfer 

protocols. An emulated environment does not increase the test times and the tests are 

also reproducible in an emulated environment.  Also emulated environments tend to 

be much nearer to the real environment than the simulated environments.  

 

Considering the advantages mentioned above of using the emulated network over the 

simulated network and the real network, and the feasibly in creating an emulated 

environment, we decided to use an emulated network environment for all our 

experiments. The next subsection describes how we have created this emulated 

environment and what test scenarios we have used to perform our tests. 

 
 

5.2. Creation of the Emulated Network Environment  
 

To create an emulated WAN locally, we need to emulate the WAN conditions in a 

local environment. The WAN conditions we need are the large RTTs (e.g. 50ms), 

typical of WANs and the variation of the available bandwidth along a path, which 
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represents the congestion along a network path. NISTNet [14], a network emulation 

tool, is used to emulate these WAN effects. The overview of NISTNet is given below.  

 

5.2.1. Overview of NISTNet 

 
NISTNet is a network emulation package that runs on Linux. It is a general-purpose 

tool for emulating performance dynamics in IP networks. NISTNet allows a single 

Linux PC set up as a router to emulate a wide variety of network conditions. The tool 

allows controlled, reproducible experiments with network performance 

sensitive/adaptive applications and control protocols in a simple laboratory setting. It 

operates at the IP level. 

 

NISTNet can emulate the critical end-to-end performance characteristics imposed by 

various wide area network situations (e.g., congestion loss) or by various underlying 

sub network technologies. NISTNet is implemented as a kernel module extension to 

the Linux operating system and an X Window System-based user interface 

application. Appendix B.1 gives the details of the NISTNet usage. 

 
 
 
5.2.2. Test Environment 

 
A local network is set up with hosts running Linux operating system. NISTNet was 

installed on a Linux host. This host acts as the router and it applies the WAN 

conditions to all the packets that traverse through it. Three test configurations are 

used for all the tests. A 3-host configuration is used for tests with out any background 

flows and 6-host, 8-host configurations are used for tests with the background flows. 

These configurations are shown below. 
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Figure 5: 3-host network configuration 

 

 
 
 

 

Figure 6: 6-host network configuration 
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Figure 7: 8-host configuration 

 
 

 

The specifications of all the machines used in the above configurations are shown in 

the Appendix A. All the connections between the machines are 100Mbps Ethernet.  

 

The FTP server used for testing is the ProFTPD [15] daemon. Modifications are made 

to it, as described in Chapter 4, to interact with the Advisory Server during the 

transfer of large files to the clients. To make sure that the congestion control is 

changed properly we used tools such as tcpdump [26], tcptrace [27] and xplot [29]. 

During all the FTP transfers, large (1Mbytes) TCP buffers are used taking the 

Bandwidth Delay Product (BDP) into consideration. We have used the NcFTP client 

[16] since it allows us to set large receive windows as a configuration parameter.  

Iperf version 1.2.1 [17] is used to generate the background traffic for the tests.  
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We obtained the traffic data, specifically available bandwidth as a function of time, 

on the interface of the router, ks-2-a10-52.r.greatplains.net (IP address: 

64.113.234.206) and used this data to emulate a WAN environment. This router 

interface connects the KU (University of Kansas) network to Internet2 [34]. Hence 

the data collected on this interface models the variation of the traffic in a real WAN. 

We stored this data in a MySQL [28] database as a set of records with the fields of the 

timestamp, and available bandwidth.  

 

In order to create the WAN environment to do our tests, we have to emulate the 

WAN conditions, i.e., delay and the congestion state of the network. NISTNet is used 

to emulate both of these WAN conditions. To represent the continuous change in the 

congestion state of the network, we change the available bandwidth of the network 

link continuously by means of a NISTNet script. We limit the available bandwidth of 

the network link by introducing packet drops in the TCP traffic flowing through this 

link. There is a well-established equation [21], which relates the TCP throughput to 

the drop rate as shall be explained in the next section. We use this equation to 

determine the drop rate for a particular bandwidth value and use this in the NISTNet 

script to vary the available bandwidth on the link. As stated in the introduction, we do 

the tests at different times of a day. For each test time, we obtain the available 

bandwidth variation data starting at that time from the database of network data. We 

use this bandwidth data to generate the corresponding packet drop values, according 

to the equation relating the TCP throughput to the packet drop rate. Now we use this 

packet drop data in a NISTNet script to continuously vary the bandwidth available to 

the FTP traffic flowing through this network link. We also apply the WAN delays to 

the FTP traffic using the same NISTNet script. This way we run all our tests in a local 

network with NISTNet emulating the WAN conditions. 
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5.3. Equation relating the TCP throughput to the drop rate 
 
TCP uses Additive Increase Multiplicative Decrease algorithm [1] for congestion 

control. On detecting a loss it decreases the size of its congestion window by a factor 

of two and attempts to get extra bandwidth by increasing the window linearly when 

there is no congestion. The long-term throughput of a TCP flow and the packet drop 

rate is approximated by the following equation [21]. 

 

P = [(C * S) / (RTT * TTCP  )] 2 

 

Where P is the packet loss rate, C is a constant, S is the packet size, RTT is the round 

trip time including queuing delay, and TTCP is the long-term TCP throughput. Here 

the current available bandwidth is obtained from the database of network data and a 

corresponding packet drop rate is calculated using the above equation. This drop rate 

is then applied to the traffic flow using a NISTNet script.  

 

5.4. Tests to show the validity of the throughput-drop 

relation 
 
Equation showing the relationship between the long-term throughput of the TCP flow 

and the packet loss rate is shown in Section 5.3. In order to estimate the constant 

factor, C, we applied different packet drop rates to an Iperf flow and compared the 

observed throughputs with the theoretical value for two different values of C. The 

results of these tests are shown in Table 1. Iperf is used to generate the traffic flow for 

these tests. 
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         Throughput (Mbps) 

          With Delay = 25ms 

    Throughput  (Mbps) 

     With Delay = 50ms 

 

Drop % 

From eqn. 

  C=9.76 

From eqn. 

  C=12.2 

Observed From eqn. 

  C=9.76 

From eqn. 

  C=12.2 

Observed 

1 4.68 5.86 4.1 2.34 2.93 2.3 

2 3.31 4.14 2.9 1.66 2.07 1.6 

3 2.70 3.38 2.3 1.35 1.69 1.3 

4 2.34 2.93 2.1 1.17 1.46 1.1 

 

Table 1: Results of tests done to determine the constant factor in TCP throughput 

drop relation 

 

From Table 1 we can observe that, the observed throughput is near to the value 

calculated from the equation relating the TCP throughput to the packet drop rate, 

mentioned in Section 5.3, when the constant factor used is equal to 9.76. Hence for all 

our experiments we used C = 9.76. 

 

5.5. Tests to evaluate the performance of FTP with the 

Enable service 

 

5.5.1. Performance of FTP as a function of load in the network 

 
We used the 3-host configuration, shown in Figure 5, for all the tests of this section. 

The data we collected is from a router whose output link capacity is 55Mbps. Hence 

the maximum available bandwidth that can be observed in the collected data is 

55Mbps. Since the drops, that we introduce to limit the throughput, are based on the 

collected data, the throughput we can observe with standard TCP in our tests is no 

more than 55Mbps. But all the links in our local test environment are of 100Mbps. So 
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we can assume that the remaining 45Mbps of bandwidth available on the link is used 

by other traffic in all the experiments. Hence we can think of the experiments are 

done with minimum of 45% used traffic. We also converted all the collected data 

such that the maximum available bandwidth values ranged from 25Mbps to 40Mbps. 

This is done to see how the performance of our mechanism varies with different 

network congestion states or available bandwidth values in the network. Hence the 

tests are done with networks of different congestion levels. In our case a slightly 

congested network is a network with minimum of 45% used bandwidth, a moderately 

congested network is a network with a minimum of 60% used bandwidth and a highly 

congested network is a network with a minimum of 75% used bandwidth. 

 

5.5.1.1. Tests in a slightly congested network 
 
 

For all the tests in this section a 16GByte file is transferred with different FTP 

implementations at different times of the test day. The test timings chosen are 

12:15am, when the network load, as observed from the network data collected, is 

high, 7:25pm, when the network load is low and 3:25am, 2:25pm, 9:10pm, when 

there is a large variation in the network load. Advisory Server (AS) uses the whole 

network data in the database as the history data. 

 

TCP buffer size 1Mbyte 

NISTNet delays 50ms 

FTP transfer size 16Gbyte 

NISTNet drops YES 

Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth) 

History data used  Whole database 

Table 2: Parameters for tests to estimate the performance of FTP as a function of 

network load in a slightly congested network 
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The results are shown in the Table 3 and Figure 8 below. 

 

FTP with CC FTP with NOCC FTP with Adv.Server Time of  

   Day Throughput 
  (Mbps) 

Transfer   
   Time 
(h:mm:ss) 

Throughput  
   (Mbps) 

Transfer  
   Time 
(h:mm:ss) 

Throughput 
   (Mbps) 

Transfer  
   Time 
(h:mm:ss) 

Percentage 
improvement 
over FTP 
with CC 

12:15am 45.68 0:47:48 70.08 0:31:09 45.44 0:48:03 00.00 

03:25am 45.68 0:47:48  70.00 0:31:12 57.60 0:37:54 26.09 

07:25am 45.60 0:47:54  70.08 0:31:09 70.08 0:31:11 53.68 

02:25pm 45.92 0:47:34  70.08 0:31:10 53.76 0:40:36 17.07 

09:10pm 45.84 0:47:39  70.08 0:31:10 68.08 0:32:05 48.52 

 

Table 3: Throughput of different FTP implementations in a network with a minimum 

of 45% used bandwidth and no background flows 
 

Average percentage improvement in the FTP throughput with Advisory Server = 

29.072% 

Figure 8: Time of day vs FTP throughput for tests in a network with minimum of 

45% used bandwidth and no background flows 
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From Figure 8 we can see that the throughput of FTP with AS is between that of FTP 

with CC and FTP with NOCC depending upon the CC inputs received from the AS. 

At 12:15am, CC state inputs received from the AS are ON and hence the throughput 

of FTP with AS is same as that of FTP with CC. At 7:25am, CC state inputs received 

from the AS are OFF and hence the throughput of FTP with AS is same as that of 

FTP with NOCC. At other times the throughput of FTP with AS varies between that 

of FTP with CC and FTP with NOCC based on the CC state inputs received from the 

AS during the FTP transfer. The congestion control state inputs received from the 

Advisory Server during the tests are shown in the Table 4 below. 

 

Time of Day CC State inputs 

12:15am                       1(4) 

03:25am                       1,0(3) 

07:25am                       0(2) 

02:25pm                       0,1(2),0 

09:10pm                       0(3),1 

 

Table 4: Congestion control state inputs received for tests in a network with a 

minimum of 45% used bandwidth and no background flows 
 

In the CC State inputs column of Table 4 a value of ‘0’ indicates the CC state input of 

OFF and a value of  ‘1’ indicates the CC state input of ON. 0(x) indicates that there 

are x number of inputs of 0 continuously. 0(x), 1(y) indicates that there are “x” 

number of continuous inputs of 0 followed by “y” number of continuous inputs of 1. 

From Table 4 we see that at 12:15am we receive the inputs as ON for the whole 

transfer. This is because, the available bandwidth during this transfer is below the 

threshold of 42Mbps. Also at 7:25am, all the inputs are OFF. This is because the 

available bandwidth at this time is above the threshold for the entire transfer. At 

3:25am, the available bandwidth starts with a value below the threshold and then 
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increases above the threshold value. Hence the CC State inputs received from the AS 

are ON at the start of the transfer and then OFF afterwards. Similarly at 2:25pm and 

9:10pm the available bandwidth starts with a value above the threshold and then 

decreases. Hence the AS starts with an input of OFF and then gives the inputs of ON. 

The plot showing the CC State inputs from the AS and the available bandwidth 

variation for the test time 2:25pm is shown in the Figure 9 below.  

Figure 9: Available bandwidth variation vs CC state inputs at 2:25pm for tests in a 

network with minimum of 45% used bandwidth and no background flows 

 

In Figure 9 the dotted line shows the available bandwidth variation during the FTP 

transfer and the solid line shows the times at which the AS is contacted and the CC 

state inputs received from the AS during the FTP transfer. From Figure 9 we can see 

that when the available bandwidth is more than the threshold (42Mpbs in this case), 

the CC state input from the AS is OFF (value = 0 in the figure). Also when the 

available bandwidth is less than the threshold, the CC state input from the AS is ON 

(value = 1 in the figure). We can also see from the figure that there are two CC state 

transitions during the transfer, one at 9 minutes into the FTP transfer and the other at 

around 36 minutes into the transfer. The circled dots on the solid line in the Figure 9 
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indicate the times at which the enable server is contacted and CC state inputs received 

at those times. 

 

5.5.1.2. Tests in a moderately congested network 
 

 For our tests we have considered a network with a minimum of 60% used bandwidth 

as a moderately congested network. In this section we perform large file transfers 

with different FTP implementations. Table 5 below lists the parameters used for our 

tests. 

TCP buffer size 1Mbyte 

NISTNet delays 50ms 

FTP transfer size 16Gbyte 

NISTNet drops YES 

Available Bandwidth (ABW) Threshold 27Mbps (73% used bandwidth) 

History data used Whole database 

Table 5: Parameters for tests to estimate the performance of FTP as a function of 

network load in a moderately congested network 

 
 

FTP with CC FTP with NOCC FTP with Adv.Server Time of  

   Day Throughput 
  (Mbps) 

Transfer   
   Time 
(h:mm:ss) 

Throughput  
   (Mbps) 

Transfer  
   Time 
(h:mm:ss) 

Throughput 
   (Mbps) 

Transfer  
   Time 
(h:mm:ss) 

Percentage 
Improvement 
over FTP 
with CC 

12:15am 25.68 1:24:59     69.68 0:31:21 25.60 1:25:15 00.00 

03:25am 31.84 1:08:41 69.84 0:31:15 57.68 0:37:53 81.16 

07:25am 44.40 0:49:11 70.08 0:31:10 70.00 0:31:10 57.66 

02:25pm 28.80 1:15:54 69.76 0:31:18 40.24 0:54:18 39.72 

09:10pm 27.92 1:18:07 69.76 0:31:17 43.84 0:49:48 57.02 

Table 6: Throughput of different FTP implementations when run in a network with a 

minimum of 60% used bandwidth and no background flows 
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Average percentage improvement in the throughput time for all the tests = 47.112% 

 

Figure 10: Time of day vs FTP throughput for tests in a network with a minimum of 

60% used bandwidth and no background flows 

 
Figure 10 shows that the throughput of FTP with AS varies between that of FTP with 

CC and FTP with NOCC. This behavior is similar to the one in the previous case 

shown in Figure 8. 

 

Time of Day CC State inputs 

12:15am                       1(12) 

03:25am                       1,0(9) 

07:25am                       0(5) 

02:25pm                       0(2),1(4),0(3) 

09:10pm                       0(5),1(4) 

 
Table 7: Congestion Control State inputs received for tests in a network with 

minimum of 60% used bandwidth and no background flows 
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Table 7 shows the CC State inputs received from the AS at different test times. This 

is similar to the previous case. The only difference is that, the number of inputs 

received from the AS during the transfers in this case is more. This increase in the 

number of inputs is because of two reasons. First, the transfer time is longer in this 

case because the maximum available bandwidth for the standard TCP in this case is 

only 40Mbps. Second, the Next Advice Times (NAT) given by the AS in this case are 

less than that of previous case. This is because the amount of bandwidth change to 

trigger the next advice from the AS is lower. The plot showing the CC State inputs 

from the AS and the available bandwidth variation for the test time 2:25pm is shown 

in the Figure 11 below. 

 

  

Figure 11: Available bandwidth variation vs CC state inputs at 2:25pm for tests in a 

network with a minimum of 60% used bandwidth and no background flows 
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In Figure 11 the dotted line represents the available bandwidth variation during the 

FTP transfer and the solid line shows the times at which the AS is contacted and the 

CC state inputs received from the AS during the FTP transfer. From Figure 11 we can 

see that at the beginning of the transfer, when the available bandwidth is more than 

the threshold (27Mpbs in this case), the CC state input from the AS is OFF (value = 0 

in the figure). Also when the available bandwidth is less than the threshold, the CC 

state input from the AS is ON (value = 1 in the figure). We can also see from this 

figure that there are two CC state transitions during the transfer, one at around 8 

minutes into the FTP transfer and the other at around 46 minutes into the transfer. The 

circled dots on the solid line in the Figure 11 indicate the times at which the enable 

server is contacted and CC state inputs received at those times. 

 

5.5.1.3. Tests in a highly congested network 
 
 
For our tests we have considered a network with a minimum of 75% used bandwidth 

as a highly congested network. In this section we perform large file transfers with 

different FTP implementations and observe how the use of Enable service effects the 

performance of FTP transfers. The parameters used for the tests in this section are 

listed in Table 8 below. 
 

TCP buffer size 1Mbyte 

NISTNet delays 50ms 

FTP transfer size 16Gbyte 

NISTNet drops YES 

Available Bandwidth (ABW) Threshold 12Mbps (88% used bandwidth) 

History data used Whole database 

 

Table 8: Parameters for tests to estimate the performance of FTP as a function of 

network load in a highly congested network 
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FTP with CC FTP with NOCC FTP with Adv.Server Time of  

   Day Throughput 
  (Mbps) 

Transfer   
   Time 
(h:mm:ss) 

Throughput  
   (Mbps) 

Transfer  
   Time 
(h:mm:ss) 

Throughput 
   (Mbps) 

Transfer  
   Time 
(h:mm:ss) 

Percentage 
Improvement 
Over FTP 
with CC 

12:15am 11.68 3:07:13 64.96 0:35:15 16.88 2:00:35 44.52 

03:25am 15.68 2:19:18 68.32 0:31:54 58.40 0:37:23 272.45 

07:25am 22.24 1:38:04 69.20 0:31:35 68.56 0:31:50 208.27 

02:25pm 14.24 2:33:03 69.12 0:31:36 34.72 1:02:51 143.82 

09:10pm 13.04 2:47:32 68.56 0:31:52 29.28 1:14:31 124.54 

 
Table 9: Throughput of different FTP implementations when run in a network with a 

minimum of 75% used bandwidth and no background flows 

 

Average percentage improvement in the transfer time for all the tests = 158.72% 

 

Figure 12 below shows the throughput of different implementations of FTP, i.e. FTP 

with CC, FTP with NOCC and FTP with AS. 

Figure 12: Time of day vs FTP throughput for tests in a network with a minimum of 

75% used bandwidth and no background flows 
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Figure 12 shows that the throughput of FTP with AS varies between that of FTP with 

CC and FTP with NOCC. This behavior is similar to the one in the previous cases as 

shown in Figure 8 and Figure 10. 
 

Table10 shows the CC State inputs received from the AS at different test times. 

 

Time of Day CC State inputs 

12:15am                  1(46),0(23) 

03:25am                  1,0(48) 

07:25am                  0(18) 

02:25pm                  0(7),1(9),0(21),1(3) 

09:10pm                  0(24),1(6),0(4),1(9) 

 
Table 10: Congestion Control State inputs received for tests in a network with a 

minimum of 75% used bandwidth and no background flows 

 

 

From Table 10 we see that the number of inputs received from the AS in this case is 

larger than the previous case. Again the reasons for this is same as explained in the 

previous case. The only difference in this case is that the number of state changes has 

increased at some test times, 12:15am, 2:25pm and 9:10pm. This is because of the 

increase in the transfer times. The plot showing the CC State inputs from the AS and 

the available bandwidth variation for the test time 2:25pm is shown in the Figure 13 

below.  
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Figure 13: Available bandwidth variation vs CC state inputs at 2:25pm for tests in a 

network with a minimum of 75% used bandwidth and no background flows 
 

In Figure 13 the dotted line represents the available bandwidth variation during the 

FTP transfer and the solid line shows the times at which the AS is contacted and the 

CC state inputs received from the AS during the FTP transfer. From Figure 13 we can 

see that at the beginning of the transfer, when the available bandwidth is more than 

the threshold (12Mpbs in this case), the CC state input received from the AS is OFF 

(value = 0 in the figure). The when the available bandwidth is less than the threshold, 

the CC state input from the AS is ON (value = 1 in the figure). At around 45 minutes 

there is an increase of around 1Mbps in the available bandwidth and since the 

available bandwidth was above the threshold value, the CC state remained as OFF. 

We can also observe that there are three CC state transitions in this case.  
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Figure 14 below shows the comparison of the average throughput values of different 

FTP implementations. 

 

 
Figure 14: Average throughput of different FTP implementations in a slightly 

congested network 

 
 
Figure 14 shows the average throughput of different FTP implementations. This is for 

the case where the minimum used traffic is 45%.  From Figure 14 we see that the 

throughput of FTP with AS is in between that of FTP with CC and FTP with NOCC. 

This is because it can take advantage of the available bandwidth when there is not 

much congestion in the network and at the same time it is not as aggressive as FTP 

with NOCC. The same behavior is observed for the other two cases.  
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Figure 15: Time of day vs % improvement in the throughput of FTP in networks with 

different percentages of used bandwidth 

 

Figure 15 shows the percentage improvement in the throughput of FTP with AS over 

standard FTP for different cases of used traffic. From Figure 15 we see that the 

percentage improvement in the FTP throughput is greater when the used bandwidth is 

high. This is because for this case the throughput of standard FTP is lower than that 

of other cases because of the high percentage of used traffic and FTP with AS 

remains aggressive on the background traffic.  But the background traffic will be 

effected more for this case. We can also observe that at 00:15, there is improvement 

in the throughput of FTP only for the case where the minimum used bandwidth is 

75%. This is because for this case (minimum used bandwidth = 75%) there is a CC 

state transition from CC to NOCC during the file transfer as observed from Table 10 

and hence there was some improvement in the throughput. But for the other cases 

there is no CC state transition during the file transfer, as observed from Table 4 and 

Table 7, and the throughput of FTP with AS is same as that of the standard FTP. 

Hence there was no throughput improvement for these cases. 
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5.5.2. Performance of the background flows 

 

From the test results of previous section we observed that there is improvement in the 

performance of FTP when it is interacting with the AS. But we would like to 

determine how much the background traffic is effected. In order to determine the 

effect on the background traffic, during all the FTP transfers we ran a background 

flow and observed the throughput of the background traffic. Here we also did the tests 

with multiple background flows. 

  

5.5.2.1. Tests with a single background flow 
 
The 6-host configuration, shown in Figure 6, is used for these tests. The logical 

network topology that we create with the configuration is shown below in Figure 16. 

It shows that two flows travelling through two different network paths pass through 

the same router, straylight. 

 

 

 

 

 

 

 

 
 
 

 

Figure 16: Logical network topology of the 6-host configuration 
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The FTP parameters and the background flow parameters used for the tests in this 

section are shown below in Table 11 and Table 12 respectively.  

 
 
TCP buffer size 1Mbyte 

NISTNet delays 50ms 

FTP transfer size 16Gbyte 

NISTNet drops YES 

Minimum used bandwidth 45% 

Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth) 

History data used Whole database 

 
Table 11: FTP parameters for tests to see the effect on a single background flow 

 
 
 
TCP buffer size 128Kbyte 

NISTNet delays 10ms 

NISTNet drops NO 

 
Table 12: Background flow parameters for tests to see the effect on a single 

background flow 
 

The throughput of background flow (Iperf) when run with no background traffic is 
83.4Mbps. 
 

 

The results of the tests with a single background flow are shown in Table 13 and 

Table 14 below. 
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Throughput in Mbps 
FTP with CC FTP with AS FTP with NOCC 

 

Time of  

   Day FTP Background 

flow 

FTP Background 

flow 

FTP Background 

flow 

12:15am 39.76 52.10 39.20 52.82 69.52 20.61 

3:25am 39.60 52.22 53.52 37.97 69.60 20.63 

7:25am 39.60 52.21 69.68 20.60 69.68 20.58 

2:25pm 39.68 52.17 48.56 42.49 69.76 20.58 

9:10pm 39.68 52.12 67.20 22.73 69.76 20.59 

 
Table 13: Throughput of different FTP implementations when run with a single 

background flow 
 
 

% decrease in the throughput of background flow when run with FTP Time of  

   Day FTP with CC FTP with AS FTP with NOCC 

12:15am 37.53 36.67 75.29 

3:25am 37.39 54.47 75.26 

7:25am 37.40 75.30 75.32 

2:25pm 37.45 49.05 75.32 

9:10pm 37.51 72.75 75.31 

 

Table 14: Percentage decrease in the throughput of background flow when run with 

different implementations of FTP 

 

Average decrease, with respect to no interfering traffic, in the throughput of the 

background flow when run with FTP with CC        = 37.46% 

Average decrease, with respect to no interfering traffic, in the throughput of the 

background flow when run with FTP with AS        = 57.65% 

Average decrease, with respect to no interfering traffic, in the throughput of the 

background flow when run with FTP with NOCC  = 75.30% 
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The throughput of the background flow when run with different implementations of 

FTP is shown in the Figure 17 below. 

 

 
Figure 17: Time of day vs background flow throughput when run with different FTP 

implementations in a network with the a minimum used bandwidth of 45% 

 

From Table 14 we observe that the percentage decrease in the throughput of the 

background flow is high when FTP is run with NOCC. This is slightly reduced when 

FTP is run with AS. Figure 17 shows the variation of the background flow 

throughput when run with different implementations of FTP. From the Figure 17 we 

observe that the throughput of the background flow is the least when FTP is run with 

NOCC and highest when FTP is run with CC. When FTP is run with AS, the 

background flow throughput varies between these two values depending upon the CC 

state inputs obtained from the AS. This shows that FTP with AS is less aggressive on 

the background traffic than the FTP with NOCC.  
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5.5.2.2. Tests with multiple background flows 
 
 
The 8-host configuration, shown in Figure 7, is used for these tests. The logical 

network topology that we create with the configuration is shown below in Figure 18. 

 

 

 

 

 

 

 

 

 

 
 

Figure 18: Logical network topology of 8-host configuration 

 

The FTP parameters and the Iperf parameters used for the tests in this section are 

shown below in Table 15 and Table 16 respectively.  

 
TCP buffer size 1Mbyte 

NISTNet delays 50ms 

FTP transfer size 16Gbyte 

NISTNet drops YES 

Minimum used bandwidth 45% 

Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth) 

 
Table 15: FTP parameters for tests to see the effect on multiple background flows 
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TCP buffer size 128Kbyte 

NISTNet delays 10ms 

NISTNet drops NO 

 
Table 16: Background flow parameters for tests to see the effect on multiple 

background flows 
 

The results of the tests with multiple background (Iperf) flows are shown in Table 17 

and Table 18 below. 

Throughput in Mbps 

FTP with CC FTP with NOCC 

 

Time of  

   Day FTP Background 

flow1 

Background 

flow2 

FTP Background 

flow1 

Background 

flow2 

12:15am 38.80 25.79 27.53 69.28 10.28 10.61 

3:25am 39.04 25.78 27.25 69.36 10.24 10.64 

7:25am 38.96 25.85 27.31 69.28 10.32 10.60 

2:25pm 38.48 26.02 27.64 69.28 10.45 10.42 

9:10pm 39.04 25.86 27.25 69.28 10.26 10.60 

 
Table 17: Throughput of FTP with CC and FTP with NOCC when run with multiple 

background flows 

 
Throughput when FTP is run with AS   Time of day 

FTP Background flow1 Background flow2 

12:15am 38.64 25.83 27.60 

3:25am 52.24 23.04 24.17 

 7:25am 69.20 10.74 10.28 

2:25pm 47.68 21.24 22.96 

9:10pm 66.48 12.03 11.29 

 
Table 18: Throughput of FTP with AS when run with multiple background flows 
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The throughput variations of the background flows when run with different FTP 

implementations are shown in Figure 19 and Figure 20 shown below. 

  
Figure 19: Time of day vs Background flow1 throughput when run with different FTP 

implementations in a network with minimum of 45% used bandwidth 

Figure 20: Time of day vs Background flow2 throughput when run with different FTP 

implementations in a network with minimum of 45% used bandwidth 
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From Figure 19 and Figure 20 we observe that throughputs of the background flows 

are the least when FTP is run with NOCC and highest when FTP is run with CC. 

When FTP is run with AS, the background flow throughput varies between these two 

values depending upon the CC state inputs obtained from the AS. This is same as the 

case with a single background flow. We also observe from Table 18 that the 

throughput is divided equally between the two background flows. These results show 

that FTP with AS has similar effects on the multiple background flows. 
 

5.5.3. Tests with different history data sets 
 
In order to determine the effect of the history data sets on the way the AS gives the 

inputs to the FTP server, we tested by using three different history data sets, which 

the AS uses to make its decisions. These three history data sets are listed below. 

These tests are done with networks with different levels of congestion to have a better 

idea of the effect of history data sets. 

??The available bandwidth data of all the days in the database of network data. See 

Figure 21 below. 

    

03/01/2002                                                         05/03/2002 

  

Figure 21: History data set comprising of the whole database 

 

??The available bandwidth data of only one-week prior to the test day. See Figure 

22 below. 

 

03/01/2002                                                                  04/28/2002           05/03/2002 

 

 

Figure 22: History data set comprising of one-week’s data 

 

Whole database 

       One week 
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??The available bandwidth data of all the test days (e.g. Fridays). See Figure 23 
below. 

 
03/01/2002     Friday             Friday   ………    Friday           Friday       05/03/2002 

  

Figure 23: History data set comprising the data of test days 

 

5.5.3.1. Tests in a slightly congested network 
 

The parameters used for the tests in this section are listed in Table 19 below. 

TCP buffer size 1Mbyte 

NISTNet delays 50ms 

FTP transfer size 16Gbyte 

NISTNet drops YES 

Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth) 

Table 19: Parameters for tests with different history data sets in a slightly congested 

network 
 

The results of the tests with different history data sets are shown in Table 20 and 

Table 21 below. 

Throughput of FTP when run with AS in Mbps  

Time of Day History = whole dB History = Previous 

Fridays 

History = Previous 

week 

12:15am 45.44 45.52 45.36 

3:25am 57.60 52.96 51.36 

7:25am 70.08 70.00 70.08 

2:25pm 53.76 57.84 70.08 

9:10pm 68.08 70.08 70.08 

Table 20: Throughput of FTP with AS when run in a network with minimum of 45% 

used bandwidth and no background flows for different history data sets, 

 

?? 
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CC states received when FTP is run with AS  

Time of day History = whole dB History = Previous  

Fridays 

History = Previous 

week 

12:15am       1(4)           1(4)      1(3) 

3:25am       1,0(3)           1,0      1,0 

7:25am       0(2)           0(2)      0 

2:25pm       0,1(2),0           0,1      0 

9:10pm       0(3),1           0(2)      0(2) 

 
Table 21: CC State inputs received when FTP with AS is run in a network with a 

minimum of 45% used bandwidth and no background flows for different history data  

 

 

From Table 20 we observe that there is not much difference in the throughput of FTP 

at most of the test times with different history data sets. The major difference we see 

will be in the number of times that we contact the AS and the number of CC state 

changes that we observe during a transfer. This is because by changing the history 

data sets we are changing the data that the AS uses to determine the Next Advice 

Time (NAT) that it gives to the FTP server. From Table 21 we observe that the 

number of inputs received from the AS is highest when we use the whole database as 

the history. The TCP CC state changes are also the highest when we use the whole 

database as the history data. We can thus observe that there are more redundant inputs 

from AS when we use the whole database as the history data and using the previous 

week’s data as the history data decreases this number. By redundant inputs we mean 

the inputs from the AS, which do not change the congestion control state. 
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5.5.3.2. Tests in a moderately congested network 
 
The parameters used for the tests in this section are listed in Table 22 below. 

 

TCP buffer size 1Mbyte 

NISTNet delays 50ms 

FTP transfer size 16Gbyte 

NISTNet drops YES 

Available Bandwidth (ABW) Threshold 27Mbps (73% used bandwidth) 

 

Table 22: Parameters for tests with different history data sets in a moderately 

congested network 

 
 

The results of the tests with different history data sets for this case are shown in Table 

23 and Table 24 below. 

 

Throughput of FTP when run with AS  

Time of Day History = whole dB History = Previous 

Fridays 

History = Previous 

week 

12:15am 25.60 25.68 25.68 

3:25am 57.68 53.60 51.76 

7:25am 70.00 69.92 70.00 

2:25pm 40.24 42.00 43.92 

9:10pm 43.84 45.84 55.28 

 

Table 23: Throughput of FTP with AS when run in a network with a minimum of 

60% used bandwidth and no background flows for different history data sets 
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CC states received when FTP is run with AS  

Time of day History = whole dB History = Previous 

Fridays 

History = Previous 

week 

12:15am       1(12)         1(8)          1(5) 

3:25am       1,0(9)         1,0(5)          1,0(4) 

7:25am       0(5)         0(4)          0(2) 

2:25pm       0(2),1(4),0(3)         0,1(2),0(2)          0,1,0 

9:10pm       0(5),1(4)         0(3),1(2)          0(3),1 

 
Table 24: CC State inputs received when FTP with AS is run in a network with a 

minimum of 60% used bandwidth and no background flows for different history data  

 
In this case we observe from Table 24 that the number of times the AS is contacted is 

highest when we use the whole database as the history data. But the number of TCP 

CC State changes is same for all the three history data sets. Also from Table 23 we 

can see that there is not much difference in the observed throughput by changing the 

history data. Here again the number of redundant inputs is more when we use the 

whole database as the history data. 

 

5.5.3.3. Tests in a highly congested network 
 

The parameters used for the tests in this section are listed in Table 25 below. 
 

TCP buffer size 1Mbyte 

NISTNet delays 50ms 

FTP transfer size 16Gbyte 

NISTNet drops YES 

Available Bandwidth (ABW) Threshold 12Mbps (78% used bandwidth) 

Table 25: Parameters for tests with different history data sets in a highly congested 

network 
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The test results of the tests with different history data sets are shown in Table 26 and 

Table 27 below. 

 

Throughput of FTP when run with AS   

Time of Day History = whole dB History = Previous 

Fridays 

History = Previous 

week 

12:15am 16.88 17.68 17.52 

3:25am 58.40 57.04 56.88 

7:25am 68.56 69.44 69.52 

2:25pm 34.72 30.72 28.08 

9:10pm 29.28 34.16 38.08 

 
Table 26: Throughput of FTP with AS when run in a network with a minimum of 

75% used bandwidth and no background flows for different history data sets 

 

 

CC states received when FTP is run with AS  

Time of day History = whole dB History = Previous 

Fridays 

History = Previous 

week 

12:15am 1(46),0(23) 1(27),0(10) 1(22),0(15) 

3:25am 1,0(48) 1,0(26) 1,0(24) 

7:25am 0(18) 0(10) 0(6) 

2:25pm 0(7),1(9),0(21),1(3) 0(3),1(6),0(7),1,0(3) 0(2),1(3),0(5),1(2),0(3) 

9:10pm 0(24),1(6),0(4),1(9) 0(14),1(5),0(4),1(4) 0(12),1(3),0(2),1(2) 

 
Table 27: CC State inputs received when FTP with AS is run in a network with a 

minimum of 75% used bandwidth and no background flows for different history data  
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From Table 26 we observe that in this case also there is not much difference in the 

throughput of FTP with different history data sets. The number of inputs from the AS 

is again highest when we use the whole database as the history. The number of TCP 

CC state changes is same for all the three history data sets except at 2:25pm at which, 

with the history data sets of all Fridays and last one week prior to the test day, there is 

one additional TCP CC state change. Contacting the AS more frequently can effect its 

performance, especially when there are a lot of clients to be monitored. Hence using 

the most recent network data as the history data can serve the AS well. 

  

From the results of tests to evaluate the performance of the Dynamic TCP Congestion 

Control Scheme in the Enable service, we observe that, the FTP transfer times are 

reduced by an average of 78.30% when FTP is run with AS. This is because we use 

TCP with NOCC when there is not much congestion in the network and this increases 

its throughput. We can also observe that, by using AS we are making sure that 

Congestion Control (CC) in TCP is turned off only when required instead of turning it 

off totally. Also we observe that as the percentage of used bandwidth increases, the 

percentage improvement in the FTP throughput increases. This is because, as the 

percentage of used bandwidth increases the bandwidth available for the standard FTP 

decreases. But FTP with AS will not slow down in this case and its throughput 

remains the same and hence the percentage increase in the throughput of FTP is 

higher.  

 

From the results of tests with background flows we observe that, when FTP is run 

with AS, the effect on the throughput of the background traffic is less when compared 

to running FTP with NOCC. This shows that by not turning off the Congestion 

Control in TCP totally, we are trying to be less aggressive on the background traffic. 

From the tests with multiple background flows we observe that the effect on both the 

background flows is similar. 
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From the results of tests with different history data sets, we observe that the AS is 

contacted more frequently when we use the whole database as the history database. 

Since there is not much difference in the throughput of FTP by changing the history 

data, it is better to use whole database as the history data. 

 
All the test results show that the Dynamic TCP Congestion Control Scheme is 

implemented correctly in the Enable service and by properly using the AS with the 

FTP server we can reduce the transfer times of large files on High Bandwidth Delay 

Product networks. Also the mechanism is not totally TCP friendly and hence the 

background traffic is effected to some extent.  
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Chapter 6 
 
 

Conclusions and Future work 
 

6.1. Conclusions 
  
TCP Congestion Control algorithms have been designed to avoid congestion collapse 

in the networks. It performs well on the low delay links but on high delay links it has 

a bad performance. Experimental modifications were done to the TCP stack such that 

applications can turn off the congestion control in TCP. But turning off the 

congestion control totally is not advisable. Hence a mechanism has been designed so 

that congestion control is turned off only when required depending on the network 

congestion and transfer file size. 

 

We have successfully implemented the Enable service. This Enable service decides 

when to change the congestion control state of TCP based on the network conditions. 

ProFTPD, a widely used FTP server daemon, was modified to interact with the 

Enable service during large file transfers. It dynamically changes the TCP Congestion 

Control State based on the inputs from the Enable service.  By not totally turning off 

the congestion control in TCP we were less aggressive and thus the impact on the 

background traffic was reduced. Also we were able to emulate the WAN conditions 

in a local environment by using NISTNet, a network emulation tool. 

 

From the results of the tests conducted here with this dynamic congestion control 

mechanism, it was found that we could reduce the transfer times for large file 

transfers. Also this mechanism is shown to behave in a less aggressive manner on the 

background traffic than when the congestion control in TCP is turned off totally.  
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6.2. Future Work 
 
The first enhancement that can be made is testing the mechanism on a real WAN 

environment instead of on an emulated network. This can determine the performance 

benefit of the mechanism. The next enhancement can be with the way the Advisory 

Server decides about the TCP congestion control state to use. Currently it bases its 

decision only on the current available bandwidth on the network path. But other 

parameters can be used in addition, to make a better decision. Instead of using the 

data collected from a router, we could use pipechar [25] to collect the network state 

and use it to determine if there is congestion in the network path or not.  
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Appendix 
 
 

Appendix A 

 
A.1. Specifications of the machines used in the test scenarios 
 

Machine Name Specification 
              qost1    Pentium II  400MHz 
              qost2    Pentium II  400MHz 
              qost3    Pentium II  400MHz 
              qost4    Pentium II  400MHz 
              Neuromancer    Celeron      434 MHz(Dual processor) 
              Straylight    Celeron      467 MHz(Dual processor) 
              testbed33    Pentium III 1GHz 
              testbed34    Pentium III 1GHz 

 
Table 28: Specifications of the machines used in the test scenarios 

 
 

Appendix B 
 

B.1. Using NISTNet 
 
NISTNet has a graphical user interface, which allows the user to select and monitor 

specific traffic streams passing through the router and to apply selected performance 

effects to the IP packets of the stream. It also provides a command line interface to be 

able to generate scripts, so that it can be driven by traces produced from 

measurements of actual network conditions. The command-line interface used to 

generate scripts used in the tests is cnistnet. Its usage is shown below: 

 

cnistnet  –u turns the NISTNet emulator ON and  cnistnet –d turns the emulator OFF.  
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Once the emulator is turned ON, we can identify the flow to which to apply the WAN 

effects using various filters such as the source and destination addresses, source and 

destination ports. To all such identified flows we can apply the WAN effects using 

the following command [14]. 

 
 
cnistnet -a src[:port[.protocol]] dest[:port[.prot]] [cos]  
       [--delay delay [delsigma[/delcorr]]] 
                 [--drop drop_percentage[/drop_correlation]] 
                 [--dup dup_percentage[/dup_correlation]] 
                 [--bandwidth bandwidth] 
                 [--drd drdmin drdmax [drdcongest]] 
 
The WAN effects that we can add using the above command are the delay, packet 

drop rate, packet duplication rate, and the bandwidth to which to limit the flow. 

 

To remove the NISTNet filter we can identify the flow and remove it using the 

following command. 

cnistnet -r src[:port[.prot]] dest[:port[.prot]] [cos]  
 

To view the statistics of the packets of the flow identified by the NISTNet filters, we 

use the following commands.  

cnistnet -s src[:port[.prot]] dest[:port[.prot]] [cos]  

cnistnet -S src[:port[.prot]] dest[:port[.prot]] [cos]  
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B.2. NISTNet script to dynamically change the drop rate of the traffic 
 
/* Program to run a script which dynamically adjusts the drop rates along 
    a path using the cnistnet command. */ 
 
 
#include<stdio.h> 
 
main(int argc,char *argv[]) 
{ 
 char sec[10],drop[10],temp_drop[10]; 
 char *str =(char *)malloc(100); 
 char *str1 =(char *)malloc(50); 
 char *str2 =(char *)malloc(100); 
 FILE *fin; 
 
 fin = fopen(argv[1],"r"); 
 
 strcpy(str2,"cnistnet -r 192.168.124.2 192.168.126.6 --drop "); 
 
 system("cnistnet -u"); 
 
 //Delays in the reverse direction for the FTP flow 
 system("cnistnet -a 192.168.126.6 192.168.124.2 --delay 25"); 
 
 //Delays in the forward and reverse directions for the first Iperf flow 
 system("cnistnet -a 192.168.125.1 192.168.122.4 --delay 5"); 
 system("cnistnet -a 192.168.122.4 192.168.125.1 --delay 5"); 
 
 //Delays in the forward and reverse directions for the second Iperf flow 
 system("cnistnet -a 192.168.128.33 192.168.127.34 --delay 5"); 
 system("cnistnet -a 192.168.127.34 192.168.128.33 --delay 5"); 
 
 while (fscanf(fin,"%s",drop)!= EOF) 
 { 
    strcpy(temp_drop,drop); 
 
    if(fscanf(fin,"%s",sec)== EOF) 
    { 
       printf("Error Reading from the input file\n"); 
       exit(1); 
    } 
  



 80

    strcpy(str1,"sleep "); 
    strcat(str1,sec); 
 
    strcpy(str,"cnistnet -a 192.168.124.2 192.168.126.6 --delay 25 --drop "); 
    strcat(str,drop); 
  
    system(str); 
    system(str1); 
 
 } 
 strcat(str2,temp_drop); 
 
 system(str2); 
 system("cnistnet -d"); 
 
  fclose(fin); 
} 
 
 
B.3. Script used to generate the drop rates data from the available bandwidth 
data 
 
/* Program to convert the input bandwidth values into the corresponding drop rates */ 
 
#include<stdio.h> 
#include<math.h> 
#include<stdlib.h> 
 
#define C      9.76            //1.22*8 
#define S      1076 
#define RTT    50            //milliseconds 
#define FACTOR 1000   //mbps * msec 
 
main(int argc,char **argv) 
{ 
 FILE *fin,*fout; 
 float bw,temp,drop_rate; 
 int sec; 
 
 fin  = fopen(argv[1],"r"); 
 fout = fopen(argv[2],"w"); 
 
 while (fscanf(fin,"%f",&bw)!= EOF) 
 { 
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   if(fscanf(fin,"%d",&sec)== EOF) 
   { 
     printf("Error Reading from the input file\n"); 
     exit(1); 
   } 
 
   temp = (C*S*8)/(RTT*bw*FACTOR); 
   drop_rate = pow(temp,2); 
 
   fprintf(fout,"%f %d\n",drop_rate,sec); 
 
 } 
 
 close(fin); 
 close(fout); 
 
} 
 
 
 

Appendix C 
 
C.1. Commonly used data structures of the ProFTPD  
 
a) module_struc 
 
Declaration: 
 
struct module_struc {  
   module *next, *prev; 
 
   /* module API version  */  
   int ver;  
 
   /* module name */  
   char *name;  
 
   /* configuration directive table */  
   conftable *conftable;  
 
   /* command handler table */  
   cmdtable *cmdtable; 
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   /* authentication handler table */  
   authtable *authtable; 
 
   /* module initialization */  
   int (*module_init)();  
 
    /* post-fork initialization */  
    int (*module_init_child)();  
 
    /* internal use, greater number == higher priority */  
    int priority;  
};  
 
Source File: include/modules.h 
 
 
b) cmd_rec 
 
Declaration: 
 
 typedef struct cmd_struc { 
 
   /* memory pool for this object */ 
   pool *pool; 
 
   server_rec *server; 
   config_rec *config; 
 
   /* temporary pool which only exists while the cmd's handler is running*/ 
   pool *tmp_pool; 
 
   int argc; 
   char **argv; 
 
   /* entire argument (excluding command) */ 
   char *arg; 
 
   /* command group */ 
   char *group; 
 
   /* command class */ 
   int class; 
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   /* hack to speed up symbol hashing in modules.c */ 
   int symtable_index; 
 
   /* private data for passing/retaining among handlers */ 
   privdata_t *private; 
 
   /* internal use */ 
   array_header *privarr; 
 
 } cmd_rec; 
SourceFile:include/dirtree.h 
 
 
c) server_rec 
 
Declaration: 
 typedef struct server_struc { 
 
   struct server_struc *next, *prev; 
 
   /* memory pool for this object */ 
   pool *pool; 
 
   /* set holding all the servers */ 
   xaset_t *set; 
 
   /* this server's name */ 
   char *ServerName; 
 
   /* this server's address */ 
   char *ServerAddress; 
 
   /* this server's fully qualified domain name */ 
   char *ServerFQDN; 
 
   /* this server administrator's name */ 
   char *ServerAdmin; 
 
   /* this server's welcome message */ 
   char *ServerMessage; 
 
   /* port number for this server */ 
   int ServerPort; 
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   /* receive/send windows */ 
   int tcp_rwin, tcp_swin; 
 
   /* specifically override the TCP rwin */ 
   int tcp_rwin_override; 
 
   /* specifically override the TCP swin */ 
   int tcp_swin_override; 
 
   /* do not greet until after the user's logged in */ 
   int AnonymousGreeting; 
 
   /* internal address of this server */ 
   p_in_addr_t *ipaddr; 
 
   /* our listening connection */ 
   struct conn_struc *listen; 
 
   /* configuration details */ 
   xaset_t *conf; 
 
 } server_rec; 
 
SourceFile:include/dirtree.h  
 
 
 
 


