Evaluation of Dynamic TCP Congestion Control Scheme in the
ENABLE service

by

Mahesh Akarapu

B.E. (Computer Science and Engineering)
University College of Engineering, Osmania University
Hyderabad, India, 2000

Submitted to the Department of Electrical Engineering and Computer Science
and the Faculty of the Graduate School of the University of Kansas in partial

fulfillment of the requirementsfor the degree of Master of Science

Professor in Charge

Committee Members

Date Thesis Accepted

Dedicated to

My parents, brother and sister

Acknowledgements

| would like to express my sincere thanks to Dr. Victor Frost, who is dso my
committee char, for his guidance throughout this thess and for his suggestions and
support during my graduate studies here in KU. | would aso like to thank Dr. Joseph
B. Evans for his vduable suggedtions, timely replies to dl my doubts during my
research work. | would aso like to express my thanks to Dr. Jarry James for serving

on my committee.

| would adso like to thank Larry Sanders for helping me solve some of the mgor
problems during my thess. | would aso like to thank Brett Becker for his hdp with
al the network setup work. He was adways there to help me whenever | needed
something to setup the loca network for my thesis work. | would dso like to thank al
the ENABLE members for their suggestions and help.

| would like to thank Vijay Jenkd and NT Karthik for ther hep during the initid

stages of my research work.

Lagt, but not the least, | would like to thank dl my friends here in KU for their
support and making my stay here memorable.

Abstract

The increase in the tranamisson speeds of the current day computer networks has
increased the interest in the performance issues of TCP on these High Bandwidth
Delay Product (HBDP) networks. TCP congestion control agorithms, which were
origindly implemented to improve the peformance of TCP, have some limitations on
the HBDP networks. Many of the widely used didributed applications like, FTP do
not take tota advantage of these high-speed networks. This is not because of the
improperly designed gpplications, but because of the default parameters of TCP,
which were desgned to sacrifice optimd throughput in exchange for fair sharing of
bandwidth on congested networks. To overcome this limitation of TCP, research
work is conducted to properly tune the TCP parameters to improve its performance.
Current gpproaches incdlude usng the optima socket buffer szes and usng number of
pardld dreams. These parameters are different for different networks and vary over
time. These techniques have to continuoudy adapt these parameters to suit the
network conditions. This task, which requires network expertise, is difficult. The
Enable service makes this tak esser. Also to overcome the limitations of TCP
congestion control, modifications were made to the TCP stack so that an gpplication
can turn off congestion control. Previous research has shown that this improves
performance. But it is not ided to turn off the congestion control a dl times. So we
need a mechanism, which determines when it is gppropriate to change the congestion
control gate in TCP. In this theds we implemented a mechanism to monitor the
network state and control the congestion control state. The proposed methodology is
tested for a widely used application, FTP. It is shown that the performance, i.e, time
to trandfer afileisimproved for large transfers.

Table of Contents

L. INTRODUCTION c.oootseeeeeesss oo 1
1.1, OVEIVIAW OF TCP ..ottt 2

1.2. TCP Congestion CONtrol........cccceeieeiieiieeiiciie ettt st 3

1.2.1. TCP Slow Start and Congestion AVOIidanCecccccevererereneeene 4

1.2.2. Fast Retransmit and Fast RECOVENY.........cccceveevieiceeieeneeee e 5

1.3. Motivation for the TheSIS........cooiiiiee e 6

1.4, ENABLE OVEIVIOW ...cocuiiiiieeeiestceceee s 7

1.5. Organization Of the TNESIScoeiiiriiieeeee e 8

2. RELATED WORK w.cooooseveeeesssssssesssnss 10
2.1. TCP Extensions for High Performance...........c.ccocevriinininenencneneceens 10
2.1.1. TCP Large Window eXteNSION...........cccueveveeieeiresieeseeireseesseeseeseesneas 11

2.2. TCP tuning for performance enhanCementccceeererenerenenesesieennns 12

2.3. Experimental modifications to TCP.........cccoccvveeviee e 14
2.3.1. Implementation of NOCC iN TCP.......cccviiirenireeeiesese e 15

3. ENABLE ARCHITECTUREcccccoveoreriesesssssesssesss 17
G300 R 111 o L8 o1 o o USSP ORPRPSRS 17

3.2. ThE ENADIE SEIVICE ... 17

3.2.1. Functionality of the Enable SErver ... 19

3.2.2. Implementation of the Enable Service..........ccccoovieiiccececece e, 20

3.3. Algorithm used to implement the AdViSOry SErvercccvevvereneneennns 21

3.3.1. Implementation of AdVICE SEIVEX........ccccvveeveeieceseee e 24

4. MODIFICATIONSTO THE FTP SERVER ..oooosiiivvrommiieeensssmsesesssee 28
4.1. Overview of File Transfer Protocolccoceoeriiieieienerene e 28

4.2. Details of modificationsto ProFTPDcccocveieiiiencine e 29
4.2.1. Implementation of ProFTPDccccocviiiiiiiece e 29

4.2.2. MOQUIE SITUCKUIE......ovieieieeeeee et 30

4.2.3. CoOMMaNd RESPONSES.......cccveeuieireeieeiesieeiteeee e esteseesreesseeee e e e eneesns 31

5. EVALUATION OF THE DYNAMIC TCP CONGESTION CONTROL SCHEME............ 34
o300 I 1 11 0o [F o1 o) o 1SRRI 34

5.2. Creation of the Emulated Network Environmentccocveeneveneniennnns 36

5.2.1. Overview Of NISTNEL.......cccooiiiiiiiesee e 37

5.2.2. TSt ENVIFONMIENTecuvevieieeeeesieeieeeesieeseesseesseesesseesseessesseesseeneesneensens 37

5.3. Equation relating the TCP throughput to the drop rate..........cccccoccvvevenneee. 41

5.4. Tests to show the validity of the throughput-drop relation........................ 41

5.5. Tests to evaluate the performance of FTP with the Enable service........... 42

5.5.1. Performance of FTP as afunction of load in the network.................... 42

5.5.1.1. Tests in adightly congested Networkcccccveeevveieccievieenene, 43

5.5.1.2. Testsin amoderately congested NEtWOrKccocovvrenereneennne 47

5.5.1.3. Testsin a highly congested networkcccevveeiecieceesieenene, 50

5.5.2. Performance of the background flIOWS...........cccooviiieniineneceeees 56

5.5.2.1. Tests with asingle background flOW...........cccevvveviecencere e 56

5.5.2.2. Tests with multiple background flows..........ccccceeoviieiiiiiieciee, 60

5.5.3. Testswith different history data Sets..........cvceveeieienenini s 63

55.3.1. Testsin a dlightly congested NetWorkcccceveveeveesiiecieecnene, 64

5.5.3.2. Tests in amoderately congested NEtWOrKccovevrererenennne 66

5.5.3.3. Tests in a highly congested networkccceeveeeveeiecceiieennene, 67

6. CONCLUSIONS AND FUTURE WORKooovvrrrrrrsssessssssimsss 71
B.L.CONCIUSIONScouiiiiitieie sttt sttt st et sb et s reesre e e 71
B.2.FULUrE WOTK ... 72
REFERENCESoooovvivvrmneeeressssssssssssssssssssssssssssssssssss s ss 73
APPENDIX A .ooooeeeeeeeeeeesstsssssssssssssssssssssssse s ssssss8888 8858 77
APPENDIX B ...ooooooeeeeeeseseessesessssssssssssssssssssessssssssssssssssssssssssssssssssssesssesssssssssssssssssssssssssssssssssssesesssssssssssssssssssses 77
APPENDIX C ...ooovvvvvvvvss e85 55 5055858555555 81

List of Tables

Table 1. Results of tests done to determine the constant factor in TCP throughput

(0 ool = =11 o o OSSR 42
Table 2: Parameters for tests to estimate the performance of FTP as a function of
network load in a slightly congested NEtWOTK.............ccoeieeieeiiieesece e 43
Table 3: Throughput of different FTP implementations in a network with a minimum

of 45% used bandwidth and no background flOWS............ccccveiiiieiicie s, 44
Table 4. Congestion control state inputs received for testsin a network with a

minimum of 45% used bandwidth and no background flows...........ccccceeiiveienccecnee, 45

Table 5: Parameters for tests to estimate the performance of FTP as a function of
network load in a moderately congested NEtWOrK..........cooveveeceicesiecce e 47
Table 6: Throughput of different FTP implementations when run in a network with a
minimum of 60% used bandwidth and no background flOws.............ccccevinnninenenneee 47
Table 7. Congestion Control Sate inputs received for testsin a network with

minimum of 60% used bandwidth and no background flOws.............cccccininininineeneee 48
Table 8: Parameters for tests to estimate the performance of FTP as a function of
network load in a highly congested NEIWOTK.............ccoiererininineeeeeee e 50
Table 9: Throughput of different FTP implementations when run in a network with a
minimum of 75% used bandwidth and no background flOws............cccceoeiiniincnnnne. 51
Table 10: Congestion Control Sate inputs received for testsin a network with a
minimum of 75% used bandwidth and no background flows...........cccccveiiiinennnne 52
Table 11: FTP parametersfor teststo see the effect on a single background flow.......... 57

Table 12: Iperf parameters for tests to see the effect on a single background flow......... 57
Table 13: Throughput of different FTP implementations when run with a single I perf

Table 14: Percentage decrease in the throughput of Iperf when run with different

IMPIEMENatioNS Of FTP........cooiiee e ens 58

Vi

Table 15: FTP parameters for tests to see the effect on multiple background flows....... 60
Table 16: Iperf parameters for tests to see the effect on multiple background flows....... 61
Table 17: Throughput of FTP with CC and FTP with NOCC when run with multiple

LPEIT FlOVUS ...t b e 61
Table 18: Throughput of FTP with ASwhen run with multiple Iperf flows..................... 61
Table 19: Parameters for tests with different history data setsin a sightly congested

[0S0V o SR PRR RSP 64

Table 20: Throughput of FTP with ASwhen run in a network with minimum of 45%
used bandwidth and no background flows for different history data sets,ccc.c...... 64
Table 21: CC Sate inputs received when FTP with ASisrunin a network with a

minimum of 45% used bandwidth and no background flows for different history data

T USSR PR SRR PRSP 65
Table 22: Parameters for tests with different history data setsin a moderately
(00010 1= (=0 1 07 ATV o S 66

Table 23: Throughput of FTP with ASwhen run in a network with a minimum of 60%
used bandwidth and no background flows for different history data sets....................... 66
Table 24: CC Sate inputs received when FTP with ASisrun in a network with a
minimum of 60% used bandwidth and no background flows for different history data

S 1SRRI 67
Table 25: Parameters for tests with different history data setsin a highly congested
1S LY S 67

Table 26: Throughput of FTP with ASwhen run in a network with a minimum of 75%
used bandwidth and no background flows for different history data sets........................ 68
Table 27: CC Sate inputs received when FTP with ASisrun in a network with a

minimum of 75% used bandwidth and no background flows for different history data

viii

List of Figures

Figure 1. ENABLE Architecture, from[3]cccooeeeeiecieseeeees e 18
Figure 2: System architecture, from[4]cccooveeii i 22
Figure 3: lllustration of linear model, from [4]ccoiviniriniee e 23
Figure 4: Illustration of calculation, from [4]ccccoveeieieeie e 26
Figure 5: 3-host network configuration.............ccceoererereneneeieeese s 38
Figure 6: 6-host network configuration..............ccooveverieieese e 38
Figure 7: 8-N0OSt CONfIQUIatioN...........coeeieieieee s 39

Figure 8: Time of day vs FTP throughput for testsin a network with minimum of 45%
used bandwidth and no background fIOWS..........cccceiiriininiee e 44
Figure 9: Available bandwidth variation vs CC state inputs at 2: 25pm for testsin a
networ k with minimum of 45% used bandwidth and no background flows............... 46
Figure 10: Time of day vs FTP throughput for testsin a network with a minimum of
60% used bandwidth and no background flOws............ccoeeieiiie i, 48
Figure 11: Available bandwidth variation vs CC state inputs at 2:25pm for testsin a
network with a minimum of 60% used bandwidth and no background flows............ 49
Figure 12: Time of day vs FTP throughput for testsin a network with a minimum of
75% used bandwidth and no background flOWS...........cccccceeveeie s 51
Figure 13: Available bandwidth variation vs CC state inputs at 2: 25pm for testsin a
network with a minimum of 75% used bandwidth and no background flows............ 53

Figure 14: Average throughput of different FTP implementationsin a slightly

CONQESLEA NEIWOT K.ttt sttt bbb 54
Figure 15: Time of day vs % improvement in the throughput of FTP in networks with
different percentages of used bandwidth............ccooiiiininiiicie e, 55
Figure 16: Logical network topology of the 6-host configuration...............cccuee..... 56

Figure 17: Time of day vs background flow throughput when run with different FTP
implementations in a network with the a minimum used bandwidth of 45%.............. 59

Figure 18: Logical network topology of 8-host configurationcccceveecieieenen. 60
Figure 19: Time of day vs Background flow1 throughput when run with different FTP
implementations in a network with minimum of 45% used bandwidth....................... 62

Figure 20: Time of day vs Background flow2 throughput when run with different FTP

implementations in a network with minimum of 45% used bandwidth....................... 62
Figure 21: History data set comprising of the whole database...............cccoceriineenens 63
Figure 22: History data set comprising of one-week’ sdata.............cccceveereecieneennens 63
Figure 23: History data set comprising the data of test days............cccceeeeeceeviernenne. 64

Chapter 1

| ntroduction

The Transmisson Control Protocol (TCP) [20] is the most widdly used transport
protocol in today's computer networks. With the consderable increase in the speed of
Internet backbone networks, a lot of attention is being paid to the TCP performance
issues to make it better suited for such high-speed networks. Most of the current
Internet applications like FTP [22] and HTTP use TCP as their transport protocol.
Unfortunatdly these distributed applications do not teke full advantage of the
currently available high-speed networks. This is not because of any problems with the
design of these applications, but because of the inherent limitations of TCP on these
High Bandwidth Deay Product (HBDP) networks. TCP parameters have been
designed to sacrifice the throughput to share the network bandwidth fairly in the face
of a congested network. This makes the performance of TCP on low laency links
good. But on HBDP networks a proper tuning of TCP parameters is required to take
maximum advantage of the very high bandwidth availadble TCP dso uses a st of
congestion agorithms to control the rate a which a sender transfers the data Even
though these dgorithms are important for preventing the congestion in the network,
they have a negative impact on the performance of TCP on the long Round Trip Time
(RTT) links [7]. Lot of work is being done on tuning TCP parameters to improve the
TCP throughput on such HBDP networks. But application developers require certain
levd of network experttise to use these mechanisms to achieve better TCP
throughputs. This thess proposes a new mechanism, which distributed application
devdlopers can use without much difficulty to maximize ther TCP throughput on
HBDP networks, especidly for long file transfers. It dso demondrates the usefulness
of this mechanism.

1.1. Overview of TCP

TCP provides a reliable, connection-oriented, in-order delivery of a stream of bytes. It
is a full-duplex protocol, meaning that each TCP connection supports a pair of byte
dreams, one in each direction. It dso includes a flow-control mechanism for each of
these byte dreams that dlows the receiver to limit how much data the sender can
tranamit a a given time. TCP dso supports a demultiplexing mechaniam that dlows
multiple gpplication programs on any given hog to Smultaneoudy cary on a
conversation with their peers. In addition to the above features, TCP aso implements
a highly tuned congestion-control mechanism. The idea of this mechaniam is to
throttle how fast TCP sends data, not for the sake of keeping the sender from

overrunning the receiver, but so as to keep the sender from overloading the network.

TCP uses diding window agorithm to provide religble, in order ddivery of data. It is
aso usad to enforce flow control between the sender and the receiver. TCP on the
sending Sde maintains a send buffer. This buffer is used to store data that has been
sent but not yet acknowledged, as well as data that has been written by the sending
goplication, but not transmitted. On the recelving sde, TCP mantans a receve
buffer. This buffer holds data that arrives out of order, as well as data that is in the
correct order, but that the application process has not yet had the chance to read. The
way the diding window agorithm works is as follows. Firg the sender transmits a
segment and waits for the acknowledgement before sending any other data. Once the
acknowledgement for the firg segment arives, it sends two segments and when the
acknowledgement for these two segments arive, it sends four segments and this
process continues. But there is a limit to the number of segments that a sender can
transmit. The recaver advertises a window Sze to the sender usng the Advertised
Window fidd [1] in the TCP header. The sender is then limited to having no more
than a vaue of Advertised Window bytes of unacknowledged data & any given time.
The recaever sdects a suitable value for Advertised Window based on the amount of

memory dalocated to the connection for the purpose of buffering data The Effective
Window used to determine this limit on the maximum number of unacknowledged
bytesis caculated asfollows[19]:

Effective Window = Advertised Window - (LastByteSent - LastByteAcked)

Thus the flow control is implemented in TCP. There is another window vaue cdled
Congestion Window (CWND) [1], which is used to implement the congestion
control, which is explained in the next section.

1.2. TCP Congestion Control

TCP congestion @ntrol [1] was introduced into the Internet in the late 1980s by Van
Jacobson. Before there was congestion control in TCP, the Internet used to suffer
from Congestion Collgpse [5]. Congestion collgpse is a network date in which the
hosts would send their packets into the Internet as fast as the advertised window
would alow, congestion would occur a a router, causing the packets to be dropped,
and the hosts would timeout and retransmit the packets, further increasing the
congedtion in the network. Congestion Collapse occurs when packets arrive a a
router in the network at arate higher than it can handle.

Congestion contral is implemented in TCP using four dgorithms namdy, Sow Start,
Congestion Avoidance, Fast Retransmit and Fast Recovery [1]. TCP maintans a new
date variable for each connection, cdled Congestion Window (CWND), which is
used by the source to limit how much data is dlowed to have in trangt & a given
time. The congestion window is congestion control's counterpart to the flow control's
advertised window. The maximum number of bytes of unacknowledged data would
now be the minimum of the congestion window and the advertised window. This is
shown by the following equations [19].

Max. Window = MIN (Congestion Window, Advertised Window)
Effective Window = Max. Window - (LastByteSent - LastByteAcked)

Note tha Max.Window replaces Advertised Window in the cdculation of Effective
Window. Hence a TCP source is dlowed to send no faster than the dowest

component, network or the destination host, could alow.

1.2.1. TCP Slow Start and Congestion Avoidance

TCP uses Sow Stat and Congestion Avoidance agorithms [1] to control the amount
of outdanding data injected into the network. Apat from the two varigbles,
Congesion Window and Advertised Window defined above, TCP uses another
vaiable cdled the dow dart threshold (sstresh) to determine whether to use Sow

Start or Congestion Avoidance to control the data transmission.

TCP uses Sow Start mechanism to increase the CWND a the start of a TCP
connection and aso when a timeout occurs because of a lost packet. During the Sow
Start, the source starts out by setting the CWND value to one packet. When the ACK
for this packet arrives, it increases the CWND value by 1 and then sends two packets.
When the ACKs for these two segments arrive, it increases the CWND vdue by 2,
one for each ACK and sends four segments. This in effect increases the CWND
exponentidly. The CWND increases this way until a loss is observed or it reaches the
vaue of sstresh. TCP will be in the Sow Start state when CWND < sstresh. Initidly
sstresh is st to the value of receiver advertised window. Whenever a loss is observed
by a timeout, the sstresh is set to haf the value of the CWND and the CWND is st to
1 packet. The CWND will increase exponentialy until it reaches the vadue of sstresh
(if there are no drops), a which point it goes into the Congestion Avoidance phase.

Congegtion Avoidance is the phase in which TCP increases the CWND linearly
indead of exponentidly as obsarved in the Sow Sat phase. TCP will be in this
phase when CWND > sstresh. During this phase TCP increases the CWND by one
whenever the ACKs are recelved for dl the packets in the CWND. This is a

conservative agpproach to increase the CWND.

1.2.2. Fast Retransmit and Fast Recovery

Fast Retransmit and Fast Recovery mechanisms [1] are proposed to reduce the long
idle periods of time during which the TCP on the sending host waits for a timeout to
occur. Fast Retranamit is a mechanism that sometimes triggers the retransmisson of a
dropped packet sooner than the regular timeout mechanism. The fast retranamit

mechanism does not replace regular timeouts; it just enhances that facility.

The idea of fagt retranamit is sraightforward. Every time a data packet arrives at the
recelving dde, the receiver responds with an acknowledgement, even if this sequence
number has dready been acknowledged. Thus, when a packet arrives out of order,
TCP resends the same acknowledgement it sent the lagt time. This second
transmisson of the same acknowledgement is cdled a duplicate ACK. When the
sending side sees a duplicate ACK, it knows that the other sde must have received a
packet out of order, which suggedts that an earlier packet might have been lost. Since
it is aso possble that the earlier packet has only been ddayed rather than logt, the
sender waits until it sees three duplicate ACKs and then retrangmits the missng

packet.

The Fast Recovery mechanism removes the dow dart phase that happens between
when fast retransmisson detects a logt packet and additive increase begins. That is
when the fast retrangmit mechanism dgnds congesion, raher than drop the
congestion window al the way back to one packet and run dow dart, it Smply cuts

the congestion window in hdf and resumes additive increase. This makes TCP to use

dow gart only at the beginning of a connection and whenever atimeout occurs.

1.3. Motivation for the Thes's

TCP uses Congegtion Window (CWND) to determine the number of packets that it
can transmit at any time before it receives an acknowledgment from the receiver. The
larger the CWND vaue, the higher the TCP throughput. TCP Sow Start and the
Congestion Avoidance dgorithms as described above determine the sze of the
Congestion Window. The maximum Congestion Window Sze is reaed to the
amount of buffer space dlocated to each socket by the kernel. There is a default
buffer sze vaue alocated to each socket which can be changed by the system cal,
setsockopt () [8].

TCP peforms well on the low-latency links but on high-rate, large roundtrip time
links it fals to teke advantage of the high bandwidth available [7]. This can be
atributed to the improper TCP parameters, including the limitations introduced in the
kernd by the dzes of socket buffers. As the network throughput speeds have
increased recently, the operating sysems have changed the default buffer szes from
the common vaues of 8 kilobytes to 64 kilobytes. But these socket buffer szes are
dill not enough [8] for the curent high-speed networks. TCP requires very high
buffer szes to get maximum benefit from these networks. But we can not just use the
maximum buffer sze vaues for dl the connections, as it wagtes the operating system
resources and also under certain circumstances overly large TCP buffers can have bad
effect on the TCP performance. To solve this problem severa approaches have been
proposed, tuning of TCP buffer sizes [8,9,12] and use of paralel sockets came into
picture [13]. But in order to use these mechanisms agpplication developers need some
sort of network expertise. ENABLE (Enhancement of Network Aware Applications
and Bottleneck Elimination) project ams to make this task of determining the correct
TCP tuning parameters easy to the application developers gpat from the large

number of tasks it does. The details of the ENABLE project are given in the next
section.

TCP Congestion Control agorithms are very important for the proper functioning of
the networks but they can aso have a negative impact on the TCP performance on the
high latency links [7]. To overcome this limitation, a mechanism has been proposed,
implemented and tested, which enadbles an application to turn off the congestion
control in the TCP based on the network date. This mechanism dso shows some
promising results [2]. But we cannot turn off the congestion control in TCP totaly
because it causes congestion collapse in the network. Hence we need a mechanism by
which we can be able to determine when it is gppropriate to turn off CC in TCP.
Enable Advisory Server (AS) tries to achieve this task of determining when to change
congestion control statein TCP.

This thess proposes a new mechanism by which an gpplication can turn CC in TCP
dynamicdly during the course of a TCP connection as a function of network Sate.
This mechanism is especidly amed a improving the peformance of goplications
with large file tranders. The advantages and disadvantages of this mechanism are
a0 discusad as wdl as the results of its implementation with a popular application,
FTP.

1.4. ENABLE Overview

ENABLE dands for Enhancing of Network-aware Applications and BottLeneck
Elimination. This project is a Department of Energy (DOE) research project to build
an adaptive monitoring infrastructure, a monitor data publishing mechanism, and
monitor data andyss tools. They ae devdoping a "Grid" service that will provide
both of these capabilities. The overdl god of this Enable project is to provide
manageahility, reigbility, and adgptability for high performance gpplications running
over wide-area networks. A main component of Enable project is the Enable network

advice server [3]. An Enable server can be ingdled on any data server hogt (eg.: an
FTP server), and configured to monitor the network paths from that host to a set of
client hosts. The Enable server monitors the state of the network continuoudy and can
be queried by client gpplications to get the network tuning parameters to use. These
parameters incdlude the optimal TCP buffer d9ze to use for a given path. These
network-tuning parameters are different for different network paths and vary over
time. The application become aware of the network by congantly contacting the
Enable advice sarver and obtaining the information needed to adgpt to the current

network conditions.

Presently, the archiva tools and the monitoring tools to store per sesson data in the
database are being put together. The Enable service with limited capability is aso
implemented. The work in this thess is a sample implementation of the actud
goplication of the Enable service. A new capability of the Enable service is proposed,
implemented and evaduaed here. This cgpability helps the Enable sarvice to give
input on whether to use the congestion control mechanism in TCP or not based on the
network conditions. Once the infrastructure is in place this mechanism can be tested
in the red environment.

1.5. Organization of the Thesis

The rest of this thess is organized into the following chepters. Chapter 2 describes
the TCP Extensons for the High Bandwidth Delay Product Networks and aso the
background work on the TCP tuning and the work done on dynamicaly adjusting the
date of the congestion control in TCP. Chapter 3 gives on overview of the ENABLE
Architecture with an emphads on the implementation of the Advisory Server. Chapter
4 describes the FTP in generd dong with its implementation and the modifications
did to it to implement our mechanism. Chapter 5 shows the various test scenarios
used to tet our mechanism dong with the teds to see its advantages and

disadvantages. It adso shows the tests, which are done to see how certain factors
influence the mechanism. Chapter 6 gives a summary of the accomplishments of this
thesis and the possible future work that can be donein this area.

Chapter 2

Related Work

2.1. TCP Extensionsfor High Performance

The TCP protocol was designed to operate rdiably over dmost any transmisson
medium regardless of transmisson rate, delay, corruption, duplication, or reordering
of segments. The basc TCP implementation works well for the low latency networks,
but it is not suitable for today's high-speed and high-delay networks. Hence severd
extensions were proposed [6] to the basic implementation to ahance the performance
of TCP on such networks. All these extensons are implemented as TCP options so
that hogts can ill communicate usng TCP even if they do not implement these
options. Hosts that do implement the optional extensons, however, can take
advantage of them.

TCP performance does not depend on the transmission rate done; it depends on the
product of the transmisson rate and the round-trip delay. This "Bandwidth Deay
Product"(BDP) measures the amount of data that would fill the network path. It is the
buffer space required at sender and receiver to obtain maximum throughput on the
TCP connection over the path, i.e, the amount of unacknowledged data that TCP
must handle in order to keep the network path full. TCP performance problems arise
when the bandwidth*delay product is large. We refer to an Internet path operating in
this region as a "long, fat pipe' and a network containing this path as an "LFN". The
three fundamental problems that arise with TCP over such LFN paths are the Window
sze limits, recovery from losses and the round-trip time measurements. To over come

these problems, Van Jacobson, Bob Braden, Dave Borman suggested the following

10

extensons to TCP [6], to improve its performance over the high bandwidth-deay
product networks.

22 TCP Window Scade extenson to enable usng large windows for accommodating
the large BDP vaues of the current high speed and high delay networks.

%5 TCP Timestamps for more precise estimation of the round-trip times

ez Protect Agang Wrapped Sequence Numbers (PAWS), for preventing the
accidenta reuse of TCP sequence numbers because of the sequence number wrap-

around caused by high bandwidths

We will go over the firsd proposed extenson, which deds with the TCP window
Szes.
2.1.1. TCP Large Window extension

The TCP Advertised Window fidd in the TCP header, which is of 16 bits limits the
gze of the TCP window to 2*16 = 64KBytes. Without the Large Window extensions,
the maximum throughput of a TCP connection is limited by the round trip time as
gven in the following rdaion.

Max.TCP Throughput = Receiver Buffer Sze/Round Trip time.

On a typicad cross-country WAN link with a round trip time of 60ms the maximum
throughput of the TCP connection islimited to

Max. TCP Throughput = 64KBytes/60ms = 8.74Mbps.

This is the limit on the TCP throughput no matter what the transmisson rate of the
Internet path is. In order to overcome these throughput limitations, the TCP large

window extensions were proposed.

11

Large Window extension s implemented in TCP using the TCP Window Scade option
[6]. The window scale extenson increases the size of the TCP advertised window to
32 bits and then uses a scale factor to carry this 32-bit vdue in the 16-bit window
fidd of the TCP header. The scde factor is carried in a new TCP option, Window
Scde This ogption is sent only in a SYN segment and hence the window scde is fixed
in each direction when a new connection is opened. The maximum receive window
and hence the scde factor is determined by the dze of maximum recaver buffer
gpace. This maximum buffer gpace is set by default but it can be changed by a system
cadl before a connection is opened. The Window Scade option, sent in a SYN
segment, indicates the willingness of the TCP sender to do both the send and receive
window scding. It is dso used to send the scale factor to apply to its receive window.
Both the sender and receiver must send the Window Scale option in their SYN
segments to enable window scding in either direction. This option is sent in the initid
SYN segment. It is dso sent in a <SYN, ACK> segment, but only if a Window Scale
option was received in the initid SYN segment. A Window Scale option in a segment
without a SYN bit is ignored. When the TCP window scding is enabled, the effective
send and recelve window Szes are cdculated by left shifting the window sSzes by
scae factor times. The scale factor is limited to a vdue of 14 to make sure that the
maximum window size is 2°30.

2.2. TCP tuning for perfor mance enhancement

TCP uses Congegtion Window to determine how many packets can be sent a one
time. The larger the congestion window sze, the higher the throughput. The TCP
dow dat and congestion avoidance dgorithms [1] determine the sSze of this
congestion window. The maximum congestion window is related to the amount of
buffer space the kernel dlocates for each socket [8]. For each socket, there is a
default vaue for the buffer sze, which can be changed by the program using a sysem
library cdl just before opening the socket. There is dso a kernd enforced maximum

12

buffer size, which can aso be changed. The socket buffer size must be adjusted at

both the sender and receiver sides.

To gat maximd throughput it is dways important to use the optimad TCP sed and
receve buffers for the link being used [8]. If the buffers are too smdl, the TCP
congestion window will never fully open up and if the buffers are too large, the
sender can overrun the receiver and the TCP window will shut down. There exidts a
large body of work showing that good performance can be achieved using the proper
tuning techniques. However, determining the correct tuning parameters can be quite
difficult, especidly for users or developers who are not networking experts. There are
severd tools that help determine these vaues, but none of these include a client AP
and dl require some levd of network expertise to use. So we need a mechanism,

which is easy to use, to determine the optimal buffer szes to use for the link we are

using.

The optimd buffer Sze is twice the bandwidth* delay product of the link [8].

buffer size = 2 * bandwidth * delay = bandwidth * RTT
where bandwidth is the bottleneck bandwidth for a particular path and RTT is the
Round Trip Time on that path.

We need to have some network expertise to determine these optima parameters and
most of the didributed application developers find it difficult to ded with this
network tuning. Also these optimd buffer szes are different for different networks
and vary over the time. Severd research efforts are being conducted to make this task
of tuning the network parameters easer for the distributed application developers so
that they can concentrate on the agpplication design instead of worrying about the
network performance. These research efforts include Net100 [10], Web100 [11]

among the others.

13

The Web100 project aims at providing the software and tools necessary for end-hosts
to automaticaly and trangparently achieve high bandwidth data rates over the high
performance research networks. This project plans to achieve the TCP performance
tuning trangparency by embedding the appropriate diagnostics and automatic controls
in the end sysem opeaing sysem a a levd invisble to the user. Initidly the
software and bols are being developed for the Linux operating system, but the work
is being done in a standard, open manner s that they can easily be ported to other
operating systems.

The Netl00 project is based on Webl100 and NetLogger [32] and it proposes to
devdop a mode for network-aware operating systems usng Web100 as the means
for incorporating network information and its andyss into host operating systems to
improve peformance. The modified operating sysems will respond dynamicdly to
network conditions and make adjustments in network transfers, sending data as fast as
the network will dlow.

Recently, the Linux 24 kernd [12] dso included TCP buffer tuning agorithms. For
aoplications that have not explicitly set the TCP send and receive buffer szes, the
kernd will attempt to grow the window sSzes to match the avaladle bandwidth (up to
the recaver's default window). Autotuning is controlled by new kernd variables

net.ipv4.tcp_rmem/wmem and the amount of kernd memory available.

2.3. Experimental modificationsto TCP

Congegtion Control agorithms of TCP were implemented to prevent the frequently
occurring condition of congestion collapse in the Internet. It succeeded in doing that,
but it has a performance bottleneck on the high-speed and high delay networks. The
most important parameter on which the throughput of TCP for a particular connection
depends is the product of the bandwidth of the link and the delay on that link. When

14

the RTT of alink is very high, the time TCP spends in the dow dart phase is high and
S0 effectively TCP doesn't yield good throughput results in that phase. For a protocol
like HTTP which uses TCP as the transport protocol and which has very short
duration flows, the response times because of TCPs dow dart phase is disastrous
over a high RTT link. For HTTP flows, the entire duration of the flow is
predominated by TCPs dow start behavior and this has bad effects on the response
time of the web server. Also whenever there is some random loss of a packet in a
connection, the TCP Congestion Control dgorithms dow down the sender by
entering into the dow dat phase, even though there is not much congestion in the
network. However the TCP Fast Retransmisson and Fast Recovery dgorithms [1]
minimize this efect to some extent, but Hill the sender will be dowed down. To
overcome these limitations for certain gpplications, experimenta modifications were
made in TCP, which enable an gpplication to turn off the congestion control
mechaniam in TCP from the gpplication leve [2]. This modification where there is no
congestion control in TCP isreferred as NOCC (No Congestion Control).

2.3.1. Implementation of NOCC in TCP

The interface that is provided for the application to turn off the congestion control
mechanism in TCP is by means of a setsockopt() sysem cdl. The gpplication can
turn OFF and turn ON the congestion control in TCP whenever needed. The way this
NOCC is implemented in TCP is by controlling the growth of the TCP congestion
window, since this is the parameter which the congestion control adgorithms use to
control the rate of transmisson of a host. Once the congestion control is turned off,
the TCP control block will be unaware of the Congestion Window parameter and the
receiver's advertised window becomes the sender's limit on the number of bytes it can
transmit before recalving an acknowledgement. This makes sure that the flow control
is dill enforced. The sudy with the experimentd modifications to TCP dack [2]
gives the detals of the implementation of this NOCC mechanism and the advantages
and disadvantages of usng this mechaniam.

15

The implementation of NOCC mechanism in TCP hdps us to control the congestion
control state in TCP, but we can not turn off the congestion control in TCP totaly
because this might again lead to the problem of congestion collgpse in the network.
To avoid this problem and a the same time take advantage of this provison in the
TCP sack, we proposed to develop a new service cdled Enable service, which
dynamicdly adjuds the date of the congestion control in TCP depending on the
network state.

16

Chapter 3

ENABLE Architecture

3.1. Introduction

Enable service [3] provides its clients with the correct TCP tuning parameters for a
gven network path so that applications can optimize their use of the network and
achieve the highest possible throughput. The Enable service works as follows. An
Enable server is co-located on every system that is serving large data files to the
wide-area network (eg.. an FTP or HTTP sarver). The Enable service is then
configured to monitor the network links to a set of client hogs from the perspective of
that data server. Network monitoring results are stored in a database, and can be
queried by network-aware distributed components a any time. The Enable service
runs the network tests on some pre-configured time interva. The Enable service AP
makes it very easy for gpplication or middleware developers to determine the optima
network parameters. To take advantage of the Enable tuning service, didtributed
goplications must be modified to support network tuning such as the ability to set the
TCP buffer sze [8] or the ability to creste and use multiple data streams to transfer
data in padld [13]. The network tuning parameters that the Enable service is initidly
concentrating on are those required by large bulk data transfer gpplications, such as
the various “Data Grid” [30] projects.

3.2. TheEnable Service

The Endble service [3] has three distinct components. Firdt, there is the Enable
Server, which kegps an up-to-date record of network parameters between itsef and

17

other hosts. The second component is a protocol for clients to communicate with the
savers. Findly, there is a smple APl tha makes querying the Endble Servers trivid
for application developers. The primary design god for the Enable service is the ease
of inddlation, configuration, and use. The architecture of Enable is shown in Figure
2 bdow. An Enable Server is inddled on every data server host, such as an FTP or
HTTP sarver, and that Enable server is respongble only for determining the optimad
network parameters between clients and itsdf. The following section describes the
functiondity and implementation of the Enable Sarvice.

MNetwork tests are run botwesn
sarvers and chants (but not
batwaan clianis), a.g: ping
pipechar, pohar. iperf

Clinl Host / Client Host

1

— = |
Client Host — [Enable
— Service
| — -
e resulis
[D ‘\-‘-\- Data 5:T|'1||'FEI' DE
== [Enable (e.9. FTF) :]
— Service Data Server Host

Data Server =
DB : .
I[B.ﬁ. FTF‘] '\\ Enabiz dala base: contains results

af all tests from the server host to
all its chanls

Data Server Host

Figure 1. ENABLE Architecture, from [3]

18

3.2.1. Functionality of the Enable Server

The Endble Server will periodicdly run network monitoring tests between itsdf and a
number of client hosts These client hosts could be reed a dat-up from a
configuration file, manudly added usng an APl or command-line utlity, or
automaticaly added by monitoring log files from the data server, such as HTTP or
FTP logs. The results of the network tests will be stored in a database. The sdection
and scheduling of tests for each dient is dynamicdly configurable. Clients can query
the Enable server, which is ligening on a wel-known port, for network parameters,
ds cdled “network advice”. The protocol for doing this is XML-RPC [31], a
standard XML-based protocol that performs remote procedure cals over HTTP. The
gandard protocal is used so that interfacing with Enable is made easer without using
the Enable AP or libraries.

Hereisasample AP that clients can use to query the Enable Server. For example:

tcp_buffer_size = Enabl eGet BufferSize(ftp_host nane)
returns the optima buffer Sze between itself and the FTP server host, and:

net _info = Enabl eGet Net|I nfo(ftp_hostnane)
returns the result of al network tests for that network path.

Currently the Enable server supported network tests are ping, pipechar [25], pchar
[33], and Iperf [17], but only ping and pipechar are run by default.

19

3.2.2. Implementation of the Enable Service

The ENABLE framework is not completdy in place and our work is based on a
ample look-dike of the Enable service. For this thess, the Enable server code is
written totaly independent to the actud Enable server, but it includes dl the concepts
of the actud enable server. It maintains a database of the network conditions, which
include the avalable bandwidth on the network path to the client a different times of
a day. It uses this data to advise the client about the tuning parameters. The data
collected is the available bandwidth variation data on a router interface. The Enable
server does not run any network tests to the set of client hosts. It instead bases its
advice on the traffic data from the router. Also modifications ae made to the
ProFTPD daemon [15], which is one of the target applications when the actud
ENABLE architecture is in place. Whenever an FTP client tries to download a file
from the FTP server, the FTP server contacts the Advisory Server (AS, dso caled the
Enable Server) for advice on the network parameters (TCP congestion control dtate
(CC Sate) input in this case) to use. The advisory server gives input on the CC date
of TCP and dso the time a which it has to be contacted again. Based on the input it
receives from the AS, the ProFTPD daemon turns the CC State in TCP and begins
transferring the requested file to the dient host. When the next advise time, as
suggested by the AS nears, the FTP server contects the AS again to see if there is any
change in the dtate of network and hence in the network parameters to use for the
client host. If so it changes the network parameters (TCP CC State). This process
continuestill the transfer is complete.

The way our work differs from the actud ENABLE framework is that the Enable
server does not run any network tests to determine the state of the network. Instead it
determines the current gtate of the network based on the traffic data that is collected
before hand. The other change is, since the data is collected only for a sngle router, it
can give useful input only to hods on the router path. Also the inputs that the Enable

20

server gives and the way those inputs are derived are different from that of the actud
Endble server. But with little changes we can make this very smilar to the actud
ENABLE architecture.

3.3. Algorithm used to implement the Advisory Server

The purpose of the Advisory Server (AS) is to give the gpplications the inputs on the
network parameters to use. To achieve thiss we modd the changes in available
bandwidth on a network path and use the result to give inputs on the network tuning
parameters. The following description is based on [4]. We use FTP as the target
goplication, which uses this Advisory Server (AS) to reduce the trandfer time of large
files. One of the parameters the AS gives is the optima TCP buffer sze to use for a
connection. The optima TCP buffer size can be cdculated by the following formula

[8]:
Optimal TCP buffer = RTT * (bandwidth of bottleneck link)

Another parameter that we ded with is, if there is no congegtion in the link, we can
turn df congestion control in TCP. So the AS gives the input of whether to use CC in
TCP or not. Turning CC OFF can improve the performance of a TCP flow a the
expense of the background flows [2]. For rdatively short file transfers, bandwidth can
be assumed to be congant; but for very large files, we need to build a modd to
predict when to adjust these network parameters. We aso monitor the Congestion
State of the link from server to client. The architecture of the sysem congdered is
shownin Figure 2.

21

I —I Advice Server

Client

History data

Data Server

Figure 2: System architecture, from [4]

The following is from [4]. Here we modd the changes in avalable bandwidth on a
network path. In this modd, we regard the available bandwidth as being composed of
two parts. one is determinigtic; another is random to reflect the burdtiness of network
traffic, it can be taken as noise. For the firg part, a linear regresson method is used to
modd the traffic for short time intervals, thet is, a any time we assume a linear
relaionship between time and available bandwidth over a short period of time. For
example, when the advice server receives request a 2:.00 am, it caculates the mean

available bandwidth and bandwidth rate of change a 2:00 am according to historicd
data

Assume the relaionship between available bandwidth and time islinear,

2?2 2297
b"O"l’

b represents available bandwidth
? represents time relative to the request time

?owill be the available bandwidth a the time of the request, ?4will be rate of change
of the avallable bandwidth, it may be negative.

22

=

&

2

o
h

&

Ay ailabe bandwidth (Mbps)
&

F=Y
(=]
T

0.2 04t, 1t 0B 08

Tirme within day

Figure 3: Illugtration of linear mode, from [4]

i

o

In Figure 3, the advice request arrives a time t,. The linear regresson is done for
data between tyand t1(?t, ?t, ?t, is a configured congtant). 2 will be the available

bandwidth a t,,?, is the dope representing the rate of change in avalable
bandwidth. If we require that the change in avalable bandwidth will not exceed 27,
then the next advice time will be t,.

The daabase in the advice server will contan a series of observed pairs
(b;,?;),i 210 n, from which the esimators of the coefficients 2,, ?, can be
caculated, thet is[4],

n? b2 ?(?b)(?2)

'.31?

n?222(22.)2
| |

?2h 2?2 27
._3 2 I 1 i
0 n

23

The measurement contains noise o that the mode becomes

bj 229?77 27

0" "1

We assume that:

7

7?

2, isaGausdan random varidble

Meanvdueof ?;is0,i.e, E(?;) 2?0
Varianceof 2, isconstant. (Therefore, 2, ~ N(0,2 %))

Correlation of 2, and?j (i?])is0

Correlation of 2, and b; isO

Under these assumptions.

7

”

’.31isen unbiased estimator of 2,

'.30isan unbiased estimator of 2,

22 The goodness of fitness is measured by

S 0502

2622 (2b)2/n

3.3.1. Implementation of Advice Server

The network data is present at the Advice Server host in a database as a sequence of
records of (ip,?,b,c). Where ip is the IP address of each hop adong the path to the

client (only one hop for our case), ? is test time b is measured available bandwidth
a the time ?, cis a Boolean that indicates whether congestion is occurring (TRUE)
or not (FALSE) a this time ?. This vdue is determined based on the avalable
bandwidth & this time. If the avalable bandwidth is less than the threshold (defined

24

based on the % of used traffic), we turn the CC ON and if the available bandwidth is
more than the threshold, we turn the CC OFF.

When the data server receives a file transfer request from client, it sends a request to
the advice server. The request includes the following parameters.

2 |Paddress of client

2 filelength or remaining file length to be trandferred

When the advice server receives the requedt, it determines the following parameters
to send back to the data server:

2 Hag to indicate whether to use congestion control or not in TCP

2 RTT from server to client.

2 Current available bandwidth

2 Next advicetime

RTT can be tested when the advice request arrives at the advice server, either ICMP
programming or ping can be used to obtain the result. To get the congestion control
flag, the advice sarver searches for the most recent observation of this dedtination

from database. The result is a series of stored information in the form of

(ip,,?,b;,c,)

(ip,,?,b,,c,)
Here, ip;s are IP addresses of hops from the server to the degtination, b's are
avallable bandwidth of corresponding hops, c; s are flags of congestion dtates. If the

most recent test time t is not close enough to current time, the congestion control flag
is st to inform the daa server use congestion control during transmisson. If the
nearest test time t is close enough to current time, the congestion control flag is
determined by congegtion flags. If anyone of them is TRUE, which means congestion

25

happened in this hop, the congestion control flag will be turned on; if none of them is
true, the congestion control flag will be turned off.

The avalable bandwidth and next advice time will be cdculated according to
higoricd data of the minimum bandwidth hop. When an advice request comes, the
fird dep is to cdculate the avalable bandwidth and rate of change of avalable
bandwidth for each previous day with test data.

v

< day 1 >< day 2

Figure 4: Illugration of caculaion, from [4]

The advice request comes at time t, in current day. For each previous day, we do
linear regresson for hisory data from t, to t, ?t, ??t;; then we get avalable
bandwidth? (i) and rate of change in available bandwidth ?,(i), i is the index of the
previoustest days.

Current available bandwidth will be estimated as the mean value of series ?, (i)

N
25 72 2(0)

i71

Thisvaue will be sent back to the data server.

For the rate of change in available bandwidth ?,(i), we caculate the mean vaue ?,

and standard deviation ?., , then the rate of change in available bandwidth will be
bounded by ?,?t,?, ad?, ?t,?, (t,is determined by confident level requirement

of norma digribution. According to theory,?,(i) is Sudent-t distribution, hence

26

?,(1) can be approximated by norma distribution. For example, t, ? 2 is for 95%
confidence).

?,?2t,2,1), S will be the maximum rate of change in

1 ?
"1

Denote S max(|?, 21,2,

avalable bandwidth. That is from t,, after a certain time interval ?, the change in
available bandwidth will be S?7?.

The upper bound of change in available can be determined either by absolute value or
percent of estimated bandwidth? ,, denoteit as ?? . Then

S???272?27? ?2?27??1S

which givesthe next advicetime t, ?t, ?7?.

The Advisory Server (AS) that is implemented in this manner will be co-located with
the data server, for example an FTP server. The FTP sarver interacts with this AS and
uses the network tuning parameters as suggested by the AS for dl the data transfers to
the FTP dients Thus the AS helps in reducing the trandfer times of large file transfers
in FTP. The next chapter describes the modifications that are made to an FTP server
in order to interact with the AS.

27

Chapter 4

M odificationsto the FTP server

This chapter gives an overview of the File Trandfer Protocol (FTP), the details of the
implementation of ProFTPD, an FTP server daemon, and the changes that are made
to ProFTPD so that it interacts with the Enable server while transferring large files to
FTP clients.

4.1. Overview of File Transfer Protocol

File Trandfer Protocol (FTP) [22] is an gpplication protocol with TCP as its transport
protocol. As the name suggests, its main purpose is to transfer files between the
computers. FTP is implemented based on two connections, namey, control
connection and data connection. The control connection is the communication path
between the FTP dient and the server to exchange the commands and replies. It
follows the Telnet protocol [23]. The data connection is a full duplex connection over
which data is transferred, in a specified mode and type. The FTP server listens on the
gandard port, 20. This is the port to which the FTP client connects in order to
establish a control connection with the FTP server. The port number used on the FTP
client gde for the data connection is 21 and this is dso standard. FTP client sends this
data port among the other parameters to the FTP server in the initid set of commands.
The FTP sarver establishes a connection based on the connection parameters sent by
the client and starts the data transfer.

The communication channel from the client to the server process is edablished as a
TCP connection from the client to the standard server port (20). The client sends the

28

FTP commands and interprets the replies received. The server interprets the
commands, sends the replies to the client, establishes the data connection and
transfers the data. There are different kinds of commands that a client sends to the

Server.

%5 Access control commands: These commands are used to control the access of
the FTP server by the client.

eedransfer parameter commands. These commands specify to the server, the
parameters to use for the current data transfer. These commands must precede
the FTP service request.

2FTP service commands. These are the actud service requests from the clients.
They define the file transfer or the file system function requested by the client.

4.2. Details of modificationsto ProFTPD

For this thesis, ProFTPD [15] is sdlected as the target FTP sarver since it is a highly
secure and configurable FTP server. Modifications are made to the ProFTPD daemon
to make it interact with the Enable service The desgn of ProFTPD daemon is
derived from that of Apache web server and it can ke run as a standalone server or it

can run under “ inetd” .

4.2.1. Implementation of ProFTPD

ProFTPD is an FTP server modeled around the Apache HTTP sarver, with a smilar
configuration file syntax and modular dructure. The implementation details given in
this section are based on [24]. ProFTPD handles the commands in a series of smple
geps asfollows.

29

% Preprocessing the command
%5 Processing the command
% Pogtprocessing the command

%5 Logging the command

These phases are handled by looking a each of the module, looking to see if it has a

handler for the phase, and atempting to invoke it if there is one. The handler does one

of the three things

Handle the command and let the processng engine know that the command has
been handled and it can proceed with its processing.

% Decline to handle the command and let the processing engine know that it should
proceed its processing asif it has never called that handler.

225 Sgna an eror by returning one of the FTP error codes [22]. This terminates the
norma handling of the request; the command may be logged.

Most phases are terminated by the firs module that handles them. The handlers are
functions of one argument (a cmd rec dructure), which returns a MODRET (a
modret_struc ty pdef ed to MODRET) [Appendix CJ.

4.2.2. Module structure

The details of dl the modules and data structures are based on [24]. Each module
declares the command handlers for the commands issued by the client, tha it is
interested in handling. The modules can dso contan the code to handle the
configuration commands. To handle these configuration directives the modules have
the configuration directive handlers. These configuration directive handlers perform
such checks as whether the configuration directive is in an gppropriate context,
whether the arguments are correct, etc. Each module has a command handler table,
which links the dient-issued commands with the intereted handle's and a

30

configuration command hander table, which declares the configuration directives,

and the corresponding configuration directive handlers.

Some of the data Structures, which are used very often in these command handlers,
are as follows a pool isapointer to a resource pool structure. These are used by the
sarver to keep track of the memory which has been dlocated, files opened, etc., ether
to service a particular request, or to handle the process of configuration itself. This is
maintained o that when the request is over, the memory can be freed, and the files
closed, en masse, ingteed of tracking them al down and disposing them.

The sole argument to handlers is a cmd_rec dsructure. This structure describes a
particular command, which has been made to the server, on behdf of a client. Each
connection by a client generates multiple cmd_rec gstructures, starting with the USER
command. The cnd_r ec contains pointers to a resource pool, which will be cleared
when the sarver is finished handling the command, to dructures containing per-server
information, and most importantly, information on the command itsdf. There are adso
pointers to private data a handler has built in the course of servicing the command,
and to a server_rec, which contains per (virtud) server configuration data. When the
processng engine reads an FTP command from a client, it builds the corresponding
cmd_rec gdructure by filling its fidds. The filled-in cmd_rec is then handed off to the
command handlers that have regigered an interest in handling that paticular FTP

command.

4.2.3. Command Responses

Each handler, when invoked to handle a particular cnd_r ec, returns a MODRET to
indicate what happened. That can be one of:

?? HANDLED -- the command was handled successfully. This may or may not
terminate the phase.

31

?? DECLI NED -- no eroneous condition exists, but the module declines to
handle the phase; the server triesto find another.

?? ERROR -- an eror has occurred while processng the command, which aborts
its handling.

Each module handles the configuration directives by looking in its configuration
table. As dated previoudy, this table contains information on what directives the
module handles and the corresponding configuration handler. It takes only one
argument, a cmd_rec pointer. That dructure contains a bunch of arguments, including
a resource pool, and the (virtua) server being configured, from which the modulés
per-server configuration data can be obtained if required. The modulés configuration
table has entries for dl the directives it handles.

Theentriesin these tables are:
?? the name of the configuration directive
?? the function which handlesiit
?? a pointer which is set to the "owning" module when the module code is
compiled; It isaways set to NUL L

Once dl the configuration directives are handled by the gppropriate handlers the
module goes on to execute the command issued by the dient. This it does by looking
into the command handler table to see the command handler to cal for the particular
command issued by the client. Even the command handlers take a sngle argument of
typecmd_rec.

ProFTPD daemon was modified so that dl the download requests from the clients are
handled by interacting with the Advisory Server. The modifications were made to the
command handler, cmd retr, which handles the download commands from the
cdients. Just before the server darts trandferring the file, it contacts the Advisory

32

Sarver by sending it the client’s IP address, the length of the file it has to ill transfer
in a ADVISING_REQUEST sdructure. Now the AS determines the correct network
parameters (the CC State to use in TCP) to use for tha particular client and sends
them to the FTP sarver in an ADVISING REPLY dructure. In this Sructure, it dso
sends the time after which it has to contact it again to check if there is any change in
the network path. Based on the response from the AS, we turn the CC State in TCP
by usng the setsockopt() system cal interface provided to control the CC State in
TCP[2] as shown below.

if (REP.ccstate == CONGEST_CTRL_OFF)
{

param= 1;
setsockopt(session.d->outf->fd,|PPROTO_TCP,15,(char*)& param,si zeof(param));
}

Based on the next advice time given by the AS the FTP server contacts the AS again
and it changes the CC State in TCP if necessary. Thus a mechanism is provided to
dynamicdly change the CC State of TCP to accommodate the changes in the network

for large FTP tranders.

The next chapter describes the tests that are done to evauate the usefulness of the AS
in reducing the reducing the FTP trandfer times. It also describes the test environment
used to do our tests and how that test environment is created.

33

Chapter 5

Evaluation of the Dynamic TCP Congestion
Control Scheme

5.1. Introduction

In this chapter we evauate how the Dynamic TCP Congestion Control Scheme in the
Endble sarvice effects the performance of the FTP server (ProFTPD in our case).
Primarily we need to find out if this scheme is functioning properly and then to see if
it redly provides peformance gans in the FTP tranders. Next we would like to
determine how the Dynamic TCP Congestion Control scheme effects background
traffic. Findly we would aso like to see how the history data used by the Enable
sarvice effects its decison making process. To achieve dl the above-mentioned tasks
we performed the following tests.

?? Tedsto evauate the performance of FTP with the Enable service

For these tests we identified different times of a day, which represent the network
dates with different load in a day, and peformed the large file transfers with
different FTP implementetions at these times. The different FTP implementations
that we have tested here are the standard FTP, FTP with NOCC for the entire file
trandfer and FTP interacting with AS during the file transfer. We have done the
tets with diffeeent FTP implementations for networks with different levels of
congestion to see how the performance of FTP with Advisory Server (AS) varies
with different levels of congestion in the network.

34

?7? Tedtsto seethe effect on the background flows
To determine the effect on the background traffic, we performed large file
transfers by running FTP and a background flow smultaneoudy. From these tedts
we observed how the throughput of the background treffic is effected. We dso
performed tests with multiple background flows to have a better understanding of
the effect on the background traffic.

?? Testswith different history databases

We did tests with different history data sets to determine how the history data
effects the decison process of AS. For this we used three different history data
sets. First set is the whole database of network data. Second set is network data of
one week, immediately preceding the test day. This is chosen to see if using only
the recent trends in the network behavior has any better effect on the decision
process of the AS. The find st is the network data of dl the test days (eg.,
Fridays) asthe history data.

To do dl our tests, mentioned above, we have consdered using the following three

network environments.

Real Network

We can test the mechanism on a red High Bandwidth Delay Product retwork. This is
the ided case sdnce it dlows us to see the performance gain of the FTP trandfers
involving the red protocols in the target environment. For this we need to have access
to an FTP server to which we can make the required modifications. In this case we do
not have much control on how the network behaves. Also the tests in a red
environment are not reproducible and make it difficult to identify any problems that
occur. We have conddered using this approach for our tests. But consdering the

problems mentioned above we did not use this gpproach.

35

Simulated Network

We could use a smulated network to do our tests. This involves rewriting the FTP
code and the TCP code with necessary modifications for use in a smulation. This
implementation for the smulaion may differ from the red implementation. Also the
admulated environment may not represent the red environment exactly. Also in Al
our tests, we used large files (16GBytes), which will take a long time to transfer usng
a amulator. Doing these tests with a software smulator is not practica, and hence did

not use a Imulated environment.

Emulated Network

An emulated network is an environment in which we emulate the conditions of a
WAN in a lab-environment network. It is a controlled, reproducible environment for
running real code. By usng an emulated environment we will be deding with the red
protocols and will produce vdid edimaion of the peformance of the transfer
protocols. An emulated environment does not increase the test times and the tests are
adso reproducible in an emulated environment. Also emulated environments tend to

be much nearer to the red environment than the smulated environments.

Congdering the advantages mentioned above of using the emulated network over te
gmulated network and the red network, and the feasibly in cresting an emulated
environment, we decided to use an emulated network environment for al our
experiments. The next subsection describes how we have crested this emulated
environment and what test scenarios we have used to perform our tests.

5.2. Creation of the Emulated Networ k Environment

To creste an emulated WAN locdly, we need to emulate the WAN conditions in a
locd environment. The WAN conditions we need are the large RTTs (eg. 50ms),
typicd of WANs and the variation of the avalable bandwidth dong a path, which

36

represents the congestion aong a network path. NISTNet [14], a network emulation
tool, is used to emulate these WAN effects. The overview of NISTNet is given below.

5.2.1. Overview of NIST Net

NISTNet is a network emulation package that runs on Linux. It is a generd-purpose
tool for emulating performance dynamics in IP networks. NISTNet dlows a dngle
Linux PC st up as a router to emulate a wide variety of network conditions. The tool
dlows controlled, reproducible experiments with network performance
senstive/adaptive gpplications and control protocols in a smple laboratory setting. It
operates at the IP levd.

NISTNet can emulate the criticd end-to-end performance characteristics imposed by
various wide area network gStuations (eg., congestion loss) or by various underlying
sub network technologies. NISTNet is implemented as a kerned module extension to
the Linux operating sysem and an X Window Sysembased user interface
application. Appendix B.1 givesthe details of the NISTNet usage.

5.2.2. Test Environment

A locd network is sat up with hosts running Linux operating system. NISTNet was
ingdled on a Linux hogt. This hogt acts as the router and it gpplies the WAN
conditions to dl the packets that traverse through it. Three test configurations are
used for al the tests. A 3host configuration is used for tests with out any background
flows and 6-host, 8-hogt configurations are used for tests with the background flows.
These configurations are shown below.

37

l_l—‘_|

I]

==,

neurormancerMNSThHet Box)

I 1 I 1
[] []
A=A AR A b= R A
fost? | straylight

Figure 5: 3-host network configuration

I_I—I_|

a4 419 1 1 1 1
C—d 4 4 a 4 4 4

qost2(FTF server) qost3(FTR client)
[—— [——
I] I]
=T [=%]
neufomancer[MSTHet Eloif) stravylight
- -
r———1 e
I] []
|‘Emﬂq'q1d'<14'< |‘Eldqdﬂd‘d1ﬂ‘d‘d
gost1(lperf source) gostd{lpert sink)

Figure 6: 6-host network configuration

38

T T T T
[1 [1
L | = |
qost2(FTP server) qost3(FTP client)

T T T T

[1 []

et T | (it e

neuromancer NS THet Elokj straylight

e |
i 1 i 1
gost1(lperfl source) é gostd(lpertl sink)
T T

L
b =t e] i E=——TRP AT AR
testhed33(lperf2 source) testhed3lperf2 sink)

Figure 7: 8-host configuration

The specifications of dl the machines usad in the above configurations are shown in
the Appendix A. All the connections between the machines are 100Mbps Ethernet.

The FTP server used for testing is the ProFTPD [15] daemon. Modifications are made
to it, as described in Chapter 4, to interact with the Advisory Server during the
trandfer of large files to the clients To make sure that the congestion control is
changed properly we used tools such as tcpdump [26], tcptrace [27] and xplot [29].
During dl the FTP tranders, large (IMbytes) TCP buffers are used teking the
Bandwidth Delay Product (BDP) into consderation. We have used the NcFTP client
[16] snce it dlows us to set large receive windows as a configuration parameter.
Iperf verson 1.2.1 [17] is used to generate the background traffic for the tests.

39

We obtained the traffic data, specificdly avalable bandwidth as a function of time,
on the inteface of the router, ks2-al0-52r.greaplainsnet (IP address
64.113.234.206) and used this data to emulate a WAN environment. This router
interface connects the KU (University of Kansas) network to Internet2 [34]. Hence
the data collected on this interface models the variation of the traffic in a real WAN.
We stored this data in a MySQL [28] database as a set of records with the fields of the
timestamp, and available bandwidth.

In order to create the WAN environment to do our tests, we have to emulate the
WAN conditions, i.e., dday and the congestion dtate of the network. NISTNet is used
to emulate both of these WAN conditions. To represent the continuous change in the
congestion sate of the network, we change the avalable bandwidth of the network
link continuoudy by means of a NISTNet script. We limit the available bandwidth of
the network link by introducing packet drops in the TCP traffic flowing through this
link. There is a wdl-established equation [21], which relates the TCP throughput to
the drop rate as shdl be explaned in the next section. We use this equation to
determine the drop rate for a particular bandwidth vaue and use this in the NISTNet
script to \ary the available bandwidth on the link. As stated in the introduction, we do
the tests a different times of a day. For each test time, we obtan the avalable
bandwidth variation data Starting at that time from the database of network data We
use this bandwidth data to generate the corresponding packet drop vaues, according
to the equation relating the TCP throughput to the packet drop rate. Now we use this
packet drop data in a NISTNet script to continuoudy vary the bandwidth available to
the FTP traffic flowing through this network link. We dso goply the WAN ddays to
the FTP traffic using the same NISTNet script. This way we run dl our tests in a loca
network with NISTNet emulating the WAN conditions.

40

5.3. Equation relating the TCP throughput to thedrop rate

TCP uses Additive Increase Multiplicative Decrease dgorithm [1] for congestion
control. On detecting a loss it decreases the Sze of its congestion window by a factor
of two and atempts to get extra bandwidth by increasing the window linearly when
there is no congestion. The long-term throughput of a TCP flow and the packet drop
rate is approximated by the following equation [21].

P=[(C*9/(RTT* Trcp)] °

Where P is the packet loss rate, C is a constant, Sis the packet size, RTT is the round
trip time induding queuing dday, and Trcp is the long-term TCP throughput. Here
the current available bandwidth is obtained from the database of network data and a
corresponding packet drop rate is cadculated using the above equation. This drop rate
isthen applied to the traffic flow using a NISTNet script.

54. Tests to show the validity of the throughput-drop

relation

Equation showing the rdationship between the long-term throughput of the TCP flow
and the packet loss rate is shown in Section 5.3. In order to etimate the congtant
factor, C, we applied different packet drop rates to an Iperf flow and compared the
observed throughputs with the theoreticd vadue for two different vdues of C. The
results of these tests are shown in Table 1. Iperf is used to generate the traffic flow for
these tests.

41

Throughput (Mbps) Throughput (Mbps)
Drop % With Dday = 25ms With Dday = 50ms
Fromegn. | Fromegn. | Observed | Fromegn. | Fromegn. | Observed
C=9.76 C=12.2 C=9.76 C=12.2
1 4.68 5.86 4.1 2.34 2.93 2.3
2 331 4.14 2.9 1.66 2.07 1.6
3 2.70 3.38 2.3 1.35 1.69 13
4 2.34 2.93 2.1 1.17 1.46 11

Table 1: Results of tests done to determine the constant factor in TCP throughput
drop relation

From Table 1 we can observe tha, the observed throughput is near to the vaue
cdculated from the equation reating the TCP throughput to the packet drop rate,
mentioned in Section 5.3, when the congtant factor used is equal to 9.76. Hence for all
our experimentswe used C = 9.76.

55. Tests to evaluate the performance of FTP with the

Enable service

5.5.1. Performance of FTP as a function of load in the network

We used the 3hogt configuration, shown in Figure 5 for al the tests of this section.
The data we collected is from a router whose output link capacity is 55Mbps. Hence
the maximum avalable bandwidth that can be observed in the collected data is
55Mbps. Since the drops, that we introduce to limit the throughput, are based on the
collected data, the throughput we can observe with standard TCP in our tests is no
more than 55Mbps. But dl the links in our locd test environment are of 100Mbps. So

42

we can assume tha the remaining 45Mbps of bandwidth available on the link is used
by other traffic in dl the experiments. Hence we can think of the experiments are
done with minimum of 45% used traffic. We dso converted dl the collected data
such that the maximum available bandwidth values ranged from 25Mbps to 40Mbps.
This is done to see how the peformance of o mechanism varies with different
network congestion states or available bandwidth vaues in the network. Hence the
teds are done with networks of different congestion levels. In our case a dightly
congested network is a network with minimum of 45% used bandwidth, a moderately
congested network is a network with a minimum of 60% used bandwidth and a highly
congested network is a network with a minimum of 75% used bandwidth.

5.5.1.1. Testsin a dightly congested network

For dl the tedts in this section a 16GByte file is tranderred with different FTP
implementations at different times of the tet day. The test timings chosen ae
12:15am, when the network load, as observed from the network data collected, is
high, 7:25pm, when the network load is low and 3:25am, 2:25pm, 9:10pm, when
there is a large variation in the network load. Advisory Server (AS) uses the whole
network datain the database as the history data.

TCP buffer size 1Mbyte

NISTNet delays S0ms

FTPtrander sze 16Gbyte

NISTNet drops YES

Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth)
History data used Whole database

Table 2: Parameters for tests to estimate the performance of FTP as afunction of
network load in adightly congested network

43

The results are shown in the Table 3 and Figure 8 below.

Time of FTP with CC FTP with NOCC FTP with Adv.Server
Day Throughput | Transfer | Throughput | Transfer | Throughput | Transfer Percentage
(Mbps) Time (Mbps) Time (Mbps) Time improvement
(h:mm:ss) (h:mm:ss) (homm:ss) | over FTP
with CC

12:15am 45.68 0:47:48 70.08 0:31:09 45.44 0:48:03 00.00

03:25am 45.68 0:47:48 70.00 0:31:12 57.60 0:37:54 26.09

07:25am 45.60 0:47:54 70.08 0:31:09 70.08 0:31:11 53.68

02:25pm 45.92 0:47:34 70.08 0:31:10 53.76 0:40:36 17.07

09:10pm 45.84 0:47:39 70.08 0:31:10 68.08 0:32:05 48.52

Table 3: Throughput of different FTP implementationsin a network with aminimum
of 45% used bandwidth and no background flows

Average percentage improvement in the FTP throughput

with Advisory Server =

29.072%
Time of Day vs FTP throughput

80
2 70
Q0
= 60 —
£
5 0 | |2 FTP with cC
< 40 1 — FTP with NOCC
§ 30 - || |OFTP with AS
=
o 20 1 —
'_
(' 10 g _—

0
0:15 3:25 7:25 14:25 21:10
Time of day in hh:mm

Figure 8 Time of day vs FTP throughput for tests in a network with minimum of
45% used bandwidth and no background flows

From Figure 8 we can see that the throughput of FTP with AS is between that of FTP
with CC and FTP with NOCC depending upon the CC inputs received from the AS,
At 12:15am, CC date inputs received from the AS are ON and hence the throughput
of FTP with AS is same as that of FTP with CC. At 7:25am, CC date inputs received
from the AS are OFF and hence the throughput d FTP with AS is same as tha of
FTP with NOCC. At other times the throughput of FTP with AS varies between that
of FTP with CC and FTP with NOCC based on the CC date inputs received from the
AS during the FTP trandfer. The congestion control State inputs received from the
Advisory Server during the tests are shown in the Table 4 below.

Time of Day CC State inputs
12:15am 1(4)
03:25am 1,003)
07:25am 0(2)
02:25pm 0,1(2),0
09:10pm 0(3),1

Table 4: Congestion control state inputs received for testsin a network with a
minimum of 45% used bandwidth and no background flows

In the CC State inputs column of Table 4 a value of ‘O’ indicates the CC gate input of
OFF and a value of ‘1’ indicates the CC sate input of ON. O(x) indicates that there
ae x number of inputs of O continuoudy. O(x), 1(y) indicates that there are “X”
number of continuous inputs of O followed by “y” number of continuous inpus of 1.
From Table 4 we see that a 12:15am we receive the inputs as ON for the whole
transfer. This is because, the avalable bandwidth during this transfer is beow the
threshold of 42Mbps. Also a 7:25am, dl the inputs are OFF. This is because the
avallable bandwidth a this time is above the threshold for the entire transfer. At
3:25am, the avalable bandwidth sarts with a vaue bdow the threshold and then

45

increases above the threshold vaue. Hence the CC State inputs received from the AS
are ON at the dart of the transfer and then OFF afterwards. Smilarly a 2:25pm and
9:10pm the avalable bandwidth darts with a vaue above the threshold and then
decreases. Hence the AS sarts with an input of OFF and then gives the inputs of ON.
The plot showing the CC State inputs from the AS and the avalable bandwidth
variation for the test time 2:25pm is shown in the Figure 9 below.

Available bandwidth variation vs CC state inputs
425 -—E—E—@E—H—oﬁi— 1
o 424 3
< N
3 5 |- - % - -available bandwidth
% 42.2 1 2 variation during the test
o) . © time
< Q. ()
8 a5 421 L S ;
° = ') * # | —®—CC state inputs from the
) 42 - 1) AS
: a9t— » ©
s : 2. e
41.8 >
41_7@—(3—@ T T e 0
0 10 20 30 40 50
time of the transfer in minutes

Figure 9: Available bandwidth variation vs CC date inputs at 2:25pm for testsin a
network with minimum of 45% used bandwidth and no background flows

In Figure 9 the dotted line shows the available bandwidth variation during the FTP
transfer and the solid line shows the times a which the AS is contacted and the CC
date inputs received from the AS during the FTP transfer. From Figure 9 we can see
that when the available bandwidth is more than the threshold (42Mpbs in this case),
the CC gate input from the AS is OFF (vdue = 0 in the figure). Also when the
avalable bandwidth is less than the threshold, the CC date input fom the AS is ON
(value = 1 in the figure). We can aso see from the figure that there are two CC Sate
trangtions during the transfer, one a 9 minutes into the FTP trandfer and the other a
around 36 minutes into the transfer. The circled dots on the solid line in the Figure 9

46

indicate the times a which the enable server is contacted and CC sate inputs received

at those times.

55.1.2. Testsin a moderately congested networ k

For our tests we have consdered a network with a minimum of 60% used bandwidth
a a moderately congested network. In this section we perform large file transfers

with different FTP implementations. Table 5

below ligs the parameters used for our

tests.

TCP buffer size 1Mbyte

NISTNet delays 50ms

FTPtrandfer 9ze 16Ghbyte

NISTNet drops YES

Available Bandwidth (ABW) Threshold 27Mbps (73% used bandwidth)
History data used Whole database

Table 5: Parametersfor tests to estimate the performance of FTP as a function of
network load in amoderately congested network

Timeof FTPwith CC FTPwith NOCC FTP with Adv.Server
Day Throughput | Transfer | Throughput | Transfer | Throughput | Transfer Percentage
(Mbps) Time (Mbps) Time (Mbps) Time Improvement
(h:mm:ss) (h:mm:ss) (h:mm:ss) | over FTP
with CC

12:15am 25.68 1:24:59 69.68 0:31.21 25.60 1.25:15 00.00

03:25am 31.84 1:08:41 69.84 0:31:15 57.68 0:37:53 81.16

07:25am 44.40 0:49:11 70.08 0:31:10 70.00 0:31:10 57.66

02:25pm 28.80 1:15:54 69.76 0:31:18 40.24 0:54:18 39.72

09:10pm 27.92 1:18:07 69.76 0:31:17 43.84 0:49:48 57.02

Table 6: Throughput of different FTP implementations when run in anetwork with a
minimum of 60% used bandwidth and no background flows

47

Average percentage improvement in the throughput time for dl the tests = 47.112%

Time of Day vs FTP throughput

80
70

60

50 B ETP with CC
40 || |® FTP with NoCC
O ETP with AS

FTP throughput in Mbps

10 A —

0:15 3:25 7:25 14:25 21:10

Time of day in hh:mm

Fgure 10: Time of day vs FTP throughput for testsin a network with a minimum of
60% used bandwidth and no background flows

Figure 10 shows that the throughput of FTP with AS varies between that of FTP with
CC and FTP with NOCC. This behavior is smilar to the one in the previous case
shownin Figure 8.

Time of Day CC State inputs
12:15am 1(12)
03:25am 1,009)
07:25am 0(5)
02:25pm 0(2),1(4),013)
09:10pm 0(5),1(4)

Table 7: Congestion Control State inputs received for testsin a network with
minimum of 60% used bandwidth and no background flows

48

Table 7 shows the CC State inputs received from the AS a different tet times. This
is dmilar to the previous case. The only difference is that, the number of inputs
recaived from the AS during the trandfers in this case is more. This increase in the
number of inputs is because of two reasons. Fird, the trandfer time is longer in this
cae because the maximum available bandwidth for the standard TCP in this case is
only 40Mbps. Second, the Next Advice Times (NAT) given by the AS in this case are
less than that of previous case. This is because the amount of bandwidth change to
trigger the next advice from the AS is lower. The plot showing the CC State inputs
from the AS and the avalable bandwidth variation for the test time 2:25pm is shown
inthe Figure 11 below.

Available bandwidth variation vs CC state inputs

28.2 —Aﬁ—ﬁ—@—i—@—ﬁ—ﬁi— 1
= 28 oS
= 278 2
.'g ‘ . ‘g - - % - -available bandwidth
= 27.6 c variation during the test
S S 274 e : 2 time
ﬁ s ’ ' ' {,5) —@— CC state inputs from
3 212 v 0 the AS
0 3 O
§ 27 ; p 2 L W 2

*.0 -

< 28 o A0

6RO —s @O o

0 20 40 60

time of the transfer in minutes

Figure 11: Available bandwidth variation vs CC date inputs at 2:25pm for tedsin a
network with a minimum of 60% used bandwidth and no background flows

49

In Figure 11 the dotted line represents the available bandwidth variation during the
FTP transfer and the solid line shows the times a which the AS is contacted and the
CC date inputs received from the AS during the FTP transfer. From Figure 11 we can
see that at the beginning of the transfer, when the available bandwidth is more than
the threshold (27Mpbs in this case), the CC date input from the AS is OFF (vaue = 0
in the figure). Also when the available bandwidth is less than the threshold, the CC
date input from the AS is ON (vdue = 1 in the figure). We can dso see from this
figure that there are two CC date trandtions during the transfer, one a around 8
minutes into the FTP transfer and the other at around 46 minutes into the transfer. The
circled dots on the solid line in the Figure 11 indicate the times a which the enable

server is contacted and CC tate inputs received at those times.

5.5.1.3. Testsin a highly congested network

For our tests we have consdered a network with a minimum of 75% used bandwidth
as a highly congested network. In this section we perform large file trandfers with
different FTP implementations and observe how the use of Enable sarvice effects the
performance of FTP trandfers. The parameters used for the tests in this section are
ligedin Table 8 below.

TCP buffer sze 1Mbyte

NISTNet delays S0ms

FTPtrander sze 16Gbyte

NISTNet drops YES

Available Bandwidth (ABW) Threshold 12Mbps (88% used bandwidth)
History data used Whole database

Table 8: Parametersfor tests to estimate the performance of FTP as afunction of
network load in a highly congested network

50

Timeof FTPwith CC FTP with NOCC FTP with Adv.Server
Day Throughput | Transfer | Throughput | Transfer | Throughput | Transfer Percentage
(Mbps) Time (Mbps) Time (Mbps) Time Improvement
(h:mm:ss) (h:mm:ss) (h:mm:ss) | Over FTP
with CC
12:15am 11.68 3.07:13 64.96 0:35:15 16.88 2:00:35 44,52
03:25am 15.68 2:19:18 68.32 03154 58.40 0:37:23 272.45
07:25am 22.24 1:38:04 69.20 0:31:35 68.56 0:31:50 208.27
02:25pm 14.24 2:33.03 69.12 0:31:36 34.72 1:.02:51 143.82
09:10pm 13.04 2:47:32 68.56 0:31:52 290.28 1:14:31 124.54

Table 9: Throughput of different FTP implementations when run in a network with a
minimum of 75% used bandwidth and no background flows

Average percentage improvement in the transfer time for al the tests = 158.72%

Figure 12 beow shows the throughput of different implementations of FTP, i.e. FTP
with CC, FTP with NOCC and FTP with AS.

FTP throughput in Mbps

80
70
60

Time of Day vs FTP throughput

50

40

30
20 1
10 1

OFTP with CC
FTP with NOCC
OFTP with AS

0:15

3:25

7:25 14:25

Time of day in hh:mm

21:10

Figure 12: Time of day vs FTP throughput for tests in a network with aminimum of
75% used bandwidth and no background flows

51

Figure 12 shows that the throughput of FTP with AS varies between that of FTP with
CC and FTP with NOCC. This behavior is smilar to the one in the previous cases as
shownin Figure 8 and Figure 10.

Tablel0 showsthe CC State inputs received from the AS at different test times.

Time of Day CC State inputs
12:15am 1(46),0(23)
03:25am 1,0(48)
07:25am 0(18)
02:25pm 0(7),1(9),0(21),1(3)
09:10pm 0(24),1(6),0(4),1(9)

Table 10: Congestion Control State inputs received for testsin a network with a
minimum of 75% used bandwidth and no background flows

From Table 10 we see that the number of inputs received from the AS in this case is
larger than the previous case. Again the reasons for this is same as explained in the
previous case. The only difference in this case is ha the number of state changes has
increased a some test times, 12:15am, 2:25pm and 9:10pm. This is because of the
increase in the trandfer times. The plot showing the CC State inputs from the AS and
the available bandwidth variation for the test time 2:25pm is shown in the Figure 13
below.

52

13
12.8
12.6

Mbps

12.2

12
11.8
11.6

available bandwidth ir

13.2 7

Available bandwidth variation vs CC state inputs

12.4

mm

-
o4, poone o

0

14, — , — 0

25 50 75
time of transfer in minutes

CC state input

- - 4 - -available bandwidth
variation during the test
time

—®— CC state inputs from
the AS

Figure 13: Available bandwidth variation vs CC state inputs a 2:25pm for testsin a
network with a minimum of 75% used bandwidth and no background flows

In Figure 13 the dotted line represents the available bandwidth variation during the
FTP transfer and the solid line shows the times a which the AS is contacted and the
CC date inputs received from the AS during the FTP trandfer. From Figure 13 we can
see that a the beginning of the trander, when the avalable bandwidth is more than
the threshold (12Mpbs in this case), the CC date input received from the AS is OFF
(vaue = 0 in the figure). The when the avalable bandwidth is less than the threshold,
the CC gate input from the AS is ON (value = 1 in the figure). At around 45 minutes

there is an increase of around 1Mbps in the avalable bandwidth and since the
avalable bandwidth was above the threshold value, the CC dtate remained as OFF.

We can also obsarve that there are three CC state tranditionsin this case,

53

Figure 14 beow shows the comparison of the average throughput vaues of different
FTP implementations.

Average FTP Throughput values

[0e)
o

]
o

2]
o

6]
o

8 FTP with CC
FTP with NOCC
O FTP with AS

w
o

N
o

Avg. Throughput in Mbps
N
S

=
o

o

Figure 14: Average throughput of different FTP implementationsin adightly
congested network

Figure 14 shows the average throughput of different FTP implementeations. This is for
the case where the minimum used traffic is 45%. From Figure 14 we see that the
throughput of FTP with AS is in between that of FTP with CC and FTP with NOCC.
This is because it can take advantage of the avallable bandwidth when there is not
much congegtion in the network and at the same time it is not as aggressve as FTP
with NOCC. The same behavior is observed for the other two cases.

Time of day vs % improvement in FTP throughput
300
e 250
L
= = 200
s e B Min. used bandwidth = 45%
E 3 150 — ® Min. used bandwidth = 60%
3 E H Min. used bandwidth = 75%
5 = 100
E
O T T T ’_. T
0:15 3:25 7:25 14:25 21:10
Time of day in hh:mm

Figure 15: Time of day vs % improvement in the throughput of FTP in networks with
different percentages of used bandwidth

Figure 15 shows the percentage improvement in the throughput of FTP with AS over
gandard FTP for different cases of used traffic. From Figure 15 we see tha the
percentage improvement in the FTP throughput is grester when the used bandwidth is
high. This is because for this case the throughput of standard FTP is lower than that
of other cases because of the high percentage of used traffic and FTP with AS
remains aggressve on the background traffic. But the background traffic will be
effected more for this case. We can dso obsarve that a 00:15, there is improvement
in the throughput of FTP only for the case where the minimum used bandwidth is
75%. This is because for this case (minimum used bandwidth = 75%) there is a CC
gate trangtion from CC to NOCC during the file trandfer as observed from Table 10
and hence there was some improvement in the throughput. But for the other cases
there is no CC date trandtion during the file transfer, as observed from Table 4 and
Table 7, and the throughput of FTP with AS is same as that of the standard FTP.

Hence there was no throughput improvement for these cases.

55

5.5.2. Performance of the background flows

From the test results of previous section we observed that there is improvement in the
performance of FTP when it is interacting with the AS. But we would like to
determine how much the background traffic is effected. In order to determine the
effect on the background traffic, during dl the FTP transfers we ran a background
flow and observed the throughput of the background traffic. Here we dso did the tests
with multiple background flows.

5.5.2.1. Testswith a single background flow

The 6-hogt configuration, shown in Figure 6, is used for these tests The logicad
network topology that we create with the configuration is shown below in Figure 16.
It shows that two flows travelling through two different network paths pass through

the same router, straylight.

<2 neuromancer
qo —» (50msdelay &
qost3
(FTP Server) drops) (FTP Client)
straylight
qostl neuromancer \‘ qost4
(Iperf Source) > (10ms delay) (Iperf Sink)

Figure 16: Logica network topology of the 6-host configuration

56

The FTP parameters and the background flow parameters used for the testsin this
section are shown below in Table 11 and Table 12 respectively.

TCP buffer 9ze 1Mbyte

NISTNet delays 50ms

FTP transfer size 16Ghyte

NISTNet drops YES

Minimum used bandwidth 45%

Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth)
History data used Whol e database

Table 11: FTP parameters for tests to see the effect on a single background flow

TCP buffer sze 128Kbyte
NISTNet delays 10ms
NISTNet drops NO

Table 12: Background flow parameters for tests to see the effect on asingle
background flow

The throughput of background flow (Iperf) when run with no background traffic is
83.4Mbps.

The results of the tests with a sngle background flow are shown in Table 13 and
Table 14 below.

57

Throughput in Mbps
Timeof FTPwith CC FTPwith AS FTPwith NOCC
Day FTP Background FTP Background FTP Background

flow flow flow

12:15am | 39.76 52.10 39.20 52.82 69.52 20.61
3:25am | 39.60 52.22 53.52 37.97 69.60 20.63
7:25am | 39.60 52.21 69.68 20.60 69.68 20.58
2:25pm | 39.68 52.17 48.56 42.49 69.76 20.58
9:10pm | 39.68 52.12 67.20 22.73 69.76 20.59

Table 13: Throughput of different FTP implementations when run with asingle

background flow

Timeof % decrease in the throughput of background flow when run with FTP
Day FTPwith CC FTPwith AS FTPwith NOCC
12:15am 37.53 36.67 75.29
3:25am 37.39 54.47 75.26
7:25am 37.40 75.30 75.32
2:25pm 37.45 49.05 75.32
9:10pm 37.51 72.75 75.31

Table 14: Percentage decrease in the throughput of background flow when run with
different implementations of FTP

Average decrease, with respect to no interfering traffic, in the throughput of the
background flow when run with FTP with CC = 37.46%
Average decrease, with respect to no interfering traffic, in the throughput of the
background flow when run with FTP with AS =57.65%
Average decrease, with respect to no interfering traffic, in the throughput of the
background flow when run with FTP with NOCC = 75.30%

58

The throughput of the background flow when run with different implementations of
FTPisshown inthe Figure 17 below.

Time of day vs background flow throughput

60

E FTP with CC

[%2)
é 30 1+ FTP with AS
O FTP with NOCC
20 1+
10 1

background flow throughput in

0:15 3:25 7:25 14:25 21:10

Time of day in hh:mm

Fgure 17: Time of day vs background flow throughput when run with different FTP
implementations in a network with the aminimum used bandwidth of 45%

From Table 14 we observe that the percentage decrease in the throughput of the
background flow is high when FTP is run with NOCC. This is dightly reduced when
FTP is run with AS. Figure 17 shows the variation of the background flow
throughput when run with different implementations of FTP. From the Figure 17 we
observe that the throughput of the background flow is the least when FTP is run with
NOCC and highet when FTP is run with CC. When FTP is run with AS, the
background flow throughput varies between these two vaues depending upon the CC
date inputs obtained from the AS. This shows that FTP with AS is less aggressve on
the background traffic than the FTP with NOCC.

59

5.5.2.2. Tests with multiple background flows

The 8-host configuration, shown in Figure 7, is used for these tests. The logicd

network topology that we create with the configuration is shown below in Figure 18.

neuromancer
qost2 —» (50msdelay & qost3
(FTP Server) drops) \A /‘ (FTP Client)
neuromancer straylight
qostl —» (10msdday) [P —» gost4
(Iperf sourcel) (Iperf sink1)
neuromancer A \J
qostl —» (10msdday) qost4
(Iperf source?) (Iperf Sink2)

Figure 18: Logicd network topology of 8-host configuration

The FTP parameters and the | perf parameters used for the tests in this section are
shown below in Table 15 and Table 16 respectively.

TCP buffer sze 1Mbyte

NISTNet delays 50ms

FTPtrander 5ze 16Gbyte

NISTNet drops YES

Minimum used bandwidth 45%

Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth)

Table 15: FTP parameters for tests to see the effect on multiple background flows

60

TCP buffer 9ze 128K byte
NISTNet delays 10ms
NISTNet drops NO

Table 16: Background flow parameters for tests to see the effect on multiple
background flows

The results of the tests with multiple background (Iperf) flows are shown in Table 17

and Table 18 below.
Throughput in Mbps
Timeof FTPwith CC FTPwith NOCC
Day FTP | Background | Background | FTP | Background | Background

flowl flow2 flowl flow2
12:15am 38.80 25.79 27.53 69.28 10.28 10.61
3:25am 39.04 25.78 27.25 69.36 10.24 10.64
7:25am 38.96 25.85 27.31 69.28 10.32 10.60
2:25pm 38.48 26.02 27.64 69.28 10.45 10.42
9:10pm 39.04 25.86 27.25 69.28 10.26 10.60

Table 17: Throughput of FTP with CC and FTP with NOCC when run with multiple

background flows
Time of day Throughput when FTPisrun with AS
FTP Background flowl Background flow?2
12:15am 38.64 25.83 27.60
3:25am 52.24 23.04 24.17
7:25am 69.20 10.74 10.28
2:25pm 47.68 21.24 22.96
9:10pm 66.48 12.03 11.29

Table 18: Throughput of FTP with AS when run with multiple background flows

61

The throughput variations of the background flows when run with different FTP
implementations are shown in Figure 19 and Figure 20 shown below.

Time of day vs Background flowl throughput

e 30

5 __ — —

% 25 1 1

3 20 1 |]] B When run with FTP with CC
L

g ﬁ_ 15 4 | |] ® When run with FTP with
o= NOCC

k= 10 4 - _— I OWhen run with FTP with AS
c

5

) 5 1 — — —

X

Q

@

o 0

0:15 3:25 7:25 14:25 21:10
Time of day in hh:mm

Figure 19: Time of day vs Background flow1 throughput when run with different FTP
implementations in a network with minimum of 45% used bandwidth

Time of day vs Background flow2 throughput

g 0

= o _ — _

2 25111 [

S 8 Wh ith FTP with CC
g 20 44 1 | | en run wit wit

S 2 When run with FTP with
=5 151 [[— —

o = NOCC

he 10 4+ L] - O When run with FTP with AS
c

>

o

> 5 — — —

X

Q

@

m 0

0:15 3:25 7:25 14:25 21:10

Time of day in hh:mm

Figure 20: Time of day vs Background flow2 throughput when run with different FTP
implementationsin a network with minimum of 45% used bandwidth

62

From Figure 19 and Figure 20 we observe that throughputs of the background flows
are the least when FTP is run with NOCC and highest when FTP is run with CC.
When FTP is run with AS, the background flow throughput varies between these two
vaues depending upon the CC date inputs obtained from the AS. This is same as the
cae with a single background flow. We dso observe from Table 18 that the
throughput is divided equdly between the two background flows. These results show
that FTP with AS has asmilar effects on the multiple background flows.

5.5.3. Testswith different history data sets

In order to determine the effect of the history data sets on the way the AS gives the

inputs to the FTP sarver, we tested by using three different history data sets, which

the AS uses to make its decisons. These three higtory data sets are listed below.

These tests are done with networks with different levels of congestion to have a better

idea of the effect of history data sets.

%5 The available bandwidth data of dl the days in the database of network data See
Figure 21 below.

03/01/2002 Whole database 05/03/2002

Figure 21: History data set comprising of the whole database

2 The available bandwidth data of only one-week prior to the test day. See Figure
22 below.

03/01/2002 04/28/2002 05/03/2002
One week

Figure 22: Hidtory data set comprising of one-week’ s data

63

z# The avalable bandwidth data of dl the test days (eg. Fridays). See Figure 23
below.

03/01/2002 Friday Friday Friday Friday 05/03/2002

s

Figure 23: Higtory data set comprising the data of test days

55.3.1. Testsin a dightly congested networ k

The parameters used for the testsin this section arelisted in Table 19 below.

TCP buffer size 1Mbyte
NISTNet delays 50ms
FTP trander 9ze 16Gbyte
NISTNet drops YES
Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth)
Table 19: Parametersfor tests with different history data setsin adightly congested
network

The results of the tests with different higory data sets are shown in Table 20 and
Table 21 below.

Throughput of FTP when run with ASin Mbps
Time of Day History = whole dB History = Previous | History = Previous

Fridays week
12:15am 45.44 45.52 45.36
3:25am 57.60 52.96 51.36
7:25am 70.08 70.00 70.08
2:25pm 53.76 57.84 70.08
9:10pm 68.08 70.08 70.08

Table 20: Throughput of FTP with AS when run in anetwork with minimum of 45%
used bandwidth and no background flows for different history data sets,

64

CC dates received when FTPisrun with AS
Time of day History =wholedB | History = Previous | History = Previous
Fridays week

12:15am 1(4) 1(4) 1(3)

3:25am 1,0(3) 1,0 1,0

7:25am 02) 0(2) 0

2:25pm 0,1(2),0 0,1 0

9:10pm 0(3),1 0(2) 0(2)

Table 21: CC State inputs received when FTP with ASis run in anetwork with a
minimum of 45% used bandwidth and no background flows for different history data

From Table 20 we observe that there is not much difference in the throughput of FTP
a mogt of the test times with different history data sets. The mgor difference we see
will be in the number of times that we contact the AS and the number of CC Sate
changes that we obsarve during a transfer. This is because by changing the history
data sets we are changing the data that the AS uses to determine the Next Advice
Time (NAT) that it gives to the FTP server. From Table 21 we observe that the
number of inputs received from the AS is highest when we use the whole database as
the history. The TCP CC date changes are dso the highest when we use the whole
database as the history data. We can thus observe that there are more redundant inputs
from AS when we use the whole database as the history data and using the previous
week’s data as the history data decreases this number. By redundant inputs we mean
the inputs from the AS, which do not change the congestion control state.

65

5.5.3.2. Testsin amoderately congested networ k

The parameters used for the tests in this section are listed in Table 22 below.

TCP buffer sze 1Mbyte

NISTNet delays 50ms

FTPtrander 5ze 16Gbyte

NISTNet drops YES

Available Bandwidth (ABW) Threshold 27Mbps (73% used bandwidth)

Table 22: Parameters for tests with different history data setsin amoderately
congested network

The reaults of the tests with different history data sets for this case are shown in Table
23 and Table 24 below.

Throughput of FTP when run with AS
Time of Day History =wholedB | Higtory = Previous | History = Previous

Fridays week
12:15am 25.60 25.68 25.68
3:25am 57.68 53.60 51.76
7:25am 70.00 69.92 70.00
2:25pm 40.24 42.00 43.92
9:10pm 43.84 45.84 55.28

Table 23: Throughput of FTP with AS when run in a network with aminimum of
60% used bandwidth and no background flows for different history data sets

66

CC dates received when FTP isrun with AS
Time of day History =wholedB | Higory = Previous | History = Previous
Fridays week

12:15am 1(12) 1(8) 1(5)

3:25am 1,009) 1,0(5) 1,0(4)
7:25am 0(5) 0(4) 0(2)

2:25pm 0(2),1(4),0(3) 0,1(2),0(2) 0,10

9:10pm 0(5),1(4) 0(3),1(2) 0(3),1

Table 24: CC State inputs received when FTP with ASisrun in anetwork with a
minimum of 60% used bandwidth and no background flows for different history data

In this case we observe from Table 24 that the number of times the AS is contacted is
highest when we use the whole database as the history data. But the umber of TCP
CC State changes is same for dl the three higtory data sets. Also from Table 23 we
can see that there is not much difference in the observed throughput by changing the
higory daa Here again the number of redundant inputs is more when we use the
whole database as the history data.

5.5.3.3. Testsin a highly congested networ k

The parameters used for the tests in this section are listed in Table 25 below.

TCP buffer size 1Mbyte
NISTNet delays 50ms
FTPtrandfer 9ze 16Ghbyte
NISTNet drops YES
Available Bandwidth (ABW) Threshold 12Mbps (78% used bandwidth)
Table 25: Parameters for tests with different history data setsin a highly congested
network

67

The test results of the tests with different history data sets are shown in Table 26 and

Table 27 below.
Throughput of FTP when run with AS
Time of Day History = whole dB Higtory = Previous History = Previous

Fridays week
12:15am 16.88 17.68 17.52
3:25am 58.40 57.04 56.88
7:25am 68.56 69.44 69.52
2:25pm 34.72 30.72 28.08
9:10pm 29.28 34.16 38.08

Table 26: Throughput of FTP with AS when run in a network with aminimum of
75% used bandwidth and no background flows for different history data sets

CC datesrecaved when FTPisrun with AS

Timeof day | History =wholedB History = Previous History = Previous
Fridays week
12:15am 1(46),0(23) 1(27),0(10) 1(22),0(15)
3:25am 1,0(48) 1,0(26) 1,0(24)
7:25am 0(18) 0(10) 0(6)
2:25pm 0(7),1(9),0(21),1(3) | 0(3),1(6),0(7),1,0(3) | 0(2),1(3),0(5),1(2),0(3)
9:10pm 0(24),1(6),0(4),1(9) | 0(14),1(5),0(4),1(4) | 0(12),1(3),0(2),1(2)

Table 27: CC State inputs received when FTP with ASis run in anetwork with a
minimum of 75% used bandwidth and no background flows for different history data

68

From Table 26 we observe that in this case dso there is ot much difference in the
throughput of FTP with different history data sets. The number of inputs from the AS
is again highest when we use the whole database as the history. The number of TCP
CC date changes is same for al the three history data sets except at 2:25pm at which,
with the higtory data sets of dl Fridays and last one week prior to the test day, there is
one additiond TCP CC date change. Contacting the AS more frequently can effect its
performance, epecidly when there are a lot of clients to be monitored. Hence using
the most recent network data as the history data can serve the AS well.

From the results of tests to evaduate the performance of the Dynamic TCP Congestion
Control Scheme in the Enable service, we observe that, the FTP transfer times are
reduced by an average of 78.30% when FTP is run with AS. This is because we use
TCP with NOCC when there is not much congestion in the network and this increases
its throughput. We can dso obsarve that, by usng AS we are making sure that
Congegtion Control (CC) in TCP is turned off only when required ingtead of turning it
off totally. Also we observe that as the percentage of used bandwidth increases, the
percentage improvement in the FTP throughput increeses. This is because, as the
percentage of used bandwidth increases the bandwidth avallable for the standard FTP
decreases. But FTP with AS will not dow down in this case and its throughput
remains the same and hence the percentage increase in the throughput of FTP is
higher.

From the results of tests with background flows we observe that, when FTP is run
with AS, the effect on the throughput of the background traffic is less when compared
to running FTP with NOCC. This shows that by not turning off the Congestion
Control in TCP totaly, we are trying to be less aggressve on the background traffic.
From the tests with multiple background flows we observe that the effect on both the

background flowsis smilar.

69

From the results of tests with different history data sets, we observe that the AS is
contacted more frequently when we use the whole database as the history database.
Since there is not much difference in the throughput of FTP by changing the history
data, it is better to use whole database as the history data.

All the tet reaults show that the Dynamic TCP Congestion Control Scheme is
implemented correctly in the Enable service and by properly usng the AS with the
FTP server we can reduce the trandfer times of large files on High Bandwidth Delay
Product networks. Also the mechaniam is not totaly TCP friendly and hence the
background traffic is effected to some extent.

70

Chapter 6

Conclusions and Futurework

6.1. Conclusions

TCP Congestion Control agorithms have been desgned to avoid congestion collgpse
in the networks. It performs well on the low deay links but on high delay links it has
a bad performance. Experimental modifications were done to the TCP stack such that
goplications can turn off the congesion control in TCP. But turning off the
congestion cortrol totaly is not advissble. Hence a mechanism has been designed so
that congestion control is turned off only when required depending on the network

congestion and trandfer file Sze.

We have successfully implemented the Enable sarvice. This Enable service decides
when to change the congestion control state of TCP based on the network conditions.
ProFTPD, a widdy used FTP server daemon, was modified to interact with the
Enable service during large file trandfers. It dynamicaly changes the TCP Congestion
Control State based on the inputs from the Enable service. By not totaly turning off
the congestion control in TCP we were less aggressve and thus the impact on the
background traffic was reduced. Also we were able to emulate the WAN conditions
inaloca environment by usng NISTNet, a network emulation tool.

From the results of the tests conducted here with this dynamic congestion control
mechanism, it was found that we could reduce the trandfer times for large file
tranders. Also this mechanism is shown to behave in a less aggressive manner on the
background traffic than when the congestion control in TCP is turned off totally.

71

6.2. FutureWork

The firs enhancement that can be made is testing the mechanism on a red WAN
environment ingead of on an emulated network. This can determine the performance
benefit of the mechanism. The next enhancement can be with the way the Advisory
Server decides about the TCP congestion control state to use. Currently it bases its
decison only on the current available bandwidth on the network path. But other
parameters can be used in addition, to make a better decison. Instead of using the
data collected from a router, we could use pipechar [25] to collect the network State

and use it to determine if there is congestion in the network path or not.

72

References

[1] M.Allman, V.Paxon, W.Stevens. TCP Congestion Control, RFC 2581.

[2] Anupama Sundaresan. Application Level Congestion Control Enhancements for
High Bandwidth Delay Product Networks, Master of Science Thes's, Universty of
Kansas, June 2000, http://www.ittc.ukans.edu/projects/enable/anu_thesis.pdf

[3] B. Tierney, D. Gunter, J. Lee, M. Stoufer, J. B. Evans, “Enabling Network-Aware
Applications’, 10 " IEEE Symposium on High Performance Distributed
Computing, August 2001.

[4] Xuedun Mao, Victor Frost, Joseph Evans, and Mahesh Akarapu, "Reducing the
Trandfer Time for Large Filesin High Performance Networks’, Sept. 2002,
ITTC-FY 2003-20430-01.

[5] Sally Foyd. Congestion Control Principles. Internet- Draft
draft-floyd-cong-02.txt, April 2000.

[6] Van Jacobson, Robert Braden, David Borman. TCP Extensons for High
Performance, May 1992. RFC 1323.

[7] Hans Kruse. Performance of Common Data Communications Protocols Over
Long Delay Links: An Experimental Examination. In 3rd International Conference

on telecommunication Systems Modding and Design, 1995.

[8] TCP Tuning Guide for Distributed Application on Wide Area Networks, February
2001. http://Amww-didc.Ibl.gov/tcp-wan.html

73

[9] PSC: Enabling High Performance Data Transfers on Hosts, September 1999.
http:/Amww.psc.edu/networking/perf_tunehtml

[10] Net100: Development of Network-Aware Operating systems, December 2000.
http://Aww.net100.0rg

[11] “The WEB100 Project, Facilitating Effective and Transparent Network Use”,
http://Mmww.web100.org/

[12] Auto-tuning in Linux 2.4 kerndls
http:/AMmww.linuxhg.com/kerne /v2.4/doc/networking/ip-sysctl .txt.html

[13] Svakumar, H, S. Balley, R. L. Grossman. “PSockets. TheCase for Application
level Network Striping for Data Intensive Applications usng High Speed Wide
Area Networks’, Proceedings of |EEE Supercomputing 2000, Nov. 2000.
http:/Amww.ncdm.uic.edu/html/psockets.hitml

[14] NISTNet: A network emulation tool developed by the NIST, September 1997.
http://snad.ncd .nist.gov/itg/nistnet/

[15] ProFTPD: Highly configurable FTP server software
http://mww.proftpd.org/

[16] NcFTP - Browser program for the File Transfer Protocol
http:/Aww.ncftpd.com/ncftp/

[17] Ajay Tirumaa, Feng Qin, Jon Dugan, Jm Ferguson. Iperf — The TCP/UDP
Bandwidth measurement tool. http://dast.nlanr.net/Projects/I perf/

74

[18] Douglas E. Comer. Internetworking with TCP/IP, Volume I, Principles,
Protocols, and Architecture. Prentice Hall, 3rd edition, 1995.

[19] Larry L.Peterson & Bruce S. Davie. Computer Networks: A Systems Approach,
2" edition, 2000, Morgan Kaufmann Publishers, Inc.

[20] Jon Postel. Transmission Control Protocol, September 1981. RFC 793.

[21] Victor OK. Li, Zaichen Zhang. “Internet Multicast Routing and Transport
Control Protocols’, Proceedings of the IEEE, Vol. 90, No.3, March 2002

[22] J.Postel, JReynolds. File Transfer Protocol, October 1985. RFC 959.

[23] J.Postel, J.Reynolds. Telnet Protocol Specification, May 1983. RFC 854.

[24] ProFTPD Developer’s Guide by TJ Saunders
http://www.castaglia.org/proftpd/doc/devel- guide/

[25] Jin, G., Yang, G., Crowley, B., Agarwd, D., “Network Characterization
Service’, Proceedings of the |EEE High Performance Distributed Computing
conference, August 2001, http://www-didc.lbl.gov/INCS

[26] Van Jacobson. Packet Sniffing tool. http:/Avww.tcpdump.org

[27] Shawn Ostermann. tcptrace - TCP dump file andysis tool.
http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html

75

[28] MySQL : Open source database
http:/Amww.mysgl.com

[29] Tim Shepard. xplot - A Plotting Tool, February 1991.
ftp://mercury.lcsmit.edu/pub/shep

[30] Chervenak, A., Foster, |., Kesselman, C., Salisbury, C. and Tuecke, S. “The Data
Grid: Towards an Architecture for the Distributed Management and Andyss of
Large Scientific Data Sets’. Journal of Network and Computer Applications,

2000.

[31] XML-RPC: http:/mww.xmlrpc.org/

[32] D. Gunter, B. Tierney, B. Crowley, M. Holding, J. Lee NetLogger: A Toolkit for
Digtributed System performance Analysis, Proceedings of the |IEEE Mascots
2000 Conference, August 2000. http://mww-didc.Ibl.gov/Netl ogger/

[33] Bruce A. Mah. Pchar: A Tool for Measuring Internet Path Characterigtics,
February 1999. http://www.employees.org/~bmah/Software/pchar/

[34] Internet2: www.internet2.edu

76

Appendix

Appendix A

A.1. Specifications of the machines used in the test scenarios

Machine Name Specification

gost1l Pentium I1 400MHz

gost2 Pentium I 400MHz

gost3 Pentium Il 400MHz

gost4 Pentium I 400MHz

Neuromancer Ceeron 434 MHz(Dua processor)
Sraylight Ceeron 467 MHz(Dua processor)
testbed33 Pentium 111 1GHz

testbed34 Pentium |11 1GHz

Table 28: Specifications of the machines used in the test scenarios

Appendix B

B.1. Using NI ST Net

NISTNet has a graphicd user interface, which alows the user to sdect and monitor
specific traffic streams passing through the router and to gpply sdected performance
effects to the IP packets of the stream. It dso provides a command line interface to be
able to generate scripts, so that it can be driven by traces produced from
messurements of actua network conditions. The command-line interface used to
generate scripts used in the testsis cnistnet. Its usage is shown below:

cnistnet —u turnsthe NISTNet emulator ON and cnistnet —d turns the emulator OFF.

77

Once the emulator is turned ON, we can identify the flow to which to gpply the WAN
effects usng various filters such as the source and degtination addresses, source and
destination ports. To al such identified flows we can apply the WAN effects usng
the following command [14].

cnistnet -a srcf:port[.protocol]] dest[:port[.prot]] [cos]
[--ddlay delay [dedsgmd]/ddcorr]]]
[--drop drop_percentage]/drop_correlation]]
[--dup dup_percentage]/dup_correlation]]
[--bandwidth bandwidth]
[--drd drdmin drdmax [drdcongest]]
The WAN effects that we can add using the above command are the delay, packet

drop rate, packet duplication rate, and the bandwidth to which to limit the flow.

To remove the NISTNet filter we can identify the flow and remove it usng the
following commeand.
cnistnet -r srcf:port[.prot]] dest[:port[.prot]] [cos]

To view the datidtics of the packets of the flow identified by the NISTNet filters, we
use the following commands.

cnistnet -s src :port[.prot]] dest[:port[.prot]] [cos]

cnistnet -Ssrcf:port[.prot]] dest[:port[.prot]] [cos]

78

B.2. NIST Net script to dynamically change the drop rate of the traffic

* Program to run a script which dynamicdly adjusts the drop rates dong
apath using the cnistnet command. */

#include<stdio.h>

main(int argc,char *argv[])
{

char sec[10],drop[10],temp_drop[10];
char *str =(char *)malloc(100);

char *strl =(char *)malloc(50);

char *str2 =(char *)malloc(100);

FILE *fin;

fin = fopen(argv[1],"r");
strepy(str2," cnistnet -r 192.168.124.2 192.168.126.6 --drop "),
system("cnistnet -u'");

/IDdlaysin the reverse direction for the FTP flow
system(“cnistnet -a192.168.126.6 192.168.124.2 --ddlay 25");

/IDdlays in the forward and reverse directions for the first Iperf flow
system("cnistnet -a 192.168.125.1 192.168.122.4 --dday 5");
system("cnistnet -a192.168.122.4 192.168.125.1 --ddlay 5");

/IDdlays in the forward and reverse directions for the second I perf flow
system("cnisinet -2 192.168.128.33 192.168.127.34 --dday 5");
system("cnisinet -a192.168.127.34 192.168.128.33 --ddlay 5);

while (fscanf(fin,"%s",drop)!= EOF)
{ strepy(temp_drop,drop);
if(fscanf(fin,"%s',sec)== EOF)
printf("Error Reading from the input file\n*);

exit(L):
}

79

strepy(strl,"deep)
strcat(strl,sec);

strepy(str,"cnistnet -a 192.168.124.2 192.168.126.6 --ddlay 25 --drop ™);
streat(str,drop);

system(str);
system(strl);

}
streat(str2,temp_drop);

system(str2);
system("cnigtnet -d");

fdlose(fin);
}

B.3. Script used to generate the drop rates data from the available bandwidth
data

[* Program to convert the input bandwidth vauesinto the corresponding drop rates */

#include<stdio.n>
#include<math.h>
#Hinclude<stdlib.h>

#defineC 9.76 1/1.22*8
#defineS 1076

#defineRTT 50 //milliseconds
#define FACTOR 1000 //mbps* msec

main(int argc,char **argv)
{

FILE *fin*fout;

float bw,temp,drop_rate;
int sec;

fin =fopen(argv[1],"r");
fout = fopen(argv[2],"w");

while (fscanf (fin," %" & bw)!= EOF)
{

80

if(fscanf(fin,"%d" & sec)== EOF)

{
printf("Error Reading from the input file\n);
exit(d);

}

temp = (C*S*8)/(RTT*bw*FACTOR);
drop_rate = pow(temp,2);

fprintf(fout,"%f %d\n",drop_rate,sec);
}

close(fin);
close(fout);

}

Appendix C

C.1. Commonly used data structures of the ProFTPD
a) module_struc
Declaration

struct module_struc {
module *next, * prev;,

/* module API version */
int ver;

/* module name */
char *name;

[* configuration directive table */
conftable * conftable;

/* command handler table */
cmdtable * cmdtable;

81

/* authentication handler table */
authtable * authtable;

/* moduleinitialization */
int (*module_init)();

[* post-fork initialization */
int (*module_init_child)();

[* internal use, greater number == higher priority */
int priority;
|3

Source File: include/modulesh

b) cmd _rec
Declaration
typedef struct cmd_struc {

/* memory pooal for this object */
pool *pooal;

SevVer rec *sarver;
config_rec *config;

* temporary pool which only exists while the cmd's handler is running*/
pool *tmp_poal;

int arge;
char **argv,

* entire argument (excluding command) */
char *ag;

/* command group */
char *group;

/* command class */
int class,

82

* hack to speed up symbol hashing in modules.c */
int symtable _index;

[* private datafor passng/retaining among handlers */
privdata t *private;

* internd use */
array_header *privarr;

} cmd _rec;
SourceFile:include/dirtree.h
C) server_rec

Declaration:
typedef struct server_struc {

struct server_struc *next, * prev;

/* memory pooal for this object */
pool *pool;

[* set holding al the servers*/
Xaset t* st

[* this server's name */
char * ServerName;

[* this server's address */
char * ServerAddress;

[* this server'sfully qudified doman name */
char * ServerFQDN,;

[* this server adminigtrator's name */
char * ServerAdmin;

/* this server's wel come message */
char * ServerMessage;

/* port number for this server */
int ServerPort;

83

/* receive/send windows */
int tcp_rwin, tcp_swin;

I* specificaly override the TCP rwin */
int tcp_rwin_override;

I* specificdly override the TCP swin */
int tcp_swin_override;

/* do not greet until after the user'slogged in */
int AnonymousGreeting;

[* internal address of this server */
p_in_addr_t *ipaddr;

* our listening connection */
sruct conn_struc *listen;

[* configuration details */
xaset t *conf;

} server rec;

SourceFleiincdude/dirtreeh

84

