

Evaluation of Dynamic TCP Congestion Control Scheme in the

ENABLE service

by

Mahesh Akarapu

B.E. (Computer Science and Engineering)

University College of Engineering, Osmania University

Hyderabad, India, 2000

Submitted to the Department of Electrical Engineering and Computer Science

and the Faculty of the Graduate School of the University of Kansas in partial

fulfillment of the requirements for the degree of Master of Science

 Professor in Charge

 Committee Members

 Date Thesis Accepted

 ii

Dedicated to

My parents, brother and sister

 iii

Acknowledgements

I would like to express my sincere thanks to Dr. Victor Frost, who is also my

committee chair, for his guidance throughout this thesis and for his suggestions and

support during my graduate studies here in KU. I would also like to thank Dr. Joseph

B. Evans for his valuable suggestions, timely replies to all my doubts during my

research work. I would also like to express my thanks to Dr. Jerry James for serving

on my committee.

I would also like to thank Larry Sanders for helping me solve some of the major

problems during my thesis. I would also like to thank Brett Becker for his help with

all the network setup work. He was always there to help me whenever I needed

something to setup the local network for my thesis work. I would also like to thank all

the ENABLE members for their suggestions and help.

I would like to thank Vijay Jenkel and NT Karthik for their help during the initial

stages of my research work.

Last, but not the least, I would like to thank all my friends here in KU for their

support and making my stay here memorable.

 iv

Abstract

The increase in the transmission speeds of the current day computer networks has

increased the interest in the performance issues of TCP on these High Bandwidth

Delay Product (HBDP) networks. TCP congestion control algorithms, which were

originally implemented to improve the performance of TCP, have some limitations on

the HBDP networks. Many of the widely used distributed applications like, FTP do

not take total advantage of these high-speed networks. This is not because of the

improperly designed applications, but because of the default parameters of TCP,

which were designed to sacrifice optimal throughput in exchange for fair sharing of

bandwidth on congested networks. To overcome this limitation of TCP, research

work is conducted to properly tune the TCP parameters to improve its performance.

Current approaches include using the optimal socket buffer sizes and using number of

parallel streams. These parameters are different for different networks and vary over

time. These techniques have to continuously adapt these parameters to suit the

network conditions. This task, which requires network expertise, is difficult. The

Enable service makes this task easier. Also to overcome the limitations of TCP

congestion control, modifications were made to the TCP stack so that an application

can turn off congestion control. Previous research has shown that this improves

performance. But it is not ideal to turn off the congestion control at all times. So we

need a mechanism, which determines when it is appropriate to change the congestion

control state in TCP. In this thesis, we implemented a mechanism to monitor the

network state and control the congestion control state. The proposed methodology is

tested for a widely used application, FTP. It is shown that the performance, i.e., time

to transfer a file is improved for large transfers.

 v

Table of Contents

1. INTRODUCTION...1

1.1. Overview of TCP .. 2

1.2. TCP Congestion Control... 3

1.2.1. TCP Slow Start and Congestion Avoidance 4

1.2.2. Fast Retransmit and Fast Recovery.. 5

1.3. Motivation for the Thesis .. 6

1.4. ENABLE Overview .. 7

1.5. Organization of the Thesis .. 8

2. RELATED WORK...10

2.1. TCP Extensions for High Performance.. 10

2.1.1. TCP Large Window extension... 11

2.2. TCP tuning for performance enhancement .. 12

2.3. Experimental modifications to TCP... 14

2.3.1. Implementation of NOCC in TCP ... 15

3. ENABLE ARCHITECTURE...17

3.1. Introduction.. 17

3.2. The Enable Service .. 17

3.2.1. Functionality of the Enable Server .. 19

3.2.2. Implementation of the Enable Service... 20

3.3. Algorithm used to implement the Advisory Server 21

3.3.1. Implementation of Advice Server.. 24

4. MODIFICATIONS TO THE FTP SERVER ..28

4.1. Overview of File Transfer Protocol ... 28

4.2. Details of modifications to ProFTPD .. 29

4.2.1. Implementation of ProFTPD ... 29

4.2.2. Module structure .. 30

 vi

4.2.3. Command Responses ... 31

5. EVALUATION OF THE DYNAMIC TCP CONGESTION CONTROL SCHEME..................34

5.1. Introduction.. 34

5.2. Creation of the Emulated Network Environment 36

5.2.1. Overview of NISTNet.. 37

5.2.2. Test Environment ... 37

5.3. Equation relating the TCP throughput to the drop rate 41

5.4. Tests to show the validity of the throughput-drop relation........................ 41

5.5. Tests to evaluate the performance of FTP with the Enable service 42

5.5.1. Performance of FTP as a function of load in the network 42

5.5.1.1. Tests in a slightly congested network ... 43

5.5.1.2. Tests in a moderately congested network 47

5.5.1.3. Tests in a highly congested network ... 50

5.5.2. Performance of the background flows ... 56

5.5.2.1. Tests with a single background flow... 56

5.5.2.2. Tests with multiple background flows .. 60

5.5.3. Tests with different history data sets ... 63

5.5.3.1. Tests in a slightly congested network ... 64

5.5.3.2. Tests in a moderately congested network 66

5.5.3.3. Tests in a highly congested network ... 67

6. CONCLUSIONS AND FUTURE WORK..71

6.1.Conclusions ... 71

6.2.Future Work .. 72

REFERENCES ...73

APPENDIX A ...77

APPENDIX B ..77

APPENDIX C ...81

 vii

List of Tables

Table 1: Results of tests done to determine the constant factor in TCP throughput

drop relation ... 42

Table 2: Parameters for tests to estimate the performance of FTP as a function of

network load in a slightly congested network... 43

Table 3: Throughput of different FTP implementations in a network with a minimum

of 45% used bandwidth and no background flows... 44

Table 4: Congestion control state inputs received for tests in a network with a

minimum of 45% used bandwidth and no background flows ... 45

Table 5: Parameters for tests to estimate the performance of FTP as a function of

network load in a moderately congested network... 47

Table 6: Throughput of different FTP implementations when run in a network with a

minimum of 60% used bandwidth and no background flows ... 47

Table 7: Congestion Control State inputs received for tests in a network with

minimum of 60% used bandwidth and no background flows ... 48

Table 8: Parameters for tests to estimate the performance of FTP as a function of

network load in a highly congested network... 50

Table 9: Throughput of different FTP implementations when run in a network with a

minimum of 75% used bandwidth and no background flows ... 51

Table 10: Congestion Control State inputs received for tests in a network with a

minimum of 75% used bandwidth and no background flows ... 52

Table 11: FTP parameters for tests to see the effect on a single background flow.......... 57

Table 12: Iperf parameters for tests to see the effect on a single background flow......... 57

Table 13: Throughput of different FTP implementations when run with a single Iperf

flow.. 58

Table 14: Percentage decrease in the throughput of Iperf when run with different

implementations of FTP.. 58

 viii

Table 15: FTP parameters for tests to see the effect on multiple background flows........ 60

Table 16: Iperf parameters for tests to see the effect on multiple background flows....... 61

Table 17: Throughput of FTP with CC and FTP with NOCC when run with multiple

Iperf flows ... 61

Table 18: Throughput of FTP with AS when run with multiple Iperf flows 61

Table 19: Parameters for tests with different history data sets in a slightly congested

network.. 64

Table 20: Throughput of FTP with AS when run in a network with minimum of 45%

used bandwidth and no background flows for different history data sets, 64

Table 21: CC State inputs received when FTP with AS is run in a network with a

minimum of 45% used bandwidth and no background flows for different history data

sets... 65

Table 22: Parameters for tests with different history data sets in a moderately

congested network... 66

Table 23: Throughput of FTP with AS when run in a network with a minimum of 60%

used bandwidth and no background flows for different history data sets........................ 66

Table 24: CC State inputs received when FTP with AS is run in a network with a

minimum of 60% used bandwidth and no background flows for different history data

sets... 67

Table 25: Parameters for tests with different history data sets in a highly congested

network.. 67

Table 26: Throughput of FTP with AS when run in a network with a minimum of 75%

used bandwidth and no background flows for different history data sets........................ 68

Table 27: CC State inputs received when FTP with AS is run in a network with a

minimum of 75% used bandwidth and no background flows for different history data

sets... 68

Table 28: Specifications of the machines used in the test scenarios 77

 ix

List of Figures

Figure 1: ENABLE Architecture, from [3] ... 18

Figure 2: System architecture, from [4] ... 22

Figure 3: Illustration of linear model, from [4] ... 23

Figure 4: Illustration of calculation, from [4].. 26

Figure 5: 3-host network configuration.. 38

Figure 6: 6-host network configuration.. 38

Figure 7: 8-host configuration.. 39

Figure 8: Time of day vs FTP throughput for tests in a network with minimum of 45%

used bandwidth and no background flows.. 44

Figure 9: Available bandwidth variation vs CC state inputs at 2:25pm for tests in a

network with minimum of 45% used bandwidth and no background flows................ 46

Figure 10: Time of day vs FTP throughput for tests in a network with a minimum of

60% used bandwidth and no background flows ... 48

Figure 11: Available bandwidth variation vs CC state inputs at 2:25pm for tests in a

network with a minimum of 60% used bandwidth and no background flows............. 49

Figure 12: Time of day vs FTP throughput for tests in a network with a minimum of

75% used bandwidth and no background flows ... 51

Figure 13: Available bandwidth variation vs CC state inputs at 2:25pm for tests in a

network with a minimum of 75% used bandwidth and no background flows............. 53

Figure 14: Average throughput of different FTP implementations in a slightly

congested network... 54

Figure 15: Time of day vs % improvement in the throughput of FTP in networks with

different percentages of used bandwidth.. 55

Figure 16: Logical network topology of the 6-host configuration 56

Figure 17: Time of day vs background flow throughput when run with different FTP

implementations in a network with the a minimum used bandwidth of 45%.............. 59

 x

Figure 18: Logical network topology of 8-host configuration 60

Figure 19: Time of day vs Background flow1 throughput when run with different FTP

implementations in a network with minimum of 45% used bandwidth....................... 62

Figure 20: Time of day vs Background flow2 throughput when run with different FTP

implementations in a network with minimum of 45% used bandwidth....................... 62

Figure 21: History data set comprising of the whole database.................................. 63

Figure 22: History data set comprising of one-week’s data....................................... 63

Figure 23: History data set comprising the data of test days..................................... 64

 1

Chapter 1

Introduction

The Transmission Control Protocol (TCP) [20] is the most widely used transport

protocol in today’s computer networks. With the considerable increase in the speed of

Internet backbone networks, a lot of attention is being paid to the TCP performance

issues to make it better suited for such high-speed networks. Most of the current

Internet applications like FTP [22] and HTTP use TCP as their transport protocol.

Unfortunately these distributed applications do not take full advantage of the

currently available high-speed networks. This is not because of any problems with the

design of these applications, but because of the inherent limitations of TCP on these

High Bandwidth Delay Product (HBDP) networks. TCP parameters have been

designed to sacrifice the throughput to share the network bandwidth fairly in the face

of a congested network. This makes the performance of TCP on low latency links

good. But on HBDP networks a proper tuning of TCP parameters is required to take

maximum advantage of the very high bandwidth available. TCP also uses a set of

congestion algorithms to control the rate at which a sender transfers the data. Even

though these algorithms are important for preventing the congestion in the network,

they have a negative impact on the performance of TCP on the long Round Trip Time

(RTT) links [7]. Lot of work is being done on tuning TCP parameters to improve the

TCP throughput on such HBDP networks. But application developers require certain

level of network expertise to use these mechanisms to achieve better TCP

throughputs. This thesis proposes a new mechanism, which distributed application

developers can use without much difficulty to maximize their TCP throughput on

HBDP networks, especially for long file transfers. It also demonstrates the usefulness

of this mechanism.

 2

1.1. Overview of TCP

TCP provides a reliable, connection-oriented, in-order delivery of a stream of bytes. It

is a full-duplex protocol, meaning that each TCP connection supports a pair of byte

streams, one in each direction. It also includes a flow-control mechanism for each of

these byte streams that allows the receiver to limit how much data the sender can

transmit at a given time. TCP also supports a demultiplexing mechanism that allows

multiple application programs on any given host to simultaneously carry on a

conversation with their peers. In addition to the above features, TCP also implements

a highly tuned congestion-control mechanism. The idea of this mechanism is to

throttle how fast TCP sends data, not for the sake of keeping the sender from

overrunning the receiver, but so as to keep the sender from overloading the network.

TCP uses sliding window algorithm to provide reliable, in order delivery of data. It is

also used to enforce flow control between the sender and the receiver. TCP on the

sending side maintains a send buffer. This buffer is used to store data that has been

sent but not yet acknowledged, as well as data that has been written by the sending

application, but not transmitted. On the receiving side, TCP maintains a receive

buffer. This buffer holds data that arrives out of order, as well as data that is in the

correct order, but that the application process has not yet had the chance to read. The

way the sliding window algorithm works is as follows. First the sender transmits a

segment and waits for the acknowledgement before sending any other data. Once the

acknowledgement for the first segment arrives, it sends two segments and when the

acknowledgement for these two segments arrive, it sends four segments and this

process continues. But there is a limit to the number of segments that a sender can

transmit. The receiver advertises a window size to the sender using the Advertised

Window field [1] in the TCP header. The sender is then limited to having no more

than a value of Advertised Window bytes of unacknowledged data at any given time.

The receiver selects a suitable value for Advertised Window based on the amount of

 3

memory allocated to the connection for the purpose of buffering data. The Effective

Window used to determine this limit on the maximum number of unacknowledged

bytes is calculated as follows [19]:

 Effective Window = Advertised Window - (LastByteSent - LastByteAcked)

Thus the flow control is implemented in TCP. There is another window value called

Congestion Window (CWND) [1], which is used to implement the congestion

control, which is explained in the next section.

1.2. TCP Congestion Control

TCP congestion control [1] was introduced into the Internet in the late 1980s by Van

Jacobson. Before there was congestion control in TCP, the Internet used to suffer

from Congestion Collapse [5]. Congestion collapse is a network state in which the

hosts would send their packets into the Internet as fast as the advertised window

would allow, congestion would occur at a router, causing the packets to be dropped,

and the hosts would timeout and retransmit the packets, further increasing the

congestion in the network. Congestion Collapse occurs when packets arrive at a

router in the network at a rate higher than it can handle.

Congestion control is implemented in TCP using four algorithms namely, Slow Start,

Congestion Avoidance, Fast Retransmit and Fast Recovery [1]. TCP maintains a new

state variable for each connection, called Congestion Window (CWND), which is

used by the source to limit how much data is allowed to have in transit at a given

time. The congestion window is congestion control's counterpart to the flow control's

advertised window. The maximum number of bytes of unacknowledged data would

now be the minimum of the congestion window and the advertised window. This is

shown by the following equations [19].

 4

 Max. Window = MIN (Congestion Window, Advertised Window)

 Effective Window = Max. Window - (LastByteSent - LastByteAcked)

Note that Max.Window replaces Advertised Window in the calculation of Effective

Window. Hence a TCP source is allowed to send no faster than the slowest

component, network or the destination host, could allow.

1.2.1. TCP Slow Start and Congestion Avoidance

TCP uses Slow Start and Congestion Avoidance algorithms [1] to control the amount

of outstanding data injected into the network. Apart from the two variables,

Congestion Window and Advertised Window defined above, TCP uses another

variable called the slow start threshold (sstresh) to determine whether to use Slow

Start or Congestion Avoidance to control the data transmission.

TCP uses Slow Start mechanism to increase the CWND at the start of a TCP

connection and also when a timeout occurs because of a lost packet. During the Slow

Start, the source starts out by setting the CWND value to one packet. When the ACK

for this packet arrives, it increases the CWND value by 1 and then sends two packets.

When the ACKs for these two segments arrive, it increases the CWND value by 2,

one for each ACK and sends four segments. This in effect increases the CWND

exponentially. The CWND increases this way until a loss is observed or it reaches the

value of sstresh. TCP will be in the Slow Start state when CWND < sstresh. Initially

sstresh is set to the value of receiver advertised window. Whenever a loss is observed

by a timeout, the sstresh is set to half the value of the CWND and the CWND is set to

1 packet. The CWND will increase exponentially until it reaches the value of sstresh

(if there are no drops), at which point it goes into the Congestion Avoidance phase.

 5

Congestion Avoidance is the phase in which TCP increases the CWND linearly

instead of exponentially as observed in the Slow Start phase. TCP will be in this

phase when CWND > sstresh. During this phase TCP increases the CWND by one

whenever the ACKs are received for all the packets in the CWND. This is a

conservative approach to increase the CWND.

1.2.2. Fast Retransmit and Fast Recovery

Fast Retransmit and Fast Recovery mechanisms [1] are proposed to reduce the long

idle periods of time during which the TCP on the sending host waits for a timeout to

occur. Fast Retransmit is a mechanism that sometimes triggers the retransmission of a

dropped packet sooner than the regular timeout mechanism. The fast retransmit

mechanism does not replace regular timeouts; it just enhances that facility.

The idea of fast retransmit is straightforward. Every time a data packet arrives at the

receiving side, the receiver responds with an acknowledgement, even if this sequence

number has already been acknowledged. Thus, when a packet arrives out of order,

TCP resends the same acknowledgement it sent the last time. This second

transmission of the same acknowledgement is called a duplicate ACK. When the

sending side sees a duplicate ACK, it knows that the other side must have received a

packet out of order, which suggests that an earlier packet might have been lost. Since

it is also possible that the earlier packet has only been delayed rather than lost, the

sender waits until it sees three duplicate ACKs and then retransmits the missing

packet.

The Fast Recovery mechanism removes the slow start phase that happens between

when fast retransmission detects a lost packet and additive increase begins. That is

when the fast retransmit mechanism signals congestion, rather than drop the

congestion window all the way back to one packet and run slow start, it simply cuts

 6

the congestion window in half and resumes additive increase. This makes TCP to use

slow start only at the beginning of a connection and whenever a timeout occurs.

1.3. Motivation for the Thesis

TCP uses Congestion Window (CWND) to determine the number of packets that it

can transmit at any time before it receives an acknowledgment from the receiver. The

larger the CWND value, the higher the TCP throughput. TCP Slow Start and the

Congestion Avoidance algorithms as described above determine the size of the

Congestion Window. The maximum Congestion Window size is related to the

amount of buffer space allocated to each socket by the kernel. There is a default

buffer size value allocated to each socket which can be changed by the system call,

setsockopt () [8].

TCP performs well on the low-latency links, but on high-rate, large roundtrip time

links it fails to take advantage of the high bandwidth available [7]. This can be

attributed to the improper TCP parameters, including the limitations introduced in the

kernel by the sizes of socket buffers. As the network throughput speeds have

increased recently, the operating systems have changed the default buffer sizes from

the common values of 8 kilobytes to 64 kilobytes. But these socket buffer sizes are

still not enough [8] for the current high-speed networks. TCP requires very high

buffer sizes to get maximum benefit from these networks. But we can not just use the

maximum buffer size values for all the connections, as it wastes the operating system

resources and also under certain circumstances overly large TCP buffers can have bad

effect on the TCP performance. To solve this problem several approaches have been

proposed, tuning of TCP buffer sizes [8,9,12] and use of parallel sockets came into

picture [13]. But in order to use these mechanisms application developers need some

sort of network expertise. ENABLE (Enhancement of Network Aware Applications

and Bottleneck Elimination) project aims to make this task of determining the correct

TCP tuning parameters easy to the application developers apart from the large

 7

number of tasks it does. The details of the ENABLE project are given in the next

section.

TCP Congestion Control algorithms are very important for the proper functioning of

the networks but they can also have a negative impact on the TCP performance on the

high latency links [7]. To overcome this limitation, a mechanism has been proposed,

implemented and tested, which enables an application to turn off the congestion

control in the TCP based on the network state. This mechanism also shows some

promising results [2]. But we cannot turn off the congestion control in TCP totally

because it causes congestion collapse in the network. Hence we need a mechanism by

which we can be able to determine when it is appropriate to turn off CC in TCP.

Enable Advisory Server (AS) tries to achieve this task of determining when to change

congestion control state in TCP.

This thesis proposes a new mechanism by which an application can turn CC in TCP

dynamically during the course of a TCP connection as a function of network state.

This mechanism is especially aimed at improving the performance of applications

with large file transfers. The advantages and disadvantages of this mechanism are

also discussed as well as the results of its implementation with a popular application,

FTP.

1.4. ENABLE Overview

ENABLE stands for Enhancing of Network-aware Applications and BottLeneck

Elimination. This project is a Department of Energy (DOE) research project to build

an adaptive monitoring infrastructure, a monitor data publishing mechanism, and

monitor data analysis tools. They are developing a "Grid" service that will provide

both of these capabilities. The overall goal of this Enable project is to provide

manageability, reliability, and adaptability for high performance applications running

over wide-area networks. A main component of Enable project is the Enable network

 8

advice server [3]. An Enable server can be installed on any data server host (e.g.: an

FTP server), and configured to monitor the network paths from that host to a set of

client hosts. The Enable server monitors the state of the network continuously and can

be queried by client applications to get the network tuning parameters to use. These

parameters include the optimal TCP buffer size to use for a given path. These

network-tuning parameters are different for different network paths and vary over

time. The application become aware of the network by constantly contacting the

Enable advice server and obtaining the information needed to adapt to the current

network conditions.

Presently, the archival tools and the monitoring tools to store per session data in the

database are being put together. The Enable service with limited capability is also

implemented. The work in this thesis is a sample implementation of the actual

application of the Enable service. A new capability of the Enable service is proposed,

implemented and evaluated here. This capability helps the Enable service to give

input on whether to use the congestion control mechanism in TCP or not based on the

network conditions. Once the infrastructure is in place this mechanism can be tested

in the real environment.

1.5. Organization of the Thesis

The rest of this thesis is organized into the following chapters. Chapter 2 describes

the TCP Extensions for the High Bandwidth Delay Product Networks and also the

background work on the TCP tuning and the work done on dynamically adjusting the

state of the congestion control in TCP. Chapter 3 gives on overview of the ENABLE

Architecture with an emphasis on the implementation of the Advisory Server. Chapter

4 describes the FTP in general along with its implementation and the modifications

did to it to implement our mechanism. Chapter 5 shows the various test scenarios

used to test our mechanism along with the tests to see its advantages and

 9

disadvantages. It also shows the tests, which are done to see how certain factors

influence the mechanism. Chapter 6 gives a summary of the accomplishments of this

thesis and the possible future work that can be done in this area.

 10

Chapter 2

Related Work

2.1. TCP Extensions for High Performance

The TCP protocol was designed to operate reliably over almost any transmission

medium regardless of transmission rate, delay, corruption, duplication, or reordering

of segments. The basic TCP implementation works well for the low latency networks,

but it is not suitable for today's high-speed and high-delay networks. Hence several

extensions were proposed [6] to the basic implementation to enhance the performance

of TCP on such networks. All these extensions are implemented as TCP options so

that hosts can still communicate using TCP even if they do not implement these

options. Hosts that do implement the optional extensions, however, can take

advantage of them.

TCP performance does not depend on the transmission rate alone; it depends on the

product of the transmission rate and the round-trip delay. This "Bandwidth Delay

Product"(BDP) measures the amount of data that would fill the network path. It is the

buffer space required at sender and receiver to obtain maximum throughput on the

TCP connection over the path, i.e., the amount of unacknowledged data that TCP

must handle in order to keep the network path full. TCP performance problems arise

when the bandwidth*delay product is large. We refer to an Internet path operating in

this region as a "long, fat pipe" and a network containing this path as an "LFN". The

three fundamental problems that arise with TCP over such LFN paths are the Window

size limits, recovery from losses and the round-trip time measurements. To over come

these problems, Van Jacobson, Bob Braden, Dave Borman suggested the following

 11

extensions to TCP [6], to improve its performance over the high bandwidth-delay

product networks.

??TCP Window Scale extension to enable using large windows for accommodating

the large BDP values of the current high speed and high delay networks.

??TCP Timestamps for more precise estimation of the round-trip times

??Protect Against Wrapped Sequence Numbers (PAWS), for preventing the

accidental reuse of TCP sequence numbers because of the sequence number wrap-

around caused by high bandwidths.

We will go over the first proposed extension, which deals with the TCP window

sizes.

2.1.1. TCP Large Window extension

The TCP Advertised Window field in the TCP header, which is of 16 bits limits the

size of the TCP window to 2^16 = 64KBytes. Without the Large Window extensions,

the maximum throughput of a TCP connection is limited by the round trip time as

given in the following relation.

 Max.TCP Throughput = Receiver Buffer Size/Round Trip time.

On a typical cross-country WAN link with a round trip time of 60ms, the maximum

throughput of the TCP connection is limited to

 Max.TCP Throughput = 64KBytes/60ms = 8.74Mbps.

This is the limit on the TCP throughput no matter what the transmission rate of the

Internet path is. In order to overcome these throughput limitations, the TCP large

window extensions were proposed.

 12

Large Window extension is implemented in TCP using the TCP Window Scale option

[6]. The window scale extension increases the size of the TCP advertised window to

32 bits and then uses a scale factor to carry this 32-bit value in the 16-bit window

field of the TCP header. The scale factor is carried in a new TCP option, Window

Scale. This option is sent only in a SYN segment and hence the window scale is fixed

in each direction when a new connection is opened. The maximum receive window

and hence the scale factor is determined by the size of maximum receiver buffer

space. This maximum buffer space is set by default but it can be changed by a system

call before a connection is opened. The Window Scale option, sent in a SYN

segment, indicates the willingness of the TCP sender to do both the send and receive

window scaling. It is also used to send the scale factor to apply to its receive window.

Both the sender and receiver must send the Window Scale option in their SYN

segments to enable window scaling in either direction. This option is sent in the initial

SYN segment. It is also sent in a <SYN, ACK> segment, but only if a Window Scale

option was received in the initial SYN segment. A Window Scale option in a segment

without a SYN bit is ignored. When the TCP window scaling is enabled, the effective

send and receive window sizes are calculated by left shifting the window sizes by

scale factor times. The scale factor is limited to a value of 14 to make sure that the

maximum window size is 2^30.

2.2. TCP tuning for performance enhancement

TCP uses Congestion Window to determine how many packets can be sent at one

time. The larger the congestion window size, the higher the throughput. The TCP

slow start and congestion avoidance algorithms [1] determine the size of this

congestion window. The maximum congestion window is related to the amount of

buffer space the kernel allocates for each socket [8]. For each socket, there is a

default value for the buffer size, which can be changed by the program using a system

library call just before opening the socket. There is also a kernel enforced maximum

 13

buffer size, which can also be changed. The socket buffer size must be adjusted at

both the sender and receiver sides.

To get maximal throughput it is always important to use the optimal TCP send and

receive buffers for the link being used [8]. If the buffers are too small, the TCP

congestion window will never fully open up and if the buffers are too large, the

sender can overrun the receiver and the TCP window will shut down. There exists a

large body of work showing that good performance can be achieved using the proper

tuning techniques. However, determining the correct tuning parameters can be quite

difficult, especially for users or developers who are not networking experts. There are

several tools that help determine these values, but none of these include a client API

and all require some level of network expertise to use. So we need a mechanism,

which is easy to use, to determine the optimal buffer sizes to use for the link we are

using.

The optimal buffer size is twice the bandwidth*delay product of the link [8].

 buffer size = 2 * bandwidth * delay = bandwidth * RTT

where bandwidth is the bottleneck bandwidth for a particular path and RTT is the

Round Trip Time on that path.

We need to have some network expertise to determine these optimal parameters and

most of the distributed application developers find it difficult to deal with this

network tuning. Also these optimal buffer sizes are different for different networks

and vary over the time. Several research efforts are being conducted to make this task

of tuning the network parameters easier for the distributed application developers so

that they can concentrate on the application design instead of worrying about the

network performance. These research efforts include Net100 [10], Web100 [11]

among the others.

 14

The Web100 project aims at providing the software and tools necessary for end-hosts

to automatically and transparently achieve high bandwidth data rates over the high

performance research networks. This project plans to achieve the TCP performance

tuning transparency by embedding the appropriate diagnostics and automatic controls

in the end system operating system at a level invisible to the user. Initially the

software and tools are being developed for the Linux operating system, but the work

is being done in a standard, open manner so that they can easily be ported to other

operating systems.

The Net100 project is based on Web100 and NetLogger [32] and it proposes to

develop a model for network-aware operating systems using Web100 as the means

for incorporating network information and its analysis into host operating systems to

improve performance. The modified operating systems will respond dynamically to

network conditions and make adjustments in network transfers, sending data as fast as

the network will allow.

Recently, the Linux 2.4 kernel [12] also included TCP buffer tuning algorithms. For

applications that have not explicitly set the TCP send and receive buffer sizes, the

kernel will attempt to grow the window sizes to match the available bandwidth (up to

the receiver's default window). Autotuning is controlled by new kernel variables

net.ipv4.tcp_rmem/wmem and the amount of kernel memory available.

2.3. Experimental modifications to TCP

Congestion Control algorithms of TCP were implemented to prevent the frequently

occurring condition of congestion collapse in the Internet. It succeeded in doing that,

but it has a performance bottleneck on the high-speed and high delay networks. The

most important parameter on which the throughput of TCP for a particular connection

depends is the product of the bandwidth of the link and the delay on that link. When

 15

the RTT of a link is very high, the time TCP spends in the slow start phase is high and

so effectively TCP doesn't yield good throughput results in that phase. For a protocol

like HTTP which uses TCP as the transport protocol and which has very short

duration flows, the response times because of TCP's slow start phase is disastrous

over a high RTT link. For HTTP flows, the entire duration of the flow is

predominated by TCP's slow start behavior and this has bad effects on the response

time of the web server. Also whenever there is some random loss of a packet in a

connection, the TCP Congestion Control algorithms slow down the sender by

entering into the slow start phase, even though there is not much congestion in the

network. However the TCP Fast Retransmission and Fast Recovery algorithms [1]

minimize this effect to some extent, but still the sender will be slowed down. To

overcome these limitations for certain applications, experimental modifications were

made in TCP, which enable an application to turn off the congestion control

mechanism in TCP from the application level [2]. This modification where there is no

congestion control in TCP is referred as NOCC (No Congestion Control).

2.3.1. Implementation of NOCC in TCP

The interface that is provided for the application to turn off the congestion control

mechanism in TCP is by means of a setsockopt() system call. The application can

turn OFF and turn ON the congestion control in TCP whenever needed. The way this

NOCC is implemented in TCP is by controlling the growth of the TCP congestion

window, since this is the parameter which the congestion control algorithms use to

control the rate of transmission of a host. Once the congestion control is turned off,

the TCP control block will be unaware of the Congestion Window parameter and the

receiver's advertised window becomes the sender's limit on the number of bytes it can

transmit before receiving an acknowledgement. This makes sure that the flow control

is still enforced. The study with the experimental modifications to TCP stack [2]

gives the details of the implementation of this NOCC mechanism and the advantages

and disadvantages of using this mechanism.

 16

The implementation of NOCC mechanism in TCP helps us to control the congestion

control state in TCP, but we can not turn off the congestion control in TCP totally

because this might again lead to the problem of congestion collapse in the network.

To avoid this problem and at the same time take advantage of this provision in the

TCP stack, we proposed to develop a new service called Enable service, which

dynamically adjusts the state of the congestion control in TCP depending on the

network state.

 17

Chapter 3

ENABLE Architecture

3.1. Introduction

Enable service [3] provides its clients with the correct TCP tuning parameters for a

given network path so that applications can optimize their use of the network and

achieve the highest possible throughput. The Enable service works as follows: An

Enable server is co-located on every system that is serving large data files to the

wide-area network (e.g.: an FTP or HTTP server). The Enable service is then

configured to monitor the network links to a set of client hosts from the perspective of

that data server. Network monitoring results are stored in a database, and can be

queried by network-aware distributed components at any time. The Enable service

runs the network tests on some pre-configured time interval. The Enable service API

makes it very easy for application or middleware developers to determine the optimal

network parameters. To take advantage of the Enable tuning service, distributed

applications must be modified to support network tuning such as the ability to set the

TCP buffer size [8] or the ability to create and use multiple data streams to transfer

data in parallel [13]. The network tuning parameters that the Enable service is initially

concentrating on are those required by large bulk data transfer applications, such as

the various “Data Grid” [30] projects.

3.2. The Enable Service

The Enable service [3] has three distinct components. First, there is the Enable

Server, which keeps an up-to-date record of network parameters between itself and

 18

other hosts. The second component is a protocol for clients to communicate with the

servers. Finally, there is a simple API that makes querying the Enable Servers trivial

for application developers. The primary design goal for the Enable service is the ease

of installation, configuration, and use. The architecture of Enable is shown in Figure

2 below. An Enable Server is installed on every data server host, such as an FTP or

HTTP server, and that Enable server is responsible only for determining the optimal

network parameters between clients and itself. The following section describes the

functionality and implementation of the Enable Service.

Figure 1: ENABLE Architecture, from [3]

 19

3.2.1. Functionality of the Enable Server

The Enable Server will periodically run network monitoring tests between itself and a

number of client hosts. These client hosts could be read at start-up from a

configuration file, manually added using an API or command-line utility, or

automatically added by monitoring log files from the data server, such as HTTP or

FTP logs. The results of the network tests will be stored in a database. The selection

and scheduling of tests for each client is dynamically configurable. Clients can query

the Enable server, which is listening on a well-known port, for network parameters,

also called “network advice”. The protocol for doing this is XML-RPC [31], a

standard XML-based protocol that performs remote procedure calls over HTTP. The

standard protocol is used so that interfacing with Enable is made easier without using

the Enable API or libraries.

Here is a sample API that clients can use to query the Enable Server. For example:

tcp_buffer_size = EnableGetBufferSize(ftp_hostname)

returns the optimal buffer size between itself and the FTP server host, and:

net_info = EnableGetNetInfo(ftp_hostname)

returns the result of all network tests for that network path.

Currently the Enable server supported network tests are ping, pipechar [25], pchar

[33], and Iperf [17], but only ping and pipechar are run by default.

 20

3.2.2. Implementation of the Enable Service

 The ENABLE framework is not completely in place and our work is based on a

simple look-alike of the Enable service. For this thesis, the Enable server code is

written totally independent to the actual Enable server, but it includes all the concepts

of the actual enable server. It maintains a database of the network conditions, which

include the available bandwidth on the network path to the client at different times of

a day. It uses this data to advise the client about the tuning parameters. The data

collected is the available bandwidth variation data on a router interface. The Enable

server does not run any network tests to the set of client hosts. It instead bases its

advice on the traffic data from the router. Also modifications are made to the

ProFTPD daemon [15], which is one of the target applications when the actual

ENABLE architecture is in place. Whenever an FTP client tries to download a file

from the FTP server, the FTP server contacts the Advisory Server (AS, also called the

Enable Server) for advice on the network parameters (TCP congestion control state

(CC State) input in this case) to use. The advisory server gives input on the CC state

of TCP and also the time at which it has to be contacted again. Based on the input it

receives from the AS, the ProFTPD daemon turns the CC State in TCP and begins

transferring the requested file to the client host. When the next advise time, as

suggested by the AS nears, the FTP server contacts the AS again to see if there is any

change in the state of network and hence in the network parameters to use for the

client host. If so it changes the network parameters (TCP CC State). This process

continues till the transfer is complete.

The way our work differs from the actual ENABLE framework is that the Enable

server does not run any network tests to determine the state of the network. Instead it

determines the current state of the network based on the traffic data that is collected

before hand. The other change is, since the data is collected only for a single router, it

can give useful input only to hosts on the router path. Also the inputs that the Enable

 21

server gives and the way those inputs are derived are different from that of the actual

Enable server. But with little changes we can make this very similar to the actual

ENABLE architecture.

3.3. Algorithm used to implement the Advisory Server

The purpose of the Advisory Server (AS) is to give the applications the inputs on the

network parameters to use. To achieve this, we model the changes in available

bandwidth on a network path and use the result to give inputs on the network tuning

parameters. The following description is based on [4]. We use FTP as the target

application, which uses this Advisory Server (AS) to reduce the transfer time of large

files. One of the parameters the AS gives is the optimal TCP buffer size to use for a

connection. The optimal TCP buffer size can be calculated by the following formula

[8]:

Optimal TCP buffer = RTT * (bandwidth of bottleneck link)

Another parameter that we deal with is, if there is no congestion in the link, we can

turn off congestion control in TCP. So the AS gives the input of whether to use CC in

TCP or not. Turning CC OFF can improve the performance of a TCP flow at the

expense of the background flows [2]. For relatively short file transfers, bandwidth can

be assumed to be constant; but for very large files, we need to build a model to

predict when to adjust these network parameters. We also monitor the Congestion

State of the link from server to client. The architecture of the system considered is

shown in Figure 2.

 22

Client
History data

Internet state

Advice request and

response

Data Server

Advice Server

Figure 2: System architecture, from [4]

The following is from [4]. Here we model the changes in available bandwidth on a

network path. In this model, we regard the available bandwidth as being composed of

two parts: one is deterministic; another is random to reflect the burstiness of network

traffic, it can be taken as noise. For the first part, a linear regression method is used to

model the traffic for short time intervals; that is, at any time we assume a linear

relationship between time and available bandwidth over a short period of time. For

example, when the advice server receives request at 2:00 am, it calculates the mean

available bandwidth and bandwidth rate of change at 2:00 am according to historical

data.

Assume the relationship between available bandwidth and time is linear,

???
10

??b

b represents available bandwidth

? represents time relative to the request time

0? will be the available bandwidth at the time of the request, 1? will be rate of change

of the available bandwidth, it may be negative.

 23

Figure 3: Illustration of linear model, from [4]

In Figure 3, the advice request arrives at time 0t . The linear regression is done for

data between 0t and 1t (011 ttt ??? is a configured constant). 0? will be the available

bandwidth at 0t , 1? is the slope, representing the rate of change in available

bandwidth. If we require that the change in available bandwidth will not exceed ?? ,

then the next advice time will be at .

The database in the advice server will contain a series of observed pairs

,,1),,(niiib ??? from which the estimators of the coefficients 0? , 1? can be

calculated, that is [4],

2)(2

))((

1
ˆ

??

???

?

?
?

ii
n

iibiibn

??

??
?

n
ii

b ?? ?
?

??
? 1

ˆ

0
ˆ

 24

The measurement contains noise so that the model becomes

iiib ???? ??? 10

We assume that:

?? i? is a Gaussian random variable

?? Mean value of i? is 0, i.e., 0)(?iE ?

?? Variance of i? is constant. (Therefore,)2,0(~ ?? Ni)

?? Correlation of i? and j? (ji ?) is 0

?? Correlation of i? and ib is 0

Under these assumptions:

?? 1?̂ is an unbiased estimator of 1?

?? 0?̂ is an unbiased estimator of 0?

?? The goodness of fitness is measured by

nibib

iib
R

/2)(
2

2))1
ˆ

0
ˆ((

12

???

? ??
??

???

3.3.1. Implementation of Advice Server

The network data is present at the Advice Server host in a database as a sequence of

records of),,,(cbip ? . Where ip is the IP address of each hop along the path to the

client (only one hop for our case), ? is test time, b is measured available bandwidth

at the time ? , c is a Boolean that indicates whether congestion is occurring (TRUE)

or not (FALSE) at this time ? . This value is determined based on the available

bandwidth at this time. If the available bandwidth is less than the threshold (defined

 25

based on the % of used traffic), we turn the CC ON and if the available bandwidth is

more than the threshold, we turn the CC OFF.

When the data server receives a file transfer request from client, it sends a request to

the advice server. The request includes the following parameters:

?? IP address of client

?? file length or remaining file length to be transferred

When the advice server receives the request, it determines the following parameters

to send back to the data server:

?? Flag to indicate whether to use congestion control or not in TCP

?? RTT from server to client.

?? Current available bandwidth

?? Next advice time

RTT can be tested when the advice request arrives at the advice server, either ICMP

programming or ping can be used to obtain the result. To get the congestion control

flag, the advice server searches for the most recent observation of this destination

from database. The result is a series of stored information in the form of

),,,(111 cbip ?

 ……

),,,(nnn cbip ?

Here, iip s are IP addresses of hops from the server to the destination, ib s are

available bandwidth of corresponding hops, ic s are flags of congestion states. If the

most recent test time t is not close enough to current time, the congestion control flag

is set to inform the data server use congestion control during transmission. If the

nearest test time t is close enough to current time, the congestion control flag is

determined by congestion flags. If anyone of them is TRUE, which means congestion

 26

happened in this hop, the congestion control flag will be turned on; if none of them is

true, the congestion control flag will be turned off.

The available bandwidth and next advice time will be calculated according to

historical data of the minimum bandwidth hop. When an advice request comes, the

first step is to calculate the available bandwidth and rate of change of available

bandwidth for each previous day with test data.

day 1 day 2

?t1

0 t0 t1

? t1
0 t0 t1

Figure 4: Illustration of calculation, from [4]

The advice request comes at time 0t in current day. For each previous day, we do

linear regression for history data from 0t to 101 ttt ??? ; then we get available

bandwidth)(0 i? and rate of change in available bandwidth)(1 i? , i is the index of the

previous test days.

Current available bandwidth will be estimated as the mean value of series)(0 i?

 ?
?

?
N

i

i
N 1

00)(
1

??

This value will be sent back to the data server.

For the rate of change in available bandwidth)(1 i? , we calculate the mean value 1?

and standard deviation
1?? , then the rate of change in available bandwidth will be

bounded by
11 ??? zt? and

11 ??? zt? (zt is determined by confident level requirement

of normal distribution. According to theory,)(1 i? is student-t distribution, hence

 27

)(1 i? can be approximated by normal distribution. For example, 2?zt is for 95%

confidence).

Denote),max(
11 11 ?? ???? zz ttS ??? , S will be the maximum rate of change in

available bandwidth. That is, from 0t , after a certain time interval ? , the change in

available bandwidth will be ??S .

The upper bound of change in available can be determined either by absolute value or

percent of estimated bandwidth 0? , denote it as ?? . Then

 SS /???? ??????

which gives the next advice time ??? 0tta .

The Advisory Server (AS) that is implemented in this manner will be co-located with

the data server, for example an FTP server. The FTP server interacts with this AS and

uses the network tuning parameters as suggested by the AS for all the data transfers to

the FTP clients. Thus the AS helps in reducing the transfer times of large file transfers

in FTP. The next chapter describes the modifications that are made to an FTP server

in order to interact with the AS.

 28

Chapter 4

Modifications to the FTP server

This chapter gives an overview of the File Transfer Protocol (FTP), the details of the

implementation of ProFTPD, an FTP server daemon, and the changes that are made

to ProFTPD so that it interacts with the Enable server while transferring large files to

FTP clients.

4.1. Overview of File Transfer Protocol

File Transfer Protocol (FTP) [22] is an application protocol with TCP as its transport

protocol. As the name suggests, its main purpose is to transfer files between the

computers. FTP is implemented based on two connections, namely, control

connection and data connection. The control connection is the communication path

between the FTP client and the server to exchange the commands and replies. It

follows the Telnet protocol [23]. The data connection is a full duplex connection over

which data is transferred, in a specified mode and type. The FTP server listens on the

standard port, 20. This is the port to which the FTP client connects in order to

establish a control connection with the FTP server. The port number used on the FTP

client side for the data connection is 21 and this is also standard. FTP client sends this

data port among the other parameters to the FTP server in the initial set of commands.

The FTP server establishes a connection based on the connection parameters sent by

the client and starts the data transfer.

The communication channel from the client to the server process is established as a

TCP connection from the client to the standard server port (20). The client sends the

 29

FTP commands and interprets the replies received. The server interprets the

commands, sends the replies to the client, establishes the data connection and

transfers the data. There are different kinds of commands that a client sends to the

server.

??Access control commands: These commands are used to control the access of

 the FTP server by the client.

??Transfer parameter commands: These commands specify to the server, the

parameters to use for the current data transfer. These commands must precede

the FTP service request.

??FTP service commands: These are the actual service requests from the clients.

They define the file transfer or the file system function requested by the client.

 4.2. Details of modifications to ProFTPD

For this thesis, ProFTPD [15] is selected as the target FTP server since it is a highly

secure and configurable FTP server. Modifications are made to the ProFTPD daemon

to make it interact with the Enable service. The design of ProFTPD daemon is

derived from that of Apache web server and it can be run as a standalone server or it

can run under “inetd”.

4.2.1. Implementation of ProFTPD

ProFTPD is an FTP server modeled around the Apache HTTP server, with a similar

configuration file syntax and modular structure. The implementation details given in

this section are based on [24]. ProFTPD handles the commands in a series of simple

steps as follows:

 30

??Preprocessing the command

??Processing the command

??Postprocessing the command

??Logging the command

These phases are handled by looking at each of the module, looking to see if it has a

handler for the phase, and attempting to invoke it if there is one. The handler does one

of the three things

??Handle the command and let the processing engine know that the command has

been handled and it can proceed with its processing.

??Decline to handle the command and let the processing engine know that it should

proceed its processing as if it has never called that handler.

??Signal an error by returning one of the FTP error codes [22]. This terminates the

normal handling of the request; the command may be logged.

Most phases are terminated by the first module that handles them. The handlers are

functions of one argument (a cmd_rec structure), which returns a MODRET (a

modret_struc typdefed to MODRET) [Appendix C].

4.2.2. Module structure

The details of all the modules and data structures are based on [24]. Each module

declares the command handlers for the commands issued by the client, that it is

interested in handling. The modules can also contain the code to handle the

configuration commands. To handle these configuration directives the modules have

the configuration directive handlers. These configuration directive handlers perform

such checks as whether the configuration directive is in an appropriate context,

whether the arguments are correct, etc. Each module has a command handler table,

which links the client-issued commands with the interested handlers and a

 31

configuration command hander table, which declares the configuration directives,

and the corresponding configuration directive handlers.

Some of the data structures, which are used very often in these command handlers,

are as follows: a pool is a pointer to a resource pool structure. These are used by the

server to keep track of the memory which has been allocated, files opened, etc., either

to service a particular request, or to handle the process of configuration itself. This is

maintained so that when the request is over, the memory can be freed, and the files

closed, en masse, instead of tracking them all down and disposing them.

The sole argument to handlers is a cmd_rec structure. This structure describes a

particular command, which has been made to the server, on behalf of a client. Each

connection by a client generates multiple cmd_rec structures, starting with the USER

command. The cmd_rec contains pointers to a resource pool, which will be cleared

when the server is finished handling the command, to structures containing per-server

information, and most importantly, information on the command itself. There are also

pointers to private data a handler has built in the course of servicing the command,

and to a server_rec, which contains per (virtual) server configuration data. When the

processing engine reads an FTP command from a client, it builds the corresponding

cmd_rec structure by filling its fields. The filled-in cmd_rec is then handed off to the

command handlers that have registered an interest in handling that particular FTP

command.

4.2.3. Command Responses

Each handler, when invoked to handle a particular cmd_rec, returns a MODRET to

indicate what happened. That can be one of:

?? HANDLED -- the command was handled successfully. This may or may not

terminate the phase.

 32

?? DECLINED -- no erroneous condition exists, but the module declines to

handle the phase; the server tries to find another.

?? ERROR -- an error has occurred while processing the command, which aborts

its handling.

Each module handles the configuration directives by looking in its configuration

table. As stated previously, this table contains information on what directives the

module handles and the corresponding configuration handler. It takes only one

argument, a cmd_rec pointer. That structure contains a bunch of arguments, including

a resource pool, and the (virtual) server being configured, from which the module's

per-server configuration data can be obtained if required. The module's configuration

table has entries for all the directives it handles.

The entries in these tables are:

?? the name of the configuration directive

?? the function which handles it

?? a pointer which is set to the "owning" module when the module code is

compiled; It is always set to NULL

Once all the configuration directives are handled by the appropriate handlers the

module goes on to execute the command issued by the client. This it does by looking

into the command handler table to see the command handler to call for the particular

command issued by the client. Even the command handlers take a single argument of

type cmd_rec.

ProFTPD daemon was modified so that all the download requests from the clients are

handled by interacting with the Advisory Server. The modifications were made to the

command handler, cmd_retr, which handles the download commands from the

clients. Just before the server starts transferring the file, it contacts the Advisory

 33

Server by sending it the client’s IP address, the length of the file it has to still transfer

in a ADVISING_REQUEST structure. Now the AS determines the correct network

parameters (the CC State to use in TCP) to use for that particular client and sends

them to the FTP server in an ADVISING_REPLY structure. In this structure, it also

sends the time after which it has to contact it again to check if there is any change in

the network path. Based on the response from the AS, we turn the CC State in TCP

by using the setsockopt() system call interface provided to control the CC State in

TCP [2] as shown below.

 if (REP.ccstate == CONGEST_CTRL_OFF)

 {

 param = 1;

 setsockopt(session.d->outf->fd,IPPROTO_TCP,15,(char*)¶m,sizeof(param));

 }

Based on the next advice time given by the AS the FTP server contacts the AS again

and it changes the CC State in TCP if necessary. Thus a mechanism is provided to

dynamically change the CC State of TCP to accommodate the changes in the network

for large FTP transfers.

The next chapter describes the tests that are done to evaluate the usefulness of the AS

in reducing the reducing the FTP transfer times. It also describes the test environment

used to do our tests and how that test environment is created.

 34

Chapter 5

Evaluation of the Dynamic TCP Congestion

Control Scheme

5.1. Introduction

In this chapter we evaluate how the Dynamic TCP Congestion Control Scheme in the

Enable service effects the performance of the FTP server (ProFTPD in our case).

Primarily we need to find out if this scheme is functioning properly and then to see if

it really provides performance gains in the FTP transfers. Next we would like to

determine how the Dynamic TCP Congestion Control scheme effects background

traffic. Finally we would also like to see how the history data used by the Enable

service effects its decision making process. To achieve all the above-mentioned tasks

we performed the following tests.

?? Tests to evaluate the performance of FTP with the Enable service

For these tests we identified different times of a day, which represent the network

states with different load in a day, and performed the large file transfers with

different FTP implementations at these times. The different FTP implementations

that we have tested here are the standard FTP, FTP with NOCC for the entire file

transfer and FTP interacting with AS during the file transfer. We have done the

tests with different FTP implementations for networks with different levels of

congestion to see how the performance of FTP with Advisory Server (AS) varies

with different levels of congestion in the network.

 35

?? Tests to see the effect on the background flows

To determine the effect on the background traffic, we performed large file

transfers by running FTP and a background flow simultaneously. From these tests

we observed how the throughput of the background traffic is effected. We also

performed tests with multiple background flows to have a better understanding of

the effect on the background traffic.

?? Tests with different history databases

We did tests with different history data sets to determine how the history data

effects the decision process of AS. For this we used three different history data

sets. First set is the whole database of network data. Second set is network data of

one week, immediately preceding the test day. This is chosen to see if using only

the recent trends in the network behavior has any better effect on the decision

process of the AS. The final set is the network data of all the test days (e.g.,

Fridays) as the history data.

To do all our tests, mentioned above, we have considered using the following three

network environments.

Real Network

We can test the mechanism on a real High Bandwidth Delay Product network. This is

the ideal case since it allows us to see the performance gain of the FTP transfers

involving the real protocols in the target environment. For this we need to have access

to an FTP server to which we can make the required modifications. In this case we do

not have much control on how the network behaves. Also the tests in a real

environment are not reproducible and make it difficult to identify any problems that

occur. We have considered using this approach for our tests. But considering the

problems mentioned above we did not use this approach.

 36

Simulated Network

We could use a simulated network to do our tests. This involves rewriting the FTP

code and the TCP code with necessary modifications for use in a simulation. This

implementation for the simulation may differ from the real implementation. Also the

simulated environment may not represent the real environment exactly. Also in all

our tests, we used large files (16GBytes), which will take a long time to transfer using

a simulator. Doing these tests with a software simulator is not practical, and hence did

not use a simulated environment.

Emulated Network

An emulated network is an environment in which we emulate the conditions of a

WAN in a lab-environment network. It is a controlled, reproducible environment for

running real code. By using an emulated environment we will be dealing with the real

protocols and will produce valid estimation of the performance of the transfer

protocols. An emulated environment does not increase the test times and the tests are

also reproducible in an emulated environment. Also emulated environments tend to

be much nearer to the real environment than the simulated environments.

Considering the advantages mentioned above of using the emulated network over the

simulated network and the real network, and the feasibly in creating an emulated

environment, we decided to use an emulated network environment for all our

experiments. The next subsection describes how we have created this emulated

environment and what test scenarios we have used to perform our tests.

5.2. Creation of the Emulated Network Environment

To create an emulated WAN locally, we need to emulate the WAN conditions in a

local environment. The WAN conditions we need are the large RTTs (e.g. 50ms),

typical of WANs and the variation of the available bandwidth along a path, which

 37

represents the congestion along a network path. NISTNet [14], a network emulation

tool, is used to emulate these WAN effects. The overview of NISTNet is given below.

5.2.1. Overview of NISTNet

NISTNet is a network emulation package that runs on Linux. It is a general-purpose

tool for emulating performance dynamics in IP networks. NISTNet allows a single

Linux PC set up as a router to emulate a wide variety of network conditions. The tool

allows controlled, reproducible experiments with network performance

sensitive/adaptive applications and control protocols in a simple laboratory setting. It

operates at the IP level.

NISTNet can emulate the critical end-to-end performance characteristics imposed by

various wide area network situations (e.g., congestion loss) or by various underlying

sub network technologies. NISTNet is implemented as a kernel module extension to

the Linux operating system and an X Window System-based user interface

application. Appendix B.1 gives the details of the NISTNet usage.

5.2.2. Test Environment

A local network is set up with hosts running Linux operating system. NISTNet was

installed on a Linux host. This host acts as the router and it applies the WAN

conditions to all the packets that traverse through it. Three test configurations are

used for all the tests. A 3-host configuration is used for tests with out any background

flows and 6-host, 8-host configurations are used for tests with the background flows.

These configurations are shown below.

 38

Figure 5: 3-host network configuration

Figure 6: 6-host network configuration

 39

Figure 7: 8-host configuration

The specifications of all the machines used in the above configurations are shown in

the Appendix A. All the connections between the machines are 100Mbps Ethernet.

The FTP server used for testing is the ProFTPD [15] daemon. Modifications are made

to it, as described in Chapter 4, to interact with the Advisory Server during the

transfer of large files to the clients. To make sure that the congestion control is

changed properly we used tools such as tcpdump [26], tcptrace [27] and xplot [29].

During all the FTP transfers, large (1Mbytes) TCP buffers are used taking the

Bandwidth Delay Product (BDP) into consideration. We have used the NcFTP client

[16] since it allows us to set large receive windows as a configuration parameter.

Iperf version 1.2.1 [17] is used to generate the background traffic for the tests.

 40

We obtained the traffic data, specifically available bandwidth as a function of time,

on the interface of the router, ks-2-a10-52.r.greatplains.net (IP address:

64.113.234.206) and used this data to emulate a WAN environment. This router

interface connects the KU (University of Kansas) network to Internet2 [34]. Hence

the data collected on this interface models the variation of the traffic in a real WAN.

We stored this data in a MySQL [28] database as a set of records with the fields of the

timestamp, and available bandwidth.

In order to create the WAN environment to do our tests, we have to emulate the

WAN conditions, i.e., delay and the congestion state of the network. NISTNet is used

to emulate both of these WAN conditions. To represent the continuous change in the

congestion state of the network, we change the available bandwidth of the network

link continuously by means of a NISTNet script. We limit the available bandwidth of

the network link by introducing packet drops in the TCP traffic flowing through this

link. There is a well-established equation [21], which relates the TCP throughput to

the drop rate as shall be explained in the next section. We use this equation to

determine the drop rate for a particular bandwidth value and use this in the NISTNet

script to vary the available bandwidth on the link. As stated in the introduction, we do

the tests at different times of a day. For each test time, we obtain the available

bandwidth variation data starting at that time from the database of network data. We

use this bandwidth data to generate the corresponding packet drop values, according

to the equation relating the TCP throughput to the packet drop rate. Now we use this

packet drop data in a NISTNet script to continuously vary the bandwidth available to

the FTP traffic flowing through this network link. We also apply the WAN delays to

the FTP traffic using the same NISTNet script. This way we run all our tests in a local

network with NISTNet emulating the WAN conditions.

 41

5.3. Equation relating the TCP throughput to the drop rate

TCP uses Additive Increase Multiplicative Decrease algorithm [1] for congestion

control. On detecting a loss it decreases the size of its congestion window by a factor

of two and attempts to get extra bandwidth by increasing the window linearly when

there is no congestion. The long-term throughput of a TCP flow and the packet drop

rate is approximated by the following equation [21].

P = [(C * S) / (RTT * TTCP)] 2

Where P is the packet loss rate, C is a constant, S is the packet size, RTT is the round

trip time including queuing delay, and TTCP is the long-term TCP throughput. Here

the current available bandwidth is obtained from the database of network data and a

corresponding packet drop rate is calculated using the above equation. This drop rate

is then applied to the traffic flow using a NISTNet script.

5.4. Tests to show the validity of the throughput-drop

relation

Equation showing the relationship between the long-term throughput of the TCP flow

and the packet loss rate is shown in Section 5.3. In order to estimate the constant

factor, C, we applied different packet drop rates to an Iperf flow and compared the

observed throughputs with the theoretical value for two different values of C. The

results of these tests are shown in Table 1. Iperf is used to generate the traffic flow for

these tests.

 42

 Throughput (Mbps)

 With Delay = 25ms

 Throughput (Mbps)

 With Delay = 50ms

Drop %

From eqn.

 C=9.76

From eqn.

 C=12.2

Observed From eqn.

 C=9.76

From eqn.

 C=12.2

Observed

1 4.68 5.86 4.1 2.34 2.93 2.3

2 3.31 4.14 2.9 1.66 2.07 1.6

3 2.70 3.38 2.3 1.35 1.69 1.3

4 2.34 2.93 2.1 1.17 1.46 1.1

Table 1: Results of tests done to determine the constant factor in TCP throughput

drop relation

From Table 1 we can observe that, the observed throughput is near to the value

calculated from the equation relating the TCP throughput to the packet drop rate,

mentioned in Section 5.3, when the constant factor used is equal to 9.76. Hence for all

our experiments we used C = 9.76.

5.5. Tests to evaluate the performance of FTP with the

Enable service

5.5.1. Performance of FTP as a function of load in the network

We used the 3-host configuration, shown in Figure 5, for all the tests of this section.

The data we collected is from a router whose output link capacity is 55Mbps. Hence

the maximum available bandwidth that can be observed in the collected data is

55Mbps. Since the drops, that we introduce to limit the throughput, are based on the

collected data, the throughput we can observe with standard TCP in our tests is no

more than 55Mbps. But all the links in our local test environment are of 100Mbps. So

 43

we can assume that the remaining 45Mbps of bandwidth available on the link is used

by other traffic in all the experiments. Hence we can think of the experiments are

done with minimum of 45% used traffic. We also converted all the collected data

such that the maximum available bandwidth values ranged from 25Mbps to 40Mbps.

This is done to see how the performance of our mechanism varies with different

network congestion states or available bandwidth values in the network. Hence the

tests are done with networks of different congestion levels. In our case a slightly

congested network is a network with minimum of 45% used bandwidth, a moderately

congested network is a network with a minimum of 60% used bandwidth and a highly

congested network is a network with a minimum of 75% used bandwidth.

5.5.1.1. Tests in a slightly congested network

For all the tests in this section a 16GByte file is transferred with different FTP

implementations at different times of the test day. The test timings chosen are

12:15am, when the network load, as observed from the network data collected, is

high, 7:25pm, when the network load is low and 3:25am, 2:25pm, 9:10pm, when

there is a large variation in the network load. Advisory Server (AS) uses the whole

network data in the database as the history data.

TCP buffer size 1Mbyte

NISTNet delays 50ms

FTP transfer size 16Gbyte

NISTNet drops YES

Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth)

History data used Whole database

Table 2: Parameters for tests to estimate the performance of FTP as a function of

network load in a slightly congested network

 44

The results are shown in the Table 3 and Figure 8 below.

FTP with CC FTP with NOCC FTP with Adv.Server Time of

 Day Throughput
 (Mbps)

Transfer
 Time
(h:mm:ss)

Throughput
 (Mbps)

Transfer
 Time
(h:mm:ss)

Throughput
 (Mbps)

Transfer
 Time
(h:mm:ss)

Percentage
improvement
over FTP
with CC

12:15am 45.68 0:47:48 70.08 0:31:09 45.44 0:48:03 00.00

03:25am 45.68 0:47:48 70.00 0:31:12 57.60 0:37:54 26.09

07:25am 45.60 0:47:54 70.08 0:31:09 70.08 0:31:11 53.68

02:25pm 45.92 0:47:34 70.08 0:31:10 53.76 0:40:36 17.07

09:10pm 45.84 0:47:39 70.08 0:31:10 68.08 0:32:05 48.52

Table 3: Throughput of different FTP implementations in a network with a minimum

of 45% used bandwidth and no background flows

Average percentage improvement in the FTP throughput with Advisory Server =

29.072%

Figure 8: Time of day vs FTP throughput for tests in a network with minimum of

45% used bandwidth and no background flows

Time of Day vs FTP throughput

0

10

20

30

40

50

60

70

80

0:15 3:25 7:25 14:25 21:10

Time of day in hh:mm

F
T

P
 t

h
ro

u
g

h
p

u
t

in
 M

b
p

s

FTP with CC
FTP with NOCC
FTP with AS

 45

From Figure 8 we can see that the throughput of FTP with AS is between that of FTP

with CC and FTP with NOCC depending upon the CC inputs received from the AS.

At 12:15am, CC state inputs received from the AS are ON and hence the throughput

of FTP with AS is same as that of FTP with CC. At 7:25am, CC state inputs received

from the AS are OFF and hence the throughput of FTP with AS is same as that of

FTP with NOCC. At other times the throughput of FTP with AS varies between that

of FTP with CC and FTP with NOCC based on the CC state inputs received from the

AS during the FTP transfer. The congestion control state inputs received from the

Advisory Server during the tests are shown in the Table 4 below.

Time of Day CC State inputs

12:15am 1(4)

03:25am 1,0(3)

07:25am 0(2)

02:25pm 0,1(2),0

09:10pm 0(3),1

Table 4: Congestion control state inputs received for tests in a network with a

minimum of 45% used bandwidth and no background flows

In the CC State inputs column of Table 4 a value of ‘0’ indicates the CC state input of

OFF and a value of ‘1’ indicates the CC state input of ON. 0(x) indicates that there

are x number of inputs of 0 continuously. 0(x), 1(y) indicates that there are “x”

number of continuous inputs of 0 followed by “y” number of continuous inputs of 1.

From Table 4 we see that at 12:15am we receive the inputs as ON for the whole

transfer. This is because, the available bandwidth during this transfer is below the

threshold of 42Mbps. Also at 7:25am, all the inputs are OFF. This is because the

available bandwidth at this time is above the threshold for the entire transfer. At

3:25am, the available bandwidth starts with a value below the threshold and then

 46

increases above the threshold value. Hence the CC State inputs received from the AS

are ON at the start of the transfer and then OFF afterwards. Similarly at 2:25pm and

9:10pm the available bandwidth starts with a value above the threshold and then

decreases. Hence the AS starts with an input of OFF and then gives the inputs of ON.

The plot showing the CC State inputs from the AS and the available bandwidth

variation for the test time 2:25pm is shown in the Figure 9 below.

Figure 9: Available bandwidth variation vs CC state inputs at 2:25pm for tests in a

network with minimum of 45% used bandwidth and no background flows

In Figure 9 the dotted line shows the available bandwidth variation during the FTP

transfer and the solid line shows the times at which the AS is contacted and the CC

state inputs received from the AS during the FTP transfer. From Figure 9 we can see

that when the available bandwidth is more than the threshold (42Mpbs in this case),

the CC state input from the AS is OFF (value = 0 in the figure). Also when the

available bandwidth is less than the threshold, the CC state input from the AS is ON

(value = 1 in the figure). We can also see from the figure that there are two CC state

transitions during the transfer, one at 9 minutes into the FTP transfer and the other at

around 36 minutes into the transfer. The circled dots on the solid line in the Figure 9

Available bandwidth variation vs CC state inputs

41.7

41.8

41.9

42

42.1

42.2

42.3

42.4

42.5

0 10 20 30 40 50

time of the transfer in minutes

av
ai

la
b

le
 b

an
d

w
id

th
 in

M

b
p

s

0

1

C
C

 s
ta

te
 in

p
u

t available bandwidth
variation during the test
time

CC state inputs from the
AS

 47

indicate the times at which the enable server is contacted and CC state inputs received

at those times.

5.5.1.2. Tests in a moderately congested network

 For our tests we have considered a network with a minimum of 60% used bandwidth

as a moderately congested network. In this section we perform large file transfers

with different FTP implementations. Table 5 below lists the parameters used for our

tests.

TCP buffer size 1Mbyte

NISTNet delays 50ms

FTP transfer size 16Gbyte

NISTNet drops YES

Available Bandwidth (ABW) Threshold 27Mbps (73% used bandwidth)

History data used Whole database

Table 5: Parameters for tests to estimate the performance of FTP as a function of

network load in a moderately congested network

FTP with CC FTP with NOCC FTP with Adv.Server Time of

 Day Throughput
 (Mbps)

Transfer
 Time
(h:mm:ss)

Throughput
 (Mbps)

Transfer
 Time
(h:mm:ss)

Throughput
 (Mbps)

Transfer
 Time
(h:mm:ss)

Percentage
Improvement
over FTP
with CC

12:15am 25.68 1:24:59 69.68 0:31:21 25.60 1:25:15 00.00

03:25am 31.84 1:08:41 69.84 0:31:15 57.68 0:37:53 81.16

07:25am 44.40 0:49:11 70.08 0:31:10 70.00 0:31:10 57.66

02:25pm 28.80 1:15:54 69.76 0:31:18 40.24 0:54:18 39.72

09:10pm 27.92 1:18:07 69.76 0:31:17 43.84 0:49:48 57.02

Table 6: Throughput of different FTP implementations when run in a network with a

minimum of 60% used bandwidth and no background flows

 48

Average percentage improvement in the throughput time for all the tests = 47.112%

Figure 10: Time of day vs FTP throughput for tests in a network with a minimum of

60% used bandwidth and no background flows

Figure 10 shows that the throughput of FTP with AS varies between that of FTP with

CC and FTP with NOCC. This behavior is similar to the one in the previous case

shown in Figure 8.

Time of Day CC State inputs

12:15am 1(12)

03:25am 1,0(9)

07:25am 0(5)

02:25pm 0(2),1(4),0(3)

09:10pm 0(5),1(4)

Table 7: Congestion Control State inputs received for tests in a network with

minimum of 60% used bandwidth and no background flows

Time of Day vs FTP throughput

0

10

20

30

40

50

60

70

80

0:15 3:25 7:25 14:25 21:10

Time of day in hh:mm

F
T

P
 th

ro
u

g
h

p
u

t i
n

 M
b

p
s

FTP with CC
FTP with NOCC
FTP with AS

 49

Table 7 shows the CC State inputs received from the AS at different test times. This

is similar to the previous case. The only difference is that, the number of inputs

received from the AS during the transfers in this case is more. This increase in the

number of inputs is because of two reasons. First, the transfer time is longer in this

case because the maximum available bandwidth for the standard TCP in this case is

only 40Mbps. Second, the Next Advice Times (NAT) given by the AS in this case are

less than that of previous case. This is because the amount of bandwidth change to

trigger the next advice from the AS is lower. The plot showing the CC State inputs

from the AS and the available bandwidth variation for the test time 2:25pm is shown

in the Figure 11 below.

Figure 11: Available bandwidth variation vs CC state inputs at 2:25pm for tests in a

network with a minimum of 60% used bandwidth and no background flows

Available bandwidth variation vs CC state inputs

26.6

26.8

27

27.2

27.4

27.6

27.8

28

28.2

0 20 40 60

time of the transfer in minutes

A
va

ila
b

le
 b

an
d

w
id

th
 i

n

M
b

p
s

0

1

C
C

 s
ta

te
 in

p
u

t

available bandwidth
variation during the test
time
CC state inputs from
the AS

 50

In Figure 11 the dotted line represents the available bandwidth variation during the

FTP transfer and the solid line shows the times at which the AS is contacted and the

CC state inputs received from the AS during the FTP transfer. From Figure 11 we can

see that at the beginning of the transfer, when the available bandwidth is more than

the threshold (27Mpbs in this case), the CC state input from the AS is OFF (value = 0

in the figure). Also when the available bandwidth is less than the threshold, the CC

state input from the AS is ON (value = 1 in the figure). We can also see from this

figure that there are two CC state transitions during the transfer, one at around 8

minutes into the FTP transfer and the other at around 46 minutes into the transfer. The

circled dots on the solid line in the Figure 11 indicate the times at which the enable

server is contacted and CC state inputs received at those times.

5.5.1.3. Tests in a highly congested network

For our tests we have considered a network with a minimum of 75% used bandwidth

as a highly congested network. In this section we perform large file transfers with

different FTP implementations and observe how the use of Enable service effects the

performance of FTP transfers. The parameters used for the tests in this section are

listed in Table 8 below.

TCP buffer size 1Mbyte

NISTNet delays 50ms

FTP transfer size 16Gbyte

NISTNet drops YES

Available Bandwidth (ABW) Threshold 12Mbps (88% used bandwidth)

History data used Whole database

Table 8: Parameters for tests to estimate the performance of FTP as a function of

network load in a highly congested network

 51

FTP with CC FTP with NOCC FTP with Adv.Server Time of

 Day Throughput
 (Mbps)

Transfer
 Time
(h:mm:ss)

Throughput
 (Mbps)

Transfer
 Time
(h:mm:ss)

Throughput
 (Mbps)

Transfer
 Time
(h:mm:ss)

Percentage
Improvement
Over FTP
with CC

12:15am 11.68 3:07:13 64.96 0:35:15 16.88 2:00:35 44.52

03:25am 15.68 2:19:18 68.32 0:31:54 58.40 0:37:23 272.45

07:25am 22.24 1:38:04 69.20 0:31:35 68.56 0:31:50 208.27

02:25pm 14.24 2:33:03 69.12 0:31:36 34.72 1:02:51 143.82

09:10pm 13.04 2:47:32 68.56 0:31:52 29.28 1:14:31 124.54

Table 9: Throughput of different FTP implementations when run in a network with a

minimum of 75% used bandwidth and no background flows

Average percentage improvement in the transfer time for all the tests = 158.72%

Figure 12 below shows the throughput of different implementations of FTP, i.e. FTP

with CC, FTP with NOCC and FTP with AS.

Figure 12: Time of day vs FTP throughput for tests in a network with a minimum of

75% used bandwidth and no background flows

Time of Day vs FTP throughput

0

10

20

30

40

50

60

70

80

0:15 3:25 7:25 14:25 21:10

Time of day in hh:mm

FT
P

 t
hr

ou
gh

pu
t

in
 M

bp
s

FTP with CC
FTP with NOCC
FTP with AS

 52

Figure 12 shows that the throughput of FTP with AS varies between that of FTP with

CC and FTP with NOCC. This behavior is similar to the one in the previous cases as

shown in Figure 8 and Figure 10.

Table10 shows the CC State inputs received from the AS at different test times.

Time of Day CC State inputs

12:15am 1(46),0(23)

03:25am 1,0(48)

07:25am 0(18)

02:25pm 0(7),1(9),0(21),1(3)

09:10pm 0(24),1(6),0(4),1(9)

Table 10: Congestion Control State inputs received for tests in a network with a

minimum of 75% used bandwidth and no background flows

From Table 10 we see that the number of inputs received from the AS in this case is

larger than the previous case. Again the reasons for this is same as explained in the

previous case. The only difference in this case is that the number of state changes has

increased at some test times, 12:15am, 2:25pm and 9:10pm. This is because of the

increase in the transfer times. The plot showing the CC State inputs from the AS and

the available bandwidth variation for the test time 2:25pm is shown in the Figure 13

below.

 53

Figure 13: Available bandwidth variation vs CC state inputs at 2:25pm for tests in a

network with a minimum of 75% used bandwidth and no background flows

In Figure 13 the dotted line represents the available bandwidth variation during the

FTP transfer and the solid line shows the times at which the AS is contacted and the

CC state inputs received from the AS during the FTP transfer. From Figure 13 we can

see that at the beginning of the transfer, when the available bandwidth is more than

the threshold (12Mpbs in this case), the CC state input received from the AS is OFF

(value = 0 in the figure). The when the available bandwidth is less than the threshold,

the CC state input from the AS is ON (value = 1 in the figure). At around 45 minutes

there is an increase of around 1Mbps in the available bandwidth and since the

available bandwidth was above the threshold value, the CC state remained as OFF.

We can also observe that there are three CC state transitions in this case.

Available bandwidth variation vs CC state inputs

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

13.2

0 25 50 75

time of transfer in minutes

av
ai

la
b

le
 b

an
d

w
id

th
 i

n

M
b

p
s

0

1

C
C

 s
ta

te
 in

p
u

t

available bandwidth
variation during the test
time
CC state inputs from
the AS

 54

Figure 14 below shows the comparison of the average throughput values of different

FTP implementations.

Figure 14: Average throughput of different FTP implementations in a slightly

congested network

Figure 14 shows the average throughput of different FTP implementations. This is for

the case where the minimum used traffic is 45%. From Figure 14 we see that the

throughput of FTP with AS is in between that of FTP with CC and FTP with NOCC.

This is because it can take advantage of the available bandwidth when there is not

much congestion in the network and at the same time it is not as aggressive as FTP

with NOCC. The same behavior is observed for the other two cases.

Average FTP Throughput values

0

10

20

30

40

50

60

70

80

A
vg

. T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

FTP with CC

FTP with NOCC

FTP with AS

 55

Figure 15: Time of day vs % improvement in the throughput of FTP in networks with

different percentages of used bandwidth

Figure 15 shows the percentage improvement in the throughput of FTP with AS over

standard FTP for different cases of used traffic. From Figure 15 we see that the

percentage improvement in the FTP throughput is greater when the used bandwidth is

high. This is because for this case the throughput of standard FTP is lower than that

of other cases because of the high percentage of used traffic and FTP with AS

remains aggressive on the background traffic. But the background traffic will be

effected more for this case. We can also observe that at 00:15, there is improvement

in the throughput of FTP only for the case where the minimum used bandwidth is

75%. This is because for this case (minimum used bandwidth = 75%) there is a CC

state transition from CC to NOCC during the file transfer as observed from Table 10

and hence there was some improvement in the throughput. But for the other cases

there is no CC state transition during the file transfer, as observed from Table 4 and

Table 7, and the throughput of FTP with AS is same as that of the standard FTP.

Hence there was no throughput improvement for these cases.

Time of day vs % improvement in FTP throughput

0

50

100

150

200

250

300

0:15 3:25 7:25 14:25 21:10

Time of day in hh:mm

%
 im

p
ro

ve
m

en
t

in
 F

T
P

th
ro

u
g

h
p

u
t

Min. used bandwidth = 45%
Min. used bandwidth = 60%

Min. used bandwidth = 75%

 56

5.5.2. Performance of the background flows

From the test results of previous section we observed that there is improvement in the

performance of FTP when it is interacting with the AS. But we would like to

determine how much the background traffic is effected. In order to determine the

effect on the background traffic, during all the FTP transfers we ran a background

flow and observed the throughput of the background traffic. Here we also did the tests

with multiple background flows.

5.5.2.1. Tests with a single background flow

The 6-host configuration, shown in Figure 6, is used for these tests. The logical

network topology that we create with the configuration is shown below in Figure 16.

It shows that two flows travelling through two different network paths pass through

the same router, straylight.

Figure 16: Logical network topology of the 6-host configuration

 qost2
 (FTP Server)

 neuromancer
 (50ms delay &
 drops)

 qost1
(Iperf Source)

 straylight

 qost4
 (Iperf Sink)

 qost3
 (FTP Client)

 neuromancer
 (10ms delay)

 57

The FTP parameters and the background flow parameters used for the tests in this

section are shown below in Table 11 and Table 12 respectively.

TCP buffer size 1Mbyte

NISTNet delays 50ms

FTP transfer size 16Gbyte

NISTNet drops YES

Minimum used bandwidth 45%

Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth)

History data used Whole database

Table 11: FTP parameters for tests to see the effect on a single background flow

TCP buffer size 128Kbyte

NISTNet delays 10ms

NISTNet drops NO

Table 12: Background flow parameters for tests to see the effect on a single

background flow

The throughput of background flow (Iperf) when run with no background traffic is
83.4Mbps.

The results of the tests with a single background flow are shown in Table 13 and

Table 14 below.

 58

Throughput in Mbps
FTP with CC FTP with AS FTP with NOCC

Time of

 Day FTP Background

flow

FTP Background

flow

FTP Background

flow

12:15am 39.76 52.10 39.20 52.82 69.52 20.61

3:25am 39.60 52.22 53.52 37.97 69.60 20.63

7:25am 39.60 52.21 69.68 20.60 69.68 20.58

2:25pm 39.68 52.17 48.56 42.49 69.76 20.58

9:10pm 39.68 52.12 67.20 22.73 69.76 20.59

Table 13: Throughput of different FTP implementations when run with a single

background flow

% decrease in the throughput of background flow when run with FTP Time of

 Day FTP with CC FTP with AS FTP with NOCC

12:15am 37.53 36.67 75.29

3:25am 37.39 54.47 75.26

7:25am 37.40 75.30 75.32

2:25pm 37.45 49.05 75.32

9:10pm 37.51 72.75 75.31

Table 14: Percentage decrease in the throughput of background flow when run with

different implementations of FTP

Average decrease, with respect to no interfering traffic, in the throughput of the

background flow when run with FTP with CC = 37.46%

Average decrease, with respect to no interfering traffic, in the throughput of the

background flow when run with FTP with AS = 57.65%

Average decrease, with respect to no interfering traffic, in the throughput of the

background flow when run with FTP with NOCC = 75.30%

 59

The throughput of the background flow when run with different implementations of

FTP is shown in the Figure 17 below.

Figure 17: Time of day vs background flow throughput when run with different FTP

implementations in a network with the a minimum used bandwidth of 45%

From Table 14 we observe that the percentage decrease in the throughput of the

background flow is high when FTP is run with NOCC. This is slightly reduced when

FTP is run with AS. Figure 17 shows the variation of the background flow

throughput when run with different implementations of FTP. From the Figure 17 we

observe that the throughput of the background flow is the least when FTP is run with

NOCC and highest when FTP is run with CC. When FTP is run with AS, the

background flow throughput varies between these two values depending upon the CC

state inputs obtained from the AS. This shows that FTP with AS is less aggressive on

the background traffic than the FTP with NOCC.

Time of day vs background flow throughput

0

10

20

30

40

50

60

0:15 3:25 7:25 14:25 21:10

Time of day in hh:mm

ba
ck

gr
ou

nd
 fl

ow
 th

ro
ug

hp
ut

 in

M
bp

s FTP with CC
FTP with AS
FTP with NOCC

 60

5.5.2.2. Tests with multiple background flows

The 8-host configuration, shown in Figure 7, is used for these tests. The logical

network topology that we create with the configuration is shown below in Figure 18.

Figure 18: Logical network topology of 8-host configuration

The FTP parameters and the Iperf parameters used for the tests in this section are

shown below in Table 15 and Table 16 respectively.

TCP buffer size 1Mbyte

NISTNet delays 50ms

FTP transfer size 16Gbyte

NISTNet drops YES

Minimum used bandwidth 45%

Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth)

Table 15: FTP parameters for tests to see the effect on multiple background flows

 qost2
 (FTP Server)

 neuromancer
 (50ms delay &
 drops)

 qost1
(Iperf source1)

straylight

 qost4
 (Iperf sink1)

 qost3
 (FTP Client)

 neuromancer
 (10ms delay)

 qost1
(Iperf source2)

 neuromancer
 (10ms delay)

 qost4
 (Iperf sink2)

 61

TCP buffer size 128Kbyte

NISTNet delays 10ms

NISTNet drops NO

Table 16: Background flow parameters for tests to see the effect on multiple

background flows

The results of the tests with multiple background (Iperf) flows are shown in Table 17

and Table 18 below.

Throughput in Mbps

FTP with CC FTP with NOCC

Time of

 Day FTP Background

flow1

Background

flow2

FTP Background

flow1

Background

flow2

12:15am 38.80 25.79 27.53 69.28 10.28 10.61

3:25am 39.04 25.78 27.25 69.36 10.24 10.64

7:25am 38.96 25.85 27.31 69.28 10.32 10.60

2:25pm 38.48 26.02 27.64 69.28 10.45 10.42

9:10pm 39.04 25.86 27.25 69.28 10.26 10.60

Table 17: Throughput of FTP with CC and FTP with NOCC when run with multiple

background flows

Throughput when FTP is run with AS Time of day

FTP Background flow1 Background flow2

12:15am 38.64 25.83 27.60

3:25am 52.24 23.04 24.17

 7:25am 69.20 10.74 10.28

2:25pm 47.68 21.24 22.96

9:10pm 66.48 12.03 11.29

Table 18: Throughput of FTP with AS when run with multiple background flows

 62

The throughput variations of the background flows when run with different FTP

implementations are shown in Figure 19 and Figure 20 shown below.

Figure 19: Time of day vs Background flow1 throughput when run with different FTP

implementations in a network with minimum of 45% used bandwidth

Figure 20: Time of day vs Background flow2 throughput when run with different FTP

implementations in a network with minimum of 45% used bandwidth

Time of day vs Background flow2 throughput

0

5

10

15

20

25

30

0:15 3:25 7:25 14:25 21:10

Time of day in hh:mm

B
ac

kg
ro

un
d

flo
w

2
th

ro
ug

hp
ut

 in

M
bp

s

When run with FTP with CC

When run with FTP with
NOCC
When run with FTP with AS

Time of day vs Background flow1 throughput

0

5

10

15

20

25

30

0:15 3:25 7:25 14:25 21:10

Time of day in hh:mm

B
ac

kg
ro

u
n

d
 fl

o
w

1
th

ro
u

g
h

p
u

t i
n

M

b
p

s

When run with FTP with CC

When run with FTP with
NOCC
When run with FTP with AS

 63

From Figure 19 and Figure 20 we observe that throughputs of the background flows

are the least when FTP is run with NOCC and highest when FTP is run with CC.

When FTP is run with AS, the background flow throughput varies between these two

values depending upon the CC state inputs obtained from the AS. This is same as the

case with a single background flow. We also observe from Table 18 that the

throughput is divided equally between the two background flows. These results show

that FTP with AS has similar effects on the multiple background flows.

5.5.3. Tests with different history data sets

In order to determine the effect of the history data sets on the way the AS gives the

inputs to the FTP server, we tested by using three different history data sets, which

the AS uses to make its decisions. These three history data sets are listed below.

These tests are done with networks with different levels of congestion to have a better

idea of the effect of history data sets.

??The available bandwidth data of all the days in the database of network data. See

Figure 21 below.

03/01/2002 05/03/2002

Figure 21: History data set comprising of the whole database

??The available bandwidth data of only one-week prior to the test day. See Figure

22 below.

03/01/2002 04/28/2002 05/03/2002

Figure 22: History data set comprising of one-week’s data

Whole database

 One week

 64

??The available bandwidth data of all the test days (e.g. Fridays). See Figure 23
below.

03/01/2002 Friday Friday ……… Friday Friday 05/03/2002

Figure 23: History data set comprising the data of test days

5.5.3.1. Tests in a slightly congested network

The parameters used for the tests in this section are listed in Table 19 below.

TCP buffer size 1Mbyte

NISTNet delays 50ms

FTP transfer size 16Gbyte

NISTNet drops YES

Available Bandwidth (ABW) Threshold 42Mbps (58% used bandwidth)

Table 19: Parameters for tests with different history data sets in a slightly congested

network

The results of the tests with different history data sets are shown in Table 20 and

Table 21 below.

Throughput of FTP when run with AS in Mbps

Time of Day History = whole dB History = Previous

Fridays

History = Previous

week

12:15am 45.44 45.52 45.36

3:25am 57.60 52.96 51.36

7:25am 70.08 70.00 70.08

2:25pm 53.76 57.84 70.08

9:10pm 68.08 70.08 70.08

Table 20: Throughput of FTP with AS when run in a network with minimum of 45%

used bandwidth and no background flows for different history data sets,

??

 65

CC states received when FTP is run with AS

Time of day History = whole dB History = Previous

Fridays

History = Previous

week

12:15am 1(4) 1(4) 1(3)

3:25am 1,0(3) 1,0 1,0

7:25am 0(2) 0(2) 0

2:25pm 0,1(2),0 0,1 0

9:10pm 0(3),1 0(2) 0(2)

Table 21: CC State inputs received when FTP with AS is run in a network with a

minimum of 45% used bandwidth and no background flows for different history data

From Table 20 we observe that there is not much difference in the throughput of FTP

at most of the test times with different history data sets. The major difference we see

will be in the number of times that we contact the AS and the number of CC state

changes that we observe during a transfer. This is because by changing the history

data sets we are changing the data that the AS uses to determine the Next Advice

Time (NAT) that it gives to the FTP server. From Table 21 we observe that the

number of inputs received from the AS is highest when we use the whole database as

the history. The TCP CC state changes are also the highest when we use the whole

database as the history data. We can thus observe that there are more redundant inputs

from AS when we use the whole database as the history data and using the previous

week’s data as the history data decreases this number. By redundant inputs we mean

the inputs from the AS, which do not change the congestion control state.

 66

5.5.3.2. Tests in a moderately congested network

The parameters used for the tests in this section are listed in Table 22 below.

TCP buffer size 1Mbyte

NISTNet delays 50ms

FTP transfer size 16Gbyte

NISTNet drops YES

Available Bandwidth (ABW) Threshold 27Mbps (73% used bandwidth)

Table 22: Parameters for tests with different history data sets in a moderately

congested network

The results of the tests with different history data sets for this case are shown in Table

23 and Table 24 below.

Throughput of FTP when run with AS

Time of Day History = whole dB History = Previous

Fridays

History = Previous

week

12:15am 25.60 25.68 25.68

3:25am 57.68 53.60 51.76

7:25am 70.00 69.92 70.00

2:25pm 40.24 42.00 43.92

9:10pm 43.84 45.84 55.28

Table 23: Throughput of FTP with AS when run in a network with a minimum of

60% used bandwidth and no background flows for different history data sets

 67

CC states received when FTP is run with AS

Time of day History = whole dB History = Previous

Fridays

History = Previous

week

12:15am 1(12) 1(8) 1(5)

3:25am 1,0(9) 1,0(5) 1,0(4)

7:25am 0(5) 0(4) 0(2)

2:25pm 0(2),1(4),0(3) 0,1(2),0(2) 0,1,0

9:10pm 0(5),1(4) 0(3),1(2) 0(3),1

Table 24: CC State inputs received when FTP with AS is run in a network with a

minimum of 60% used bandwidth and no background flows for different history data

In this case we observe from Table 24 that the number of times the AS is contacted is

highest when we use the whole database as the history data. But the number of TCP

CC State changes is same for all the three history data sets. Also from Table 23 we

can see that there is not much difference in the observed throughput by changing the

history data. Here again the number of redundant inputs is more when we use the

whole database as the history data.

5.5.3.3. Tests in a highly congested network

The parameters used for the tests in this section are listed in Table 25 below.

TCP buffer size 1Mbyte

NISTNet delays 50ms

FTP transfer size 16Gbyte

NISTNet drops YES

Available Bandwidth (ABW) Threshold 12Mbps (78% used bandwidth)

Table 25: Parameters for tests with different history data sets in a highly congested

network

 68

The test results of the tests with different history data sets are shown in Table 26 and

Table 27 below.

Throughput of FTP when run with AS

Time of Day History = whole dB History = Previous

Fridays

History = Previous

week

12:15am 16.88 17.68 17.52

3:25am 58.40 57.04 56.88

7:25am 68.56 69.44 69.52

2:25pm 34.72 30.72 28.08

9:10pm 29.28 34.16 38.08

Table 26: Throughput of FTP with AS when run in a network with a minimum of

75% used bandwidth and no background flows for different history data sets

CC states received when FTP is run with AS

Time of day History = whole dB History = Previous

Fridays

History = Previous

week

12:15am 1(46),0(23) 1(27),0(10) 1(22),0(15)

3:25am 1,0(48) 1,0(26) 1,0(24)

7:25am 0(18) 0(10) 0(6)

2:25pm 0(7),1(9),0(21),1(3) 0(3),1(6),0(7),1,0(3) 0(2),1(3),0(5),1(2),0(3)

9:10pm 0(24),1(6),0(4),1(9) 0(14),1(5),0(4),1(4) 0(12),1(3),0(2),1(2)

Table 27: CC State inputs received when FTP with AS is run in a network with a

minimum of 75% used bandwidth and no background flows for different history data

 69

From Table 26 we observe that in this case also there is not much difference in the

throughput of FTP with different history data sets. The number of inputs from the AS

is again highest when we use the whole database as the history. The number of TCP

CC state changes is same for all the three history data sets except at 2:25pm at which,

with the history data sets of all Fridays and last one week prior to the test day, there is

one additional TCP CC state change. Contacting the AS more frequently can effect its

performance, especially when there are a lot of clients to be monitored. Hence using

the most recent network data as the history data can serve the AS well.

From the results of tests to evaluate the performance of the Dynamic TCP Congestion

Control Scheme in the Enable service, we observe that, the FTP transfer times are

reduced by an average of 78.30% when FTP is run with AS. This is because we use

TCP with NOCC when there is not much congestion in the network and this increases

its throughput. We can also observe that, by using AS we are making sure that

Congestion Control (CC) in TCP is turned off only when required instead of turning it

off totally. Also we observe that as the percentage of used bandwidth increases, the

percentage improvement in the FTP throughput increases. This is because, as the

percentage of used bandwidth increases the bandwidth available for the standard FTP

decreases. But FTP with AS will not slow down in this case and its throughput

remains the same and hence the percentage increase in the throughput of FTP is

higher.

From the results of tests with background flows we observe that, when FTP is run

with AS, the effect on the throughput of the background traffic is less when compared

to running FTP with NOCC. This shows that by not turning off the Congestion

Control in TCP totally, we are trying to be less aggressive on the background traffic.

From the tests with multiple background flows we observe that the effect on both the

background flows is similar.

 70

From the results of tests with different history data sets, we observe that the AS is

contacted more frequently when we use the whole database as the history database.

Since there is not much difference in the throughput of FTP by changing the history

data, it is better to use whole database as the history data.

All the test results show that the Dynamic TCP Congestion Control Scheme is

implemented correctly in the Enable service and by properly using the AS with the

FTP server we can reduce the transfer times of large files on High Bandwidth Delay

Product networks. Also the mechanism is not totally TCP friendly and hence the

background traffic is effected to some extent.

 71

Chapter 6

Conclusions and Future work

6.1. Conclusions

TCP Congestion Control algorithms have been designed to avoid congestion collapse

in the networks. It performs well on the low delay links but on high delay links it has

a bad performance. Experimental modifications were done to the TCP stack such that

applications can turn off the congestion control in TCP. But turning off the

congestion control totally is not advisable. Hence a mechanism has been designed so

that congestion control is turned off only when required depending on the network

congestion and transfer file size.

We have successfully implemented the Enable service. This Enable service decides

when to change the congestion control state of TCP based on the network conditions.

ProFTPD, a widely used FTP server daemon, was modified to interact with the

Enable service during large file transfers. It dynamically changes the TCP Congestion

Control State based on the inputs from the Enable service. By not totally turning off

the congestion control in TCP we were less aggressive and thus the impact on the

background traffic was reduced. Also we were able to emulate the WAN conditions

in a local environment by using NISTNet, a network emulation tool.

From the results of the tests conducted here with this dynamic congestion control

mechanism, it was found that we could reduce the transfer times for large file

transfers. Also this mechanism is shown to behave in a less aggressive manner on the

background traffic than when the congestion control in TCP is turned off totally.

 72

6.2. Future Work

The first enhancement that can be made is testing the mechanism on a real WAN

environment instead of on an emulated network. This can determine the performance

benefit of the mechanism. The next enhancement can be with the way the Advisory

Server decides about the TCP congestion control state to use. Currently it bases its

decision only on the current available bandwidth on the network path. But other

parameters can be used in addition, to make a better decision. Instead of using the

data collected from a router, we could use pipechar [25] to collect the network state

and use it to determine if there is congestion in the network path or not.

 73

References

[1] M.Allman, V.Paxon, W.Stevens. TCP Congestion Control, RFC 2581.

[2] Anupama Sundaresan. Application Level Congestion Control Enhancements for

 High Bandwidth Delay Product Networks, Master of Science Thesis, University of

 Kansas, June 2000, http://www.ittc.ukans.edu/projects/enable/anu_thesis.pdf

[3] B. Tierney, D. Gunter, J. Lee, M. Stoufer, J. B. Evans, “Enabling Network-Aware

 Applications”, 10 th IEEE Symposium on High Performance Distributed

 Computing, August 2001.

[4] XueJun Mao, Victor Frost, Joseph Evans, and Mahesh Akarapu, "Reducing the

 Transfer Time for Large Files in High Performance Networks”, Sept. 2002,

 ITTC-FY2003-20430-01.

[5] Sally Floyd. Congestion Control Principles. Internet-Draft

 draft-floyd-cong-02.txt, April 2000.

[6] Van Jacobson, Robert Braden, David Borman. TCP Extensions for High

 Performance, May 1992. RFC 1323.

[7] Hans Kruse. Performance of Common Data Communications Protocols Over

 Long Delay Links: An Experimental Examination. In 3rd International Conference

 on telecommunication Systems Modeling and Design, 1995.

[8] TCP Tuning Guide for Distributed Application on Wide Area Networks, February

 2001. http://www-didc.lbl.gov/tcp-wan.html

 74

[9] PSC: Enabling High Performance Data Transfers on Hosts, September 1999.

 http://www.psc.edu/networking/perf_tune.html

[10] Net100: Development of Network-Aware Operating systems, December 2000.

 http://www.net100.org

[11] “The WEB100 Project, Facilitating Effective and Transparent Network Use”,

 http://www.web100.org/

[12] Auto-tuning in Linux 2.4 kernels

 http://www.linuxhq.com/kernel/v2.4/doc/networking/ip-sysctl.txt.html

[13] Sivakumar, H, S. Bailey, R. L. Grossman. “PSockets: TheCase for Application-

 level Network Striping for Data Intensive Applications using High Speed Wide

 Area Networks”, Proceedings of IEEE Supercomputing 2000, Nov. 2000.

 http://www.ncdm.uic.edu/html/psockets.html

[14] NISTNet: A network emulation tool developed by the NIST, September 1997.

 http://snad.ncsl.nist.gov/itg/nistnet/

[15] ProFTPD: Highly configurable FTP server software

 http://www.proftpd.org/

[16] NcFTP - Browser program for the File Transfer Protocol

 http://www.ncftpd.com/ncftp/

[17] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson. Iperf – The TCP/UDP

 Bandwidth measurement tool. http://dast.nlanr.net/Projects/Iperf/

 75

[18] Douglas E. Comer. Internetworking with TCP/IP, Volume I, Principles,

 Protocols, and Architecture. Prentice Hall, 3rd edition, 1995.

[19] Larry L.Peterson & Bruce S. Davie. Computer Networks: A Systems Approach,

 2nd edition, 2000, Morgan Kaufmann Publishers, Inc.

[20] Jon Postel. Transmission Control Protocol, September 1981. RFC 793.

[21] Victor O.K. Li, Zaichen Zhang. “Internet Multicast Routing and Transport

 Control Protocols”, Proceedings of the IEEE, Vol. 90, No.3, March 2002

[22] J.Postel, J.Reynolds. File Transfer Protocol, October 1985. RFC 959.

[23] J.Postel, J.Reynolds. Telnet Protocol Specification, May 1983. RFC 854.

[24] ProFTPD Developer’s Guide by TJ Saunders

 http://www.castaglia.org/proftpd/doc/devel-guide/

 [25] Jin, G., Yang, G., Crowley, B., Agarwal, D., “Network Characterization

 Service”, Proceedings of the IEEE High Performance Distributed Computing

 conference, August 2001, http://www-didc.lbl.gov/NCS/

[26] Van Jacobson. Packet Sniffing tool. http://www.tcpdump.org

[27] Shawn Ostermann. tcptrace - TCP dump file analysis tool.

 http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html

 76

[28] MySQL: Open source database

 http://www.mysql.com

[29] Tim Shepard. xplot - A Plotting Tool, February 1991.

 ftp://mercury.lcs.mit.edu/pub/shep

[30] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and Tuecke, S. “The Data

 Grid: Towards an Architecture for the Distributed Management and Analysis of

 Large Scientific Data Sets”. Journal of Network and Computer Applications,

 2000.

[31] XML-RPC: http://www.xmlrpc.org/

[32] D. Gunter, B. Tierney, B. Crowley, M. Holding, J. Lee NetLogger: A Toolkit for

 Distributed System performance Analysis, Proceedings of the IEEE Mascots

 2000 Conference, August 2000. http://www-didc.lbl.gov/NetLogger/

[33] Bruce A. Mah. Pchar: A Tool for Measuring Internet Path Characteristics,

 February 1999. http://www.employees.org/~bmah/Software/pchar/

[34] Internet2: www.internet2.edu

 77

Appendix

Appendix A

A.1. Specifications of the machines used in the test scenarios

Machine Name Specification
 qost1 Pentium II 400MHz
 qost2 Pentium II 400MHz
 qost3 Pentium II 400MHz
 qost4 Pentium II 400MHz
 Neuromancer Celeron 434 MHz(Dual processor)
 Straylight Celeron 467 MHz(Dual processor)
 testbed33 Pentium III 1GHz
 testbed34 Pentium III 1GHz

Table 28: Specifications of the machines used in the test scenarios

Appendix B

B.1. Using NISTNet

NISTNet has a graphical user interface, which allows the user to select and monitor

specific traffic streams passing through the router and to apply selected performance

effects to the IP packets of the stream. It also provides a command line interface to be

able to generate scripts, so that it can be driven by traces produced from

measurements of actual network conditions. The command-line interface used to

generate scripts used in the tests is cnistnet. Its usage is shown below:

cnistnet –u turns the NISTNet emulator ON and cnistnet –d turns the emulator OFF.

 78

Once the emulator is turned ON, we can identify the flow to which to apply the WAN

effects using various filters such as the source and destination addresses, source and

destination ports. To all such identified flows we can apply the WAN effects using

the following command [14].

cnistnet -a src[:port[.protocol]] dest[:port[.prot]] [cos]
 [--delay delay [delsigma[/delcorr]]]
 [--drop drop_percentage[/drop_correlation]]
 [--dup dup_percentage[/dup_correlation]]
 [--bandwidth bandwidth]
 [--drd drdmin drdmax [drdcongest]]

The WAN effects that we can add using the above command are the delay, packet

drop rate, packet duplication rate, and the bandwidth to which to limit the flow.

To remove the NISTNet filter we can identify the flow and remove it using the

following command.

cnistnet -r src[:port[.prot]] dest[:port[.prot]] [cos]

To view the statistics of the packets of the flow identified by the NISTNet filters, we

use the following commands.

cnistnet -s src[:port[.prot]] dest[:port[.prot]] [cos]

cnistnet -S src[:port[.prot]] dest[:port[.prot]] [cos]

 79

B.2. NISTNet script to dynamically change the drop rate of the traffic

/* Program to run a script which dynamically adjusts the drop rates along
 a path using the cnistnet command. */

#include<stdio.h>

main(int argc,char *argv[])
{
 char sec[10],drop[10],temp_drop[10];
 char *str =(char *)malloc(100);
 char *str1 =(char *)malloc(50);
 char *str2 =(char *)malloc(100);
 FILE *fin;

 fin = fopen(argv[1],"r");

 strcpy(str2,"cnistnet -r 192.168.124.2 192.168.126.6 --drop ");

 system("cnistnet -u");

 //Delays in the reverse direction for the FTP flow
 system("cnistnet -a 192.168.126.6 192.168.124.2 --delay 25");

 //Delays in the forward and reverse directions for the first Iperf flow
 system("cnistnet -a 192.168.125.1 192.168.122.4 --delay 5");
 system("cnistnet -a 192.168.122.4 192.168.125.1 --delay 5");

 //Delays in the forward and reverse directions for the second Iperf flow
 system("cnistnet -a 192.168.128.33 192.168.127.34 --delay 5");
 system("cnistnet -a 192.168.127.34 192.168.128.33 --delay 5");

 while (fscanf(fin,"%s",drop)!= EOF)
 {
 strcpy(temp_drop,drop);

 if(fscanf(fin,"%s",sec)== EOF)
 {
 printf("Error Reading from the input file\n");
 exit(1);
 }

 80

 strcpy(str1,"sleep ");
 strcat(str1,sec);

 strcpy(str,"cnistnet -a 192.168.124.2 192.168.126.6 --delay 25 --drop ");
 strcat(str,drop);

 system(str);
 system(str1);

 }
 strcat(str2,temp_drop);

 system(str2);
 system("cnistnet -d");

 fclose(fin);
}

B.3. Script used to generate the drop rates data from the available bandwidth
data

/* Program to convert the input bandwidth values into the corresponding drop rates */

#include<stdio.h>
#include<math.h>
#include<stdlib.h>

#define C 9.76 //1.22*8
#define S 1076
#define RTT 50 //milliseconds
#define FACTOR 1000 //mbps * msec

main(int argc,char **argv)
{
 FILE *fin,*fout;
 float bw,temp,drop_rate;
 int sec;

 fin = fopen(argv[1],"r");
 fout = fopen(argv[2],"w");

 while (fscanf(fin,"%f",&bw)!= EOF)
 {

 81

 if(fscanf(fin,"%d",&sec)== EOF)
 {
 printf("Error Reading from the input file\n");
 exit(1);
 }

 temp = (C*S*8)/(RTT*bw*FACTOR);
 drop_rate = pow(temp,2);

 fprintf(fout,"%f %d\n",drop_rate,sec);

 }

 close(fin);
 close(fout);

}

Appendix C

C.1. Commonly used data structures of the ProFTPD

a) module_struc

Declaration:

struct module_struc {
 module *next, *prev;

 /* module API version */
 int ver;

 /* module name */
 char *name;

 /* configuration directive table */
 conftable *conftable;

 /* command handler table */
 cmdtable *cmdtable;

 82

 /* authentication handler table */
 authtable *authtable;

 /* module initialization */
 int (*module_init)();

 /* post-fork initialization */
 int (*module_init_child)();

 /* internal use, greater number == higher priority */
 int priority;
};

Source File: include/modules.h

b) cmd_rec

Declaration:

 typedef struct cmd_struc {

 /* memory pool for this object */
 pool *pool;

 server_rec *server;
 config_rec *config;

 /* temporary pool which only exists while the cmd's handler is running*/
 pool *tmp_pool;

 int argc;
 char **argv;

 /* entire argument (excluding command) */
 char *arg;

 /* command group */
 char *group;

 /* command class */
 int class;

 83

 /* hack to speed up symbol hashing in modules.c */
 int symtable_index;

 /* private data for passing/retaining among handlers */
 privdata_t *private;

 /* internal use */
 array_header *privarr;

 } cmd_rec;
SourceFile:include/dirtree.h

c) server_rec

Declaration:
 typedef struct server_struc {

 struct server_struc *next, *prev;

 /* memory pool for this object */
 pool *pool;

 /* set holding all the servers */
 xaset_t *set;

 /* this server's name */
 char *ServerName;

 /* this server's address */
 char *ServerAddress;

 /* this server's fully qualified domain name */
 char *ServerFQDN;

 /* this server administrator's name */
 char *ServerAdmin;

 /* this server's welcome message */
 char *ServerMessage;

 /* port number for this server */
 int ServerPort;

 84

 /* receive/send windows */
 int tcp_rwin, tcp_swin;

 /* specifically override the TCP rwin */
 int tcp_rwin_override;

 /* specifically override the TCP swin */
 int tcp_swin_override;

 /* do not greet until after the user's logged in */
 int AnonymousGreeting;

 /* internal address of this server */
 p_in_addr_t *ipaddr;

 /* our listening connection */
 struct conn_struc *listen;

 /* configuration details */
 xaset_t *conf;

 } server_rec;

SourceFile:include/dirtree.h

