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Problem Summary

Continuous introduction of new applications for existing 
Internet infrastructure (ex: Voice over IP, Video)
These applications exhibit very different traffic 
characteristics, but they may share the same FIFO 
queue at switching and routing nodes
If queues are allowed to only drop packets during 
overflow conditions, then bursty traffic flows (like TCP) 
will face greater dropping probabilities than smooth 
traffic
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Problem Summary

Dropping Prob. vs. Burst Size, Tail Drop
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Problem Summary

Traffic on the Internet may become more 
bursty in some areas as network access speed 
improves:

It was found that a 33Kbps modem user produces a peak rate that 
is about 3.3 times the average transfer rate
A similar customer using a 1Mbps broadband connection 
produces a peak rate that is approximately 100 times the average
rate [1]. 
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Problem Summary

While aggregation of data flows can “smooth” 
the traffic, this is not always practical for 
systems with a smaller number of users –
bursty traffic may still face high dropping rates

How can the dropping probabilities be 
equalized?
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Random Early Detection (RED)

Solution: Random Early Detection w/ Dropping

Packets are dropped in a probabilistic fashion before 
the queue reaches an overflow state

Compared to a tail drop queue, a RED queue will 
operate with a lower queue fill, especially during peak 
load conditions

This will allow bursts of packets to “fit” into the 
available queue spaces 
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Random Early Detection (RED)

RED Parameters:

minth –
Minimum 
Threshold for 
Packet Dropping

maxth –
Maximum 
Threshold for 
Packet Dropping

maxp –

Maximum 
Dropping 
Probability

RED Dropping Function – Dropping Probability d(k) vs. Queue Fill
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Random Early Detection (RED)

RED aggressiveness d(k) can be increased by 
decreasing minth or increasing maxp

For RED using instantaneous queue fill sampling, 
maxth will generally be set to “K”, the queue size
Aggressive RED will decrease the mean queue fill, but 
it will also increase overall dropping probability
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Goals of RED

Some of the proposed [2] benefits of RED are:

Congestion Avoidance
Resistance to TCP synchronization
Increased fairness to bursty TCP-type traffic

This project focuses on fairness considerations and the enhanced
benefits made possible by class-sensitive RED (WRED)
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Notes on RED Queue Fill Averaging

The study of the dynamics of the use of queue fill 
averaging algorithms with RED is a major current area 
of research
Averaging will make RED react more slowly to bursts, 
but it provides a more accurate sense of queue load
This project will use instantaneous queue fill sampling 
in order to make analytic solutions tractable and to 
emphasize the effects of RED with focus on 
differentiated service performance



11

Analysis of RED

Bonald/May/Bolot proposed the first analytic model for RED (INFOCOM 2000) [3]

Uses Continuous-Time Markov Chain (CTMC) analysis to find queue state 
probabilities

Key Assumptions:

Poisson Arrivals see Time Averages (PASTA)  (analysis techniques may not be 
valid for other arrival distributions [3])
Assumption #1 [3]: Packets that are part of a burst will be dropped based on the 
value of d(k) as sampled at the time the burst enters the queue, not at the time the 
packet enters – analysis will therefore represent a lower bound for the dropping 
probability
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Analysis of RED

Dropping Probabilities [3]:
Tail Drop:

RED:

K = Queue Size
B = Burst Size

( ) ( 1) ( 1) ... (1) (1)REDP K K d K dπ π π= + − − + +

( 1) 1( ) ( 1) ..... ( 1)TD
BP K K K B

B B
π π π−

= + − + + − +

Note: Transition probabilities and thus state probabilities will not be the 
same for Tail Drop And RED CTMCs
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Weighted RED (WRED)

Weighted Random Early Detection performs RED on 
each class of traffic individually

It will be shown to be possible to increase the dropping 
probability fairness to levels beyond what is possible 
using RED

WRED allows the network designer to provide 
differentiated service quality with respect to dropping 
probability – including allowing bursty traffic to have the 
higher priority
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Weighted RED (WRED)

WRED Dropping Function – Dropping Probability d(k) vs. Queue Fill
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Extending Analysis to WRED

The same type of analysis used for bursty
traffic and simple RED queues can be 
extended to weighted RED

Transition probabilities will differ

Dropping can be calculated on a class-by-class 
basis
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WRED Analysis Example

Burst Size (B) = 2
Offered Load (ρ) = 0.6 Note: ρ1 = ρ2 = 0.3  

Queue Size = 4 (System Size = 5) 
Arrival Rates (each class) = 0.15 bursts/second, Total Arrival Rate λ=0.3

RED Parameters Dropping Probabilities di(k)
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WRED Analysis Example

WRED Continuous-Time Markov Chain

Bλρ
µ

=
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WRED Analysis Example
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WRED Analysis Example

Solve for subject to
0.3 0 0.3 0 0 0
1 1.3 0 0.3 0 0
0 1 1.29 0.05625 0.2344 0
0 0 1 1.2459 0.1417 0.1042
0 0 0 1 1.1490 0.1490
0 0 0 0 1 1

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−

= ⎜ ⎟
−⎜ ⎟

⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

Q

0 = πQ 1iπ =∑

( )0.4812 0.1445 0.1878 0.0979 0.0681 0.0203=πResults:
, 1 0.0983REDP =

, 2 0.1673REDP =

, 1 1* ( )RED x

x

P d xπ=∑
, 2 2* ( )RED x

x

P d xπ=∑
Class 1 receives preferred service due to its 
higher minimum threshold
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WRED Simulation

Why simulation?

More accurate results than analysis with 
Approximation #1 and/or non-Poisson sources 
Markov Chain analysis becomes cumbersome 
for large queue sizes and complex mixes of 
traffic
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WRED Simulation Components

Bursty Source Model: 
Batch Poisson Arrivals representing burst traffic ( “TCP”) 
B packets arriving together with independent exponential packet length distribution

Smooth(er) Source Model:
Constant interarrival times, but packet lengths are exponential (“UDP”)
Represents types of traffic with non-identical packets generated at regular intervals 
Similar to some video and speech applications

RED Block
The WRED device will control which packets are allowed to enter the queue on a class-by-
class basis
One RED block will be assigned to each class of traffic
Each block can have separate RED parameters (thresholds, maxp, etc.)
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WRED Simulation Components: 
Bursty Source (“TCP”) Model
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WRED Bursty Source: Verification

The bursty source can be verified by comparing simulation output 
to a CTMC-based analytic solution for a tail drop queue

Simulation Results

Simulation Setup
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WRED Simulation Components: 
Smooth Source (“UDP”) Model

A standard constant interarrival source models the “UDP” traffic
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WRED Simulation Components: 
RED Block Structure

RED Block Routing

Packets will be routed to either the 
queue or an exit based on the current 
number of packets in the queue, 
threshold settings, and the probabilistic 
RED dropping input
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WRED Simulation Components: 
RED Block Structure

RED Control and Decision Blocks
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RED Block: Verification

To verify the performance 
of the RED block, results 
from this model are 
compared to the analytic 
and simulation results 
found in the 
Bonald/May/Bolot paper 
[3] RED Block Verification 

Simulation Parameters
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RED Block: Verification
RED Verification: Dropping vs. Load
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Despite Approximation #1, the RED analytic solution is accurate when K is 
large (40+) and B is relatively small

The RED simulation block closely matches both the analytic solutions and 
independent published simulation results
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WRED Model Overview
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WRED: Simulation vs. Analysis

To finish the model verification process, the individually tested 
blocks are combined into the final model and compared to a 
WRED analytic result similar to the previous example 

A larger system size (10) is used so Approximation #1 will have 
less effect on the simulation result

A similar approximation is used to place an upper bound on the 
analysis – all packets will be dropped using the probability seen by 
the last packet in the burst

1max 9th =1min 4th =
1 2max max 1p p= =

2min 1th = 2max 9th =
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WRED: Simulation vs. Analysis

Dropping Probabilities
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As expected, the simulation dropping 
probability is slightly higher than the 
lower bound found using Approximation #1.

The simulation results are within the range of values expected using analysis

WRED Model Validation Parameters
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Simulation –
RED (No Class Distinction)

An equal load of smooth and bursty traffic is 
sent to identical RED blocks 

Parameters for RED Simulation
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Simulation –
RED (No Class Distinction)

RED aggressiveness is varied by decreasing the minimum threshold for packet discard

RED, minth vs. Blocking Prob.
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Simulation –
RED (No Class Distinction)

RED aggressiveness is varied by increasing the maximum probability of packet discard

Dropping Probability vs. Maximum Dropping Probability, ρ=1.2, minth=0

RED, maxp vs. Blocking
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Simulation –
RED (No Class Distinction)

RED balances packet dropping by lowering the average queue fill

Queue Fill vs. Max Drop Probability
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Simulation –
RED (No Class Distinction)

RED does improve fairness, but further refinement 
could be performed by using WRED to provide class-
specific RED dropping
Simulations show that fairness increases rapidly with 
the introduction of RED
Extreme RED parameters do not provide greater 
equality, but they do cause an undesirable overall 
increase in dropping probability
With these considerations, a maximum dropping 
probability of 0.5 is selected for use 
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Simulation – Using WRED to 
Eliminate Bias

Differentiated dropping parameters will be 
introduced by lowering the minimum discard 
threshold for UDP traffic relative to TCP
Adjustment of these parameters will show that 
near-equal dropping probabilities are 
achievable through the use of WRED
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Simulation – Using WRED to 
Eliminate Bias

A threshold difference of ten packets is found to favor TCP traffic; the reduction of the preference is needed

WRED: maxp = 0.5, minth(UDP) = minth(TCP) - 10
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Simulation – Using WRED to 
Eliminate Bias

A threshold preference of five packets is found to provide near-equal dropping probabilities for both classes of traffic

WRED: maxp = 0.5, minth(UDP) = minth(TCP) - 5
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Simulation – Using WRED to 
Eliminate Bias

But are these parameters valid 
across all traffic loads?

Dropping Probability vs. Offered Load, 
minth(UDP)=50 minth(TCP)=55, maxp=0.5
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Parameters provide 
equality across a wide 
range of realistic loads 

At extreme loads, 
WRED is unable to 
compensate – but 
dropping is severe for 
all traffic at ρ > 1.5

These parameters will 
be effective at 
equalizing dropping for 
most realistic loads
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Simulation – Using WRED to 
Eliminate Bias

How will the system perform as the traffic composition changes?

Dropping Probability vs. % of Offered Load
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The predominant traffic 
class will receive slightly 
better dropping 
performance at the 
extremes, especially 
when bursty traffic is 
more than 70% of total 
traffic

However, the traffic-
weighted mean remains 
stable and the system is 
not overly sensitive to 
the traffic makeup

Class Dropping Probabilities vs. % Of Traffic that is TCP, minth=55/50, maxp=0.5, ρ=1.2
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Simulation – Using WRED to 
Eliminate Bias

Other considerations: Delay & Congestion
WRED: Delay vs. minth(UDP)
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The use of WRED decreases delay due to the lower average queue fill 
value

Also, fewer drops occur from the end of the queue during overflow 
conditions

Packet Delay Proportion of Drops Due to Overflow
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Simulation – Using WRED for 
Differentiated QoS

Another approach to WRED implementation is to allow bursty
class dropping probabilities that would not be possible using 
simple RED

Problem Scenario:
A system must be designed that assigns high-priority bursty traffic 
a dropping probability that is approximately ½ of the dropping 
probability for the low-priority smooth traffic

Can WRED solve this problem?
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Simulation – Using WRED for 
Differentiated QoS

Answer: Yes* 
Minth(UDP)=30, maxp=0.5
Minth(TCP)=60

WRED: maxp = 0.5, minth(UDP) = minth(TCP) - 25
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Simulation – Using WRED for 
Differentiated QoS

*But, the WRED parameters 
only provide the desired 
relationship at a single load 
point

Once again, extreme loads 
will exceed WRED’s ability 
(with these design 
parameters) to overcome the 
bias against bursty traffic

However, the system still 
provides priority service to 
bursty traffic over a wide 
range of loads (< 1.6)

Dropping Probability vs. Offered Load, minth(UDP)=30 
minth(TCP)=60, maxp=0.5
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Conclusions

WRED offers greater flexibility for network designers by allowing multiple 
classes of dissimilar traffic to have specified relative dropping probabilities

However, care must be taken when considering the operating load:
Aggressive differentiation of WRED parameters may make the system 
more sensitive to load

Slight discrimination against a less dominant traffic stream occurs when a 
system is designed for equal class loads
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Possible Future Research

Analysis/Simulation of networks of WRED 
nodes

WRED marking as a trigger for TCP control 
mechanisms

Dynamic adjustment of WRED parameters
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