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Project Goals

• Develop a Software Thread Manager module for 
use in the RT-FPGA project.

• Create a basic “core” platform for testing this and 
future functional modules.

• Demonstrate the use and advantage of the 
Hardware/Software Co-design methodology in 
system design.



A Traditional Approach

• System requirements are developed and then 
analyzed to determine the “level” of technology 
required to fulfill these needs. 

• Hardware and software teams then independently 
develop their designs combining late in the 
development cycle for first prototype testing.

• Tends to create a generalized hardware platform 
and specialized software.



Hardware/Software Co-design

• Seeks to move “specialized” functionality from 
software into hardware.

• Takes advantage of hardware’s ability to perform 
multiple tasks in parallel versus the sequential,  
nature of software execution.

• Tends to create a more balanced distribution of the 
application’s specifics across the hardware and 
software, reducing software complexity.   



Software Thread Manager (SWTM)

• Provide the services and data structures needed to 
track the present status of each of the system’s 
software threads. 

• Coordinate access to these services to ensure 
proper functionality.

• Implement a Ready to Run Queue and simple 
FIFO based scheduling mechanism.

• Provide interface to separate Scheduler module for 
implementing additional scheduling algorithms.



SWTM Challenges

• Defining a “full” set of services to be implemented 
and their semantics not yet knowing the application 
or other FPGA based modules it might interact with.

• Ensuring proper operation of each service, given the 
environment in which they are utilized.  
– a service might modify multiple data structures 
– can be interrupted at any time



SWTM Services

• Thread services
– create_thread_detached
– create_thread_ joinable
– exit_thread
– clear_thread
– join_thread
– detach_thread
– read_thread  (R/W)

• Queue management
– add_thread
– next_thread
– current_thread
– yield_thread
– que_length
– idle_thread  (R/W)



SWTM Services

• System debug (R/W)
– soft_start 
– soft_stop 
– soft_reset 

• 27 - User
• 28 - SpinLock
• 29 - Semaphore
• 30 - Scheduler
• 31 - SWTM

• SWTM debug
– exception_address
– exception_cause

• write to read only
• undefined address
• soft reset failure



SWTM State : Thread Status
Thread ID Table Encoding  (each row)

0         7  8         15 16         23  24  25  26  27  28  29 30   31   

-------------|-------------|-------------|-------------------------------------
Thread ID   |    Next     |     PID     |  D   J  S1  S0  E3  E2  E1  ERR_BIT

-------------|-------------|-------------|-------------------------------------

S1  S0 E3  E2  E1
0   0 unused 0   0   0    error in status or no IDs
0   1 used, exited 0   0   1    THREAD_ALREADY_TERMINATED
1   0 used, not exited, not queued 0   1   0    THREAD_ALREADY_QUEUED
1   1 used, not exited, queued 0   1   1

1   0   0
J = 0 this thread is not joined 1   0   1 
J = 1 this thread is joined 1   1   0

1   1   1
D = 0 this thread is not detached
D = 1 this thread is detached

PID   =  this thread's Parent ID ERR_BIT = 0   no error occurred
Next  =  next thread in queue ERR_BIT = 1   set for all errors



Basic 
Thread
Support



Accessing SWTM Services

• Access begins by telling SWTM which service to 
perform and supplying any additional parameters 
needed by the particular service.   write(s)

• Caller must wait for the service to finish.  read(s)
• Caller reads result.   read

Sequence is not atomic and additional means are 
required to ensure sequence is not interrupted until 
after caller receives the result.



Atomic Hardware Function

• Takes advantage of the atomic nature of a simple 
“read” instruction in assembly. 

• The initial write(s) required are performed by 
passing the values on the address bus to the SWTM.
– Base address specifies which service to perform
– Lower order bits pass the parameter, if needed

• The varying length of time to process is managed by 
inserting wait states to extend the instruction cycle.

• The result is then returned as the value for the read.



SWTM Service Decoding
0                15 16         21 22  23  24  25  26  27  28  29 30  31   
-------------------|-------------|--------------------------------------
SWTM Base Address  |   Service   | T   T   T   T   T   T   T   T 0   0
-------------------|-------------|--------------------------------------

ADDR_DECODE : process(Bus2IP_Addr) is
--
-- combine address bits to form a 6-bit address
-- to decode for memory mapping, 
-- addr2 set to 0 for all valid addresses, else 1
--
begin

if (Bus2IP_Addr(17 to 21) < 5)  or 
(Bus2IP_Addr(22 to 29) = Z32(0 to 7)) then
addr2 <= Bus2IP_Addr(16) or Bus2IP_Addr(30) or Bus2IP_Addr(31);

else
addr2 <= '1';     -- invalid address

end if;
addr <= addr2 & Bus2IP_Addr(17 to 21);    

end process ADDR_DECODE;



CYCLE_CONTROL : process(Bus2IP_Clk) is
--
begin

IP2Bus_Retry       <= '0';    -- no retry
IP2Bus_Error       <= '0';    -- no error
IP2Bus_PostedWrInh <= '1';    -- inhibit posted write
--
-- count the number of elapsed clock cycles in transaction 
--
if Bus2IP_Clk'event and (Bus2IP_Clk = '1') then

if (Bus2IP_CS = '0') then
cycle_count <= 0;                 -- hold in reset, or

elsif cycle_count < C_RESET_TIMEOUT then 
cycle_count <= cycle_count + 1;   -- next cycle, or

else 
cycle_count <= C_RESET_TIMEOUT;   -- saturate counter

end if;
end if;   
--
-- activate time out suppress if count exceeds TOUT_CYCLES
--
if cycle_count > TOUT_CYCLES then

IP2Bus_ToutSup <= '1';     -- halt time out counter
else 

IP2Bus_ToutSup <= '0';     -- release
end if;

end process CYCLE_CONTROL;



MANAGER_ACCESS : process (Bus2IP_Clk) is
begin

if Bus2IP_Clk'event and (Bus2IP_Clk = '1') then

if(Bus2IP_RdCE = '0') then 
IP2Bus_Data(0 to 31) <= (others => '0');

end if;

IP2Bus_Ack   <= '0'; -- pulse(010) to end bus transaction
access_error <= '0'; -- pulse(010) for access error interrupt 

case addr is
when SERVICE_1 =>   -- code to perform SERVICE_1
when SERVICE_2 =>   -- code to perform SERVICE_2
.
.

when SERVICE_n =>   -- code to perform SERVICE_n
when others => 
if ((Bus2IP_WrCE = '1') or (Bus2IP_RdCE = '1')) then
raise_Exception(UNDEFINED_ADDRESS);

end if;
end case;             -- case addr

end if;                 -- rising clock edge
end process MANAGER_ACCESS; 



when C_READ_THREAD =>
ADDRA <= '0' & Bus2IP_Addr(22 to 29); -- thread ID
if (Bus2IP_WrCE = '1') then 
case cycle_count is
when 0 => -- initiate BRAM write
if (core_stop = '1') then 
WEA  <= '1';    ENA  <= '1';
DIA  <= Bus2IP_Data(0 to 31);

else
raise_Exception(WRITE_TO_READ_ONLY);

end if;
when 1 => -- write done
end_transaction;

when others =>
WEA  <= '0';      ENA  <= '0';

end case;
elsif (Bus2IP_RdCE = '1') then
case cycle_count is
when 0 => -- initiate BRAM read
WEA  <= '0';      ENA  <= '1';

when 1 => null; -- still reading
when 2 => -- set output data, signal done
IP2Bus_Data(0 to 31) <= DOA;
end_transaction;

when others =>
WEA  <= '0';      ENA  <= '0';

end case;
end if; 



SWTM Service Summary
cycles added total cycles time(ns)

ADD_THREAD 5 8 80
CLEAR_THREAD 7 10 100
CREATE_THREAD_JOINABLE 5 8 80
CREATE_THREAD_DETACHED 5 8 80
CURRENT_THREAD 0 3 30
DETACH_THREAD  7 10 100
EXIT_THREAD  14 17 170
IDLE_THREAD    0 3 30
JOIN_THREAD 7 10 100
NEXT_THREAD  4 7 70
QUEUE_LENGTH    0 3 30
READ_THREAD  2 5 50
YIELD_THREAD  10 13 130

EXCEPTION_ADDRESS 0 3 30
EXCEPTION_REGISTER 0 3 30

SOFT_START     0 3 30
SOFT_STOP      0 3 30
SOFT_RESET     513 516 5160



Future Work

• Experiment with coding “style” to produce smaller 
foot print for implementation.

• Adapt existing services for optimal interaction 
with future system modules as they are developed.

• Adapt design for use in other FPGA architectures.

Additional information : http://people.eecs.ku.edu/~mfinley/


