
Hardware/Software Co-design :
Software Thread Manager

Michael Finley
EECS 891, Fall 2004
University of Kansas

Committee Members

• Dr. David Andrews (chair)
• Dr. Perry Alexander
• Dr. Jerry James

Thank you ...

The Big Picture
Real Time FPGA project (RT-FPGA, Hybrid Threads) :

Utilizing Hardware/Software Co-design techniques, develop
a Real Time Operating System supporting a Multi-threaded
Application platform.

Mitch Trope Ed Komp
Razali Jidin Dan Deavors
Jorge Ortiz Dr. David Andrews
Wesley Peck Dr. Douglas Niehaus
Jason Agron Dr. Jerry James

The Big Picture
Real Time FPGA project (RT-FPGA, Hybrid Threads) :

Utilizing Hardware/Software Co-design techniques, develop
a Real Time Operating System supporting a Multi-threaded
Application platform.

Publications

Programming Models for Hybrid FPGA-CPU Computational
Components: A Missing Link
David Andrews, Douglas Niehaus, Razali Jidin, Michael Finley,
Wesley Peck, Michael Frisbie, Jorge Ortiz, Ed Komp, and
Peter Ashenden; IEEE micro, July/August 2004

Project Goals

• Develop a Software Thread Manager module for
use in the RT-FPGA project.

• Create a basic “core” platform for testing this and
future functional modules.

• Demonstrate the use and advantage of the
Hardware/Software Co-design methodology in
system design.

A Traditional Approach

• System requirements are developed and then
analyzed to determine the “level” of technology
required to fulfill these needs.

• Hardware and software teams then independently
develop their designs combining late in the
development cycle for first prototype testing.

• Tends to create a generalized hardware platform
and specialized software.

Hardware/Software Co-design

• Seeks to move “specialized” functionality from
software into hardware.

• Takes advantage of hardware’s ability to perform
multiple tasks in parallel versus the sequential,
nature of software execution.

• Tends to create a more balanced distribution of the
application’s specifics across the hardware and
software, reducing software complexity.

Software Thread Manager (SWTM)

• Provide the services and data structures needed to
track the present status of each of the system’s
software threads.

• Coordinate access to these services to ensure
proper functionality.

• Implement a Ready to Run Queue and simple
FIFO based scheduling mechanism.

• Provide interface to separate Scheduler module for
implementing additional scheduling algorithms.

SWTM Challenges

• Defining a “full” set of services to be implemented
and their semantics not yet knowing the application
or other FPGA based modules it might interact with.

• Ensuring proper operation of each service, given the
environment in which they are utilized.
– a service might modify multiple data structures
– can be interrupted at any time

SWTM Services

• Thread services
– create_thread_detached
– create_thread_ joinable
– exit_thread
– clear_thread
– join_thread
– detach_thread
– read_thread (R/W)

• Queue management
– add_thread
– next_thread
– current_thread
– yield_thread
– que_length
– idle_thread (R/W)

SWTM Services

• System debug (R/W)
– soft_start
– soft_stop
– soft_reset

• 27 - User
• 28 - SpinLock
• 29 - Semaphore
• 30 - Scheduler
• 31 - SWTM

• SWTM debug
– exception_address
– exception_cause

• write to read only
• undefined address
• soft reset failure

SWTM State : Thread Status
Thread ID Table Encoding (each row)

0 7 8 15 16 23 24 25 26 27 28 29 30 31

-------------|-------------|-------------|-------------------------------------
Thread ID | Next | PID | D J S1 S0 E3 E2 E1 ERR_BIT

-------------|-------------|-------------|-------------------------------------

S1 S0 E3 E2 E1
0 0 unused 0 0 0 error in status or no IDs
0 1 used, exited 0 0 1 THREAD_ALREADY_TERMINATED
1 0 used, not exited, not queued 0 1 0 THREAD_ALREADY_QUEUED
1 1 used, not exited, queued 0 1 1

1 0 0
J = 0 this thread is not joined 1 0 1
J = 1 this thread is joined 1 1 0

1 1 1
D = 0 this thread is not detached
D = 1 this thread is detached

PID = this thread's Parent ID ERR_BIT = 0 no error occurred
Next = next thread in queue ERR_BIT = 1 set for all errors

Basic
Thread
Support

Accessing SWTM Services

• Access begins by telling SWTM which service to
perform and supplying any additional parameters
needed by the particular service. write(s)

• Caller must wait for the service to finish. read(s)
• Caller reads result. read

Sequence is not atomic and additional means are
required to ensure sequence is not interrupted until
after caller receives the result.

Atomic Hardware Function

• Takes advantage of the atomic nature of a simple
“read” instruction in assembly.

• The initial write(s) required are performed by
passing the values on the address bus to the SWTM.
– Base address specifies which service to perform
– Lower order bits pass the parameter, if needed

• The varying length of time to process is managed by
inserting wait states to extend the instruction cycle.

• The result is then returned as the value for the read.

SWTM Service Decoding
0 15 16 21 22 23 24 25 26 27 28 29 30 31
-------------------|-------------|--------------------------------------
SWTM Base Address	Service	T T T T T T T T 0 0

ADDR_DECODE : process(Bus2IP_Addr) is
--
-- combine address bits to form a 6-bit address
-- to decode for memory mapping,
-- addr2 set to 0 for all valid addresses, else 1
--
begin

if (Bus2IP_Addr(17 to 21) < 5) or
(Bus2IP_Addr(22 to 29) = Z32(0 to 7)) then
addr2 <= Bus2IP_Addr(16) or Bus2IP_Addr(30) or Bus2IP_Addr(31);

else
addr2 <= '1'; -- invalid address

end if;
addr <= addr2 & Bus2IP_Addr(17 to 21);

end process ADDR_DECODE;

CYCLE_CONTROL : process(Bus2IP_Clk) is
--
begin

IP2Bus_Retry <= '0'; -- no retry
IP2Bus_Error <= '0'; -- no error
IP2Bus_PostedWrInh <= '1'; -- inhibit posted write
--
-- count the number of elapsed clock cycles in transaction
--
if Bus2IP_Clk'event and (Bus2IP_Clk = '1') then

if (Bus2IP_CS = '0') then
cycle_count <= 0; -- hold in reset, or

elsif cycle_count < C_RESET_TIMEOUT then
cycle_count <= cycle_count + 1; -- next cycle, or

else
cycle_count <= C_RESET_TIMEOUT; -- saturate counter

end if;
end if;
--
-- activate time out suppress if count exceeds TOUT_CYCLES
--
if cycle_count > TOUT_CYCLES then

IP2Bus_ToutSup <= '1'; -- halt time out counter
else

IP2Bus_ToutSup <= '0'; -- release
end if;

end process CYCLE_CONTROL;

MANAGER_ACCESS : process (Bus2IP_Clk) is
begin

if Bus2IP_Clk'event and (Bus2IP_Clk = '1') then

if(Bus2IP_RdCE = '0') then
IP2Bus_Data(0 to 31) <= (others => '0');

end if;

IP2Bus_Ack <= '0'; -- pulse(010) to end bus transaction
access_error <= '0'; -- pulse(010) for access error interrupt

case addr is
when SERVICE_1 => -- code to perform SERVICE_1
when SERVICE_2 => -- code to perform SERVICE_2
.
.

when SERVICE_n => -- code to perform SERVICE_n
when others =>
if ((Bus2IP_WrCE = '1') or (Bus2IP_RdCE = '1')) then
raise_Exception(UNDEFINED_ADDRESS);

end if;
end case; -- case addr

end if; -- rising clock edge
end process MANAGER_ACCESS;

when C_READ_THREAD =>
ADDRA <= '0' & Bus2IP_Addr(22 to 29); -- thread ID
if (Bus2IP_WrCE = '1') then
case cycle_count is
when 0 => -- initiate BRAM write
if (core_stop = '1') then
WEA <= '1'; ENA <= '1';
DIA <= Bus2IP_Data(0 to 31);

else
raise_Exception(WRITE_TO_READ_ONLY);

end if;
when 1 => -- write done
end_transaction;

when others =>
WEA <= '0'; ENA <= '0';

end case;
elsif (Bus2IP_RdCE = '1') then
case cycle_count is
when 0 => -- initiate BRAM read
WEA <= '0'; ENA <= '1';

when 1 => null; -- still reading
when 2 => -- set output data, signal done
IP2Bus_Data(0 to 31) <= DOA;
end_transaction;

when others =>
WEA <= '0'; ENA <= '0';

end case;
end if;

SWTM Service Summary
cycles added total cycles time(ns)

ADD_THREAD 5 8 80
CLEAR_THREAD 7 10 100
CREATE_THREAD_JOINABLE 5 8 80
CREATE_THREAD_DETACHED 5 8 80
CURRENT_THREAD 0 3 30
DETACH_THREAD 7 10 100
EXIT_THREAD 14 17 170
IDLE_THREAD 0 3 30
JOIN_THREAD 7 10 100
NEXT_THREAD 4 7 70
QUEUE_LENGTH 0 3 30
READ_THREAD 2 5 50
YIELD_THREAD 10 13 130

EXCEPTION_ADDRESS 0 3 30
EXCEPTION_REGISTER 0 3 30

SOFT_START 0 3 30
SOFT_STOP 0 3 30
SOFT_RESET 513 516 5160

Future Work

• Experiment with coding “style” to produce smaller
foot print for implementation.

• Adapt existing services for optimal interaction
with future system modules as they are developed.

• Adapt design for use in other FPGA architectures.

Additional information : http://people.eecs.ku.edu/~mfinley/

